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1 INTRODUCTION AND OBJECTIVES 

Tomatoes (Solanum lycopersicum L.) are integral to global diets and play a crucial role in the 

agricultural economy, with extensive cultivation due to their nutritional value and economic 

importance (Agbemafle et al., 2014). In 2021, global tomato production reached approximately 

186 million metric tons across 4.9 million hectares, contributing to an industry valued at around 

181.74 billion US dollars (FAO, 2022). This scale of production underscores the tomato's 

prominence in both fresh and processed forms across diverse cultures and cuisines, where it 

serves as a fundamental ingredient in various dishes such as soups, sauces, and juices 

(Bergougnoux, 2014; J. Liu et al., 2021). In addition to its culinary versatility, the tomato is 

recognized for its rich nutritional profile, being a source of essential vitamins, minerals, and 

bioactive compounds like lycopene, which has been linked to a reduced risk of prostate cancer 

and cardiovascular diseases (Giovannucci, 1999; Burton-Freeman & Sesso, 2014). The 

integration of advanced agricultural technologies and sustainable farming practices has been 

instrumental in increasing yields and improving the quality of tomatoes, further solidifying their 

position as a staple crop worldwide (Nemeskéri et al., 2019; X. Wang et al., 2019). Research also 

highlights the significant health benefits of tomatoes, including their contribution to immune 

function, blood pressure regulation, and cognitive health, with studies showing their potential in 

mitigating the risk of neurodegenerative diseases (Slavin & Lloyd, 2012; Meeusen, 2014). 

Additionally, the processing of tomatoes can enhance the bioavailability of certain nutrients, 

particularly lycopene, making processed tomato products like sauces and juices beneficial 

dietary components (Basu & Imrhan, 2007). 

The cultivation of processing tomatoes, faces numerous challenges. These challenges encompass 

a broad array of environmental stressors, notably the variability in water availability, such 

fluctuations in water supply significantly affect the quality and yield of tomatoes, impacting each 

phenological stage of the plant's growth in distinct ways (Nemeskéri & Helyes, 2019; Takács et 

al., 2020). Adding to these challenges is the necessity to consistently adhere to stringent fruit 

quality standards, a task that becomes increasingly challenging under diverse climatic conditions 

(Giuliani et al., 2019). Furthermore, the ripening process of tomatoes is yet another critical 

aspect, marked by significant alterations in metabolic pathways (Zhu et al., 2022). These changes 

are crucial in determining the fruit's external appearance, internal quality parameters such as Brix 

value and Lycopene content, and the distinctive colour indicative of ripeness. Therefore, 

predicting quality in diverse climatic conditions becomes paramount, as uniformity in quality 

and appearance is essential for consumer acceptance. Additionally, the genetic diversity inherent 

in different tomato genotypes presents both challenges and opportunities. While this diversity 
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demands adaptation in cultivation practices for each genotype, it also provides significant 

opportunities for agricultural advancements and the breeding of varieties more resilient to 

specific environmental stressors (Udriște et al., 2022). Therefore, the cultivation of processing 

tomatoes encompasses a wide spectrum of scientific and practical considerations, each playing a 

crucial role in ensuring the sustained production and availability of this globally important crop. 

Current research reveals a significant gap in comprehending the full impact of environmental 

factors on tomato root development and fruit quality. The potential of utilizing advanced 

predictive tools, such as machine learning, to assess fruit quality in relation to varying 

environmental and genetic influences remains largely unexplored. This thesis explores the 

complex relationship between environmental conditions and root development, delves into the 

application of machine learning techniques for predicting fruit quality attributes, and examines 

the interaction between genetic composition and environmental factors. 

Objectives to achieve 

The primary aim of this research is to comprehensively understand the growth, development, and 

quality of processing tomato plants in response to various environmental conditions and genetic 

factors. Specifically, this study seeks to achieve the following objectives: 

To Investigate Root Development in Processing Tomato Plants under Different Water 

Supply Levels 

Investigate the impact of differential water supply on the root system architecture of processing 

tomato plants (Solanum lycopersicum). This includes monitoring changes in root count, length, 

and overall development using non-destructive methods. The goal is to understand how water 

stress or abundance affects root growth patterns, potentially impacting overall plant health and 

yield 

To Perform a Comparative Analysis of Machine Learning Models in Predicting Tomato 

Fruit Quality 

Utilize two advanced machine learning techniques, eXtreme Gradient Boosting (XGBoost) and 

Artificial Neural Network (ANN), to predict key quality attributes of processing tomato fruits. 

These attributes include Brix, Lycopene content, and a/b ratio. The data for this analysis 

comprises variables like different cultivars, planting locations, years, and climatic factors, aiming 

to establish robust predictive models for fruit quality assessment. 

To Evaluate the Genetic Resources of Processing Tomato Plants in Diverse Environments 

Conduct a comprehensive assessment of the genetic diversity among different processing tomato 

genotypes and their response to various environmental conditions using GGE biplot analysis. 
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This objective focuses on understanding how genetic variation influences important quality traits 

like Brix and Lycopene content across different years and locations, providing insights into 

genotype-environment interactions. 

2 MATERIALS AND METHODS 

2.1 Part 1: Root Development Monitoring under Different Water Supply Levels 

2.1.1 Plant Material and Experimental Set-Up 

The experiment was conducted at the Horticultural Experimental Farm of the Hungarian 

University of Agriculture and Life Sciences in Gödöllő, Hungary, using the processing tomato 

hybrid H1015, a determinate variety commonly grown in the region. Plants were spaced 140 cm 

between rows and 20 cm between plants, resulting in a density of 3.57 plants per square meter. 

Seedlings were transplanted on 14 May 2020 and 15 May 2021. Three irrigation treatments were 

applied: 100% of crop evapotranspiration (I100), 50% of I100 (I50), and a non-irrigated control, 

with each treatment replicated three times. In 2020, irrigation began on 8 June, continued on 29 

June, and ended on 3 August. In 2021, it started on 3 June and ended on 2 August. 

2.1.2 Image Acquisition 

Images of roots were captured using a CI-600 In-Situ Root Imager (CID Bio-Science, USA), 

which uses a rotating scanner inside a transparent tube inserted into the soil. The images, taken at 

300 dpi resolution, were collected at three depths: 10–30 cm, 30–50 cm, and 50–70 cm. Photos 

were taken weekly from June 25 to August 18, 2020, and from June 9 to July 14, 2021, for 3 

plants per irrigation treatment. Scanner tubes were installed near randomly selected plants after 

transplanting. Root mapping was done manually using RootSnap 1.4 software, and the data were 

exported to a spreadsheet. 

2.1.3 Relative Chlorophyll Content and Photosynthetic Activity 

Measurements were conducted on randomly selected plants within each treatment at around 

12:00 on each measurement date. The SPAD index was measured using a SPAD 502 chlorophyll 

meter. A PAM 2500 fluorometer device was used to measure chlorophyll fluorescence. Data 

were acquired from the device with PamWin-4 4.01 software. In total, 16 measurements per 

treatment were taken, which included 4 measurements per treatment in each repeated block. All 

measurements were carried out non-destructively on healthy, fully developed leaves. 
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2.2 Part 2: A Comparative Analysis of XGBoost and Neural Network Models for 

Predicting Tomato Fruit Quality 

2.2.1 Dataset Description 

A comprehensive dataset was utilized encompassing physicochemical characteristics and 

environmental factors across a diverse selection of tomato cultivars over five consecutive 

growing seasons from 2017 to 2021. The dataset included observations of 48 cultivars and 28 

locations (Loc) within Hungary. The number of cultivars and locations varied each year, with 

measurements taken after harvest to assess key quality traits: Brix, lycopene content, and fruit 

colour (a/b ratio). In total, 28,474 measurements were recorded for these three main variables. 

To understand the impact of meteorological factors on tomato cultivation, data was collected 

from the Operational Drought and Water Scarcity Management System in Hungary over multiple 

growing seasons (30 May to 30 August). Key factors included the number of days with optimal 

temperatures (21°C to 27°C), total precipitation, rainy days, and average relative humidity. Days 

with ideal humidity levels (40% to 70%) and instances of high humidity (over 90%) were also 

tracked. Additionally, soil types at each location were classified based on the USDA system. 

2.2.2 Measurement of tomato quality traits 

Tomato physicochemical properties were assessed using advanced automated stations. Brix was 

measured by the Maselli SV01 system, which processed the tomatoes into juice and performed 

automatic refractometric analysis, with a range of 0 to 10 Brix and accuracy of ±0.15, following 

the nD/Bx ICUMSA standard. Lycopene content was determined through automated 

spectrophotometry, with a range of 0 to 80 mg/100 g and accuracy of ±0.5 mg/100 g. Fruit color 

was also measured spectrophotometrically, using colorimetric coordinates (L, a, b) to derive the 

chromaticity ratio, ensuring accurate colour balance evaluation. 

2.2.3 Data Preprocessing 

The dataset underwent several preprocessing steps to ensure quality and support analysis. 

Categorical attributes like 'Loc', 'Cultivar', and 'SoilTyp' were one-hot encoded for compatibility 

with machine learning algorithms (Goodfellow et al., 2016; Lecun et al., 2015). Missing values 

in numerical columns were imputed with the mean, while categorical columns were filled with 

the mode, preserving data distribution. After cleanup, variable relationships were explored 

through a correlation matrix visualized with a seaborn heatmap. 
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2.2.4 Machine learning models 

2.2.4.1 XGBoost Model 

The XGBoost (eXtreme Gradient Boosting) model, known for handling missing values and 

evaluating feature importance, was used for prediction (Chen & Guestrin, 2016). Lag features (1 

to 3-time steps) and a rolling mean (3-time window) were engineered for 'Predicted Variable' 

columns (Brix, Lycopene, a/b ratio) to capture temporal patterns (Box et al., 2015). The dataset 

was split using a 5-fold Time Series Split to maintain temporal sequence integrity. Features were 

standardized using StandardScaler, and the XGBoost Regression model was optimized via grid 

search and 3-fold cross-validation. Model performance was evaluated using R-squared, RMSE, 

and MRE. 

2.2.4.2 ANN Model 

Artificial Neural Networks (ANNs), designed to model complex non-linear relationships, were 

used for prediction (Goodfellow et al., 2016). Data was sorted chronologically by 'Year', with lag 

features and a rolling average (three-time point) generated to capture temporal patterns. 

Hyperparameter tuning determined the architecture, including the number of neurons, dropout 

rates, and learning rates (Bergstra et al., 2012). The model had two hidden layers, dropout 

regularization, and an output layer. Random search with early stopping helped prevent 

overfitting. The dataset was split using 5-fold Time Series Split, and both training and test sets 

were standardized. The ANN's performance was evaluated using R-squared, RMSE, and MRE. 

2.2.5 Feature Importance Analysis with SHAP 

The SHAP (SHapley Additive exPlanations) analysis (Lundberg & Lee, 2017) was used to 

explain the impact of individual features on the predictions of both XGBoost and ANN models. 

SHAP values measure each feature's contribution by evaluating their marginal effects across all 

possible feature combinations. For the XGBoost model, SHAP values were computed for 

features like 'Loc', 'Cultivar', 'SoilTyp', 'AvgT', and others, after data standardization. In the ANN 

model, the GradientExplainer method was used for SHAP value computation. SHAP summary 

plots visualized feature importance, showing the magnitude and direction of each feature's 

influence. 

2.3 Part 3: Evaluation of Tomato Plant Genetic Resources for Brix and Lycopene in 

Different Environments 

2.3.1 Plant Material 

In our study, we evaluated six commercial tomato varieties, each with unique traits. The H1015 

variety, developed by Heinz, is known for Extended Field Storage (EFS™), disease resistance, 

and adaptability to various climates, with a second-early maturity. The N6416 hybrid is early-
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maturing, resistant to Tomato Spotted Wilt Virus (TSW), and has high acidity, ideal for industrial 

use. Prestomech F1 matures very early, with square/round fruits, high sugar content, and 

resistance to overripening. UG11227 and UG812J are industrial varieties, the latter known for 

resistance to mechanical damage. Ussar stands out for its mild, juicy flavour and versatility. 

These varieties were chosen for their diverse attributes to analyse performance in various 

environments. 

2.3.2 Environments 

This study assessed the performance of six tomato varieties across three locations in Hungary 

over five years (2017–2021). Trials were conducted annually in Szarvas, which has nutrient-rich 

meadow chernozem soil, in Mezöberény in 2018 and 2019 on fertile casting meadow soil, and in 

Kocsér in 2020 on sandy to humus sand soil. These diverse environments allowed for a thorough 

evaluation of the varieties' resilience and productivity under varying agro-climatic conditions, 

providing valuable insights for GGE biplot analysis. 

2.3.3 Instrumental Measurements 

The physicochemical properties of tomatoes were assessed using automated stations. Brix value 

(sugar content) was measured with the Maselli SV01 device, which converted tomatoes to juice 

and performed automated refractometric analysis, displaying results from 0 to 10 Brix with an 

accuracy of ±0.15 Brix. Lycopene concentration was determined via spectrophotometry, with a 

measurement range of 0 to 80 mg/100 g, accuracy of ±0.5 mg/100 g, and repeatability of ±0.25 

mg/100 g. 

2.3.4 GGE biplot 

The GGE biplot was constructed by plotting the first (PC1) and second (PC2) principal 

component scores of genotypes and environments, derived from the singular value 

decomposition (SVD) of environment-centred data (Yan et al., 2000). This method visualizes 

genotype-environment interactions, showing the 'which-won-where' pattern, and ranks genotypes 

by performance and stability. The GGE biplot was analyzed using Genstat.v12 software with 

row-metric preserving settings (SVP = 2), no transformation, no scaling, and environment-

centering (Centring = 2). 

3 RESULTS AND DISCUSSION 

3.1 Part 1: Root Development Monitoring under Different Water Supply Levels 

3.1.1 General Results Regarding Root Count and Root Length 

In 2020, a statistical analysis showed that the full irrigation treatment (I100) resulted in a smaller 

number of roots with less total length than in the water-stressed treatments, meaning 45% less 
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root per plant and 40% less total length compared to the I50 treatment and control, respectively, 

with no significant difference between the stressed treatments. The results of the 2021 analysis 

showed that plants under the control treatment produced the highest number of roots with the 

highest total length, followed by the I100 and then the I50 treatments. No significant difference 

was found between the two irrigated treatments in 2021. Overall, fewer roots were captured in 

2021 than in 2020. The reason for this difference can be attributed to the different periods when a 

long-term irrigation deficit could develop and the different irrigation treatments that were 

applied. 

According to our results in 2020, plants generally grew more roots with a greater total root 

length in the middle and bottom layers. In contrast, roots in the top layer did not exceed 71 roots 

with a 2081 mm total length. The 2021 results reinforced this pattern, indicating that root density 

in the soil increased with depth. 

3.1.2 Evaluation of the Time Scale for the Monitored Root Zone 

In 2020, the plants under the mild stress treatment (I50) exhibited significantly more roots with 

longer total lengths by the end of the monitoring period compared to the control and I100 

treatments. Although the initial data suggested that the I50 and I100 treatments started on similar 

grounds, by the second week of monitoring, the rapid growth rate of the I50-treated plants led to 

a high root count comparable to the control. This observation could suggest that mild stress 

conditions stimulate the plants to develop more roots to absorb available water. 

In 2021 growing season demonstrated a reduced number of roots and total root length in all the 

treatment groups. Notably, the plants in the control group showed the most extensive root 

growth. The irrigated treatments produced similar root counts during the experiment, and the 

three treatments barely differed in the final two weeks of the monitoring period in root length, 

while the higher number of roots in the control was continuous from the second week of the 

monitoring period. 

3.1.3 Evaluation of the Layer Scale for the Monitored Root Zone 

In the 2020, the distribution of roots was not uniform in the 10–70 cm rooting depth. The top 

layer developed a smaller number of roots with the least total length under all treatments. 

Regarding the top layer, the highest number and length were captured in the control. The plants 

that received full irrigation developed the highest number and longest roots in the middle layer 

compared to the other two soil layers. The 2020 growing season data revealed no significant 

difference in either root number or total length between the middle and bottom layers in the mild 

stress treatment. 
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In 2021, the deeper the soil layer was, the more and longer roots were developed, and the highest 

counts were observed in the control treatment in the 50–70 cm layer. However, the total length of 

roots was the lowest in the I50 treatment in the 10–30 cm layer, and the number of roots was 

equally low in the irrigated treatments in this layer. Comparing the number and length of roots, 

the data revealed that the plants in the control group developed significantly more roots in each 

layer compared to the irrigated treatments due to severe water stress. The results for the I50 

treatment were inconsistent in the two growing seasons since the same level of root number was 

detected as in the I100 treatment. 

3.1.4 Comparison of the Root Development in the Two Years 

The comparative results demonstrate that the tomato plants cultivated in 2020 exhibited more 

substantial root growth and lengthier roots compared to those grown in 2021, regardless of the 

treatment applied. Consequently, the highest quantity and length of roots were observed in 2020 

under the I50 treatment. The highest root count was recorded at 128 and 69, with corresponding 

total lengths of 4313 mm and 2607 mm for the years 2020 and 2021, respectively. Meanwhile, 

the minimum root count was observed in the 10–30 cm soil layer, with 70 and 41 roots and total 

lengths of 228 mm and 1610 mm, respectively, for 2020 and 2021. In 2020, the root counts were 

nearly equal in the 30–50 and 50–70 cm layers, whereas in 2021, both exhibited a consistent 

increase towards the bottom layer. The differences between treatments were less explicit in 2021.  

The statistical analysis of the interaction effects between the year of measurement and the water 

treatment demonstrated a significant effect on both root count and root length, suggesting that 

the effectiveness of water treatments on root development varies depending on the year. On the 

other hand, the interaction between year and layer on root count shows significance (p-value = 

0.0164), while it isn't significant for Root Length (p-value = 0.115), indicating that the influence 

of soil layer on root length is consistent across different years. 

3.1.5 Effect of Different Treatments on Relative Chlorophyll Content (SPAD) and Chlorophyll 

Fluorescence (Fv/Fm) 

The available data facilitate a comparison of the SPAD values of the tomato plants under the 

different irrigation treatments on each measurement date. In 2020, on 8 July, the I100 treatment 

displayed a lower SPAD value compared to both the I50 treatment and the control treatment. 

From 15 July to 29 July, the I50 treatment’s values generally surpassed those of the I100 

treatment but fell short of the control treatment’s values. The SPAD values for all three 

treatments diminished during this period. In 2021, the SPAD values of the control treatment 

group were significantly higher than the I100 and I50 groups during the whole measurement 

period. By 14 July, the differences between the treatments became more pronounced and 
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significant. The I100 treatment showed a slight increase in SPAD value to 57.4, while the I50 

and the control treatments exhibited a larger increase to 61.4 and 70.2, respectively, indicating a 

greater chlorophyll content. 

The data show the chlorophyll fluorescence values of tomato plants under the different irrigation 

treatments on each measurement date. In 2020, the I100 plants initially exhibited lower values 

compared to the I50 and control plants. However, over time, the chlorophyll fluorescence values 

for the I100 plants gradually increased and eventually surpassed the values of the I50 and control 

plants by the time of the maturity period, after the irrigation had ended. The statistical analysis 

indicated that, except for the measurement taken on 29 July, there were no significant differences 

observed between the treatments. A similar observation was recorded in 2021, when the 

statistical analysis revealed that there were no significant differences between the treatments on 

all measurement dates, except for 29 July, where the control treatment had a higher value than 

the I50 treatment, which reported the lowest value. Both irrigated treatments displayed very 

similar values. 

3.2 Part 2: A Comparative Analysis of XGBoost and Neural Network Models for 

Predicting Tomato Fruit Quality 

3.2.1 Correlation Heatmap 

The correlation heatmap provides a clear view of the linear relationships between climatic 

variables, Brix, Lycopene, and the a/b ratio. It uses a color spectrum from blue (negative 

correlations) to red (positive), as validated by Waskom (2021). Key insights include a strong 

positive correlation between 'AvgT' and 'T21_27', indicating that higher average temperatures 

correlate with more days in the optimal range for growth. 'TotPrecip' and 'RainDays' are closely 

aligned, highlighting the link between rainfall and precipitation. In contrast, 'AvgRH' negatively 

correlates with 'RH40_70', showing that higher humidity reduces the ideal humidity days for 

cultivation. Additionally, 'RH_90+' has a strong positive correlation with 'Brix', suggesting that 

high humidity may influence sugar concentration in fruits. The 'a/b ratio' also correlates with 

various climatic factors. These eight meteorological variables were used as independent factors 

in predictive models to analyze their impact on fruit quality and yield. 

3.2.2 Model performance on Brix prediction 

The developed algorithms exhibited a high degree of accuracy when estimating the Brix values. 

The XGBoost model yields an impressively a robust R2 value of 0.98 and low RMSE of 0.07. 

Such results not only vouch for the XGBoost algorithm's capability but also highlight the 

significance of the chosen features in predicting Brix values from other climatic and quality 

variables. On the other hand, the ANN model resulted in an R2 of 0.89 and RMSE of 0.17, 
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marking its good performance in intricate predictive modelling scenarios. The presented scatter 

plots from the two distinct models provide insights into their performance efficacy in predicting 

Brix values. Both plots display a significant concentration of data points around the black line 

representing x=y, highlighting the commendable accuracy of both models. For the XGBoost 

model and the ANN respectively, the percentage of predictions deviating less than 5% are 97% 

and 89%. It's noteworthy that a predominant cluster of data points signifying that the models’ 

predictions are not only accurate but also consistent. These statistics underscore the models' 

competence in closely estimating the actual Lycopene content, despite some error margins which 

are to be expected in predictive modelling. 

The MRE for the XGBoost model was as low as approximately 0.25% in some intervals, 

indicating high predictive accuracy, but it reached upwards of 2% in others, suggesting a 

reasonable predictive performance overall. On the other hand, the MRE for the ANN model, 

which varied significantly, ranging from approximately 0.5% to nearly 7%. While both models 

showed areas of agreement between actual and predicted Brix values, the ANN model exhibited 

higher variability in prediction accuracy. 

3.2.3 Model performance on Lycopene prediction  

The XGBoost model yielded an R2 value of 0.87 and an RMSE value of 0.61, accounting for 

87% of the variance in observed Lycopene content. In contrast, the ANN model had an R2 of 

0.84 and an RMSE of 0.86, attesting to its substantial explanatory capability. While both models 

exhibited commendable accuracy in predicting Lycopene content, minor inconsistencies were 

observed. The line representing ideal prediction, where predicted values coincide with actual 

measurements, serves as a benchmark for accuracy. It was revealed, that a significant proportion 

of predictions from both models lied within the 10% deviation margin, underscoring their 

precision. More specifically, for the XGBoost model and the ANN respectively, the percentage of 

predictions deviating less than 5% were 84.55% and 86.45% respectively. 

Regarding the Mean Relative Error (MRE) the XGBoost model demonstrated a more stable 

performance, with most data groups maintaining an MRE below 4%, suggesting generally robust 

predictive accuracy. On the other hand, the ANN model, exhibited higher variability in its MRE, 

oscillating across different values and suggesting varying degrees of predictive accuracy. 

Notably, some segments exhibited a relatively high MRE, peaking just below 6%. The XGBoost 

model presented slightly superior performance in terms of consistency and reduced error. 
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3.2.4 Model performance on a/b ratio 

The XGBoost model had demonstrated a high degree accuracy, achieving an R² value of 0.93 

and an RMSE of 0.03, indicating a strong fit to the data. In contrast, the ANN model had yielded 

a higher RMSE of 0.138. While this suggested a reasonable proximity of predictions to actual 

observations, the model's negative R² value of -0.35 indicated a poor fit to the dataset. This 

finding suggested that either the current ANN model was not optimal for this dataset, or there 

were underlying issues with the dataset or its processing. In terms of prediction deviation, for the 

XGBoost model, 99.45% of predictions had been within 5% of the actual values. This indicated a 

high level of accuracy for most predictions. Notably, the ANN model had displayed significant 

deviations beyond the ±5% and ±10% margins, suggesting areas of unreliability. It is worth 

noting that despite the moderate correlation observed in the ANN model, indicating a positive 

linear relationship between observed and predicted values, the negative R² value pointed to its 

failure in adequately fitting the variance in the data. This discrepancy underscored the 

importance of comprehensive evaluation metrics in model assessment. The RMSE of 0.138, 

while seemingly small, was significant if the dependent variable in the dataset exhibited low 

variability. This magnitude of RMSE reflected that the ANN model's predictions were, on 

average, 0.138 units away from the actual values, leading to consistent and notable inaccuracies. 

Thus, the practical utility of the ANN model in this context was limited, as evidenced by its 

negative R² value, despite a moderate correlation. 

In our analysis, the XGBoost model demonstrated satisfactory predictive performance. Its MRE 

fluctuated but remained relatively low, peaking slightly above 0.8%. In contrast, the ANN model 

exhibited significantly greater variability in its predictions. The MRE of the ANN model reached 

as high as approximately 12%, indicating that, on average, its predictions deviated by a 

maximum of 12% from the actual values. 

3.2.5 SHAP 

Brix 

The most important difference between the SHAP plots of the two-machine learning model was 

that positive feature values contributed to mainly positive SHAP values in the ANN model but 

they were sorted differently for the XGBoost. The 'Cultivar' feature was paramount in the 

XGBoost model, displaying a broad range of SHAP values that are both positive and negative 

values, indicating a robust association between certain cultivars and elevated Brix levels. This 

suggested the significance of genetic attributes in enhancing water soluble solids content. The 

features related to humidity, such as 'RH40_70' and 'AvgRH' showed a substantial spread of 

SHAP values across the x-axis, suggesting variable effects on Brix prediction, where both low 
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and high relative humidity levels could either positively or negatively impact the accumulation 

of water-soluble solids in fruits, contingent upon other interacting variables. In contrast, in the 

ANN model the plot revealed a consistent pattern: higher feature values are invariably associated 

with positive SHAP values, while lower feature values correspond to negative SHAP values. 

This suggests a monotonic behavior where the magnitude of a feature's value is directly 

proportional to its impact on the model's output. The 'Cultivar' feature demonstrated a more 

uniform effect across the entire dataset, with a tendency toward positive contributions, reflecting 

its significant and consistent influence on the model's prediction of the Brix. Similarly, the SHAP 

values for 'Loc' and 'SoilTyp' indicate that geographical location and soil type are influential 

factors in predicting Brix levels, with higher and lower values of these features consistently 

impacting the model's output. The variable 'Year' also emerged as a significant temporal factor in 

the ANN model, potentially capturing the effects of varying climatic conditions across years, 

indicative of the model's capability to assimilate temporal dynamics into its predictive 

mechanism. The SHAP analysis showed that the XGBoost model attributed more importance to 

‘AvgT’ than to ‘TotPrecip’, by contrast, the effect of ‘TotPrecip’ on the prediction of Brix was 

important in the ANN model. However, the ways in which these factors influenced Brix 

predictions in each model differed, possibly reflecting inherent differences in data assumptions 

and the models' strategies for integrating features. 

Lycopene 

The analysis of the XGBoost model revealed that the 'Cultivar' and 'RH40_70' features had a 

significant impact on the model's predictions of Lycopene content. The 'Cultivar' feature, in 

particular, showed a wide spread of SHAP values, indicating that different cultivars had varying 

levels of influence on the Lycopene content prediction. This suggested a complex, potentially 

non-linear relationship with the target variable. 'RH40_70' showed a more concentrated range of 

SHAP values, suggesting a consistent but less influential effect on the model's predictions. Other 

features were represented with SHAP values clustered closer to the center, implying a more 

moderate impact on the Lycopene content prediction. For the ANN, the 'Cultivar' feature 

exhibited the most substantial influence on the model's output with a broad spread of dots, 

indicating that the influence was more positive than negative. This implied a complex interplay 

where certain cultivars could have had a substantial impact, either augmenting or diminishing the 

potential Lycopene content determined by genetic background. Although the general 

directionality of feature values and their impact on the model’s predictions might have suggested 

a monotonic pattern, the spread and distribution of the SHAP values did not necessarily imply a 

linear relationship but rather implied a consistent pattern recognized by the neural network where 
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certain features were favorable for Lycopene production. The colour gradient added another 

layer of interpretability. For instance, the XGBoost plot showed that both high and low values of 

'AvgT' did not exhibit simple linear relationships with Lycopene content. Instead, its impact was 

nuanced, with both high and low values influencing predictions in both positive and negative 

directions. This complexity may have mirrored how biological processes formed agricultural 

crops in response to environmental factors. Additionally, temporal trends reflected in the 'Year' 

feature's SHAP values could have pointed to evolving agricultural practices or climatic shifts 

over time, further highlighting the multifaceted nature of Lycopene biosynthesis. 

a/b Ratio 

The 'Year' feature in the XGBoost model had exhibited a high distancing of SHAP values, with 

clusters on both the positive and negative sides of the zero line, indicating a variable influence on 

the model’s prediction, with some years contributing to an increase and others to a decrease in 

the predicted a/b ratio. The 'Cultivar' feature exhibited a unidirectional effect, with a pronounced 

aggregation of its SHAP values on the positive side, indicating a uniform contribution to the 

increase in the model’s predicted a/b ratio. Notably, this increase is predominantly associated 

with the lower encoded values of 'Cultivar,' as indicated by the abundance of blue points. 

Conversely, 'TotPrecip' was predominantly associated with decreases in the a/b ratio, suggesting 

a positive relationship. For the ANN model, interpreting the SHAP values became more 

challenging due to the negative R2 score. The model had predominantly exhibited negative 

SHAP values for features such as 'Cultivar', 'SoilTyp', and 'RH40_70'. These consistently 

downward predictions indicated that these features often reduced the predicted value compared 

to the model's baseline. The dominance of negative SHAP values and the lack of variation in 

SHAP value direction, unlike the variability observed in the XGBoost model, raised concerns 

about potential overfitting, insufficient feature representation, or inadequate network architecture 

to capture the complexities of the dataset. Furthermore, the ANN’s poor performance metric, as 

highlighted by the negative R² score, had implied that the model was less informative than a 

simple average of the target variable, suggesting that the model's internal representations and 

learned weights did not generalize well to the data's underlying structure. 

3.3 Part 3: Evaluation of Tomato Plant Genetic Resources for Brix and Lycopene in 

Different Environments 

3.3.1 GGE biplot analysis 

The first two principal PCs explain 77.10% (PC1 = 50.12%, PC2 = 26.97%) and 82.71% (PC1 = 

67.42%, PC2 = 15.28%) of the total variation of the GGE model respectively for the Brix and 
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Lycopene values. PC1 defines the mean performance of the genotype, while PC2 shows the GEI 

of each variety, which is a measure of variability (stability). 

Focusing on individual genotype performance, UG812J and Ussar, with PC1 values above zero, 

demonstrate high Brix and good adaptability. Prestomech, uniquely positioned near the biplot 

origin along PC2, demonstrates consistent stability across various conditions, although it exhibits 

average Brix content. Conversely, genotypes with PC1 values below zero show the opposite 

trend. The biplot's lack of clustering highlights significant environmental and genotype variation. 

Moreover, the acute angles observed between Szarvas2017 and Szarvas2021 indicate a positive 

correlation between each of these environments. This pattern repeats between the environments 

Szarvas2018, Szarvas2019, Szarvas2020, Mezobereny2018, Mezobereny2019. However, obtuse 

angles observed between Szarvas2017 and Szarvas2021 one side, and Szarvas2019 and 

Mezobereny2018 on the other side indicate a negative correlation between these environments. 

Same thing was observed when comparing Szarvas2020 with Szarvas2021 and Szarvas2019. A 

right angle between Szarvas2017 and Szarvas2018 indicates no correlation between these 

environments. 

Regarding the Lycopene content, only H1015 and Ussar outperform the average and show good 

adaptability. The biplot also suggests environmental similarities, with Szarvas2017 and 

Mezobereny2018 clustering together, indicating shared attributes. This pattern is repeated for 

Szarvas2019, Szarvas2020, and Mezobereny2019. All environments except for Szarvas2017 

exhibit an acute angle between each pair of environments, indicating a positive correlation 

between them. However, obtuse angles between Szarvas2017 and the trio of Szarvas2019, 

Szarvas2020, and Mezobereny2019 suggest negative correlations between these environments. 

3.3.2 The Which-Won-Where patterns 

The biplot evaluating the Brix values reveals the existence of three distinct mega-environments. 

The first mega-environment comprises Szarvas2017, whereas the second one includes 

Kocser2020 and Szarvas2021, and the third one all the rest of the environments. Notably, 

genotypes located in the same sector with a particular environment are the best performers in that 

environment. genotypes Prestomech is located in the same sector with environment as 

Kocser2020 and Szarvas2021, therefore, we would expect it to have the highest Brix values in 

these environments. Same thing goes for Ussar which is located in the same sector with 

Szarvas2018, Szarvas2019, Szarvas2020, Mezobereny2018 and Mezobereny2019. 

The biplot evaluating the Lycopene values of identifies two mega-environments in the data, the 

first is consisting of Szarvas2017 and Kocser2020, the second of all the rest environments. 
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Among these, genotype H1015 is expected to exhibit the best Lycopene in the environments 

Szarvas2018, Szarvas2019, Szarvas2020, Szarvas2021, Mezobereny2018 and Mezobereny2019 

since it is located in the same sector. 

3.3.3 Ranking biplot  

In the biplot analysis assessing Brix and Lycopene content, distinct patterns in genotype 

performance emerged. H1015 exhibited the highest mean Brix value, followed by N6416 and 

Prestomech, whereas UG11227 and UG812J recorded the lowest, falling below average. 

Notably, Prestomech demonstrated remarkable stability in Brix performance. In terms of 

Lycopene content, H1015 and Ussar showed higher mean values. Contrarily, Prestomech, 

alongside Ussar, UG812, UG1227, and N6416, exhibited lower mean Lycopene values. Ussar 

and UG812J were notably stable in their Lycopene performance. It is worth pointing out that 

according to Yan & Tinker (2006) if the biplot accounts for only a small fraction of the overall 

variation, it's possible that some genotypes which appear stable might not be genuinely stable. 

This is because their variability may not be completely captured in the biplot. 

3.3.4 Comparison Biplot 

The “ideal” genotype at the center of concentric circles, characterized by a position on the AEA 

(Absolutely Stable Axis) in the positive direction and a vector length matching the longest 

vectors of genotypes on the AEA's positive side, indicative of the highest mean performance. 

Therefore, the smaller the circle containing a genotype the more attributes it shares with the 

“ideal genotype”, which makes it more desirable than others. In this context, N6416 surpasses 

Prestomech in terms of desirable high Brix values, while UG1127 ranks as the least desirable. 

Conversely, for Lycopene content, H1015 leads in desirability, followed by Ussar, with 

Prestomech exhibiting the poorest performance across all environments. 

Szarvas2018 and Mezobereny2019 emerge as the most favorable environments for achieving 

high mean Brix values combined with genotype stability. Similarly, Szarvas2021 and 

Mezobereny2018 are identified as optimal for high mean Lycopene values and genotype 

stability. 

Results depicts a crucial idea related to "stability". The term "high stability" is favorable only 

when linked with the mean performance (Yan & Tinker, 2006). This criterion reveals that while 

Prestomech and Ussar are deemed 'highly stable', they exhibit lower Brix values compared to the 

less stable genotype, N6416. 
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4 CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

4.1.1 Root Development Monitoring under Different Water Supply Levels 

Our study highlights the adaptability of tomato plants in response to varying water supply levels. 

The development of deeper roots under water stress, as observed in our findings, emphasizes 

plants’ inherent strategies to counter water deficits and optimize water uptake. According to our 

results, the root system expansion to layers with higher soil moisture levels can happen quickly 

(<one week). The data suggested that root length could triple in 8 days. However, tomato plants 

that are irrigated regularly with sufficient water quantities develop shorter roots during the 

intensive root development phase. 

Our findings also shed light on the impact of water supply on root system efficacy, with lower 

irrigation rates and water quantity levels stimulating more intensive root development. The 

observed variances in root growth over the two consecutive years, influenced by factors such as 

irrigation water levels and temperature variations, underscore the multifaceted nature of plant 

responses to environmental conditions. 

The relationship between relative chlorophyll content and root development is stronger during 

the intensive root development period. The consistency in chlorophyll fluorescence across 

treatments, despite varying water conditions, suggests robust plant mechanisms that maintain 

photosynthetic efficiency under stress, even if the relative chlorophyll content is affected. 

Our research contributes valuable insights into the adaptive strategies of plants under drought 

stress. This knowledge could inform plant breeding efforts aimed at developing cultivars that are 

more effectively adapted to water-deficient conditions. It is also pertinent to irrigation 

professionals seeking to enhance the use of soil layers and improve the effectiveness of root 

zones. 

4.1.2 Comparative Analysis of XGBoost and Neural Network Models for Predicting Tomato 

Fruit Quality 

Our study offers a detailed analysis of Brix, Lycopene, and a/b ratio predictions using XGBoost 

and ANN models. For Brix prediction, the XGBoost model proved to be highly effective, 

explaining approximately 98% of the variance in actual Brix values, compared to about 89% by 

the ANN model. In Lycopene content prediction, the XGBoost model demonstrated high efficacy 

with an 87% variance explanation, marginally outperforming the ANN model, which accounted 

for 84%. However, in predicting the a/b ratio, the XGBoost model maintained strong 
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performance with 93% of the variance explained, while the ANN model was notably less 

effective, indicated by a negative R² value of -0.35.  

These findings underscore the superior predictive capabilities of the XGBoost model in these 

scenarios and reveal limitations of the ANN model, especially in predicting the a/b ratio. The 

SHAP summary plot analysis shows that both models effectively predict Brix values and 

Lycopene content in tomatoes, but with different focal points. XGBoost emphasized the genetic 

makeup of cultivars and their interaction with environmental factors, whereas the ANN model 

captures complex genetic interactions and direct feature relationships. Additionally, our results 

highlighted the significant influence of temporal factors, particularly 'Year', on the a/b 

chromaticity ratio, suggesting a complex interplay with climatic conditions and agricultural 

practices. The limitations of the ANN model in this aspect, as evidenced by its negative SHAP 

values and R² score, underline the necessity of meticulous model selection, optimization, and 

validation in precision agriculture. 

4.1.3 Evaluation of Genetic Resources for Brix and Lycopene in Different Environments 

The comprehensive analysis utilizing GGE biplot methodology has revealed distinct patterns of 

adaptability and performance across different tomato genotypes in varied environmental 

contexts, demonstrating the complexity and multidimensional nature of these interactions. The 

identification of mega-environments and their corresponding well-suited genotypes for particular 

quality traits provides a strategic framework for targeted breeding programs and cultivation 

practices aimed at enhancing tomato quality. The genotype H1015, for instance, emerged as a 

notable performer with high mean values in both Brix and Lycopene, suggesting its potential as a 

cornerstone in breeding programs focused on improving nutritional quality and taste. 

Moreover, the variability in performance among genotypes across different environments 

underscores the essential role of GEI in determining the phenotypic expression of principal 

quality traits. This variability presents both challenges and opportunities for breeders in selecting 

and developing genotypes that can deliver consistent performance across diverse environmental 

conditions. The study also highlights the importance of maintaining genetic diversity in breeding 

programs, as different genotypes exhibit varied responses to environmental factors, thus enabling 

the cultivation of tomatoes that meet specific quality standards in different environments. 

The limitations inherent in biplot analysis, such as the potential for deceptive stability in cases 

where a small fraction of the total variation is accounted for, emphasize the need for further 

research. Comprehensive datasets encompassing a wider range of environmental variability are 

essential for developing a more nuanced understanding of GEI and its implications for tomato 

quality trait improvement. 
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Together, these studies illustrate a comprehensive picture of the factors influencing tomato plant 

production and fruit quality. The adaptive strategies of plants to water stress, the predictive 

power of machine learning models, and the critical role of genetic diversity in shaping quality 

traits are all interconnected facets of a larger agricultural ecosystem. This research underscores 

the potential for a holistic approach to crop management, one that leverages advanced 

technologies and genetic insights to foster sustainable and efficient agricultural practices. 

4.2 Recommendations 

Water Management: Adaptive water management strategies must be developed to align with root 

architecture, optimizing water use efficiency and sustainability based on plant responses to water 

availability. 

Machine Learning Adoption: Advanced machine learning models, like XGBoost, should be used 

to enhance decision-making in agriculture, allowing precise predictions of fruit quality and 

improving system resilience and productivity. 

Breeding Programs: Breeding efforts should focus on selecting genotypes with high-quality traits 

and adaptability to various environments, helping agriculture withstand climate challenges. 

Further Research: More research is needed to integrate environmental, genetic, and technological 

data to improve predictive models, address climate impacts, and enhance sustainable agricultural 

practices. 

5 NEW SCIENTIFIC RESULTS 

❖ Enhanced Root Development under Water Stress 

Water-stressed tomato plants (I50 and control) exhibited significantly more and longer roots 

compared to fully irrigated plants (I100), particularly in deeper soil layers (30-70 cm). While full 

irrigation promotes initial root development primarily in the upper soil layers with eventual 

expansion to deeper layers, limited irrigation (I50 treatment) encourages deeper root growth 

from the outset as plants seek available water sources in the subsoil. 

❖ Yearly Variations in Root Growth 

Tomato plants exhibited significantly greater root growth and longer roots in 2020 compared to 

2021, with the I50 treatment showing the most substantial root development (128 roots, 4313 

mm in 2020 vs. 45 roots, 2058 mm in 2021); these variations were attributed to temperature and 

precipitation patterns, which impacted the development and distribution of root systems across 

different soil depths. 
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❖ Superior Performance of XGBoost Model 

XGBoost consistently outperformed ANN, achieving high accuracy in predicting Brix (R² = 

0.98, RMSE = 0.07) and lycopene content (R² = 0.87, RMSE = 0.61), and excelling in colour 

prediction (a/b ratio) with a R² of 0.93 and RMSE of 0.03. ANN lagged behind particularly in 

colour prediction, showing a negative R² value of −0.35. 

❖ Importance of Specific Features in Prediction Models 

SHAP value analysis further highlights the critical role of specific features such as 'Cultivar', 

relative humidity, and soil type, underscoring the complex interplay between genetic makeup, 

environmental conditions, and tomato quality. 

❖ Differences in Model Interpretability 

SHAP analysis reveals distinct differences in feature importance and model interpretability 

between XGBoost and ANN models, offering nuanced understanding of how genetic factors like 

'Cultivar', environmental variables, and even temporal dynamics influence tomato quality traits 

such as Brix values, Lycopene content, and a/b ratio. 

❖ Genotype and Environment Interaction 

The interaction between genotype and environment is significant, contributing to 29.59% of the 

variance in Brix and 18.74% in lycopene. This indicates that the effect of genotype on these 

parameters is influenced by environmental factors and vice versa. 

❖ Identification of Superior Genotypes 

Genotypes such as UG812J and Ussar exhibit high Brix values and adaptability across diverse 

environments, while genotypes like H1015 and Ussar are highlighted for their superior Lycopene 

content, making them ideal candidates for breeding programs focused on nutritional quality 

enhancement. 
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