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1. INTRODUCTION 
This chapter is structured with the following subheadings and begins by giving a general overview 

of the investigated issue: the background, problem statement, and research objectives. The 

background provides a general description of the soil, soil information systems, middle-infrared 

(MIR) spectroscopy, and digital soil mapping (DSM). The justification for the problem and the 

problem statement highlight the gaps that call for additional intervention. The actual purpose of 

this research is succinctly stated in the research objectives.  

1.1 Background 

Soil is a finite natural resource with diverse environmental functions: storing nutrients and organic 

carbon, water holding and filtering, functioning as a buffer and filter of water, biodiversity 

conservation, living space for humans, and cultural services. It is crucial for ensuring food security 

and coping with climate change (Grunwald et al., 2011). Soil quality and fertility are vital for soil 

scientists, decision-makers, farmers, etc. Thus, it is critical to recognise, monitor, and store soil 

physical and chemical attributes using innovative approaches. In this way, demands for soil-related 

information have risen substantially, and there is ample evidence that soil information systems are 

required to satisfy the growing need for soil data (Bullock & Montanarella, 1987). Globally, 

continentally and nationally, properly organised soil information databases represent a 

comprehensive scientific basis of the various action plans for sustainable land use and soil 

management. It offers wide-ranging opportunities for spatial quantification, pedotransfer 

functions, and soil process determinations (Jones et al., 2005). It may be helpful in monitoring 

natural resources, determining soil fertility and suitability for various crops and estimating soil 

loss (Bhattacharyya et al., 2010).  A significant quantity of soil data has been accumulated during 

long-term land observations and soil surveys in Hungary and arranged in different spatial soil 

information systems, for instance, the Hungarian Soil Information Conservation and Monitoring 

System (Mohammedzein et al., 2023). Soil information systems must rely on accurate, reliable, 

good quality and updated soil information. Updating soil information systems has to include 

applying alternative laboratory technologies to support the time, cost-effectiveness, and 

environment-friendliness of soil data analysis. Spectroscopic methods are promising and have 

demonstrated several advantages over wet chemistry methods, making them more extensively used 

in the soil research community, notably in soil analysis, such as do not require the use of chemical 

extracts that might harm the environment (Rossel et al., 2006), permit rapid acquiring of soil data 
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and attribute prediction. Soil mid-infrared spectroscopic measurements can be stored in databases 

known as spectral libraries. These soil spectral libraries are frequently required as reference 

patterns, making spectral data useful to the soil specialists' community (Demattê et al., 2019). The 

mid-infrared spectral library database has been used to build statistical models to predict various 

chemical, physical, and biological soil properties (Terra et al., 2015). It is also used for soil remote 

sensing (Deng et al., 2013) and digital soil mapping (DSM). 

DSM has evolved as an efficient field of soil science (Minasny & McBratney, 2016) to meet the 

demand for accurate soil information at various spatial resolutions (Omuto & Vargas, 2015). DSM 

strives to create current and accurate soil maps by utilising various data sources and methods to 

meet current and future soil information needs. In addition, DSM provides a widely accepted 

framework to map the spatial patterns of soil properties across various spatial and temporal scales 

(Wiesmeier et al., 2011). Using environmental covariates (e.g., digital elevation models, climate 

data and geology maps) and the availability of high-resolution remote sensing data besides soil 

spectroscopy allows faster and more cost-effective soil attribute estimates and mapping. The 

integration of MIR spectral library and environmental covariates such as remote sensing in DSM 

approaches has been shown to accurately estimate and map many soil attributes such as soil 

organic carbon, soil texture, CaCO3 and CEC that can be used to increase DSM prediction accuracy 

(Goydaragh et al., 2021; Rossel et al., 2016).   

1.2 Problem Statement and Justification 

Traditional soil surveys and fresh soil sampling campaigns are costly and time-consuming. Soil 

samples in archives of agriculture associations, universities, and research centres might be helpful 

in building soil spectral libraries (Nocita et al., 2015). Most large soil spectral databases are built 

from archived historical soil samples (Rossel & Webster, 2012). Even soil samples obtained 

decades ago have abundant spectral information that can be utilised to build spectral libraries and 

calibrate models. Even though the reflectance spectroscopy approach is used for soil analysis in 

Hungary, there is no evidence for national spectral libraries that include a wide variety of soils. 

Mid-infrared soil applications are primarily seen in scattered studies, representing small-scale 

areas. Such lack of information opens up additional opportunities for study and research to take 

advantage of its applications, such as soil properties prediction.  

On the other hand, although soil spectroscopic methods have been presented in scientific literature 

to predict various soil attributes, the potential use of this approach for DSM has yet to be 
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intensively explored (Mirzaeitalarposhti et al., 2017). Even though many SOC maps have been 

produced based on legacy soil data and other relevant soil information in Hungary (Pásztor et al., 

2014), as well as despite an increased number of papers that studied the assessment, prediction and 

mapping of SOC using mid-infrared soil spectroscopy and DSM techniques separately, globally, 

a few research have taken into account the combined use of environmental covariates and soil mid-

infrared spectroscopy database for spatial mapping SOC. Furthermore, there is no indication of 

research that has studied the modelling between national mid-infrared spectral libraries in 

Hungary, which include a wide diversity of soils and environmental covariates for high-resolution 

SOC mapping at the national level. Few studies have investigated updating soil information 

systems using the mid-infrared spectral library from legacy soil samples in combination with DSM 

over a national scale.  

1.3 Research Objectives 

The purpose of this study is to contribute to the development of the foundations of the mid-

infrared spectral library of Hungary and test different soil science applications based on it. To 

achieve this aim, the following objectives were defined. 

1.3.1 General Objectives 

1. To test the predictive capacity of middle-infrared diffuse reflectance spectroscopy and Partial 

Least-squares Regression (PLSR) modelling techniques in predicting physical and chemical soil 

data at different scenario levels. 

2. To test the possible use of soil middle-infrared spectroscopy data for digital soil mapping.  

3. To compare the middle-infrared spectroscopy predicted soil parameters with parameters 

determined by wet chemistry methods for digital soil mapping . 

1.3.2 Specific Objectives 

1. Contribution to the development of the first Hungarian middle-infrared spectral library. 

2. Build multivariate statistical models using PLSR for different classification scenarios (samples 

classified on the “10-county” scale, the county scale, and according to main soil types). 

3. Test the predictive capacity of the developed spectral library in the spectral-based estimation of 

key physical and chemical soil properties (SOC, soil texture, CaCO3, CEC, exchangeable Ca and 

Mg and water pH). 
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4. Test the predictive capacity of the developed spectral library and environmental covariates for 

spatial mapping of SOC content to target depths of 0 – 30 cm by using DSM techniques (with five 

different models) at the 10-county scale. 

5. Test the predictive capacity of the traditional wet chemistry and environmental covariates for 

spatial mapping of SOC content to target depths of 0 – 30 cm by using DSM techniques (with five 

different models) at the 10-county scale. 

6. Comparison of the SOC map generated from the MIR spectral dataset with the SOC map 

produced from the traditional wet chemistry dataset. 
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2. LITERATURE REVIEW 
2.1  Introduction 

The foundation of this thesis necessitates familiarity with soil information systems, soil infrared 

spectroscopy including near and middle infrared, MIR spectral libraries, diffuse reflectance 

infrared Fourier transform (DRIFT) spectroscopic technique, and multivariate statistics for 

predicting soil properties. In addition to the DSM approach, environmental covariates and 

statistical models for DSM, such as machine learning and combining MIR spectral spectroscopy 

with DSM, are discussed. Gaps are identified that support the choice of methods used in this study. 

2.2     Overview of Soil Information System and Database 

Governmental organisations, national government employees, consultants, and researchers 

working on both new applications and more traditional ones like agricultural extension and soil 

conservation have seen an increase in the need for soil geographic information in recent years.  

Demands for soil-related information have risen substantially (Pásztor et al., 2015), and there is 

ample evidence that soil information systems are required to satisfy the growing need for soil data 

(Bullock & Montanarella, 1987). Normally, soil field records and delineations can be digitised and 

organised into databases to facilitate the usage of soil data. Soil profiles are commonly put into a 

Soil Profile (geographical) Database (SPDB). In contrast, soil delineations are digitised and 

represented as polygon maps with attributes attached via mapping units and soil classes (Rossiter 

& Rossiter, 2004). Soil profile databases and soil polygon maps can be combined to produce 

attribute maps of soil properties and classes to answer soil or soil–land use-specific questions. 

Once the data is in a database, one can generate maps and statistical plots by running spatial queries 

(Beaudette & O’Geen, 2009). Soil databases can provide information for various applications, 

such as soil degradation, forest productivity, global soil change, irrigation suitability, 

agroecological zonation and drought risk assessment (Oldeman, 1993). Globally and continentally, 

the properly organised soil information databases represent a comprehensive scientific basis of the 

various plans of action for sustainable land use and soil management. It offers wide-ranging 

opportunities for spatial quantification, pedotransfer functions, and soil process determinations 

(Jones et al., 2005). It may be useful for monitoring natural resources, determining soil fertility 

and suitability for various crops, estimating soil loss (Bhattacharyya et al., 2010), and evaluating 

risk (Lim & Engel, 2003). For instance, the Soil and Terrain Digital Database (SOTER) is a widely 
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used system that provides information for more accurate mapping, modelling, and monitoring of 

variations in soil and terrain resources worldwide (Bhattacharyya et al., 2010). 

A significant quantity of soil data has been accumulated during long-term activities of land 

observations and soil surveys in Hungary and arranged in different spatial soil information 

systems. These spatial databases are available at various levels, starting from the national 

(1:500000) to farm (1:10000-1:25000) and field (1:5000-1:10000) scales (Várallyay, 2002). The 

first extensive national survey was a project on soil mapping by Kreybig Lajos, which was started 

and supervised in 1937. The Kreybig legacy database has been extensively utilised since it was 

completed to meet user demands for soil data in Hungary (Pásztor et al., 2012). A soil fertility 

monitoring system (AIIR) database including agronomy and soil data such as pH, organic matter, 

saturation percentage, total salt content, total N content, and the amount of available P, K, and Ca 

in the top 30 cm of soil, has been created during 1978 to 1989 (Várallyay, 1994). The Soil 

Information System (HunSIS=TIR) was developed for Pest County, which occupies around 6,500 

km2. It contains basic topographic data and validated models on pedotransfer functions, soil 

processes, and soil-plant-environment relationships. It also contains point information on the 

characteristics of soil profiles and their various layers and diagnostic horizons (Kummert et al., 

1989). Moreover, the Hungarian Soil Information Conservation and Monitoring System (SIMS) is 

an independent soil subsystem that integrates environmental data and a monitoring database (TIM, 

1995). Moreover, SIMS identifies the soil resources (baseline state) and tracks how soil 

characteristics change over time. Regional soil experts determined this database's "representative" 

sampling locations based on all available soil data (profile descriptions, laboratory analytical 

findings, long-term field observations, maps, etc). Despite Hungary's small size, the importance of 

soil and agricultural activities in the national economic growth and the Hungarian community's 

historic love of the land, particularly among farmers, are all elements that contribute to the richness 

and accessibility of soil knowledge in Hungary (Várallyay, 2005). Soil information systems must 

rely on accurate, reliable, good quality and updated soil information. Updating soil information 

systems has to include alternative laboratory technologies to support soil data analysis's time, cost-

effectiveness, and environment-friendliness. 

2.3  Soil Spectroscopy 

Many new soil analysis techniques, particularly diffuse reflectance spectroscopy, have recently 

been developed. Although soil wet chemistry techniques are widely regarded as accurate methods 
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for characterising soil attributes, they are sometimes considered impractical due to their time-

consuming and occasional imprecision (Demattê et al., 2019). When numerous measurements are 

required for soil taxonomy and mapping, wet chemistry frequently necessitates a large amount of 

sample preparation and sophisticated apparatus, which is usually insufficient (Rossel et al., 2016). 

Also, traditional wet chemistry has disadvantages such as physical damage to the soil system's 

nature (Waruru et al., 2014) and the generation of toxic wastes (environmentally harmful) that 

must be appropriately disposed (Sila et al., 2017). Soil infrared techniques are promising and have 

demonstrated several advantages over wet chemistry methods, making them more extensively used 

in the soil research community, notably in soil analysis. It permits rapid acquisition of soil data 

and attribute prediction (Seybold et al., 2019),  e.g., soil sample preparation and spectral scanning 

carried out within a few minutes, allowing for a high throughput of samples per day. This approach 

has good cost-benefit, utilises tiny subsamples and has the advantage that a single spectrum of soil 

samples integrates many attributes with high precision (Raphael, 2011; Waruru et al., 2015). 

Besides the previously mentioned advantages, these methods do not require chemical extracts that 

might harm the environment (Viscarra Rossel et al., 2006), allowing for scanning diverse soil types 

without sample dilution (Siebielec et al., 2004). Infrared (IR) spectroscopy is a repeatable and 

reproducible analytical approach for predicting soil properties (Soriano-Disla et al., 2014). 

Fundamentally, IR spectroscopy works based on the absorption of electromagnetic waves in the 

infrared regions (Cécillon et al., 2009). It relies on the interplay of electromagnetic energy with 

matter to characterise samples' physical and biochemical composition. The detector collects 

reflected light when light is shining on a soil sample. The given soil spectrum represents a unique 

fingerprint of specific compounds in the tested system (Tinti et al., 2015).  Vibrational energy 

transitions in molecules often need energy of a frequency that corresponds to the IR part of the 

electromagnetic spectrum. As a result, IR radiation will cause molecule interatomic vibrations, 

which is the foundation of the IR spectroscopy method. In essence, an IR spectrum provides a 

chemical profile of the sample. Although electromagnetic radiation has both electric and magnetic 

components, the electric component of infrared radiation interacts with the interatomic bonds of 

molecules to generate various vibrations and for infrared radiation to be absorbed (Nocita et al., 

2015). When IR radiation is absorbed, various molecular vibrations occur, including stretching, 

bending, and wagging of the atoms forming the molecule. A molecule must have covalent bonds 

to be IR-active. Additionally, the chemical bond vibrations of the atoms within the molecule must 
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result in an oscillating electric field (net change in dipole moment). The electromagnetic spectrum 

of infrared radiation ranges from 0.7 µm to 1 mm and contains near-infrared (0.70 - 2.5 µm), mid-

infrared (2.5 - 25 µm) and far-infrared (25 - 1000 µm) (Nocita et al., 2015). The two most critical 

spectral ranges for soil investigation and analysis are mid-infrared and near-infrared (Wijewardane 

et al., 2018). All bonds have specific vibrational frequencies, and IR absorption can be used to 

describe (i) the location of absorption in terms of wave numbers, (ii) the amplitude of the 

absorption peak (relative intensity), and (iii) the width of the peak describing its intensity-

bandwidth (Cécillon et al., 2009). Figure 2.1. shows different regions of the electromagnetic 

spectrum. 

 

Figure 2.1. Regions of the electromagnetic spectrum (source: (CCRS, 2009)) 

2.3.1  Near infrared and mid infrared spectroscopy 

Near-infrared (NIR) spectra result from overtones and combination bands. In contrast to other 

spectra, such as those recorded from mid-infrared regions (MIR), which contain primarily 

fundamental bands, near-infrared (NIR) spectra are complicated and more difficult to describe 

(Workman & Mark, 2004). Additionally, due to the combined effects of two or more bonds 

(combinations of absorbance) at each wavelength, the NIR area is characterised by larger signals 

rather than sharp peaks (Workman & Mark, 2004). 

Mid-infrared soil spectra contain useful spectral features and give detailed information on soil 

attributes (Shepherd & Walsh, 2007; Stenberg et al., 2010); it has been confirmed to present better 
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results and high predictions for several soil properties across soil types in comparison to near-

infrared spectroscopy (Minasny & McBratney, 2008; Pirie et al., 2005). This is because MIR range 

predictions are based on the presence of fundamental molecular vibrations. Fundamental 

absorptions are energy's most intense absorption features and occur in the mid-infrared. Each 

higher overtone and combination band is typically 10-100 times weaker than the fundamental 

bands (Sandorfy et al., 2006). The fundamental vibrations of functional groups in minerals and 

organic matter of soil samples explain the strong absorption of mid-infrared spectra (Shepherd & 

Walsh, 2007). The type of molecular motions, functional groups, or bonds present in the soil 

sample can be identified through mid-infrared spectroscopy since every frequency correlates to a 

certain quantity of energy and a specific molecular motion (e.g., stretching, bending, etc.). 

Vibrations of atoms of a molecule involve changes in bond length (stretching) or bond angle 

(bending) (Stuart, 2005). Stretching vibration consists of symmetric and asymmetric stretching, 

while bending vibration results from wagging, twisting, rocking and deformation. Symmetric 

vibration is generally weaker than asymmetric vibration because symmetrical molecules have 

fewer “infrared active” vibrations than asymmetrical ones (Stuart, 2005). The change in the bond's 

electrical dipole moment determines the intensity of each band during the vibration process; bonds 

with larger dipole moment produce higher intensity bands than other bonds (Griffiths & Haseth, 

2007). The MIR range has been showing high-density peaks (Shepherd & Walsh, 2007; Soriano-

Disla et al., 2014), which contain much mineral composition information on soils, such as Si-

bearing minerals and iron forms.  According to Shepherd & Walsh (2007), MIR spectra can be 

divided into four categories (a)  fingerprint (O-Si-O stretching and bending) between 1500 and 

600 cm-1; (b) double bond (C=O, C=C, and C=N) between 1500 and 2000 cm-1; (c) triple bond 

(C≡C, C≡N) between 2000 and 2500 cm-1; and (iv) X-H stretching (O-H stretching) between 2500 

and 4000 cm−1. Soil attributes have frequently been studied using MIR spectroscopy (Aguiar et 

al., 2013; Francioso et al., 2009; Kaiser et al., 2011).  

Nowadays, studying Fourier Transform IR (FTIR) spectra using a combination of multivariate 

statistical techniques is a useful diagnostic tool for identifying and quantifying soil constituents. 

(Sila et al., 2016; Rossel et al., 2006). Both Baumann et al., (2016) and Gerzabek et al., (2006) 

demonstrated the impacts of various management and land use on SOM composition using FTIR 

spectroscopy. Diffuse reflectance infrared Fourier Transform (DRIFT) have been widely used for 

different studies area, including the determination of soil organic and inorganic composition 
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(Demyan et al., 2012; Ferrari et al., 2011; Leue et al., 2010; Reeves & Smith, 2009; Tinti et al., 

2015). The technique's fundamental idea is based on scattering the incident light in all directions 

when the surface absorbs it. While some radiation contacts the solid surface and is reflected to 

create Fresnel reflection, other radiation passes through the sample, interacts with it, and remerges 

in various directions. 

2.3.2  MIR spectral libraries 

Spectral libraries are unique kinds of soil databases. Spectral libraries contain the spectra and 

reference parameters for soils of a given area. These soil spectral libraries are frequently required 

as reference patterns, making spectral data applicable to the soil specialists' community (Demattê 

et al., 2019). According to Rossel et al. (2008), three fundamental requirements must be met before 

a soil spectral library can be created: it must have as many samples as are necessary to fully 

describe the soil variability in the area where the library will be used; the samples must be carefully 

subsampled, handled, prepared, stored, and scanned; and the reference samples must be carefully 

acquired. The mid-infrared spectral library database can be utilised to boost agricultural output. 

Additionally, it may also be applied for applications of soil remote sensing, proximal sensing, and 

spectral variations across sample sites (Deng et al., 2013), soil mapping (Demattê et al., 2004), and 

building statistical models used in predictions of soil properties (Terra et al., 2015). Many 

publications showed that soil attributes have been efficiently predicted with high accuracy based 

on the mid-infrared spectral library. It has been usefully applied to predict various soil physical 

properties, including soil texture, water content (hydration, hygroscopic, and free pore water), 

aggregate and particle size distribution (Lal et al., 2005), and some properties of clay-like plasticity 

(Kasprzhitskii et al., 2018). In addition, it has been used to investigate and predict several 

biological and chemical soil properties like soil organic carbon fraction (Knox et al., 2015), organic 

carbon, calcium carbonates, soluble salts, cation exchange capacity, and soil pH (Acqui et al., 

2010; Reeves & Smith, 2009). Soil properties can vary greatly; it is difficult to build accurate 

models for soil samples that are not present in spectral libraries. As a result, extensive spectral 

libraries are required to give robust models over broad areas with a lot of soil diversity (Nocita et 

al., 2015), including samples similar to those whose parameters are predicted (Guerrero et al., 

2016). Sequentially, the extensive spectral database has the potential to significantly increase the 

accuracy of digital soil maps by giving more data on the most critical soil characteristics and 

enabling spatiotemporal soil monitoring over many different geographical areas. The association 
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between mid-infrared spectral library data and environmental covariates has recently been 

successfully used in DSM (Mirzaeitalarposhti et al., 2017). This modelling permits an increase in 

the accuracy of mapping different soil properties, such as soil texture, iron mineralogy, pH, cation 

exchange capacity, bulk density, and organic carbon content (Teng et al., 2018; Rossel, 2011).  

Soil mid-infrared spectral libraries range from large (regional, national and global) to local 

databases, including the field level (Wijewardane et al., 2016). For example, the LUCAS spectral 

library in Europe has approximately 20000 soil samples from the surface; the spectral library of 

the Australian continent represents 4000 soil samples, and the ICRAF-ISRIC soil spectral library 

contains 785 profiles (Demattê et al., 2019). Nowadays, the Global Mid-infrared Soil Spectral 

Calibration Library and Estimation Service started developing in 2020. This library includes 

spectral data of 80,000 soil samples. All samples have been measured based on one gold standard. 

It has been organized by the Soil Spectroscopy program of the Global Soil Laboratory Network 

(GLOSOLAN) of GSP-FAO and ISRIC as founding members of the program. On the other hand, 

traditional soil surveys and fresh soil sampling campaigns are costly and time-consuming. Soil 

archives in agriculture associations, universities, and research centres might allow the building of 

soil spectral libraries (Nocita et al., 2015). Most large soil spectral databases are built from 

archived historical soil samples (Rossel & Webster, 2012). Even soil samples obtained decades 

ago may have an abundance of spectral information that can be utilised to improve the calibration 

models of the mid-infrared spectral library. More recently, legacy soil samples have been used to 

build spectral libraries that span various geographical scales (Baumann et al., 2021; Gomez et al., 

2015; Rossel et al., 2008; Seybold et al., 2019; Silva et al., 2019). 

2.3.3   Multivariate statistical methods for soil MIR spectroscopy 

Although the visual interpretation of mid-infrared spectra can be achieved directly, quantitative 

prediction of soil attributes is challenging due to the intricate interaction of soil constituents in the 

given spectrum (Cécillon et al., 2009). Analysing soil mid-infrared spectral data using multivariate 

statistical techniques has provided a powerful approach to soil component discrimination. The 

term "multivariate calibration" refers to the process of building quantitative models that can predict 

the properties of the soil from the spectral data. The purpose of model calibration is to substitute 

an exact measurement of a soil attribute with one that is more convenient, faster, cheaper, or 

accurate enough. Several multivariate regression approaches, such as linear and non-linear 

methods, have been developed. Partial least squares (PLS), principal component regression (PCR), 
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and multiple linear regression (MLR) are examples of linear methods. Artificial neural networks 

(ANN), non-linear support vector machines (SVM), and random forest regression are examples of 

non-linear methods. 

The two most commonly applied prediction techniques in spectroscopy are principal component 

regression (PCR) and partial least squares (PLS) regression. It has been used to estimate one or 

more soil components or to perform quantitative determinations (Acqui et al., 2010; Viscarra 

Rossel et al., 2006). Partial Least Square Regression PLSR that relates both response and predictor 

variables. PLSR is easy to compute and understand (Wijewardane et al., 2018) and commonly 

integrates PCA and multiple regression (Wold et al., 2001). The generated spectral vectors from 

PLSR are consequently directly related to the soil attribute since it uses the correlation between 

the spectra and the soil (Geladi & Kowalski, 1986) and handles multicollinearity and is resistant 

to data noise and missing values. PLSR has been used for soil attribute prediction from the spectral 

library and can quantify varied soil attributes with high accuracy (Seybold et al., 2019). Although 

the prediction for Fe oxides was biased against measurement, (Rossel et al. (2006) estimates of 

kaolinite, illite, and smectite concentrations in mineral mixtures were accurate using PLSR. 

Summers et al., (2011) and Ostovari et al., (2018) demonstrated the effectiveness of the PLSR 

method in predicting soil CaCO3 content. The PLSR model also demonstrated the ability to predict 

soil-free iron and total clay content (Nouri et al., 2017). 

2.4   Soil Maps and Mapping 

One of the major tasks of soil scientists is to survey the soil, map it, and produce soil maps 

(FitzPatrick, 1986). This modern soil science, which matured in the second part of the twentieth 

century, is today known as Conventional Soil Mapping (CSM) (Schelling, 1970). Mapping soils 

is one of the most exacting scientific works because soils do generally not have sharp boundaries 

but gradually grade from one to another. At the outset of a soil survey, it is essential to establish 

the map's purpose; it may be a unique or general-purpose survey. The initial part of the survey 

usually starts with an examination of the soil map of the area from which preliminary boundaries 

may be drawn and then checked by field examinations. It is also essential at this stage to determine 

which properties are to be mapped. This leads to the choice of classes to be mapped and the map 

legend and, where necessary, to establish any relationships between mapping units and land use 

planning. The soil units that are mapped vary depending on the purpose of the map and the nature 

of the soil pattern. The soil survey manual developed by the Soil Survey Division Staff detailed 
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the basic principles and methods for conducting and using soil surveys (Soil Survey Division Staff, 

1993). Conventional Soil Mapping (CSM)  typically utilises survey methods to develop soil maps. 

Generally, the soil surveyor delimits soil units, which are areas of relative uniformity, but because 

soils are so variable, soil series are seldom absolutely uniform and may contain up to 15 per cent 

of other soils (FitzPatrick, 1986). The CSM technique can produce accurate maps if the survey is 

done correctly. Since soil survey data (field and laboratory) is now computer-stored, this allows 

rapid information retrieval and production of special-purpose maps to suit user requirements. In 

the last few years, there has been a very rapid development in soil mapping using remote sensing 

and GIS techniques. Because the scale of a soil map directly correlates with the information content 

and field investigations carried out, soil maps are required at various scales ranging from 1:1 

million to 1:4,000 to meet the requirements of planning at various levels. Nowadays, to handle 

current environmental concerns, more adaptable and quantitative approaches such as DSM for 

studying soils and their relationship or function to environmental elements and hazards are 

necessary (Bouma et al., 2012; Hartemink & McBratney, 2008). In addition, DSM techniques 

based on remote sensing enabled the mapping of soil properties at different scales due to higher 

spatial and spectral resolutions. The spatial distribution of soil attributes provides the fundamental 

information needed to guide crop planting and the preservation and utilisation of soil resources. 

2.4.1   Digital soil mapping 

Digital soil mapping (DSM) has been used as a replacement for conventional soil mapping, which 

has been discovered to have significant shortcomings. These limitations include extensive 

sampling necessary for accurate soil maps in largely inaccessible areas (Bui et al., 1999), a lack of 

quantitative accuracy metrics (Brus & Heuvelink, 2012), and the difficulty of reproducibility due 

to the complexity of the surveyors' mental soil-landscape models. DSM is an effective method of 

obtaining soil spatial distribution data.  

DSM is defined as developing and populating spatial soil information systems using numerical 

models that infer the geographic and temporal variation of soil types and attributes from soil 

observation and knowledge, as well as related environmental variables (Lagacherie et al., 2006). 

Another DSM definition is the generation and population spatial soil information using field and 

laboratory observational methods in combination with spatial and non-spatial soil inference 

systems (Carré et al., 2007; Bratney et al., 2003). 
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The state factor soil-forming model has been the theoretical basis of soil mapping. Jenny, (1941) 

first published it. Since then, the theory has provided a paradigm through which soil genesis and 

distribution have been studied. The theory states that soil profile character is a function of the 

CLORPT model (climate, organisms, relief, parent material and time) and is known as the Jenny 

model as well. It implies that if the spatial distribution of the soil-forming factors is known, then 

soil character may be inferred. This theoretical framework has been used by many authors in 

pedological research and remains the most popular theory of soil genesis. An expansion of Jenny’s 

model has been widely accepted and used in DSM. This expansion was coined by McBratney et 

al., (2003) in what is known as the SCORPAN model (soil, climate, organisms, relief, parent 

material, age, and geographic position). DSM has grown as a prosperous sub-discipline field 

within soil science (Minasny & Bratney, 2016), which is used to meet the demand for accurate soil 

information at various spatial resolutions (Omuto & Vargas, 2015). DSM strives to create current 

and accurate soil maps by utilising various data sources and methods to meet current and future 

soil information needs. The use of the DSM approach has developed from a scientific discipline 

to a more practical activity during the last few decades that is expected to provide fine-resolution 

soil attribute maps with different depths (Gohari et al., 2019; Vaysse & Lagacherie, 2015), cost-

effective way for producing the soil information required (Cambule et al., 2015) and provides a 

more quantitative and flexible method for examining soils and their interactions with the 

environment (Dobos et al., 2006; Hartemink & McBratney, 2008; Pásztor et al., 2007). In addition, 

DSM provides a widely accepted framework to map the spatial patterns of soil properties across 

various spatial and temporal scales (Wiesmeier et al., 2011). DSM is based on applying spatial 

autocorrelation mathematical models to predict soil properties of non-sampled locations by 

coupling measured soil variables with environmental covariates (Ballabio et al., 2016; Taghizadeh-

Mehrjardi et al., 2020). Quantitative soil-landscape models such SCORPAN model (McBratney et 

al., 2003) formalize the empirical, quantitative relationships between soil and the soil-forming 

factors. Based on the SCORPAN technique, measured soil (s), climate (c), organisms (o), 

including land cover and vegetation index, terrain attributes (r), parent material (p), age (a), and 

geographic position (n) can all be used to predict a specific soil feature at a given place (Laborczi 

et al., 2016). According to (McBratney et al., 2003; Minasny & McBratney, 2010), the appropriate 

method to develop useful digital soil maps depends on the availability, amount and type of data, 

preferably including both legacy soil data and soil point data. The spatial autocorrelation of soil 
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data in a landscape is critical to DSM's performance (Grunwald et al., 2011). The accuracy of soil 

prediction models is determined by sample size and sampled variability (Vasques et al., 2012). 

The association between mid-infrared spectral library data and environmental covariates, such as 

different sources of remote sensing (satellite images), different sources of digital elevation models 

(DEMs) and their derivatives, and different sources of climate data, has been applied in many 

studies for digital soil property mapping and to improve the accuracy of spatial predictions. 

Recently, MIR techniques have been used successfully for landscape-scale DSM 

(Mirzaeitalarposhti et al., 2017).  

2.4.1.1   DSM and mid-infrared spectral libraries 

Soil profile observations are the primary soil information collected on the field and represent the 

most specific information on soils. It is typically the most valuable part of soil surveys and 

represents the major input into the soil spatial inference system. Traditionally, wet chemistry 

methods have produced soil data used in DSM. There are recently expanded spectral libraries that 

help with soil attribute retrieval research (Abrams & Hook, 2002; Clark et al., 2003). With the help 

of statistical and chemometric study of spectral dataset information, a broad range of soil attributes 

have been determined (Minasny & McBratney, 2008; Rossel & McBratney, 2008) that can be 

applied to DSM (Minasny et al., 2009). Using environment covariates (DEM, climate data and 

geology map) and the availability of high-resolution remote sensing data and soil spectroscopy 

gives chances for faster and more cost-effective soil attribute predictions and mapping. Recently, 

MIR approaches have been successfully applied to DSM at the landscape scale (Mirzaeitalarposhti 

et al., 2017). Furthermore, diffuse reflectance infrared Fourier transform spectroscopy in the mid-

infrared range at large spatial scales has better predictive power for soil carbon fractions and 

texture. On national, regional, and international scales, soil scientists have recently been working 

to create extensive soil mid-infrared spectral libraries (Breure et al., 2022; Shepherd & Walsh, 

2002). Soil spectral libraries often contain significant amounts of soil samples representing the soil 

diversity in a given region. MIR spectral library has been shown to accurately estimate many soil 

attributes, such as soil texture, CaCO3 and CEC, that can increase DSM prediction accuracy 

(Goydaragh et al., 2021; Rossel et al., 2016).  The integration of spectral library, environmental 

covariates such as remote sensing, and DSM permits the mapping of different soil properties, such 

as clay, iron mineralogy (Rossel et al., 2010), pH, cation exchange capacity, bulk density, and 

(Teng et al., 2018; Rossel, 2011), organic carbon content  (Rossel et al., 2014) and phosphorus 
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stocks (Rossel & Bui, 2016). Furthermore, the combination of the MIR spectral library and DSM 

has been used for the prediction and spatial mapping of soil texture at different scales. This 

approach has been used to map soil texture at depths of 0 – 15 cm at a small scale in Australia 

(Novais et al., 2021), while (Mirzaeitalarposhti et al., 2017) used MIR spectroscopy to support 

regional-scale DSM in South-West Germany for prediction soil texture and other soil properties. 

Despite soil spectroscopy methods having been extensively used in the previous 20 years to predict 

various soil attributes, the potential use of this approach for DSM has not been intensively explored 

(Mirzaeitalarposhti et al., 2017). Moreover, although much progress has been made, the current 

DSM using mid-infrared spectral library methods is not readily implemented at the national level. 

Most soil attribute retrieval applications have been created using local or small-scale correlation 

techniques, and they may not scale map for operational use over vast national areas (Cambule et 

al., 2013; Guo et al., 2013; Stoorvogel et al., 2012). Considering the use of spectral libraries for 

national DSM, research is needed to extend current applications beyond the plot. For example, in 

Hungary, there is no indication of research that has studied the integration between national mid-

infrared spectral libraries that include a wide diversity of soils and environmental covariates for 

high-resolution SOC mapping at the national level. 

2.4.1.2   Overview of soil remote sensing  

Remote Sensing (RS) is the process of collecting information from an object by analysing data 

collected by a device that is not in direct contact with the object of interest (Lillesand & Kiefer, 

1993). Remotely sensed spectral data can be helpful in a variety of applications, including crop 

identification and area estimation, crop condition assessment, yield forecasting and estimation, 

rangeland surveys, and water resource surveys and mapping for water supply and irrigation, among 

other (Nualchawee, 1984). RS information supports inventorying, mapping and monitoring in 

general soil and particular soil surveys. Furthermore, remote sensing is often the most cost-

effective source of information, and it is a valuable source of current land use or land cover data. 

Remote sensing has developed as an essential tool for mapping and assessment of sand dunes in 

extensive lands (MohammedZein et al., 2015), soil mapping with high efficiency and low cost 

(MohammedZein et al., 2017) and assessment of changes in land cover types (MohammedZein et 

al., 2018) and it can provide calibrated, quantitative, repeatable and cost-effective information for 

extensive areas and can be empirically linked to field scale data. 
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The interplay between incoming radiation and the objects of interest is crucial to the remote 

sensing process. The electromagnetic spectrum ranges in wavelength from short to long gamma 

and X-rays to microwaves and broadcast radio waves, respectively. Different electromagnetic 

spectrum zones can be used for remote sensing (Figure 2.1). Most typical sensing devices work in 

one or more of the electromagnetic spectrum's visible, IR, or microwave bands. Each portion of 

the spectrum contains typical data for numerous earth resources. Sensors obtaining information 

from the γ-rays (Wilford et al., 1997), X-rays (Bish & Plötze, 2011) and the MIR (Rossel et al., 

2006) successfully retrieve soil information, especially soil mineralogy. The main portion of the 

spectrum of interest in remote sensing is the visible, NIR, MIR, shortwave infrared, thermal 

infrared and microwave portions  (Misra, 2022; Reddy, 2018). The visible wavelengths cover a 

range from approximately 0.4 to 0.7 μm. The longest visible wavelength is red, and the shortest is 

violet. The wavelengths that can sense specific colours in the visible region of the spectrum are 

Violet (0.400 - 0.446 µm), Blue (0.446 - 0.500 µm), Green (0.500 - 0.578 µm), Yellow (0.578 - 

0.592 µm), Orange (0.592 - 0.620 µm), and Red (0.620 - 0.700 µm).  The spectral reflectance 

characteristics of the earth's surface materials vary. The colour or tone of an item in a photographic 

image is determined by spectral reflectance. The ratio of reflected energy to incident energy as a 

function of wavelength is known as spectral reflectance. A spectral signature is a distinctive 

spectral response pattern indicative of a terrain feature. Figure 2.2 depicts typical reflectance 

curves for various ground surface characteristics: healthy flora, dry soil and water.  

 

Figure 2.2. Typical spectral reflectance curves for vegetation, soil and water (source:(CCRS, 2009)). 
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Related to the spectral characteristics of soil, a large proportion of radiation received on a soil 

surface is reflected or absorbed, with very little transmission. Soil reflectance properties depend 

on numerous soil characteristics such as mineral composition, texture, structure, percentage of 

organic matter, and moisture contents (Lillesand & Kiefer, 1987). These factors are complex, 

variable, and interrelated. Mineral composition, organic matter and moisture content are the main 

factors governing the spectral absorption of radiation. Azhar (1993) reported differences in the 

reflectance of three soil types. Figure 2.3 shows the difference in reflectance for peat, paddy and 

forest soils.   

Figure 2. 3. Spectral reflectance curves for three different types of soils (source:(CCRS, 2009)) 

In a literature review, McBratney et al. (2003) indicated the following significant soil properties 

showing a relatively high correlation with remote sensing images: iron-oxide content, soil organic 

matter content, salt content, parent material differences, soil moisture content, and some chemical 

and physical properties like pH, calcium-carbonate, mineral N, total carbon, total and available 

phosphorus, clay, silt, and sand contents. These studies concluded a significant relationship 

between remote sensing images and soil properties. They affirmed the above-mentioned properties' 

primary importance in determining the soils' spectral response (Bengio, 2009). Although 

individual images often show a tremendous amount of spatial detail, the use of multi-temporal RS 

databases complemented with terrain information is concluded to be essential for deriving reliable 

soil classification categories (McBratney et al., 2003). The large amount of images can be used to 
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study the earth's surface features. Machine learning and deep learning techniques applied to 

satellite images have effectively detected land patterns and provided information for decision-

making and policy-making (Yadav et al., 2022). Correlation between satellite imageries and the 

field measurements can be used to capture the complex nature of soils to produce accurate maps 

of soil texture, parent material, mineralogy and current and paleo-hydrological soil properties at 

different depths and scales such as used in digital soil mapping (Richer-de-Forges et al., 2023).  

2.4.1.2.1   Remote sensing for Digital Soil Mapping   

Remote sensing spectral data such as different satellite bands, land cover land use and NDVI are 

commonly used as prediction covariates because they provide data about parent material and land 

use (Goydaragh et al., 2021), as well as can take advantage of the effects of features like 

geomorphology, the evolutionary state of the soil, distribution pattern of soil moisture, land 

vegetation status, and human activities. These covariates also include information related to 

climate (such as precipitation and temperature), geographic position, and anthropogenic activities 

(Duchesne & Ouimet, 2021; Hengl., MacMillan, 2019). Several factors of soil formation can be 

derived from remote sensing. Thus, remote sensing can provide direct information on various 

SCORPAN factors, including soil, organisms, and parent material. Also, indirect relationships can 

be established with factors like climate and time. (Buis et al., 2009; French et al., 2005; 

Schmidtlein et al., 2007).  

Many studies have relied on RS imagery as a data source supporting DSM (Ben-Dor et al., 2008; 

Slaymaker, 2001) and were commonly used to obtain the spatial distribution of soil surface 

characteristics (Santanello et al., 2007; Wang et al., 2010). For example, remote sensing data are 

significantly correlated with mineral particle size composition (Chagas et al., 2016; Demattê et al., 

2007) and soil organic matter content (Zhai, 2019), especially visible and near-infrared bands of 

Landsat 8 and Gaofen-1 satellite (GF-1) images as well as, used to mapped clay content of topsoil 

(Bousbih et al., 2019). Physical properties of the land surface relevant to soil forming factors are 

provided by satellite imagery and topographic features derived from digital elevation data 

(Boettinger et al., 2008; Nield et al., 2007). The availability of environmental covariates in digital 

formats, such as RS layers, computing power, and integration with local knowledge of change and 

degradation, are key components to a worldwide effort to map soils for land management and 

carbon storage planning (Sanchez et al., 2009). To improve DSM efforts, spectral data on soil 

surface conditions and vegetation indices as surrogates for vegetation cover have been combined 
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with high-resolution terrain models (Howell et al., 2008).  (2010) and Boettinger et al. effectively 

demonstrate the utility of remotely sensed imagery (i.e., Landsat) for characterising soil surface 

features in drylands with modest vegetation cover. Although remote sensing data has been used as 

covariates in DSM for the estimation of soil attributes, the use of spectral information for the 

spatial soil properties estimation frequently depends on the spatial relationship between existing 

soil data and observed patterns in the imagery rather than on physically based retrievals, such as 

soil moisture (Dobos et al., 2000; Stoorvogel et al., 2009). Satellite products such as Landsat 

Thematic Mapper with 30 m, Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS) have been used as 

representatives for the soil forming factors, vegetation and parent material). Lower spatial 

resolution products easily obtained over large areas, such as Landsat imagery, serve a broader 

purpose more effectively than more detailed, labour-intensive soil map products. Furthermore, 

archive and contemporary Landsat imagery provide an easily assessable data source commensurate 

with landscape features that coincide with land monitoring and land-cover mapping (Washington-

Allen et al., 2006). There is no overall agreement in the literature about selecting Landsat bands 

for deriving soil information. Some authors mention all bands as significant information sources, 

while others highlight the outstanding performances of the green, red, and thermal infrared bands. 

Table. 2.1 represents the different bands of Landsat5 TM. Through its ability to characterise the 

soil's clay, organic matter, and iron-oxide content, the Landsat TM thermal band has significantly 

contributed to the reparability of soil categories. Generally, measuring the spectral properties of 

organisms, soil, and parent material is very helpful using freely available remote sensing, 

particularly Landsat data (Boettinger, 2010). 

Such Landsat TM reflectance can provide information primarily on vegetation, whereas the area 

with the surface is typically exposed, information on parent material and the soil can be inferred. 

Due to the multi-temporal frequency of satellites (temporal resolution), they also offer further 

possibilities to observe changes in the land surface over time, which is usually associated with the 

senescence of vegetation. Vegetation indices (VIs) are simple and robust techniques for extracting 

quantitative information on the amount of vegetation, or greenness, for each pixel in an image. VIs 

typically involve the spectral transformation of two or more bands. VIs have proved to be among 

the most robust techniques in RS, yielding consistent spatial and temporal comparisons of green 

vegetation at local to global scales (Dorji et al., 2014). The most commonly used index is the 
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Normalized Difference Vegetation Index (NDVI), which indicates crop growth characteristics and, 

indirectly, specific site qualities (Sommer et al., 2003; Sumfleth & Duttmann, 2008). NDVI 

consists of two bands, one in the chlorophyll-absorbing red spectral region and the other in the 

non-absorbing NIR. The two bands are combined to enhance the vegetation signal while 

minimising non-vegetation influences (Dorji et al., 2014). Compound remote sensing indices such 

as NDVI, which generally reflects biomass status, have been shown to correlate well with the 

distribution of the organic matter or epipedon thickness (Sanchez et al., 2009). Soil colour (Singh 

et al., 2006), texture, and carbon and nitrogen content are examples of soil properties linked to 

NDVI imagery in local scale studies (Sumfleth & Duttmann, 2008). Several indices have been 

developed based on the difference between spectral regions to retrieve specific information for 

vegetation properties (Tucker, 1979).  (1979) and Julien & Sobrino defined NDVI and the Global 

Inventory Modeling and Mapping Studies (GIMMS) data collection, the latter containing NDVI 

time series. The influence of soil background reflectance on NDVI is a severe concern in partially 

vegetated areas, resulting in decreasing NDVI values with increased soil brightness under 

otherwise equal conditions (Tucker et al., 1985). Several variations of the NDVI have been 

developed, such as the Soil Adjusted Vegetation Index (SAVI) (Rondeaux et al., 1996), the 

Transformed SAVI (TSAVI) (Rondeaux et al., 1996), and the Modified SAVI. Soil covariates 

such as NDVI and other indices have been used as auxiliary data sources in DSM to derive soil 

properties such as SOC. Although remote sensing imagery (RSI) data has an extensive range of 

potential information for DSM, sometimes being complicated environmental covariate. For 

instance, in many cases, it can be difficult to distinguish specific spectral fingerprints from the 

confounding effects of vegetation, topographic shadowing, or other factors in many circumstances 

(Thompson et al., 2012). Various image-processing approaches have been developed to 

compensate for these problems. If such techniques are insufficient, it is usually required to 

incorporate auxiliary data, such as DEM derivatives, to distinguish seemly similar spectral 

signatures (Thompson et al., 2012). Land use and cover in human-modified landscapes can be used 

to build conditional criteria for inferring dynamic soil attributes (e.g. organic matter).  (2011) 

provides an exhaustive discussion of soil attributes that can be estimated using remote sensing, 

while Boettinger et al. (2008) and Boettinger provide a comprehensive discussion of the 

application of remotely sensed imagery in DSM. 
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Table 2. 1.  Characteristics of Landsat5 TM  

Bands Wavelengt

h 

Useful for mapping 

B1- Blue 0.45-0.52 Bathymetric mapping, distinguishing soil from vegetation and deciduous 

from coniferous vegetation 

B2- green 0.52-0.60 Emphasizes peak vegetation, which is useful for assessing plant vigor 

B3 -red 0.63-0.69 Discriminates vegetation slopes 

B4 - NIR 0.77-0.90 Emphasizes biomass content and shorelines 

B5-Short-wave Infrared 1.55-1.75 Discriminates moisture content of soil and vegetation; penetrates thin clouds 

B6- Thermal Infrared 10.40-12.50 Thermal mapping and estimated soil moisture 

B7- Short-wave Infrared 2.09-2.35 Hydrothermally altered rocks associated with mineral deposits 

(https://www.usgs.gov/faqs/ best-landsat-spectral-bands-use-) 

2.4.1.3   Relief data for DSM 

The surface is factorised by features such as elevation, slope, aspect, plan and profile curvature, 

and flow accumulation (Moore et al., 2003) to obtain landforms, relief or surface topography units. 

The earth's surface form is distinguished by a complicated structure of nested hierarchies of relief 

components (Dikau, 1989). Relief units are classified into three categories, with increasing 

complexity. First, there are elementary forms, which represent the smallest and most fundamental 

geometric units. Second, some landforms are composites of elementary forms and third, landform 

patterns are landform associations (Minár & Evans, 2008). The use of DEM can characterise relief 

or topography. The latter kind of DEM is used to derive quantitative soil forming-process 

measures, also called terrain parameterisation. This is a quantitative description of terrain-by-

terrain parameters (Brogniez et al., 2015). Terrain refers to the vertical and horizontal dimensions 

of the land surface, and it can also be represented in a digital model called a Digital Terrain Model 

(DTM).  DEM and DTM are the main terminology frequently used in literature about relief. The 

difference between these terms is unclear and widely agreed upon since they often originate from 

different models, representations, and fields of relevance to relief applications. DEM represents 

the land surface with no trees, buildings, or other "non-ground" objects (bare land surface model). 

A more general term for a DEM that contains one or more types of terrain information, like 

drainage patterns, soil characteristics, and morphological elements of the terrain, is a DTM (Zhou, 

2017). This is a DEM when dealing with a single terrain data type, such as height. DEMs are a 

subset of DTMs (Li et al., 2004). Generally, terrain can be derived using various algorithms that 

quantify a terrain's morphological, hydrological, ecological and other aspects. These features 

quantify how topography affects water distribution throughout the landscape and how much solar 
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radiation is received at the surface, which may impact pedogenesis and soil characteristics (Wilson 

& Gallant, 2000). Terrain attributes are important landscape attributes for DSM because they 

generally give useful information on the terrain and its specific properties and topographic 

characteristics relevant to soil cartography (Sena et al., 2020) and key information for 

understanding the connections between geomorphology, soil types, and surface hydrology in a 

landscape and for modelling soil attributes (Wei et al., 2022). There are two types of terrain 

attributes: primary, such as slope, aspect, plan curvature, etc., and secondary, such as stream power 

index, upslope area, length of slope, etc (Oksanen & Sarjakoski, 2005). Primary terrain attributes 

are measured from elevation data, whereas secondary attributes are derived from the primary 

attributes and represent numerical evaluations of the terrain's surface (Mattivi et al., 2019). These 

features can be used to estimate potential soil loss or sedimentation and also for calculating 

"terrain-adjusted" climatic variables, like temperature, solar irradiation, long wave surface 

radiation and reflected radiation, which are important factors in the energy balance of the surface 

and thus in the soil formation.  A comprehensive overview of this information and the programs 

used to compute it can be found in Dobos et al. (2006) and Wilson., Gallant., (2000). Extracted 

terrain parameters can also describe the spatial variation of particular landscape processes (Moore 

et al., 1993), for example, to improve mapping and modelling of soils, vegetation, land use, 

geomorphologic and geological features and similar. One of the most effective ways to organise 

soil-landscape knowledge is using digital terrain parameters as soil predictors. The landscape's 

terrain affects how water moves through it and moves soil components as solids or solutes. As a 

result, the factors that affect water flow direction are crucial in explaining how different soil 

properties are spatially distributed. According to McBratney et al. (2003), the relief factor (r), 

described in the SCORPAN function, is incorporated into the terrain morphometric attributes 

produced from DEMs. These attributes are frequently used in DSM as auxiliary variables in the 

spatial prediction of soil classes and properties, including moisture, colour, and soil organic carbon 

(Ballabio et al., 2012; Kempen et al., 2011). Relief is becoming more widely available in a variety 

of resolutions because it plays a significant role in the pedogenetic process. DEM with nearly 

global coverage fall into two sections: the first one represents open-sourced datasets with low 

vertical accuracies, such as the Shuttle Radar Topography Mission Digital Elevation Model 

(SRTM DEM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM). Second, global coverage datasets, such as SPOT 5 and 
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ALOS, have far better vertical levels of accuracy (Nikolakopoulos & Chrysoulakis, 2006). SRTM 

has a much lower spatial resolution but is readily open-sourced (Farr, 2000). Even the lower 

accuracy ASTER GDEM and SRTM DEM proved useful for map updating. Furthermore, 

according to (Behrens et al., 2010; McBratney et al., 2003), model resolutions can vary from less 

than one meter for data derived from light detection and ranging LIDAR surveys to up to one 

kilometre for world-covered information sets. The impact of these models' resolutions for 

multiscale analysis on environmental modelling has been discussed more frequently since the 

introduction of DEMs in various resolutions (Behrens et al., 2010; Drǎgut et al., 2011).  

Studies on the evaluation of Advanced Land Observing Satellite - Panchromatic Remote-sensing 

Instrument for Stereo Mapping (ALOS PRISM) data for automatic DSM extraction can be divided 

into two main groups: the time before launch and the time right after the data's official release 

(Nikolakopoulos, 2020). Several studies have evaluated the accuracy of ALOS PRISM triplet 

stereo pairs used during the ALOS operational period. These studies use checkpoints measured 

with differential GNSS receivers or more precise reference DSMs to calculate the vertical 

accuracy. Takaku et al. (2007) compared DSM  generated from ALOS PRISM data to DSMs 

produced from Lidar and air photos across five distinct locations.  It was found that the vertical 

accuracy varied from 4.83 to 7.46 meters. The Japan Aerospace Exploration Agency (JAXA) 

created the (ALOS), launched into sun-synchronous orbit in January 2006. The "three eyes" of 

ALOS are three sensors first carried by a satellite. These sensors are the Phased Array type L-band 

Synthetic Aperture Radar, the Advanced Visible and Near Infrared Radiometer type 2, and the 

Phased Array L-band Synthetic Aperture Radar (PALSAR). Its extracted data will give an accurate 

digital surface model with a 30 m resolution, offering valuable information for DSM technologies. 

Several studies simulating the performance of ALOS PRISM were released (Suzuki, 2003). DSM 

derived from ALOS PRISM data was compared to corresponding data sets made from digital 

contours or aerial photographs to map natural karst depressions in Brazil (Nikolakopoulos & 

Vaiopoulos, 2011), while SRTM and ASTER DEM were contrasted with DEM from ALOS 

PRISM stereo pairs (de Carvalho Júnior et al., 2013). These two studies concluded that ALOS 

PRISM DEM results best detected karst features. Over a watershed in south-central Taiwan, high-

accuracy DEM and DTM data derived from airborne LiDAR point clouds were compared to ALOS 

PRISM DEM (Liu et al., 2015), and the ALOS PRISM DEM performed the best results as well. 
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2.4.1.4   Climate data for DSM 

The "father" of soil science, Vasiliy Dokuchaev, described the soil as a natural body having its 

own genesis, influenced by a sequence of soil-forming factors, including Climate (Certini & 

Scalenghe, 2023). Like the same soil forming factors in the DSM approach, such as organisms and 

relief of the soil formation, the climate is expressed in spectra such as those recorded by remote 

sensing satellites (Buis et al., 2009; Schmidtlein et al., 2007). The resolution of climate data is 

typically coarse, ranging from 2 km for national-scale soil maps to 50 km for European data—

MARS data (Genovese, 2001). Such data are derived from measurements taken at the ground 

stations, which are spread widely. Minimum and maximum temperatures, cumulated mean 

temperatures, mean temperatures, precipitation, potential evapotranspiration, climatic water 

balance, global radiation, snow depth, and similar relevant climatic factors are regularly observed 

and mapped worldwide. By taking into account soil attributes, climate can be used to explain how 

soil works and how things like soil erosion, weathering, and soil particle loss threaten soil. Climate 

is a significant determinant of SOC concentrations and is vital in controlling SOC due to the 

alteration of the SOC inputs from vegetation and decomposition. The latter are related to 

temperature and moisture factors (Knorr et al., 2005). On the other hand, a crucial fact is that, 

unlike RS-based covariates, climate cannot be directly observed through remote sensing. There 

are datasets on climate variables, but they do not all use RS data. Using measurements from 

weather stations that have been spatially interpolated, WorldClim provides climate datasets 

(Hijmans et al., 2005). WorldClim offers interpolated climate surfaces with a spatial resolution of 

30 arc seconds (roughly 1 km resolution) for all land areas across the globe. These climate datasets 

were created using a DEM to interpolate weather station records spatially. The highest level of 

uncertainty in climate data, outside of regions with a low station density, is found in areas with a 

significant elevational variation. Monthly precipitation and mean, minimum, and maximum 

temperatures are the climate variables provided by WorldClim (Hijmans et al., 2005). On the other 

hand, the Climate Forecast System Reanalysis (CFSR) by the National Centers for Environmental 

Prediction (NCEP) took 36 years, from 1979 to 2014. The CFSR was developed as a global, high-

resolution coupled system of the atmosphere, ocean, land surface, and sea ice to provide the most 

accurate assessment. There are 38 km-resolution CFSR data available globally for every hour since 

1979. It enables the download of daily CFSR data (precipitation, wind, relative humidity, and 
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solar) for a specific location and time frame using this website in Soil and Water Assessment Tool 

(SWAT) file format. In DSM analysis, these covariates have been used. 

2.4.1.5 Statistical models for DSM 

The generic digital soil mapping approach assumes the form of the SCORPAN model or STEP-

AWBH conceptual model which represents (soil, topographic, ecological, parent material, 

atmospheric, water properties, biotic properties and human-induced forcings). This method is 

similar to that used in conventional soil mapping, with the exception that mathematical (such as 

expert rule-based or fuzzy logic models) or statistical models, instead of conceptual models, are 

used to formulate the functional relationships between the soil attributes or classes and model 

factors (Ryan et al., 2000). These mathematical or statistical models are fitted or trained with the 

aid of georeferenced soil data and subject-matter knowledge. Environmental layers in a 

Geographic Information System (GIS) serve as a representation of the model factors, also referred 

to as environmental covariates and ancillary data. As they offer a dense grid of measured or 

interpolated values with which to correlate to soil attributes, raster-based geographic data sets, 

such as derivatives of DEM and RSI, are typically preferred. 

Nowadays many studies in the literature have reviewed various DSM approaches which are 

designed to correlate environmental covariates derived from different sources quantitatively with 

soil properties. Different mathematical and statistical models can be applied to estimate the spatial 

distribution of soil properties or classes. McBratney et al., (2003) provide a comprehensive review 

of predictive approaches and mathematical models involving environmental covariates and soil 

data in DSM. A similar review of ecological modelling has been conducted by (Guisan & 

Zimmermann, 2000). Despite the wide range of models available, Austin et al., (2006) have 

emphasized that the analyst's ecological knowledge and statistical prowess are more crucial in 

ecological modelling than the statistical model used. According to (Minasny & McBratney, 2010), 

better spatial prediction of soil characteristics will come from gathering better soil data rather than 

using more complex statistical models. The most popular mathematical and statistical techniques 

used in DSM, include fuzzy membership, multivariate statistical methods, geostatistics, decision 

tree analysis (Omuto & Vargas, 2015), machine learning, hybrid and traditional statistical 

techniques (Chen et al., 2019) models. In addition to artificial neural networks, convolutional 

neural networks, PLSR, Cubist models. 
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Among those methods, the random forest (RF), stochastic gradient boosting machine (GBM), 

support vector machine (SVM) and extreme gradient boosting machine (XGBoost) has been 

widely used in the DSM framework by many researchers for the spatial prediction of soil properties 

because they achieve higher prediction accuracies.  

Random forest is a data mining technique which is the extension for the classification and 

regression tree and becoming more and more popular in DSM, soil sciences, and even in applied 

sciences in general. RF is a nonparametric and an ensemble of decision trees model derived from 

the calculation of numerous randomized classification trees (CART- 500 to 2000 trees) (Breiman, 

2001). Additionally, RF is a group learning approach for classification (and regression) that works 

by building a lot of decision trees during training and then combining them to produce a single 

prediction for each observation in a data set. One singular prediction is made using the results of 

all individual trees. The most crucial parameters to adjust in RF models are the number of trees 

("ntree") and the number of variables ("mtry") used at each split when building the tree (Houborg 

& McCabe, 2018). By voting or averaging the parameter value across all calculated models, the 

final model's parameters are chosen. The relative importance of the predictor variable can also be 

ranked using this method by using regression prediction error of out-of-bag (OOB) predictions. 

The random forest has benefits over the majority of modeling techniques, including its ability to 

model highly nonlinear dimensional relationships, have resistivity to overfitting, combines 

continuous and categorical predictor variables and relative strength in light of the data's noise 

content and few parameters are needed for implementation (Liaw & Wiener, 2002). It is simple to 

use because it has just two parameters, and is typically not delicate to their values (Liaw & Wiener, 

2002). In addition, RF performs better than other prediction models in larger study regions with a 

variety of landscape elements  (Lamichhane et al., 2019). It has recently become more popular 

among DSM for estimating soil properties such as organic carbon (Lamichhane et al., 2019). 

Hence, the noisy, large, and missing data are unaffected by the random forest model, which can 

handle both quantitative and categorical data using the algorithms of regression and classification. 

The randomForest package includes this algorithm, which can be applied to both issues involving 

regression and classification. 

Gradient boosting machine (Friedman, 2001) is one of the most effective ensemble machine 

learning methods for problems involving both regression and classification. It is regarded as a 

generalization of boosting which is another popular machine-learning technique (Freund & 
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Schapire, 1997). In boosting, information from previously grown existing trees is used to grow 

several decision trees sequentially. Similar to RF, GBM is a decision tree-based ensemble method 

(Friedman, 2001). This method generates the trees serially as opposed to RF. Each tree attempts 

to improve the prediction in this manner by fixing the weaknesses of the previous one. As a result, 

the model's prediction becomes more accurate. With regard to gradient boosting in particular, each 

tree is fitted to the residuals of the prior model using a gradient decent algorithm that seeks to 

minimize a loss function related to the entire ensemble (e.g. squared error). 

Extreme Gradient Boosting is an efficient implementation of gradient boosting frameworks, which 

introduced by (Friedman, 2001) as a tree ensemble model. It is a meta-algorithm that builds a 

strong learner from a group of weak ones, typically using decision trees (Wang et al., 2018). 

Effective tree learning algorithms and linear model solvers are included in this model. It can be 

used to support a variety of objective processes, including classification, regression, and ranking. 

In addition to efficiently analyzing billions of data points in distributed and parallel processing, 

XGBoost models also enable users to clearly define their own goals (Alajali et al., 

2018).  "xgboost" R package (Chen et al., 2019) can use for implement the model. 

Support vector machines is a data mining technique that has gained power recently. Based on a 

concept first presented by Vapnik, (1996), this algorithm was initially created to solve 

classification problems. Then, this approach was expanded to address regression problems as well.  

This method's central idea is to transform nonlinearly separable input data into a feature space with 

greater dimensions where the data points can be separated linearly by a hyperplane. The data is 

transferred into a higher dimensional space using kernel functions (∅). A linear, non-linear, 

sigmoid, or radial basis function could be the kernel function. Each kernel function has a unique 

set of tuning-required parameters. Selecting the proper kernel function is also necessary to achieve 

satisfactory results. For the polynomial kernel function to produce results that are satisfactory, 

three parameters must be carefully chosen: degree of the polynomial (n), gamma (γ), and C. 

Generalized linear model is a classical statistical technique that has been widely used to identify 

the interactions between variables and to investigate different correlation structures by predicting 

values of a (dependent) response variable from (independent) predictor variables.  

2.5   Importance of Soil Organic Carbon and its Spatial Mapping 

Studying and understanding the soil properties of a given soil and linking this information to the 

ecosystem services provided by the earth is becoming a requirement. For instance, the changes in 
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soil organic matter (SOM) content have become a key stressor on soil functioning over recent 

years. SOM is a vital soil component that influences most of the activities related to soil 

functioning and food production and is composed of 58 % carbon. Generally, SOM and soil 

organic carbon (SOC) are frequently used equally in many quantitative ecological studies, and the 

measured SOC content is used as a surrogate for SOM (Bailey et al., 2018; Owusu et al., 2020). 

On the other hand, around 2 200 Gt (billion tons) of carbon is stored in the top meter of the world's 

soils (Batjes, 1996) representing two-thirds of the world's total carbon stock, which is three times 

the amount found in the atmosphere (Smith, 2012). Therefore, SOC remains an integral part of the 

global carbon cycle, considering that soils and oceans represent the largest reservoirs of organic 

carbon on Earth (Batjes, 2014; GSP, 2017; Lamichhane et al., 2019). It is essential to reduce 

climate change impacts and adapt to attain the Sustainable Development Goals (FAO and ITPS, 

2020). Soil organic carbon also significantly influences chemical and biological soil fertility, soil 

structure, soil physical properties and crop production (Pouladi et al., 2019; Tiessen et al., 1994). 

In addition, it helps decompose contaminants and serves as a habitat and energy source for soil 

organisms that control pests and diseases (Owusu et al., 2020). Although the balance of soil organic 

carbon in natural ecosystems is regulated by gains from vegetation cover and other organic inputs 

(Smith et al., 2008), it is also crucial to understand that land use and agriculture, in particular, have 

led to dramatic decreases in soil carbon stocks in the last 200+ years (agricultural and industrial 

revolutions). According to Lal, (2004), agricultural operations have added 54 Pg C to the 

atmosphere, with another 26 Pg C being lost from soils owing to erosion, while Wei et al., (2014), 

said converting forests to differing agricultural land resulted in a 30–50 % decline in SOCS.  

Monitoring, a precise, reliable view and knowledge of SOC at different scales have become 

increasingly important, especially under many UN agreements (UNFCCC and Lima-Paris Action 

Agenda), including those on desertification and climate change, and as part of the Sustainable 

Development Goals. Additionally, thorough awareness of spatial SOC content across landscapes 

has several advantages, including precision agriculture, land degradation monitoring, 

environmental management, and propounding an executable C sequestration program (Sabetizade 

et al., 2021). Such issues are also crucial for scientists, policymakers, and farmers. A 

comprehensive description of SOC spatial distribution and changes could assist in forecasting the 

consequences of climate change (Albaladejo et al., 2013). More recently, the spatial mapping of 

soil organic carbon variability is in the spotlight, and a growing number of national and 
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international initiatives have been launched worldwide. The Global Soil Partnership started a 

campaign to map SOC globally in 2016 and produced the global map of SOC stock at 1 km 

resolution on the topsoil in 2017 (Yigini & Panagos, 2016). Hengl & Wheeler (2018) described a 

high-resolution SOC stock map that had soil samples taken from different soil depth intervals. 

Using machine learning, the global gridded soil information system has produced soil properties 

prediction maps, including SOC stock at seven standard depths (Hengl et al., 2017). Several 

continental levels SOC maps have been constructed, such as the ones for Europe. For instance 

Yigini & Panagos, (2016) mapped SOC stocks using climate and land cover change scenarios. 

Panagos et al. (2013) utilised information from a European network to estimate and map soil 

organic carbon. In Hungary, a significant quantity of information has been described on the spatial 

distribution of SOC, including scientific papers and spatial soil information systems. It ranges from 

pilot areas level to national scale. At the national level, Szatmári et al., (2019) studied the spatio-

temporal of topsoil organic carbon stock change in Hungary using the DSM technique, whereas 

Jakab et al., (2016) described the organic carbon change at the farm scale. Furthermore, soil 

organic matter resource maps and humus content maps have been produced based on the 

Hungarian SIMS data since 1992. These maps described the organic matter content in different 

depths at a 1:100.000 national scale, as well as studied the changes in humus content between 

1992-1998 and between 2000-2004. 
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3. MATERIALS AND METHODS 
This chapter describes the materials and methods of two main components, first one is the 

development of the MIR spectral library and soil property prediction, while the second is spatial 

mapping of soil properties (SOC) based on the MIR spectral library (Figure 3.1). 

3.1 MIR Spectral Library and Soil Property Prediction 

This section describes the data resources used to build the MIR spectral library, laboratory 

protocols for scanning soil samples, preprocessing spectral data, building soil properties prediction 

models, and model performance accuracy. This is followed by the DSM based on the MIR spectral 

library. 

3.1.1 Resources of data and the MIR spectral library 

The samples for the MIR spectral analysis were collected from soil archives of laboratories 

(Velence, Szolnok) of the Soil Information and Monitoring System (SIMS). Two thousand two 

hundred samples representing 10 Hungarian counties, 542 sampling locations out of the 1236 

and the first year of the SIMS survey (1992) were collected for spectral reading between 2019 

and 2020. The ten counties are the following: Baranya, Fejér, Komárom-Esztergom, Nógrád, 

Pest, Tolna, Bács-Kiskun, Békés, Csongrád and Jász-Nagykun-Szolnok as shown in the Figure 

3.1.2 Preparation and scanning of soil samples 

Since the shape of the mid-infrared spectrum and the accuracy of their model prediction are 

affected by soil structure and texture (Richter et al., 2009), soil sample preparation is critical in 

providing reliable measurements (Viscarra Rossel et al., 2008). 

Previously, all soil samples have been air-dried, grounded, and sieved (< 2 mm), with the 

remaining part stored in SIMS archives in plastic containers at room temperature (TIM, 1995). 300 

g from each sample were bagged in plastic bags and shipped to the Hungarian University of 

Agriculture and Life Sciences (MATE) Department of Soil Science, Gödöllő soil laboratory. The 

coning and quartering method was used to obtain 20 g of soil subsamples, which were then fine-

grinded by hand using an agate pestle and mortar. Samples were not mixed with alkali halides to 

avoid interferences that may cause ion exchange between KBr powder and soil sample (Janik et 

al., 1998).  
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Figure 3. 1. Flowchart  of the main methodology steps
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The prepared soil samples were put into aluminium sample cups, and the loaded samples were 

placed in the sample holding tray one by one. Excess soil was removed to reduce sample surface 

roughness, and the surface was levelled with a straight-edged tool. 

Figure 3.2. Spread of sampling points according to counties in Hungary 

3.1.3 Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) 

Following Nguyen et al. (1991) and Janik et al. (1995), the Diffuse Reflectance Infrared Fourier 

Transform Spectroscopy (DRIFT) technique, the Bruker Alpha II with a spectral range of 2500 – 

25000 nm (4000 – 400 cm-1) was used to scan the 2200 soil samples given for this study. A scan 

of the gold background was taken before measuring each sample to account for temperature and 

moisture content variations. This method uses mid-infrared spectroscopy techniques since the gold 

does not absorb infrared light as mentioned by Nash, (1986). Every soil sample was read three 

times using three subsamples, and each spectrum was produced from 48 scans. Soil spectra were 

measured following the protocol proposed by the World Agroforestry Centre (Dickens Ateku, 

2014). The information collected for all spectra was saved with the FTIR spectrometer OPUS 

software.  
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3.1.4 Soil reference data 

Physical and chemical soil parameters were determined at the genetic soil horizon level using 

conventional laboratory methods in the SIMS project and have been stored in the project database 

since 1992. Table 3.1 represents soil properties and their reference laboratory methods. TIM 

(1995) gives details for reference laboratory methods used in the SIMS conventional database. The 

conventional database was subjected to quality and consistency checks before being used as soil 

reference data for calibration models. 

                           Table 3. 1. Soil attributes and referenced methods 

Soil property Unit Reference method 

Organic carbon % Szekely’s method  

pH H2O unitless Potentiometric method  

(Mclean, 1982) 

Calcium Carbonate content (CaCO3) % Scheibler method 

(Nelson, 1982) 

Cation Exchange Capcity (CEC) cmol(+)/kg Modified Mehlich method  

(Buzás, 1993) 

Exchangeable Calcium (Ca++) cmol(+)/kg Modified Mehlich method  

(Buzás, 1993) 

Exchangeable Magnesium (Mg++) cmol(+)/kg Modified Mehlich method  

(Buzás, 1993) 

Total Water Capacity (pF0) cm Hygroscopic measurement  

Bulk Density (BD) g/cm3 Undisturbed samples method  

Soil texture  % Pipette method  

3.1.5 Spectral data preprocessing and transformations 

Applying preprocessing methods to spectral data might enhance the accuracy of quantitative soil 

analysis (Rinnan et al., 2009). Absorbance spectra were preprocessed with a moving average 

window of 17 bands. The technique reduces and removes noise that represents random fluctuations 

in the signal.  

3.1.6 Outlier detection 

Estimating soil properties from large spectral databases might be challenging, resulting in 

increased prediction errors (Stevens et al., 2013). Chemometric procedures can deal with the 

complexity of spectral data (Ramirez-Lopez et al., 2013) through statistical tools and mathematical 

methods (Varmuza & Filzmoser, 2016). The first step in chemometric analysis is defining samples 

that should be considered outliers.  
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Principal Component Analysis (PCA) was applied to reduce the dimensionality of the spectral 

dataset and improve computational efficiency for our data's different model scenarios. Also, it can 

be exploited to generate a small number of explanatory factors with significant variations (Reyna 

et al., 2017). Scores of PCA were used to understand and examine the spectral library structure. 

The Mahalanobis distance calculation was carried out to remove the outliers on principal 

component scores of spectral data. The samples with a Mahalanobis dissimilarity larger than one 

were considered outliers based on standard arbitrary threshold methods. 

3.1.7 Calibration sample selection   

When dealing with large spectral libraries, including the entire data set in the calibration models 

might be undesirable. Kennard-Stone Sampling (KSS) (Kennard & Stone, 1969), k-means cluster 

sampling (KMS) (Næs, 1987), and Conditioned Latin Hypercube sampling (CLHS) (Minasny & 

McBratney, 2006) are the most widely used methods for selecting samples that should be used for 

calibration, namely to train the models. In this study, a representativity analysis was performed to 

determine the number of samples for model calibration. Kennard-Stone Sampling (KSS) method 

was used to determine the samples for calibration sets. The remaining samples were retained as 

validation set. Figure 3.3. represents the sample distribution of the calibration dataset based on 

Kennard-stone sampling. 

 
                          Figure 3.3. Kennard-stone sampling distrbutions                   
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3.1.8 Building of spectral prediction models  

Before building the models, the mid-infrared spectral library and soil reference data, including the 

depths of horizons, were merged into one dataset. The dataset was split into three modelling 

scenarios: the “10-county” scenario included all the samples involved in the study without any 

grouping. “County scenario” is where the samples are grouped according to the country they 

belong to. “Main soil type scenario”, the samples were grouped according to the major soil class 

they belong to according to the information provided in the SIMS legacy soil database. In each 

scenario, the dataset was split into calibration and validation sets, and individual spectral models 

were established. Figure 4.2 illustrates the dataset distribution for nine soil properties at 10 county 

levels in the calibration and validation set. No transformation methods were used for un-normal 

distribution or skewed datasets during the model analysis. PLSR was introduced by (Lorber et al., 

1987), which is the widely used approach (Burns & Ciurczak, 2007) for estimating physical and 

chemical soil characteristics (Johnson et al., 2019). It aims to estimate a collection of dependent 

variables (soil attributes) by choosing a subset of 'orthogonal' components from the spectra (or 

latent variables). The following are the equations of PLSR: 

 X = TPT + E                                 1 

 Y = UQT + F                              2 

Where X is predictor variables, Y is response variables, T and U are score matrices, P and Q are 

loading matrices, E is the matrix of residuals for X, and F is the matrix of residuals for Y. In this 

research, the statistical models were fitted between latent variables (mid-infrared spectral library) 

and response variables (soil attributes) based on a calibration set using the highest number of 

principal components and the oscorespls method (Wadoux et al., 2020). The number of factors 

was determined by plotting the Root-mean squared error of prediction (RMSEP) of the models. 

The number of factors with the lowest RMSEP were selected. The PLSR regression coefficients 

were plotted using the number of components for each soil property. The built PLSR models and 

the appropriate number of components were used to predict soil properties using spectra on the 

calibration and validation datasets.  

R software (R Core Team, 2022) was used for spectral visualisation, analysis and modelling 

processes. Simplerspec package (Philipp, n.d.) was used to read and extract spectral data directly 

from Bruker OPUS spectra files. Simplerspec includes several functions and operators used for 
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data preprocessing and splitting which was introduced with the magrittr package (Stefan Milton 

et al., 2020). Models development and predictions were performed using the caret package 

interface (Max et al., 2016) and the PLSR function from the pls package (Mevik et al., 2016). 

3.1.9 Models performance and accuracy assessment 

Soil attribute model performance was assessed by comparing predicted and measured values using 

three metrics. Coefficient of determination (R2), ratio performance to deviation (RPD) and root 

mean square error (RMSE) were used to determine the goodness and inaccuracy of the model's 

predictions. Prediction reliability based on coefficient of determination and ratio performance to 

deviation values classified the regression models into three categories: RPD > 2: “good” models 

that predicted with an acceptable or high level of accuracy; RPD ranging from 1.4 to 2: 

“satisfactory” models that had a medium level of prediction and might be improved and RPD lower 

than 1.4: “unreliable” or poor models with no predictive abilities. The smaller the RMSE value, 

the higher the reliability and accuracy of the models. RPD is widely used to determine the 

consistency and correlation of observed and predicted values (not of accuracy).     
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pred indicates the spectral library's predicted value, while obsi and obs represent the observed 

value average and observed value of reference soil database respectively n represents the sample 

number, while, 𝒔𝒚 the observed values' standard deviation. eval function of  R was used to derive 

the goodness measurement of prediction and validation models. 

3.2 Soil Organic Carbon (SOC) Content Mapping 

This section deals with SOC content mapping based on the MIR spectral library and wet chemistry, 

which describes the harmonisation of soil profile data, download and preprocessing of 

environmental covariates, and modelling and prediction of SOC. 

https://github.com/topepo/caret
https://github.com/bhmevik/pls
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3.2.1 Study area 

The study area was in Hungary's central region, representing 10 Hungarian counties, including 

Baranya, Fejer, Komarom Esztergom, Nograd, Pest, Tolna, Bacs-Kiskun, Bekes, Csongrad and 

Jasz-Nagykun-Szolnok. It bounded approximately between the 46.010°N and 48. 010°N latitudes 

and 16. 010°E and 22. 010°E longitudes (Figure 3.4).  The study site covers around 27,236 km of 

the total area of Hungary and contains a wide variety of climatic conditions, parent materials, 

landscapes and soil types. These soils were formed on relatively young rock, with a small part 

covered by soils formed older than the parent material. The soils in the study area belong to the 

following main soil types: Chernozem soils, Brown forest soils, Alluvial and colluvial soils, 

Meadow soils, Skeletal soils and Salt-affected soils. The climate in Hungary is typically described 

as continental, with cold winters and warm to hot summers. Even though spring and autumn are 

mild seasons, there are often abrupt temperature changes. There aren't many climatic differences 

between the various areas, though the east has a slightly more continental climate, and the south 

has a milder winter. Figures 3.6 and 3.7 represent the average temperature and distribution of 

rainfall in the study area, respectively. 

          

Figure 3. 4.  Study area location map and points distribution 
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3.2.2 Soil database   

Two soil datasets were prepared and used for producing digital soil maps in this study. First, the 

wet chemistry SOC content dataset (soil reference data) was used to build a model and create a 

SOC map. Secondly, the predicted SOC content dataset from the MIR spectral library (first section 

of materials and methods) was used to build a model for mapping SOC as a novel technique instead 

of traditional laboratory methods. The “10-county” level SOC values that produced good model 

results from the validation dataset were predicted from the whole dataset, standardised and 

exported to CSV comma delimited format in MS Excel. The main soil dataset used in this study is 

made up of a total of 2200 soil samples, corresponding to horizons of 542 soil profiles. The SOC 

map from the wet chemistry dataset was used only for comparison, and the accuracy of the 

predicted SOC map from MIR data was checked. 

3.2.2.1  Harmonization of soil profiles database 

Generally, the characteristics of the soil change continually with depth and across the landscape. 

Soil sample data is usually collected by the genetic soil horizons. Rather than closely within 

pedogenetic layers, estimating the values of soil attributes at arbitrary depth levels is sometimes 

essential. Because the soil samples of the SIMS project were taken from each genetic soil horizon, 

the SOC dataset for both predicted and wet chemistry has variable soil depths incompatible with 

SOC spatial estimates. The spline fitting algorithm, introduced by (Malone et al., 2009), which is 

an extension of the Bishop et al. (1999) method, was used as pretreatment for both SOC point 

datasets (SOC datasets based on MIR and wet chemistry) with lambda 0.1 to standardise depths. 

The lambda parameter was used to set the smoothness of the spline function. These spline functions 

consider continuous variations of SOC with depth and respect average values of SOC. The spline 

tool takes the soil points dataset, fits it to a mass-preserving spline, and outputs attribute means for 

standard depth intervals. This includes cases where layers are not contiguous. The spline function 

output summed SOC values for the required depth intervals (0 – 30 cm), which correspond to the 

interval averages. A standalone application (spline tool version 2.0) was used to calculate spline 

fitting depths. Predicted SOC and wet chemistry SOC values at depth 0 – 30 were standardised to 

the CSV comma delimited format in MS Excel; each value was linked with its coordinates 

(longitude and latitude) and used as a soil database for this study. The soil dataset was transformed 

into spatial data using Coordinate Reference System CRC (EPSG:4326 - WGS 84). The spatial 
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distribution of the predicted and wet chemistry SOC content points and their values within the 

study area are shown in Figures 4.4 and 4.5. 

3.2.3 Environmental covariates 

Based on the DSM literature, pedological data, and their relevance to SOC, a wide range of 

environmental covariates layers (32) were prepared in our database to represent key soil-forming 

factors. Some covariates with a low spatial resolution (STRM 300 m and land cover 300 m) were 

removed from the database. A set of 21 environmental covariates was used for this study (Table. 

3.2). These attributes were checked to be consistent with the SCORPAN model proposed by 

(McBratney et al., 2003). Environmental covariates were derived from different spatial datasets to 

effectively represent each key soil-forming factor, including climate, organisms, relief, parent 

material and spatial location that affect soil organic carbon spatial variation. In addition, selected 

environmental covariates were tried to be also consistent with management techniques as 

described by (Ingram & Fernandes, 2001; Rabbinge & van Ittersum, 1994) that used factors such 

as plant productivity, soil management techniques, erosion, tillage, residue clearance, disturbed 

biology, drainage, and other factors, determine actual soil organic carbon levels for predicting soil 

organic carbon content of soils. Like the SOC points dataset, environmental covariate layers were 

projected to a Coordinate Reference System (EPSG:4326 - WGS 84)  at a spatial resolution of 30 

m. 

Table 3. 2. Summary of environmental covariates used in the prediction of SOC content 

Type Source Format Name Resolution 

Relief ALOS World 3D 

Global Digital Surface Model 

Geo-Tiff DEM 30 m 

Aspect 30 m 

Plan Curvature 30 m 

Profile Curvature 30 m 

Slope 30 m 

Topographic Wetness Index 30 m 

Channel Network Distance 30 m 

Valley depth 30 m 

Organism USGS EarthExplorer Geo-Tiff Landsat 5– band1 (450-520 nm) 30 m 

Landsat 5 - band2 (520-600 nm) 30 m 

Landsat 5 - band3 (630-690 nm) 30 m 

Landsat 5 - band4 (760-900 nm) 30 m 

Landsat 5 - band5 (1550-1750 nm) 30 m 

Landsat 5 -band6 (10400-12500 nm) 30 m 

Landsat 5 - band7 (2080-2350 nm). 30 m 

USGS EarthExplorer Geo-Tiff NDVI 30 m 

GlobeLand30 Geo-Tiff Landcover 30 m 

Climate WorldClim 

1970-2000 

Geo-Tiff Precipitation (mm) 1000 m 

Temperature avg (°C) 1000 m 

Temperature max (°C) 1000 m 

Temperature min (°C) 1000 m 



41 
 

3.2.3.1 Digital elvetion model 

It is widely accepted that variations in topography and vegetation significantly impact SOC among 

all soil-forming factors. The relief was represented by the terrain, which is the vertical and 

horizontal dimension of the land surface and described in a digital model known as the Digital 

Elevation Model (DEM). Terrain attributes from a DEM are frequently used to estimate soil 

properties such as SOC (McKenzie et al., 2000). Seven bands of Advanced Land Observation 

Satellite ALOS (Tadono et al., 2016) Global Digital Surface Model with a resolution of 30 m were 

downloaded,  mosaic, and clipped based on the study area (Figure 3. 5). The important landscape 

attributes for DSM are known as terrain attributes. They are derived from DEM using terrain 

analysis. Sets of conventional geomorphometric terrain attributes found in the DSM literature were 

generated from the DEM of ALOS, and the sinks were filled out (Planchon & Darboux, 2002) 

before the terrain analysis. The derivatives are plan curvature, aspect, topographic wetness index, 

slope, channel network distance, valley depth, and profile curvature. Table 3.3 gives a summary 

of these attributes. The fill sinks technique and basic terrain analysis procedures were applied using 

the SAGA GIS software (Conrad et al., 2015).   

Table 3. 3. Terrain attributes for DSM 

Terrain attribute Unit Defntion 

Slope [rad] Inclination of the earth surface or average gradient above flow path 

Aspect [rad] direction of slope  or the compass direction of the maximum rate of change 

Plan curvature [m−1] Unclassified demonstration of the earth' surface curvature (bulge) across the 

direction of aspect 

Profile curvature [m−1] Classified demonstration of the earth' surface  curvature (bulge) in direction of 

aspect 

Topographic wetness 

index 

uniteless Potential supply of soil water 

valley depth [m] refers to the vertical distance to a channel network base level 

channel network 

distance 

[m] The network through which water travels to the outlet 
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Figure 3. 5. Digital elevation model – ALOS map 

3.2.3.2 Climatic data 

Climate (C) was represented using precipitation and temperature (Table. 3.2). Climate data such 

as precipitation and temperature are the most crucial elements that influence the parent materials' 

weathering and net primary productivity, which has a more significant impact on SOC 

accumulation (Weil, R., Brady, 2016). Basic climate variables expressing historical temperature 

(minimum, maximum and average) and precipitation were selected and downloaded from the 

WorldClim Database version 2.1 (Fick & Hijmans, 2017) at a 1 km2 spatial resolution. These data 

layers were created by interpolating monthly average climatic data from weather stations onto a 

grid with a resolution of 30 m. The main output of this interpolation is the Geo-TIFF layers of the 

average of the years 1970-2000, layer for each month of the variables. Twelve bands for each 

category (minimum, maximum and average temperature and precipitation) were extracted, clipped 

and stacked in one layer, and then the average was calculated for each layer. Figures 3.6 and 3.7 

represent average temperature and precipitation spatial data converted to a spatial resolution of 30 

m.  
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3.2.3.3 Optical orbilal data 

In this study, organisms were characterised by land cover, Landsat 5 (TM) and Normalized 

Difference Vegetation Index (NDVI) maps (Table. 3.2). Land cover map was obtained from 

GlobeLand30 (Global Geo-information Public Product) (Jun et al., 2014). Updated GlobeLand30 

is a 30 m spatial resolution global land cover map produced in 2020. It encompasses ten classes: 

Forest land, grassland, cultivated land, shrub land, wetland, water body, tundra, artificial surface, 

bare land, glaciers and permanent snow cover. GlobeLand30 classified images were developed 

mainly from 30 m multispectral (TM5, ETM+ and OLI multispectral images) of the US Landsat 

and China Environmental Disaster Mitigation Satellite (HJ-1) multispectral images. The 

N33_45_2020LC030 and N34_45_2020LC030 GlobeLand30 land cover bands were downloaded, 

mosaiced in one band, and clipped based on the study (Figure 3.8). Remote sensing-based spectral 

bands and (NDVI) derived from the remote sensing imagery are useful covariates for predicting 

SOC where vegetation is correlated with SOC levels (Lamichhane et al., 2019). Generally, 

measuring the spectral properties of organisms, soil, and parent material is very helpful using 

freely available remote sensing, particularly Landsat data (Boettinger, 2010). 

Because our soil samples were legacy samples, seven bands of Landsat 5 (TM) collection 2 Level-

2 Science products processing data (Archive USGS EROS, 2020) at a 30-meter spatial resolution 

were downloaded from the USGS Earth Explorer to represent organisms as well as soil, and parent 

material and to support SOC estimation over the time of soil samples collection since 1992 (Table. 

3.2). A total of 7 paths and rows (188/026, 188/027, 188/028, 187/028, 187/027, 186/027 and 

186/028) were acquired from 15 to 25 October 2000 with cloud equal zero imagery as well as were 

mosaic in one band and clipped based on the study area. This date was selected due to the cloud-

free nature of the area as well as the amount of biomass. 
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                        Figure 3. 6. Temperature Average Map 

 
                        Figure 3. 7. Precipitation map 
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Spectral indices NDVI was derived from Landsat 5 (TM) collection 2 Level-2 satellite imagery 

with 30 m spatial resolution to determine the variation of vegetation cover and prediction of the 

SOC as described by (Sinha et al., 2015), using the formula: 

NDVI = NIR – RED / NIR + RED                                       

NIR: Near-infrared (Band 3), RED: Red (Band 4) of Landsat (TM) 

The NDVI is the ratio of the multispectral images' near-infrared (NIR) and red bands (Figure 3.9). 

NIR and red multispectral bands from Landsat 5 (TM) were acquired from 15 to 25 October 2000. 

NDVI is one of the most widely used multispectral indices, and it is suitable for vegetation 

monitoring because it takes care of changing illumination conditions, surface slope and aspect 

(Lillesand & Kiefer, 1987). The NDVI gives an estimation of vegetation health and ranges from 

−1 to +1 (Bangroo et al., 2020). The NDVI value for water is < 0; bare soils between 0- 0.1 and 

vegetation over 0.1. An increase in the positive NDVI value means greener vegetation. To 

harmonise the different environmental covariates as well as since they were obtained from various 

origins, all predictor variables were re-project to a Coordinate Reference System EPSG: 4326 - 

WGS 84 - Geographic, then resampled all to Landsat5 (TM) pixel size, lines, columns and 

georeference corner (standard 30 m grid system). The nearest neighbour resampling technique was 

applied.  In this stage, to display, subset, merge, mosaick, and re-project the layers, QGIS Desktop 

(QGIS Development Team, 2020) version 3.18.2 with grass 7.8.5 was used, while  ILWIS (Allard 

M.J. et al., 1988) version 3.3 was used for checking the lines and columns list; pixel size; 

coordinate system; resampling and remove the un-defined area of all layers before export to R. It 

is much more efficient to stack all the raster layers into a single object when the covariate dataset 

is of a common resolution and extent rather than working with each one separately. Since all 21 

environmental covariates layers have the same resolution and extent, all of them were stacked and 

saved as one raster (GeoTIFF) file using the stack() function of the R raster package. (Hijmans, 

2018). Before incorporating the selected covariates in the modelling, performing digital soil 

mapping and assessing the importance of environmental covariates in explaining the spatial 

variation of the SOC variable under study, both sets of environmental layer and soil dataset should 

link together and extract the values of the covariates at the locations of the soil point data. The 

latter environmental covariates stacked raster was intersected (overlay and extract) with the soil 

organic carbon content point dataset. This was done by using the extract() function in the R raster 

package. 
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           Figure 3. 8. Land cover map 

 

            Figure 3. 9. NDVI  map 
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3.2.4 Data evaluation and assessment 

Normal Quantile and Cumulative Probability methods were used to assess the normality of the 

distribution of SOC with a quantile-quantile plot (Thode, 2002). These plots represent SOC data 

values vs quantiles based on a normal distribution. The generic qqnorm function of the stats 

package was used to produce the QQ plot of the dataset, while the qqline function was used to add 

a line that passes through the probs quantiles, by default the first and third quartiles.  

Moreover, to quantify and reveal the linear relationship between the environmental variables with 

SOC value, Pearson's correlation coefficients between 21 environmental covariates and both SOC 

datasets (predicted SOC from MIR and SOC-based wet chemistry) were calculated separately and 

presented in Figure 4. 10 and figure 4. 11 respectively,  through using the R cor() function, as 

suggested by Ciampalini et al., (2012) and De Carvalho et al., (2014). The p-value in Pearson's 

correlation determines whether two variables are statistically correlated. The last four steps were 

implemented in R software (R Core Team, 2022). 

3.2.5 Modelling SOC content and spatial prediction map 

The environmental covariates of this study were chosen for the models according to their spatial 

resolution and the correlation between the selected layers. Two different modelling scenarios were 

prepared to evaluate the performance of the MIR spectral library for spatial predicting SOC 

content. The first one included environmental covariates and a predicted soil organic carbon 

content dataset. In contrast, the second one contains environmental covariates and wet chemistry 

soil organic carbon content dataset (referenced). To obtain the most accurate model for predicting 

soil organic carbon content, a wide range of models was fitted and compared for the two scenarios 

including random forest (RF), stochastic gradient boosting machine (gbm), support vector machine 

(SVM), extreme gradient boosting machine (xgboost) and generalised linear model (GLM), based 

on the coefficient determination (R2), root mean square error (RMSE) and mean absolute error 

(MAE). These statistical measures showed that the random forest had the best performance and 

was chosen for predicted spatial SOC content for both datasets. The train function of the caret R 

package was used to fit the different comparable models, while resamples and dotplot functions 

were used to analyse and visualise the results. Before building the different models, the whole 

DSM datasets of each scenario were normalised using the BoxCox (Bickel & Doksum, 1981) 

method. Then, they were randomly split into training datasets with 382 (70%) observations and 

testing datasets with 160 (30%) points, which were used for model validation. The repeated 10-
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fold cross-validation method with the parameter trControl in the train() function was used to fit 

the models. More explanation about train function and parameter trControl of caret package in 

(Malone et al., 2017). In this study, random forest models were used to establish relationships 

between the environmental covariates and the soil database based on training datasets with 382 

(70%) observations to predict and map SOC content spatially. SOC predictive models were tested 

for prediction from MIR and wet chemistry datasets using the R package randomForest (Liaw and 

Wiener, 2002).  Before fitting random forest models between the SOC content values and the 

environmental covariates, the hyperparameters mtry were fine-tuned as well as the number of trees, 

then when training the random forest models, different values for the tuning parameters were 

tested. A repeated 10-fold cross-validation method was used to evaluate the performance of 

random forest fitting. To determine how the final random forest model outputs of both scenarios 

would appear on the maps covering Hungary's ten counties, final fitted random forest models were 

used to predict the nodes of a 30 m grid using covariate table methods described in (Malone et al., 

2017). 

3.2.6 Validation and models goodness 

Validation provides valuable information about the final prediction map's quality. It determines 

whether model predictions are significant compared to measured values. Prediction accuracy 

assessment was measured by the difference between the observations and the predictions in the 

validation datasets, with 160 (30%) points not used in the calibration process for completely 

unbiased assessments of model quality. Performance models were examined by using a set of 

accuracy metrics that are commonly used in digital soil mapping: root mean square error (RMSE), 

coefficient of determination (R2), and mean squared error (MSE). The RMSE show the precision 

of the relationships; in cases where data were not measured, the RMSE is typically used to 

calculate the error or uncertainty associated with estimates. The smaller the RMSE value, the 

higher the reliability and accuracy of the models. The R2 shows the accuracy of the prediction 

models, and the optimum value is 1.0 

The goof function of the ithir R package was used to derive the goodness measurement of 

prediction and validation models. The R environment (R Core Team, 2022) was used to build and 

perform the models. 
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4. RESULTS AND DISCUSSION 
This chapter shows the results and discusses two main components. The first one was the MIR 

spectral library-based soil property prediction, while the second was spatial mapping of SOC. 

4.1 Visual interpretation of the recorded spectra 

This section presents and discusses the Hungarian Mid-Infrared spectral library and the estimation 

of soil attributes. 

The legacy soil samples of the SIMS project represent a huge part of Hungary's soils. The 

Hungarian MIR spectral library of the typical soil profiles and all soil samples at various depths 

reveals absorption signatures consistent with the criteria in Figure 4.1. The spectral curves of 

recorded minimum and maximum absorption values showed wide variation in absorption 

intensities. Differences in physical and chemical soil properties impact the shape of the spectrum 

curves. Several absorption bands linked to specific functional groupings were identified (Figure 

4.1). The hydroxyl stretching vibrations of kaolinite, smectite, and illite are thought to be 

responsible for the absorption bands between 3800 and 3600 (1/cm). More specifically, the 

absorption peak at 3620 (1/cm) might be due to clay minerals; a similar result was obtained by 

(Nguyen et al., 1991). The wide band around 3400 (1/cm) may be caused by hydroxyl stretching 

vibrations of water molecules in 2:1 mineral; on the other hand, certain exchangeable cations 

influence the position and strength of this band (3400 1/cm). Its position falls in K+, Na+, Ca2+ and 

Mg2+, corresponding to the cation's increasing polarising strength (charge/radius). These findings 

agreed with the results of some authors (Madejová, 2003; Tinti et al., 2015). The presence of 

carbonate in soil was detected by diagnostic absorption bands. Bands around 2592, 2515 and 720 

(1/cm) were attributed to calcite while the peaks at 2510, 1479-1408 and 887-866 (1/cm) were 

assigned to carbonates. The existence of quartz was recognised by absorption bands at about 2000, 

1870 and 1790 (1/cm), respectively, which is consistent with the result by (Janik et al., 2007; 

Rossel et al., 2008). Quartz mixtures were confirmed by a band at 798 and near 779 (1/cm). Even 

though soil organic matter spectra include vast and overlapping regions, our spectra showed some 

bands of SOM function groups in Figure 4.1. The absorption bands at 2930 and 2850 (1/cm) 

attributable to alkyl material are especially effective for detecting organic materials in soils. The 

spectra also displayed absorption bands due to C=O stretch of carbonyl C (1720-1700 1/cm), 

proteins (1640 and 1530 1/cm), aromatic amines (1342-1307 1/cm), carbohydrates (near 1100–
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1050 1/cm) and Lignin (835 1/cm) in soil organic matter which were same finding as (Kaiser et 

al., 2011; Skjemstad & Dalal, 1987; Tinti et al., 2015).  

 
Figure 4. 1. Absorbance mid-infrared spectral library data   

4.2 Summary Statistics of Spectral Library Soil Attributes 

The distribution of the soil attributes at the “10 county” level is represented by Figure 4.2, while 

tables (4.1 – 4.9) show the summary statistics of calibration and validation sets for soil types, 

counties and “10 county” level that were used in the modelling of the nine soil attributes. The soil 

attributes of the spectral dataset showed wide-ranging distributions, and based on frequency 

histograms, many of them are skewed from the normal distribution (Figure 4.2). These factors 

were expected in this database because samples were derived from different depths and horizons 

of soil types at wide spatial variability covering several variations of climatic conditions, 

geological formation and parent material, land cover and human activity. 
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Figure 4. 2. Distribution of dataset for soil properties. 
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Calibration and validation datasets contained comparable mean ranges, demonstrating the partition 

of data was somewhat balanced with some narrower differences ranges for some soil attributes. 

This is a positive indication that the selected validation points were within the feature space of the 

calibration set, which may lead to increased prediction reliability and effective model assessment. 

Calibration and validation histograms of some soil properties are shown in Figure 4.3.    

           

                          

 

Figure 4. 3. Calibration and validation distribution datasets for some soil properties at Skeletal soils type level. 

4.3 Principal Component Analysis – Outlier detection 

Principal component scores plot of the overall data structure and Mahalanobis outlier samples are 

shown in Figure 4.4, respectively. The first three PCs accounted for 63 % of the variance in the 

spectral data. In soil type levels, the PC1 accounted for most of the variability in the spectral data. 

It ranged between 33 - 34 %, while the other successive components (PC2 and PC3) explain a 

smaller percentage of the remaining variability in the data, ranging between 11 - 21%. For the 

county scale, the variance in PC1 ranged from 32 - 36%, and the remaining PC1 and PC2 together 
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ranged between 10 to 19 %. These few components with lower dimensions explained the variation 

in the spectral data and showed different spectral distribution patterns in the counties. Figure 4.4 

indicates that eight samples were observed as outliers (wmahald > 1) at the “10 counties” level, 

scattered randomly. Among spectral data from 10 Hungarian counties, only two sample outliers 

were detected in Pest County and one outlier in Fejer and Tolna counties, respectively. Also, one 

sample regarding soil types was detected as an outlier in Meadow soils and skeletal soils. Detected 

outlier samples were filtered out from the mid-infrared spectral library data set at different levels 

of the scenarios, and further investigation and calibration were performed on the remaining 

samples. 

 

 

Figure 4. 4. location of outliers detected from PCs. 

4.4 Regression Coefficient of PLSR Models: 

The PLSR allows models to be displayed and plotted specifically through regression coefficients 

in each wavelength. The plots of PLSR regression coefficients vs wavelength for calibration 

models of the nine soil attributes at “10-county” level data are shown in Figure 4.5. The regression 

coefficient illustrated the association between the mid-infrared frequencies and the soil 

constituents. Wavelengths with large positive or negative regression coefficient values are more 

influential and, thus, may have a more significant influence on the final predicted values (Beebe 
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& Kowalski, 1987). Positive peaks belong to the interest components, whilst negative peaks refer 

to interfering components (Viscarra Rossel et al., 2006). 

The soil organic carbon prediction model includes several distinct bands; peaks between 1600 and 

1400 (1/cm) were observed and were attributed to amides, aliphatic acids, and alkyl, while the 

peaks from 1342-1307 (1/cm) were linked to aromatic amines groups of organic materials in soil, 

and those near 1100–1050 (1/cm) was attributed to carbohydrates and sugars (Figure 4.5). It's 

worth mentioning that some important wavelengths for the CEC prediction model are almost 

similar to those for clay diagnostics. For instance, the weak bands at 400 (1/cm) and significant 

broad wavelengths between 1000 and 1500 (1/cm). Those near 1238, 1020 and 920 (1/cm) may 

also represent the silicate, Al−OH lattice vibrations and deformation of kaolinite vibrations, 

respectively. Figure 4.5 shows the most influential bands for predicting total sand observed at 

spectral regions near 1500, 1300 and 1200 (1/cm). The spectral regions reflect the combination 

bands of quartz and other silicate structures. Figure 4.5 also shows an inverse relationship between 

clay and sand content, as displayed in their prediction model bands. For example, while the spectra 

of total sand show negative coefficients near 200 and 700 (1/cm) and a positive peak near 500 and 

1300 (1/cm), the opposite is true for the coefficients of clay. The important bands for predicting 

exchangeable calcium are those near 400, 900, 1300, 720 and 1800 (1/cm), with the latter two 

bands attributed to diagnostic peaks for calcite (Figure 4.3), which agreed with the result by 

(Nguyen et al., 1991). The peak bands for model prediction of exchangeable magnesium are those 

near 400 and 1200 (1/cm), in addition to bands near 1440, 1470, and 875 (1/cm), which are 

representative of carbonate and may be caused by the presence of magnesium carbonate and 

dolomite (Figure 4.5). Regression coefficients for exchangeable Ca and Mg prediction models are 

identical in many spectral regions to those of clay and organic matter, demonstrating that these 

soil properties are associated (Figure 4.5). 
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Figure 4. 5. PLSR models' standard regression coefficient for predicting SOC, CaCO3, sand, clay, silt, CEC, Exch. Mg, Ca and 

pH water 

4.5  Prediction of Soil Properties for National, Counties and Soil Types Models 

4.5.1 Soil organic carbon content  

Descriptive statistics and model results of organic carbon content are shown in Table 4.1. The 

models' performance assessment of SOC showed high prediction accuracies for most of the 

calibration and validation dataset scenarios. The “10-county” carbon content (1.35 and 1.21 %) 
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produced excellent models in both the calibration set (R2 of 0.81, RPD of 2.23 and RMSE of 0.5) 

and validation set (R2 = 0.80, RPD = 2.28 and RMSE = 0.46). For soil types, the soil organic 

carbon content was accurately predicted with R2 ranging from 0.99 to 0.76 and RMSE from 0.09 

- 0.55 in the calibration model, while R2 and RMSE varied from 0.88 – 0.68 and 0.35 to 0.50, 

respectively, in the validation model. Salt-affected, Brown forest, alluvial and colluvial soils 

presented the best models. In contrast, Skeletal soils presented a lower result, possibly due to the 

high sand and gravel content in these soils. These results were expected since most Hungarian soils 

have high organic carbon. The only unexpected result was from Chernozem soils. For county 

scenarios, soil organic carbon content prediction within ten counties showed that six counties had 

R2 ≥ 0.90. In comparison, only two counties had R2 < 0.75 in the calibration set, while six counties 

had R2 ≥ 0.75 in the validation set. The county with the highest prediction model in the calibration 

set was Komarom Esztergom with R2 of 1, RMSE of 0.01 and RPD of 125.8. Variations in results 

were due to the variety of soil types and different land management practices in these counties. 

Moreover, the existence of carbonates in soil could affect the predictions of soil organic carbon 

(Reeves & Smith, 2009). Similar results with a high prediction model for SOC were found in some 

spectral libraries studies by (Baumann et al., 2021; Rossel et al., 2008). In addition, (Ng et al., 

2022), through numerous studies, observed excellent predictions of soil organic carbon with R2 

ranging between 1.0 and 0.80.  
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Table 4. 1. PLSR model values, descriptive statistics and results of calibration and validation prediction models of SOC 

                         Calibration set Validation set 

      SOC   % n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

“10 county”  241 0.02 6.72 1.35 0.81 0.57 2.23 1959 0.01 6.56 1.21 0.80 0.46 2.28 

 

 

 

 

 

County 

Pest 98 0.05 5.34 1.18 0.93 0.33 3.70 294 0.01 5.07 1.16 0.85 0.40 2.55 

Baranya 70 0.04 5.14 1.06 0.92 0.31 3.65 141 0.10 3.78 0.88 0.81 0.33 2.33 

Fejer 49 0.02 6.26 1.59 0.90 0.49 3.28 186 0.03 4.65 1.38 0.68 0.60 1.76 

Komarom 

Esztergom 

35 0.01 4.30 0.93 1.00 0.01 125.8 125 0.01 4.48 0.89 0.52 0.67 1.45 

Nograd 55 0.11 4.07 1.11 0.81 0.41 2.35 88 0.14 4.01 1.26 0.71 0.47 1.86 

Tolna 39 0.12 6.72 1.67 0.99 0.16 10.23 153 0.13 4.50 1.27 0.77 0.43 2.08 

Bacs-Kiskun 98 0.07 5.20 1.02 0.74 0.49 1.98 186 0.07 2.97 0.69 0.79 0.30 2.20 

Bekes 70 0.14 5.76 1.54 0.96 0.24 5.29 132 0.23 3.69 1.57 0.85 0.39 2.56 

Csongrad 50 0.11 5.74 1.12 0.67 0.66 1.77 116 0.10 5.00 1.29 0.61 0.70 1.61 

Jasz-Nagykun-

Szolnok 

40 

 

0.50 3.57 1.75 0.75 0.56 2.03 179 0.23 4.04 2.01 0.84 0.47 2.52 

 

 

Main soil 

type 

Chernozem soils 149 0.01 3.86 1.19 0.76 0.49 2.06 530 0.01 4.03 1.53 0.79 0.47 2.19 

Brown forest 

soils 

99 0.04 4.51 0.88 0.94 0.24 3.97 395 0.02 4.48 0.945 0.71 0.43 1.87 

Alluvial and 

colluvial soils 

55 0.04 3.98 1.45 0.90 0.35 3.16 153 0.08 4.50 1.15 0.68 0.50 1.76 

Meadow soils 149 0.04 6.72 1.64 0.89 0.49 3.08 261 0.08 5.00 1.55 0.88 0.39 2.92 

Skeletal soils 

 

99 0.01 5.15 0.93 0.76 0.55 2.03 200 0.02 5.07 0.59 0.70 0.35 1.83 

Salt-affected soils 27 0.13 5.76 1.15 0.99 0.09 13.56 64 0.15 4.77 1.07 0.77 0.43 2.1 
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4.5.2 Calcium carbonate 

Predictions of calcium carbonate for the spectral library had wide-ranging results (Table 4.2). The 

“10 counties” CaCO3 (16.57 and 15.01 %) was well modelled with R2 of 0.84, RPD of 2.54 and 

RMSE of 5.96 in the calibration set and R2 of 0.77, RPD of 2.08 and RMSE of 5.96 in the validation 

set. These high results may be because about 49 % of Hungarian soils are calcareous, having 

CaCO3 content ranging from 1-25 % (TIM, 1995). Of all the Hungarian counties, only Csongrad 

county had a low prediction level of CaCO3 in the training set (R2 of 0.60 and RMSE of 8.11) and 

testing set (R2 of 0.51 and RMSE of 7.09). CaCO3 in Pest County was predicted slightly better 

with R2 of 0.76 and RMSE of 6.61 in the training set and R2 of 0.67 in the validation set. The 

performance model results of the other eight counties were well-modelled at a high level of 

accuracy, with R2 of 0.94 to 0.83 and RPD of 4.0 to 2.44 for the calibration of the sets (Table 4.2). 

Four counties had R2 < 0.75 in the validation sets, while the remaining six had R2 ≥ 0.75. The 

CaCO3 assessment statistics for soil types prediction showed that a good calibration model was 

obtained for salt-affected soils (R2 of 0.91, RPD of 3.41, RMSE = 4.4) with corresponding high 

validation results (R2 0.81). This can partly be explained by the fact that Hungarian soils were 

moderately or highly alkaline and all salt-affected. Modest predictions were obtained by 

Chernozem soils and Skeletal soils in the calibration set (R2 = 0.73 to 0.56), which performed 

slightly better in the validation sets (R2 = 0.78 to 0.76). Other remaining soil types produced R2 

values from 0.89 to 0.79 and RMSE from 3.59 to 6.33 in the calibration sets, while RMSE ranged 

from 4.51 - 5.21 and R2 from 0.85 - 0.79 in the validation sets (Table 4.2). Viscarra Rossel et al. 

(2016) obtained R2 values of 0.77 and RMSE of 3.96 for the calcium carbonate predictions, while 

Knox et al. (2015) and Seybold et al. (2019) showed good calcium carbonate prediction models 

with R2 of 0.92 and RMSE of 0.30 and R2 of 0.99 and RMSE of 1.2, respectively. Generally, the 

high prediction model of SOC and calcium carbonate was attributed to the strong absorption bands 

associated with chemical bonds of carbon-containing compounds in soil (Rossel & Behrens, 2010; 

Wijewardane et al., 2018). Figure 4.2 shows the most significant wavelengths of the SOC and 

CaCO3 prediction models in the overall scenario. 
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Table 4. 2. PLSR model values, descriptive statistics and results of calibration and validation prediction models of CaCO3 

  Calibration set Validation set 

       CaCO3   % n Min Max  Mean R2 RMSE RPD n Min Max Mean R2 RMSE RPD 

“10 county”  241 0.10 96.0       16.57    0.84 5.96 2.54   1959 0.10 86.0 15.01    0.77 5.96 2.08 

 

 

 

 

 

County 

Pest 98 0.10 65.0 16.41 0.76 6.61 2.07 294 0.10 67.0 17.12 0.67 7.41 1.75 

Baranya 70 0.10 51.0 14.57 0.93 3.11 3.7 141 0.10 52.0 13.24 0.92 3.19 3.50 

Fejer 49 0.20 96.0 26.62 0.94 5.92 4.00 186 0.50 56.0 21.94 0.78 5.75 2.13 

Komarom 

Esztergom 

35 0.10 43.0 14.66 0.83 5.47 2.44 125 0.30 38.0 13.70 0.72 5.68 1.90 

Nograd 55 0.10 26.0 7.32 0.88 1.99 2.86 88 0.10 17.0 4.88 0.84 1.58 2.50 

Tolna, 39 0.90 38.0 20.08 0.86 4.94 2.75 153 0.70 41.0 18.81 0.84 4.89 2.53 

Bacs-Kiskun 98 0.10 47.0 17.14 0.91 3.74 3.42 186 0.10 49.0 14.61 0.89 3.38 2.96 

Bekes 70 0.50 45.0 11.41 0.85 4.03 2.63 132 0.10 30.0 10.87 0.84 3.50 2.51 

Csongrad 50 0.10 64.0 13.12 0.60 8.11 1.59 116 0.10 66.0 11.15 0.51 7.09 1.44 

Jasz-Nagykun-

Szolnok 

40 0.70 40.0 10.71 0.93 2.70 3.70 179 0.10 32.0 7.57 0.73 3.50 1.92 

 

 

Main soil 

type 

Chernozem soils 149 0.50 53.0 16.27 0.56 7.54 1.51 530 0.10 45.0 17.33 0.76 5.37 2.06 

Brown forest soils 99 0.10 65.0 15.77 0.79 6.33 2.21 395 0.10 52.0 10.25 0.81 4.51 2.28 

Alluvial and 

colluvial soils 

55 0.10 49.0 14.43 0.89 3.59 3.03 153 0.50 47.0 16.23 0.79 4.97 2.19 

Meadow soils 149 0.60 85.0 19.99 0.89 5.43 3.04 261 0.10 67.0 14.78 0.85 5.21 2.56 

Skeletal soils 99 0.10 50.0 11.44 0.73 5.03 1.94 200 0.10 50.0 9.95 0.78 3.89 2.11 

Salt-affected soils 27 0.50 47.0 20.63 0.91 4.4 3.41 64 0.10 49.0 16.35 0.81 5.71 2.31 
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4.5.3 Soil texture (Sand, Clay and Silt) 

Amongst all soil properties in this study, soil texture, especially sand content (39.81 - 40.32 %), 

showed the highest prediction model at the “10 counties” level in the calibration set (R2 of 0.89) 

and validation set (R2 of 0.85) (Table 4.3). All calibration models had a coefficient determination 

higher than 0.81 in the counties scenario, and six counties had a coefficient determination ≥ 0.90. 

In comparison, five counties had a coefficient determination higher than 0.8 and ratio performance 

to deviation higher than 2.35 in validation models (Table 4.3).  All soil types’ levels had the highest 

calibration models with R2 greater than 0.83, RPD higher than 2.53, R2 greater than 0.74 and RPD 

near 2 in validation models. Meadow soils and salt-affected soils had R2 greater than 0.90 and 

RPD higher than 3.36 in the calibration sets and R2 greater than 0.83 and RPD higher than 2.48 in 

the validation model sets (Table 4.3). Based on  (1995), the sand content in Hungary represents 

(16 %) which may partly explain the high prediction of sand and the robust interaction between 

mid-infrared radiation and minerals of sandy soils. The high-accuracy performance models of sand 

content agreed with the results of some other mid-infrared spectral libraries reported by some 

authors (Demattê et al., 2019; Wijewardane et al., 2018). 

The clay content at the “10 counties” scale (22.88 and 22.86 %) showed high results in the 

calibration set with R2 of 0.80 and RMSE of 5.94 and in the validation set with R2 of 0.80 and 

RMSE of 6.59 (Table 4.4). At the county level, clay content within eight counties was good, with 

R2 ranging from 0.97 to 0.80 in the calibration set, and five counties had R2 ranging from 0.73 to 

0.80 in the validation model sets. Nograd County showed the worst result in the calibration set 

with R2 of 0.34 and RMSE of 15.92, while Tolna County had (R2 of 0.74, RMSE = 5.30 and RPD 

of  2.00) but still had a medium level of prediction (Table 4.4). In the soil types scenario, salt-

affected soils showed the best-performing calibration model with R2 of 0.92 and RMSE of 4.30, 

whereas R2 was 0.80 in the validation sets. In three soil types, the coefficient determination was 

higher than 0.84 and only Brown forest soils and Skeletal soils had R2 of 0.76 and 0.64, 

respectively, in the calibration models. Validation sets showed four soil types had R2 higher than 

0.78 and RPD higher than 2.14 (Table 4.4). Since clay minerals are spectrally active molecules 

(Ng et al., 2022), this may be why the clay content was predicted accurately. Furthermore, clay 

has fundamental vibrations. Therefore, the low and medium coefficient determination and 

variation of clay prediction results may be associated with the low total clay or the soil's clay 
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content variability. Some studies have justified the low clay predictions with high carbonate 

content in the soil samples (Seybold et al., 2019).  

Silt content had similar prediction results to clay content at most levels but with some lower values, 

particularly in the validation sets. For the “10 counties” scenario, silt content (37.75 and 37.92 %) 

had a medium level with R2 of 0.64 and 0.69 in calibration and validation sets, respectively (Table 

4.5). Of the 10 counties with silt calibration prediction, six had R2 ≥ 0.83, three counties had R2 ≥ 

0.70, and one county had R2 of 0.53 (Table 4.5). Predictive modelling of silt at soil types scale 

showed all calibration sets had R2 ≥ 0.70, except the Chernozem soils type, which had R2 of 0.69. 

Salt-affected soils had R2 of 0.94 and RMSE of 3.85 (Table 4.5). Four soil types had R2 ranging 

from 0.55 to 0.81 in the validation sets. Generally, our prediction results for clay were similar to 

those found in other studies (Baumann et al., 2021; Terhoeven-Urselmans et al., 2010), which 

mainly focused on legacy soil samples. For the same studies, the authors had lower prediction 

results of silt content (R2 range from 0.55 - 0.51). Ng et al. (2022) reported that the prediction 

accuracies of sand, clay and silt had R2 values of  0.80, 0.84 and 0.70, respectively, which generally 

had higher accuracy predictions of particle size distribution than our “10 county” level results.   
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Table 4. 3. PLSR model values, descriptive statistics and results of calibration and validation prediction models of sand content 

  Calibration set Validation set 

       Sand     % n Min Max  Mean R2 RMSE RPD n Min Max Mean R2 RMSE RPD 

“10 county”  241 2.23 99.02 39.81 0.89    9.35 2.96 1959 0.70    99.02       40.32 0.85 10.97 2.57 

 

 

 

 

 

Couny 

Pest 98 2.40 96.20 52.01 0.82 11.1 2.39 294 6.70 96.50 48.15 0.85 10.76 2.62 

Baranya 70 2.50 95.00 34.30 0.85 9.64 2.62 141 1.60 96.30 25.89 0.62 12.32 1.62 

Fejer 49 7.40 95.20 46.86 0.93 6.39 3.90 186 2.23 86.80 38.74 0.68 10.85 1.73 

Komarom 

Esztergom 

35 2.00 94.50 47.82 0.90 8.54 3.19 125 9.10 92.10 48.58 0.63 13.38 1.66 

Nograd 55 1.3 94.60 36.90 0.83 11.51 2.48 88 1.80 91.90 33.23 0.68 12.26 1.79 

Tolna, 39 0.70 94.50 36.55 0.91 8.32 3.41 153 0.90 93.50 33.59 0.70 11.44 1.82 

Bacs-Kiskun 98 8.15 98.55 59.43 0.96 5.84 5.09 186 8.62 99.02 69.34 0.92 7.45 3.61 

Bekes 70 3.20 76.82 19.84 0.94 4.06 4.28 132 2.92 65.46 19.16 0.85 5.72 2.61 

Csongrad 50 3.65 95.65 50.01 0.84 14.5 2.52 116 2.52 96.02 36.35 0.87 11.45 2.76 

Jasz-Nagykun-

Szolnok 

40 3.83     91.82 32.57 1.00 0.11 249.8 179 1.53 92.88 22.94 0.82 8.03 2.36 

 

 

Main soil 

type 

Chernozem soils 149 0.70 98.55 45.65 0.84 10.16 2.54 530 1.80 92.10 31.07 0.74 9.56 1.96 

 

Brown forest 

soils 

99 1.60   92.20 43.11 0.87 9.20 2.82 395 1.30 94.60 36.22 0.75 11.64 2.02 

Alluvial and 

colluvial soils 

55 0.90 96.46 43.92 0.85 9.97 2.59 153 0.90 98.06 39.90 0.74 13.28 1.96 

Meadow soils 149 1.53 95.10 34.30 0.91 7.84 3.37 261 2.47 93.60 24.78 0.84 8.70 2.49 

Skeletal soils 99 12.9 98.70 70.39 0.85 10.23 2.61 200 8.90 99.02 81.22 0.79 11.1 2.18 

Salt-affected soils 27 3.65 82.06 26.59 0.96 4.3 5.33 64 4.24 95.78 29.05 0.88 8.42 2.92 
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Table 4. 4. PLSR model values, descriptive statistics and results of calibration and validation prediction models of clay content 

  Calibration set Validation set 

      Clay     % n Min Max  Mean R2 RMSE RPD n Min Max Mean R2 RMSE RPD 

“10 county”  241 0.64 67.04 22.88 0.80     5.94 2.27     1959 0.10    82.70       22.86    0.80 6.59 2.22 

 

 

 

 

 

County 

Pest 98 1.90 62.60 17.12 0.92 3.19 3.47 294 0.10 45.60 18.89 0.77 5.16 2.07 

Baranya 70 1.40 53.00 23.69 0.85 4.48 2.60 141 1.20 44.40 24.08 0.78 4.21 2.13 

Fejer 49 1.40 50.80 19.60 0.92 3.25 3.66 186 0.40 46.10 19.26 0.28 6.22 1.18 

Komarom 

Esztergom 

35 2.20 48.30 17.83 0.80 5.36 2.27 125 1.50 41.20 15.26 0.30 6.45 1.20 

Nograd 55 0.90 82.70 24.59 0.34 15.92 1.24 88 1.80 56.90 26.13 0.45 10.08 1.36 

Tolna, 39 0.30 39.60 19.83 0.74 5.30 2.00 153 0.10 42.30 19.89 0.49 6.23 1.40 

Bacs-Kiskun 98 0.16 56.32 14.06 0.97 2.04 6.08 186 0.16 31.68 7.874 0.80 3.02 2.24 

Bekes 70 9.02 67.04 38.30 0.96 2.77 4.86 132 2.24 64.88 38.55 0.73 6.34 1.95 

Csongrad 50 2.88 62.55 24.02 0.81 7.84 2.34 116 0.24 61.92 29.87 0.48 12.89 1.40 

Jasz-Nagykun-

Szolnok 

40 6.81 64.01 33.54 0.94 3.78 4.07 179 4.81 64.89 38.47 0.83 4.90 2.45 

 

 

Main soil 

type 

Chernozem  149 1.28 51.72 19.47 0.85 4.34 2.58 530 0.30 54.46 23.81 0.68 6.10 1.77 

Brown forest  99 1.70   56.90 21.54 0.76 6.72 2.03 395 0.80 82.70 23.06 0.53 8.29 1.46 

Alluvial and 

colluvial  

55 0.10 62.60 19.14 0.87 4.63 2.80 153 0.10 45.75 19.22 0.86 4.12 2.65 

Meadow  149 

 

1.92 67.04 29.06 0.88 5.55 2.93 261 2.40 64.89 36.38 0.83 6.43 2.44 

Skeletal  99 0.24 40.37 10.01 0.64 4.62 1.68 200 0.16 44.77 7.11 0.78 3.84 2.14 

Salt-affected soils 27 4.80 54.40 34.35 0.92 4.30 3.56 64 2.88 57.90 31.52 0.80 7.11 2.23 
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Table 4. 5. PLSR model values, descriptive statistics and results of calibration and validation prediction models of silt content 

  Calibration set Validation set 

           Silt  % n Min Max  Mean R2 RMSE RPD n Min Max Mean R2 RMSE RPD 

“10 county” 

 

 241 2.19    94.40        37.75    0.64 11.5 1.68       1959 0.61 102.4 37.92    0.69 10.79   1.79    

 

 

 

 

 

County 

Pest 98 1.50 70.70 30.98 0.86 7.15 2.65 294 1.10 71.30 32.94 0.82 8.34 2.35 

Baranya 70 3.30 71.10 42.01 0.75 8.97 2.01 141 2.60 76.50 50.30 0.38 11.86 1.27 

Fejer 49 3.60 69.64 32.24 0.83 7.38 2.42 186 6.11 102.4 42.32 0.53 11.85 1.47 

Komarom 

Esztergom 

35 1.80 76.80 34.36 0.92 5.33 3.63 125 4.60 83.50 36.20 0.66 10.76 1.71 

Nograd 55 2.80 98.70 38.58 0.53 16.59 1.48 88 5.30 96.20 40.82 0.30 14.31 1.21 

Tolna, 39 2.10 85.60 43.72 0.74 11.6 1.99 153 2.50 81.40 46.67 0.46 12.82 1.37 

Bacs-Kiskun 98 1.09 73.74 29.78 0.93 5.83 3.78 186 0.61 74.38 30.01 0.91 6.61 3.27 

Bekes 70 14.1 57.80 41.83 0.90 3.09 3.18 132 18.7 56.00 42.27 0.42 6.53 1.31 

Csongrad 50 1.20 66.45 25.97 0.70 10.9 1.85 116 1.06 71.10 33.78 0.33 16.24 1.23 

Jasz-Nagykun-

Szolnok 

40 1.37 64.52 33.74 0.93 3.98 3.91 179 2.19 58.57 38.63 0.68 5.87 1.76 

 

 

Main soil 

type 

Chernozem soils 149 1.42 74.10 35.26 0.69 10.3 1.79 530 2.86 102.4 45.20 0.40 11.65 1.3 

Brown forest 

soils 

99 5.30 94.40 35.59 0.72 9.88 1.90 395 2.60 98.70 40.85 0.55 12.64 1.5 

Alluvial and 

colluvial soils 

55 1.50 79.30 37.58 0.81 8.01 2.29 153 1.59 81.40 41.18 0.56 12.5 1.51 

Meadow soils 149 2.30 76.38 36.64 0.70 8.84 1.84 261 2.55 72.14 38.85 0.54 8.84 1.48 

Skeletal soils 99 1.10 70.70 21.33 0.77 9.66 2.08 200 0.61 66.70 14.29 0.81 6.67 2.32 

Salt-affected soils 27 5.80 64.29 39.05 0.94 3.85 4.13 64 1.06 73.74 40.03 0.80 6.38 2.27 

 



65 
 

4.5.4 Cation exchange capacity 

The calibration model of CEC at the “10 county” scale (26.14 and 24.94 cmol(+)/kg) reached a R2 

of 0.61 and RMSE of 8.24 and the validation set reached respective R2 and RMSE of 0.57 and 

7.78 (Table 4.6). At the counties level, Baranya and Tolna showed an R2 ≥ 0.90, while Fejer had 

an R2 of 0.83, and three counties showed an R2 of 0.68 (Bekes, Csongrad and Jasz-Nagykun-

Szolnok). In contrast, only one county showed R2 below 0.55 (Bacs-Kiskun) in the calibration 

models. Validation sets showed only four counties had R2 ≥ 0.60, while the remaining six counties 

had R2 ≤ 0.51. At the soil type scenarios, Brown forest soils and alluvial and colluvial soils showed 

the best calibration results (R2 of 0.86 and RMSE of 3.96 and 4.29, respectively). In contrast, 

Chernozem soils had R2 of 0.47 and RMSE of 7.08, which was the worst result (Table 4.6). 

Validation sets showed two soil types had R2 ≥ 0.70 (Brown forest and Skeletal soils). Four soil 

types showed R2 ≤ 0.50. 

The poor results were expected because CEC is not spectrally active, while other good results were 

due to the contribution of clay minerals and organic carbon matter to the prediction of CEC and 

correlated with each other (Stenberg et al., 2010). Demattê et al. (2019) showed similar prediction 

accuracy ranges in calibration sets (R2 0.97) for CEC in the Brazilian spectral library. In addition, 

Pirie et al. (2005) observed several studies with good predictions that showed prediction reached 

an R2 of 0.82 in the small spectral library (415 samples). Terhoeven-Urselmans et al. (2010) also 

achieved good accuracy (R2 = 0.83) for 4438 global soil samples. 
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Table 4. 6. PLSR model values, descriptive statistics and results of calibration and validation prediction models of CEC 

 

  Calibration set Validation set 

  CEC 

cmol(+)/kg 

n Min Max  Mean R2 RMSE RPD n Min  Max Mean R2 RMSE RPD 

“10 county”  241 1.48    119.9        26.14 0.61 8.24 1.60 1959 1.64    116.5 24.94    0.57 7.78 1.53 

 

 

 

 

 

County 

Pest 98 2.38 59.63 22.69 0.76 5.68 2.05 294 2.15 67.40 25.14 0.65 7.00 1.70 

Baranya 70 3.85 67.94 25.05 0.90 3.39 3.24 141 5.61 42.61 24.07 0.80 2.67 2.23 

Fejer 49 4.76 66.80 27.76 0.83 5.35 2.42 186 8.34 83.12 27.74 0.38 8.25 1.27 

Komarom 

Esztergom 

35 

 

7.73 60.28 23.13 0.65 6.38 1.72 125 8.39 46.40 22.03 0.61 4.9 1.6 

Nograd 55 3.33 57.22 28.56 0.77 6.82 2.11 88 2.95 49.82 27.64 0.73 5.42 1.93 

Tolna, 39 5.50 119.9 29.48 0.96 4.73 4.96 153 5.55 53.00 24.86 0.51 5.41 1.44 

Bacs-Kiskun 98 2.25 54.47 16.44 0.50 7.71 1.42 186 1.48 84.21 11.63 0.28 7.58 1.18 

Bekes 70 11.2 57.66 34.09 0.68 5.51 1.77 132 3.41 58.39 33.71 0.45 6.72 1.35 

Csongrad 50 4.38 48.00 25.04 0.68 7.67 1.77 116 5.66 49.67 28.19 0.31 11.41 1.21 

Jasz-Nagykun-

Szolnok 

40 1.68 42.44 24.14 0.68 6.37 1.78 179 5.42 61.73 29.33 0.49 5.79 1.41 

 

 

Main soil 

type 

Chernozem soils 149 2.89 46.40 23.56 0.47 7.08 1.38 530 3.41 61.73 26.99 0.32 6.93 1.22 

Brown forest 

soils 

99 3.85 57.22 23.66 0.86 3.96 2.73 395 2.95 49.82 23.83 0.77 4.22 2.09 

Alluvial and 

colluvial soils 

55 2.86 59.63 26.47 0.86 4.29 2.70 153 2.25 53.00 22.31 0.48 6.51 1.40 

Meadow soils 149 1.68 119.89 32.64 0.55 11.84 1.49 261 4.51 68.16 32.32 0.50 7.44 1.42 

Skeletal soils 99 2.38 61.57 16.45 0.50 8.25 1.43 200 1.48 49.33 11.31 0.70 4.84 1.84 

Salt-affected soils 27 6.70 66.83 32.51 0.68 8.11 1.81 64 4.20 84.21 29.75 0.04 13.6 1.03 
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4.5.5 Exchangeable Mg and Ca 

The exchangeable Mg and Ca of both calibration and validation models provided variable results. 

The calibration results at the “10-county” level were suitable for exchangeable Mg but were 

satisfactory for exchangeable Ca, with respective R2 values of 0.77 and 0.54 and RPD values of 

2.09 and 1.48. On the other hand, validation model sets had R2 values of Mg and Ca of 0.52 and 

0.48, respectively (Tables 4.8 and 4.7). Calibration prediction at county levels for exchangeable 

Mg showed four counties had R2 ≥ 90 and 3 counties had R2 lower than 0.55 (Table 4.8). In 

comparison, exchangeable Ca showed six counties had R2 ≥ 0.80, and only Csongrad county had 

R2 lower than 0.55 (Table 4.7). However, the validation prediction results had R2 ranging from 

0.14 to 0.66 for exchangeable Mg and 0.18 to 0.74 for exchangeable Ca (Tables 4.8 and 4.7). 

Calibration predictions for exchangeable Mg were satisfactory (R2 lower than 0.75) for all soil 

types except Alluvial and colluvial soils (R2 of 0.94 and RPD of 4.01) and Meadow soils (R2 of 

0.82 and RPD of 2.37; Table 8) whereas calibration predictions for exchangeable Ca were poorer 

(R2 ≤ 0.50 and RPD ≤ 1.42) for three soil types, but was excellent for Brown forest soils (R2 of 

0.96 and RMSE of 1.56) and Alluvial and colluvial soils (R2 of 0.83 and RMSE of 3.32; Table 8). 

Validation results of soil types had R2 ranging from 0.33 to 0.60 for exchangeable Mg and 0.32 to 

0.71 for exchangeable Ca, except Salt-affected soils had R2 of 0.01 (Tables 4.8 and 4.7). The poor 

model results were not expected, but we posit that exchangeable Ca and Mg may not have 

particular MIR absorption features, and there is a lack of correlation with spectrally active 

properties. Furthermore, inverse links with carbon content may also justify the low prediction 

results, suggesting fewer sites for exchangeable cations on soil charges (from organic matter) that 

H+ may occupy. TIM (1995) reported that soil conditions in Hungary show fertiliser use stagnated 

between 1985 and 1990 and reduced sharply after 1990. Soil nutrient balance became negative 

compared to the period of 1981 to 198. These reasons and different land nutrition management 

conditions may justify the low concentration and exchangeable cations (Ca++ and Mg++) 

predictions and CEC in various areas, counties and soil types in Hungary. Exchangeable Ca was 

predicted with reasonably good accuracy (R2 = 0.85) by Rossel et al. (2008), followed by 

exchangeable Mg (R2 = 0.78). Similarly, a study by  Stenberg & Rossel (2010) observed good 

predictions for exchangeable Ca (R2 = 0.89) and Mg (R2 = 0.76). 
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Table 4. 7. PLSR model values, descriptive statistics and results of calibration and validation prediction models of exchangeable Ca 

  Calibration set Validation set 

   Exch Ca 

 cmol(+)/kg 

n Min Max  Mean R2 RMSE RPD n Min Max Mean R2 RMSE RPD 

“10 county”  241 0.67    87.46 18.52 0.54 6.72    1.48   1959 0.60    85.52 17.54    0.48 6.21 1.39   

 

 

 

 

 

County 

Pest 98 0.87 49.06 16.34 0.75 4.51 2.00 294 0.67 45.89 18.39 0.63 5.15 1.66 

Baranya 70 2.00 54.03 18.13 0.91 2.74 3.36 141 4.44 35.05 17.21 0.74 2.65 1.98 

Fejer 49 3.29 48.05 18.58 0.91 2.67 3.36 186 5.36 53.92 20.92 0.37 5.53 1.26 

Komarom_ 

Esztergom 

35 5.18 45.79 17.41 0.63 5.29 1.67 125 5.30 34.85 16.57 0.59 3.99 1.57 

Nograd 55 1.67 38.40 18.56 0.80 4.60 2.26 88 1.35 30.72 18.04 0.73 3.74 1.95 

Tolna 39 3.83 87.46 21.78 0.95 3.84 4.46 153 3.79 39.07 19.33 0.42 4.65 1.32 

Bacs-Kiskun 98 1.51 40.89 11.36 0.84 2.86 2.54 186 0.82 59.07 8.71 0.36 5.25 1.26 

Bekes 70 4.96 41.52 21.97 0.98 1.23 6.48 132 5.74 42.32 22.57 0.18 6.78 1.11 

Csongrad 50 1.76 45.13 16.44 0.09 9.50 1.06 116 2.67 39.17 18.78 0.34 8.49 1.24 

Jasz-Nagykun-

Szolnok 

40 0.60 31.33 15.51 0.57 5.44 1.55 179 3.12 45.31 18.76 0.36 6.01 1.26 

 

 

Main soil 

type 

Chernozem soils 149 1.54 33.76 17.50 0.34 6.15 1.23 530 4.46 45.31 21.13 0.40 5.51 1.29 

Brown forest soils 99 1.68 38.40 16.95 0.96 1.56 5.34 395 1.35 35.43 16.45 0.67 3.62 1.75 

Alluvial and 

colluvial soils 

55 2.28 40.46 19.33 0.83 3.32 2.45 153 1.51 39.07 16.25 0.50 4.91 1.41 

Meadow soils 149 0.60 87.46 20.85 0.66 7.39 1.73 261 2.92 53.92 20.57 0.32 6.83 1.21 

Skeletal soils 99 0.87 45.13 12.11 0.50 6.00 1.42 200 0.67 40.24 8.65 0.71 3.67 1.86 

Salt-affected soils 27 2.91 45.89 17.04 0.43 8.07 1.35 64 2.07 59.07 14.31 0.01 9.51 0.96 

 

 

 

 

 

 



69 
 

 

Table 4. 8. PLSR model values, descriptive statistics and results of calibration and validation prediction models of exchangeable Mg 

  Calibration set Validation set 

   Exch Mg  

cmol(+)/kg    

n Min Max  Mean R2 RMSE RPD n Min Max Mean R2 RMSE RPD 

“10 county” 

 

 241 0.13 24.37 4.48    0.77 1.98      2.09 1959 0.06    26.51 4.22    0.52 2.58 1.44 

 

 

 

 

 

County 

Pest 98 0.19 12.74 3.29 0.43 1.94 1.33 294 0.13 24.31 3.88 0.19 3.51 1.11 

Baranya 70 0.56 13.08 3.79 0.95 0.59 4.67 141 0.56 10.96 3.70 0.59 1.12 1.57 

Fejer 49 0.59 23.75 5.44 0.99 0.38 13.23 186 0.57 19.62 4.01 0.40 3.02 1.29 

Komarom_ 

Esztergom 

35 0.69 12.87 2.96 0.58 1.6 1.57 125 0.72 11.93 2.85 0.27 1.81 1.18 

Nograd 55 0.40 16.17 5.09 0.73 1.91 1.95 88 0.36 14.19 4.26 0.57 1.78 1.53 

Tolna, 39 0.31 25.73 4.89 0.95 1.20 4.65 153 0.28 15.79 3.47 0.33 1.87 1.23 

Bacs-Kiskun 98 0.32 16.01 3.03 0.69 1.63 1.81 186 0.18 17.15 1.95 0.23 2.01 1.14 

Bekes 70 1.25 19.59 7.30 0.90 1.40 3.24 132 1.17 24.93 7.14 0.66 2.71 1.72 

Csongrad 50 0.63 15.75 4.55 0.54 2.52 1.49 116 0.61 16.10 5.35 0.14 3.38 1.08 

Jasz-Nagykun-

Szolnok 

40 0.06 18.61 4.94 0.45 3.28 1.36 179 0.57 20.86 6.01 0.30 3.34 1.20 

 

 

Main soil 

type 

Chernozem soils 149 0.49 13.07 3.66 0.61 1.87 1.61 530 0.45 15.72 3.63 0.50 1.89 1.42 

Brown forest 

soils 

99 0.40 16.17 3.17 0.57 1.86 1.53 395 0.36 13.24 3.44 0.51 1.50 1.43 

Alluvial and 

colluvial soils 

55 0.36 12.74 4.28 0.94 0.74 4.01 153 0.32 13.21 3.57 0.35 1.84 1.24 

Meadow soils 149 0.06 25.73 7.98 0.82 2.35 2.37 261 0.64 24.93 7.73 0.60 2.88 1.58 

Skeletal soils 99 0.18 8.91 1.92 0.72 0.96 1.89 200 0.13 10.14 1.36 0.47 1.23 1.38 

Salt-affected soils 27 1.09 17.01 6.04 0.71 2.16 1.88 64 0.61 17.33 7.04 0.33 3.92 1.23 
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Pirie et al. (2005), however, reported lower performance for exchangeable Mg (R2 = 0.69) and 

exchangeable Ca (R2 = 0.64). Similarly, a study by Terhoeven-Urselmans et al. (2010) observed 

lower predictions for exchangeable Mg (R2 = 0.54) and exchangeable Ca (R2 = 0.78) 

4.5.6 pH water 

Overall, the predictions for soil chemical reactions within the different scenarios were poor. Soil 

pH water at the “10-county” level (7.90 and 7.88) had the poorest results in both groups of 

calibration and validation datasets (Table 4.9). Many counties' pH models were generally better 

than the “10-county” and soil type levels. Four counties, including Baranya, Bacs-Kiskun, Bekes 

and Jasz-Nagykun-Szolnok, had high predictions (R2 = 0.91 – 0.98 and RMSE = 0.12 – 0.32) in 

calibration sets, while two counties, included Tolna and Csongrad represented worst results (R2 = 

0.09 and 0.04, respectively; Table 4.9) in the calibration data sets. Three counties had R2 ranging 

from 0.59 to 0.78, while others had R2 ≤ 0.51 in validation sets. With reference to the soil types 

and calibration sets, only Brown Forest had the highest results (R2 of 0.94 and RMSE of 0.28). 

Salt-affected soils and alluvial and colluvial soils represented satisfactory models (R2 of 0.69 and 

0.62, respectively; Table 4.9). At the same time, all the validation dataset results had R2 ≤ 0.38. 

The poor model results were expected because this attribute lacked direct spectral responses, while 

other good results may be due to the correlation between pH and soil organic carbon and carbonates 

(Budiman Minasny, Tranter et al., 2009; Reeves, 2010; Sarathjith et al., 2014). Terhoeven-

Urselmans et al. (2010) obtained a higher prediction of water pH (R2 = 0.81) at a global level of 

the spectral library compared to our results.  

Generally, from all soil properties predicted in the Hungarian MIR spectral library, salt-affected 

soils showed the poorest result with R2 of 0.01 in the validation datasets (Tables 4.7). Sand showed 

the highest results, with R2 of 0.89 in the calibration and 0.85 in the validation set. 

At the “10 counties” scale, pH (Water) presented a lower predictive model in the validation set 

with an R2 of 0.18 (Table 4.9). Komarom Esztergom and Jasz-Nagykun-Szolnok counties showed 

the best prediction models with R2 of 1 (Tables 4.1 and 4.3) in calibration sets. At the same time, 

Baranya and Bacs-Kiskun showed the best prediction models with R2 of 0.92 (Tables 4.2 and 4.3) 

in validation sets. A similar high result with R2 of 1 was obtained by (Sanderman et al., 2020) for 

organic carbon.  

At soil type scale, Salt-affected soils presented the best-performing model with an R2 of 0.99 

(Table 4.1) in calibration sets, while in validation sets, Salt-affected and Meadow soils presented 
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the best-performing model with an R2 of 0.88 (Table 4.1 and 4.3). Further, 23 soil-type models 

had R2 ≥ 0.85. Figure 4.2 and the descriptive statistics tables showed that some soil attributes had 

small datasets that may have affected the prediction's accuracy. 

Even though we used a large number of samples (n = 2200), we assume that completing the 

Hungarian spectral library with missing soil samples (9 counties) may expand and enhance its use. 

Hungary's soils were formed mainly on the relatively young rock bed and old parent material and 

on eolic, alluvial and colluvial deposits (TIM, 1995). In addition to climatic conditions and natural 

vegetation, human activities like intensive land use, soil improvement and cultural techniques 

significantly affect soil information processes in Hungary. The results of these diverse interactions 

between soil formation factors may produce significant variability in the performance of models 

for soil types and counties. Reeves & Smith (2009) found that dataset diversity, parent materials, 

land uses, and climate can lead to poor model prediction results. 
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Table 4. 9. PLSR model values, descriptive statistics and results of calibration and validation prediction n models of pH (Water) 

  Calibration set Validation set 

        pH_H2O n Min Max  Mean R2 RMSE RPD n Min Max  Mean R2 RMSE RPD 

“10 county”  241 4.80 9.84        7.90    0.29     1.17     1.19    1959 4.00    10.51      7.88    0.18 1.02 1.10 

 

 

 

 

 

County 

Pest 98 5.19 10.4 7.75 0.47 0.97 1.38 294 4.92 10.5 7.94 0.51 0.57 1.43 

Baranya 70 4.21 9.12 7.65 0.91 0.32 3.28 141 5.28 8.84 7.68 0.78 0.40 2.15 

Fejer 49 6.54 9.57 8.01 0.65 0.33 1.70 186 6.08 9.77 7.99 0.17 0.88 1.10 

Komarom 

Esztergom 

35 4.92 8.92 7.69 0.70 0.53 1.84 125 5.09 8.78 7.81 0.43 0.81 1.34 

Nograd 55 4.77 8.41 1.48 0.16 1.48 1.10 88 4.80 8.45 6.94 0.69 0.45 1.81 

Tolna, 39 5.12 8.72 7.76 0.09 1.37 1.06 153 5.01 8.51 7.88 0.05 0.99 1.03 

Bacs-Kiskun 98 6.62 10.0 8.19 0.97 0.14 5.45 186 6.37 9.84 8.09 0.59 0.37 1.57 

Bekes 70 5.92 9.88 8.09 0.91 0.24 3.43 132 6.25 9.52 8.00 0.19 0.81 1.11 

Csongrad 50 6.87 9.90 8.32 0.04 2.28 1.03 116 4.00 10.1 8.17 0.13 2.76 0.94 

Jasz-Nagykun-

Szolnok 

40 6.14 9.92 8.01 0.98 0.12 6.67 179 5.88 9.96 7.93 0.32 0.57 1.21 

 

 

Main soil 

type 

Chernozem soils 149 6.19 9.92 8.16 0.18 1.28 1.11 530 5.85 9.97 8.02 0.02 1.12 1.01 

Brown forest 

soils 

99 4.21 9.12 7.41 0.94 0.28 3.94 395 4.77 8.73 7.26 0.38 0.96 1.28 

Alluvial and 

colluvial soils 

55 6.65 9.57 7.99 0.62 0.31 1.63 153 5.50 9.28 7.94 0.33 0.49 1.23 

Meadow soils 149 6.52 10.1 8.13 0.13 1.05 1.08 261 4.00 9.88 7.99 0.16 1.04 1.10 

Skeletal soils 99 5.21 8.89 7.82 0.17 0.99 1.10 200 5.25 8.92 7.97 0.15 0.87 1.09 

Salt-affected soils 27 5.92 10.5 8.98 0.69 0.67 1.83 64 7.22 10.51 8.89 0.34 0.68 1.24 
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4.6 Mapping SOC content and Hungarian MIR spectral library 

This section of results and discussions deals with the spatial mapping of SOC content based on the 

MIR spectral library and wet chemistry. 

4.6.1 DSM models input data 

4.6.1.1 Exploratory data analysis and summary statistics 

Figure 4.6 shows a scatterplot of predicted versus observed values in the validation dataset of SOC 

from the MIR spectral library. The model performance assessment of the SOC dataset predicted 

from the MIR spectral library showed high prediction accuracy. This dataset was spatially 

predicted using the DSM technique. 

 

Figure 4. 6.  Distribution of observed against  predicted for validation set of SOC obtained from PLSR model 

In total, 542 predicted SOC points were used. Figure 4.7 represents the spatial spread of predicted 

SOC sample observations in the study area's frame and the dataset distribution. The predicted SOC 

content in the upper 30 cm ranges from -0.40 to 6.35 %, with an average of 2,144, and the 1st 

quartile at 1.46. The negative values of some predicted SOC results in the dataset are attributed to 

expected errors in the prediction process. The SOC content from the Hungarian MIR spectral 

library showed broad differences in their spatial distribution across the study area (Figure 4.7). 

The frequency histogram of predicted SOC showed slight skewness from the normal distribution 

(Figure 4.7). In general, SOC has a right-skew log-normal distribution (FAO, 2018). 
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Figure 4. 7.  Spatial spreading and distribution of predicted SOC dataset                             

The spatial distribution of the 542 points of SOC from the wet chemistry dataset in the study area 

and the corresponding histogram are shown in Figure 4.8. The SOC content values in the upper 30 

cm based on wet chemistry ranges between 0.09 and 6.68 %, with the mean being 2.22 %, while 

the value of the 1st quartile soil profiles is 1.43 %. It can be observed that the wet chemistry SOC 

dataset was not normally distributed. On the other hand, since the study area is huge and represents 

10 Hungarian counties from 19 counties, the SOC variability was expected in this database. These 

spatial variations in both may be due to the variability of soil types (forest, grassland, meadow 

formations, and salt-affected soils), climatic conditions, land cover, land use, landscapes, 

vegetation cover and human activities in the study area. Specifically, some factors control the 

spatial distribution of SOC in the study area reported by Szalay et al., (2016), such as tillage 

operations (Häring et al., 2013a), oxidation caused by soil tillage (Häring et al., 2013b) and soil 

erosion (Polyakov & Lal, 2008). Figures 3.6, 3.7, 3.8 and 3.9 show the variability in climatic 

conditions, land cover and vegetation cover that can affect the distribution of SOC content in the 

study area.  
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Figure 4 8. Spatial spreading and distribution of  wet  SOC dataset 

The degree of deviation of the data from a normal distribution is usually expressed by the quantile-

quantile plot test. Figure 4.9 and Figure 4.10 represent the outcome of the q-q plot for SOC from 

the MIR spectral library and wet chemistry.  

 
Figure 4. 9. Normal quantile for predicted SOC                              

The errors' quantiles are plotted against the theoretical quantiles of a normal distribution. 

Observations for normally distributed data should be roughly on a straight line. If the data is not 

normally distributed, the points form a curve that deviates significantly from a straight line. 

Outliers are points at the ends of the line that are far from the majority of the observations. Both 

figures 4.9 and 4.10 showed that there is a slight deviation from a straight line, indicating that the 

SOC data in this study are not fully normally distributed and have some deviation from normality. 



76 
 

 
     Figure 4. 10. Normal quantile for wet chemistry SOC  

A summary of general descriptive statistics for environmental covariates used in this research is 

given in Table 4.10. The calculation of the Landsat5 image for NDVI ranged from -0.02 to 0.39 

with a mean equal to 0.15 (Table 4.10). An increase in the positive NDVI value means greener 

vegetation. There is a clear spatial pattern in the largest section of the study area, with the highest 

values appearing in the central, northwestern, and southwestern parts of the study area. Values 

vary according to plant density in the area. The lowest values primarily represent the barren lands, 

while the highest value probably represents the vegetated areas concentrated where the moisture 

was available, especially in the lowest areas. The spatial distribution of the NDVI values reflected 

the rainfall gradient. It was also an important input variable representing vegetation factor essential 

for the humification process and a surrogate for soil organic matter. Figure 3.9 illustrates the spatial 

distribution of NDVI.  

On larger scales, such as regional and national scales, climatic conditions may be the primary 

determinants of soil carbon and the pivotal force affecting SOC distribution. The data on climate 

factors show significant differences in the study area. The climate covariates map data (i.e. 

precipitation, maximum, minimum and average temperature) varied between 40.00 to 57.67 

mm/year with a mean value of 44.13 mm/year for rainfall. Maximum temperature varied between 
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12.93 to 16.15 ºC and mean value of 15.22 ºC, while minimum temperature varied between 3.9 to 

7.2 ºC with mean values of 5.7 ºC. The average temperature had a maximum value of 8.56 ºC, a 

minimum value of 11.45 ºC and a mean value of 10.48 ºC (Table 4.10). In areas with high rainfall, 

which promotes the accumulation of vegetation and carbon, a higher SOC concentration is 

frequently observed. High rates of carbon input into soils are typically associated with abundant 

growth, while low temperatures may noticeably slow down the microbial decomposition of organic 

matter (Bai et al., 2019). Figures 3.6 and 3.7 show the spatial distribution of some climatic map 

data, namely average temperature and precipitation. 

The terrain determines how water travels across the landscape and carries soil components in solid 

or dissolved forms. Thus, the factors that affect how water flows have the most bearing on how 

many different soil properties, such as SOC, are distributed spatially. However, seven attributes 

were generated from the digital elevation model of the study area. Terrain attributes were 

frequently used to explain the spatial variability of agronomic, pedological, and hydrologic 

variables. These variables were highly correlated with soil attributes such as SOC. There were 

clear distinctions between landforms, and the study area had the greatest elevation range, with 422 

m separating the highest and lowest points. DEM ranged from 74.0 to 496.0 m with mean values 

of 137.4 m, while plan curvature, which represents the demonstration of the earth's surface 

curvature across the direction of aspect, ranged from -231 to 282 m−1 and mean value equal 357 

m−1.  

Similarly, the slope, which represents the inclination of the earth's surface and the topographic 

wetness index show the potential supply of soil water; they had variances ranging from 0.00 to 

1.571 % and -19.6 to 4.78 % with mean values of 1.48 % % and -11.3 % respectively. Valley depth 

ranged from 0.00 to 274.3 m and a mean value of 71.6 m, channel network distance values varied 

between 0.00 to 146.0 m with a mean value equal to 7.43 m and aspect ranged from 0.00 to 6.28 

% with a mean value of 3.13 % (Table 4.10). An important data source for the spectra of soil 

carbon was provided by remote soil sensing. The Landsat bands (b1 - b7) also had significant 

differences in their data distribution across the study area. Band1 and band6 varied from 816 to 

1284 and from 0 to 447, with mean equal 938 and 416, respectively.  Band4 and band7 ranged 

from 855 to 202 and 759 to 183, with mean values of 142 and 126, respectively. Generally, 

variance in data distribution was observed in most environmental covariates in the frame of the 

study. Such variability in environmental covariates maps data was expected, especially on a large 
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national scale. These spatial variabilities of data distribution are attributed to the variations of 

geological formation, soil types, parent material, climatic zones, land use, landscapes and human 

activities in the study area. 

4.6.1.2 Harmonization database-spline function 

A practical method for creating continuous depth functions of soil properties is to use equal-area splines. 

They are a helpful method for converting estimates of soil properties, such as SOC, from a variety of soil 

profiles with different horizon boundaries to a set of uniform depth increments (standardised depths). 

Generally, the equal-area splines harmonise the depth in accordance with the variations in the natural soil, 

representing the depths of the SOC distribution continuously up to 200 cm according to the standard depths 

of GlobalSoilMap. Still, we set the depths from 0-30 cm in our data. The equal-area splines that have been 

fitted to exemplify the vertical distribution of SOC in MIR spectroscopy and wet chemistry datasets are 

shown in Figure 4.11. The visual inspection shows the solid red curve representing the equal-area spline 

function and green boxes representing the mean SOC (original input data) at the given soil horizon. The 

equal-area splines perform well for SOC from SIMS database soil profiles. Figure 4.11 showed the SOC 

layer depths in both datasets are deeper than 30 cm, which is not exceptional in Hungary (Szatmári et al., 

2019). Also, the SOC content-based MIR spectral library significantly declines under 35 cm depth, while 

in both datasets, the SOC increased again around a depth of 125 cm. 

      Predicted SOC                                                                                   wet chemistry SOC 

      

Figure 4. 11. Spline and SOC estimates for the predicted SOC (left) and wet chemistry datasets (examples) 
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Table 4. 10. Descriptive statistics of covariates and  both SOC in frame of the study. 

Variables Minimum Maximum Mean  1st Qu 

Predicted SOC (%) -0.40 6.54 2.14 1.46 

Traditional SOC (%) 0.09 6.67 2.21 1.43 

Land cover 9.00 79.0 13.6 9.00 

NDVI -0.02 0.38 0.15 0.09 

Landsat 4-5 -b1 (nm) 816 128 938 898 

Landsat 4-5 -b2 (nm) 841 143 101 963 

Landsat 4-5 -b3 (nm) 823 144 103 969 

Landsat 4-5 -b4 (nm) 855 202 142 131 

Landsat 4-5 -b5 (nm) 748 202 149 137 

Landsat 4-5 -b6 (nm) 0.00 447 416 406 

Landsat 4-5 -b7(nm) 759 183 126 111 

Precipitation (mm) 40.0 57.6 44.1 42.2 

Temperature avg (°C) 8.55 11.4 10.4 10.3 

Temperature max (°C) 12.9 16.1 15.2 14.9 

Temperature min (°C) 3.85 7.21 5.73 5.40 

DEM 74.0 496.0 137.4 89.0 

Aspect 0.00 6.28 3.13 1.57 

Plan curvature -231 2826 357 -629 

Profile curvature -338 255 -442 -116 

Valley depth 0.00 274.3 71.6 13.8 

Channel network distance 0.00 146.0 7.43 0.00 

Slope 0.00 1.57 1.48 1.37 

Topographic wetness index -19.6 4.78 -11.3 -15.6 

4.6.1.3 Environmental variables affecting SOC accumulation in DSM 

Environmental covariates components were positively and negatively correlated with SOC 

content. Figures 4.12 and 4.13 show the linear relations between SOC content and different 

environmental factors used in this study. According to Li (2010), most terrain variables appeared 

to be significantly correlated with soil organic matter. In our research, SOC content in both datasets 

observed variation in relations with DEM and their terrain attributes ranging from positive 

(topographic wetness index), moderate (aspect, channel network distance and plan curvature) and 

negative (DEM and slope) correlation (Figures 4.12 and 4.13). Generally, the SOC decreased with 

increasing slope. Although the correlation between the topographic index and SOC is lower than 

that between the vegetation index and SOC, the topographic index is primarily affected by DEM 

accuracy and raster scale while being less affected by human and environmental factors. Its long-

term stability can effectively improve model accuracy and strength, so using the topographic index 

with a certain correlation with SOC as the input variable is necessary. Even though many studies 

(Medina et al., 2017; Rossi et al., 2009) noted that SOC correlates with terrain attributes, the 
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current study revealed that not all terrains correlated with SOC. On the other hand, some 

researchers, including  (2007), found a weakly positive correlation between curvatures and SOC. 

Some of the terrain attributes had opposing correlations with a soil property such as SOC, 

according to (Huang et al., 2017). The vegetation cover and type and the land cover are important 

factors influencing SOC distribution. Higher above-ground biomass contributes to SOC 

accumulation, whereas lower above-ground biomass limits SOC accumulation. In this research, 

the land cover and NDVI with 30 m resolution correlated lowly with SOC content from the MIR 

spectral library and wet chemistry datasets. These results are not expected since NDVI and some 

class types of land cover, such as forest land, grassland, cultivated land and shrub land, 

significantly affect the SOC content accumulation and spatial distribution. A negative correlation 

may be caused by the exposure of soil on the surface due to the start of the winter season and low 

vegetation covers; thus, the correlation between the SOC content and NDVI from 15 to 25 October 

2000 is insignificant. Such results have also been observed by (Yangchengsi Zhang et al., 2019), 

who found a negative correlation between NDVI and SOC content. Kunkel et al. (2022) noted that 

the SOC and NDVI relationships for the Krui 2014 area were not found to be significant. In 

contrast, the SOC and NDVI relationships for the Merriwa 2015 area had weak but significant 

relationships in eastern Australia. However, a negative correlation between SOC concentration 

and certain land cover types, like agricultural land, was found by Mattsson et al. (2009). The SOC 

content is highly correlated with some climate factor maps, such as temperature average and 

maximum in both datasets. In contrast, precipitation and the minimum temperature moderately 

correlated with SOC (Figures 4.12 and 4.13). The climate significantly influences the spatial 

distribution and accretion of SOC in soils. Higher mean annual rainfall is generally associated with 

lower mean temperature and, consequently, higher mean SOC content. Zhou et al., (2021) proved 

a significant correlation between SOC and temperature at large scales,  while opposing result 

between SOC and precipitation by Mattsson et al., (2009). According to Figures 4.12 and 4.13, 

SOC content from the MIR spectral library and wet chemistry datasets positively correlated with 

most indices derived from Landsat5: band1, band2, band3, band5, band6 and band7. At the same 

time, band 4 had moderate relations with SOC. Moderate correlation may be due to the fact that 

as the SOC content increases, the soil becomes darker in colour, decreasing the overall reflectance. 

Similar results were reported by Zhang et al. (2020). Wilcox et al., (1994) stated that significant 

correlations between the values of the land-sat TM bands and the SOC were detected in the USA. 
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On the other hand, for the first scenario (SOC based on the MIR dataset), the most important 

environmental covariates used by random forest spatial modelling were maximum temperature, 

digital elevation model map, Landsat band6 layer, minimum temperature, valley depth layer, 

precipitation and profile curvature layer map. In contrast, for the second scenario (SOC from wet 

chemistry dataset), the most important was the maximum temperature, digital elevation model 

map, profile curvature layer, topographic wetness index layer, Landsat band6 layer, temperature 

average and valley depth layer map. 

 

 
 
Figure 4. 12. Correlation plot  for SOC predicted from MIR spectral library and environmental variables used in this study  
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Figure 4. 13. Correlation plot  for SOC from wet chemistry dataset and environmental variables used in this study  

4.6.2 DSM model results 

4.6.2.1 Models performance comparison assessment 

A set of models, including the general linear model (LM), gradient boosting machine (GBM), 

extreme gradient boosting machine (XGB), support vector machine (SVM) and random forest 

(RF), were evaluated by coefficient determination (R2), Root Mean Squared Error (RMSE) and 

Mean Absolute Error (MAE). The R2, MAE and RMSE of all the models for the spatial distribution 

of SOC content based on the MIR dataset and wet chemistry are given in Figure 4.14 and Figure 

4.15, respectively. In this study, comparing the different models showed that the RF was the most 

appropriate estimating model with the highest coefficient of determination and the lowest RMSE 

for both dataset scenarios. RF model performance assessment results of SOC based on the MIR 

spectral library showed R2 = 0.35, MAE = 0.59 and RMSE = 0.75 (Figure 4.14). The RF 

assessment based on the wet chemistry dataset had lower results than the MIR dataset but was still 
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higher than other models with R2 of 0.20, MAE of 0.80 and RMSR of 1.0 (Figure 4.15). These 

comparison results may be logical since RF has many advantages over other models. However, 

the RF model had some disadvantages, such as being time-consuming but significantly more 

accurate than most of the non-linear classifiers, robust, working with missing data and taking the 

average of all predictions, cancelling out the biases and thereby fixing the overfitting problem (Ao 

et al., 2019; Wang and Zhu, 2020). Even if there are correlations between them, the random forest 

model avoids the elimination of predictive covariates that might be important for soil (Akpa et al., 

2014). Similar results were reported by Farooq et al., (2022) that RF proves better in predicting 

SOC mapping using a set of models. Furthermore, Westhuizen et al., (2023) showed that the RF 

model performed well in SOC and TN distributions in the DSM technique. On the other hand, the 

linear model showed the worst results for both datasets scenarios, with R2 of 0.18 and RMSE of 

1.0 for the MIR dataset (Figure 4.14), while R2 = 0.15 and RMSE = 1.5 for the wet chemistry 

dataset (Figure 4.15). 

  
Figure 4. 14. Dot plot of  SOC based on MIR dataset for the comparative assessment of selected five models: LM, GBM, XGB, 

SVM and RF  
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Figure 4. 15. Dot plot of SOC based on wet chemistry  dataset for the comparative assessment of selected five models: LM, GBM, 

XGB, SVM and RF  

4.6.2.2 Assessment of random forest model performance using a combination of 

environmental covariates and the two SOC datasets. 

According to the models' comparative assessment result, the RF models were used to explore the 

spatial trend in the input datasets and predict SOC content based on the SOC dataset from the MIR 

spectral library as well as the SOC from the wet chemistry dataset to the specified depth of 0 – 30 

cm.  The RF model's error rate was calculated using validation sets for both scenarios. Table 4.11 

shows the metrics of RF model performance in SOC content prediction based on the SOC from 

the MIR spectral library and wet chemistry datasets for ten counties in Hungary. The first scenario, 

which represents the combination of environmental covariates and the SOC-based MIR dataset, 

had RMSE reaching 0.69 of the RF model prediction errors. In contrast, MSE represents 0.48 

prediction errors, and the coefficient of determination is 0.34. The RF model performance 

assessment for the second scenario, which represents the combination of environmental covariates 

and SOC based on a wet chemistry dataset, showed higher prediction errors compared to the first 

scenario with an RMSE of 0.96, MSE of 0.93 and coefficient determination of 0.20, respectively 

(Table 4.11). 

In comparison, the RF models used in this research showed the first scenario had better spatial 

prediction accuracy than the second one, where SOC content was accurately estimated in-depth 0-

30 cm based on the MIR dataset (Table 4.11).  The low performance of the RF in the second 

scenario was contrary to expectations but significant; for example, there is a significant correlation 
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between environmental covariates and SOC content. These results may be attributed to the fact 

that the wet chemistry SOC dataset, despite having been used in one laboratory protocol, was 

analysed in various laboratories using different equipment and technicians. These conditions may 

have led to the inclusion of human errors and environmental laboratory errors within the dataset, 

compared to the MIR spectral dataset, which was subjected to analysis by a singular individual 

using one instrument, and all potential errors have been removed. The RF model performed poorly 

even though the major factors controlling the SOC balance were generally present among the 

environmental covariates. Although SOC spatial prediction accuracy assessment for the second 

scenario, based on a wet chemistry SOC dataset, was low, it was still in the range or higher than 

many studies. For instance, this value was higher than the results of the study conducted by Zhang 

et al., (2021), who implemented four types of models (R2 range from 0.06 to 0.21) as well as Yang 

et al., (2023) who had low values of coefficient determination (R2 of 0.10). In a study in Swedish 

forests, Hounkpatin et al. (2021) reported that the prediction accuracy of SOC spatial distribution 

at the national scale had R2 values ranging between 0.10 to 0.30 using RF and quantile regression 

forest, which generally had the same and low prediction range compared to our results.  

Table 4. 11. Performance of the RF model  for soil organic carbon content prediction based on MIR dataset in frame of the study 

           

Map quality index 

 

Scenario 1 

(Based on MIR dataset) 

                                   

 

Scenario 2 

(based on wet chemistry dataset) 

Coefficient Determination (R2) 0.34 0.20 

Root Mean Square Error (RMSE) 0.69 0.96 

Mean Square Error (MSE) 0.48 0.93 

Concordance Correlation Cefficient (CCC) 0.45 0.31 

Generally, the predictive capacity of the RF model for the first scenario (MIR dataset) in this study 

has produced good results. SOC was accurately estimated with RMSE, MSE close to 0 and R2 

close to 1, respectively (Table 4.11) when compared with studies using spectral data and 

considering the inherent limitations of the national scale data sources. These results align with the 

conclusions of some studies that used spectroscopy datasets combined with environmental 

covariates to map SOC. Goydaragh et al., (2021) created a SOC map combining FITR spectra and 

environmental covariates with an RMSE of 0.49 using an RF model. Similarly, Mirzaeitalarposhti 

et al., (2017) applied a geostatistical model that varied from RMSE 0.8 to 0.2 for mapping SOC at 
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a regional scale using MIR spectroscopy data. Seemingly, our data complexity result has shown 

superiority compared to some of the metrics of this study (RMSE 0.8). A similar result pattern was 

recently confirmed by Meng et al., (2022) using machine learning and soil spectral dataset. The 

spatial SOC prediction performance obtained in our study is slightly better than those previously 

obtained by (Tziolas et al., 2020, RMSE 0.61 - 0.92) using a small open soil spectral libraries 

dataset for generating SOC maps, as well as by Yang et al., (2023), (R2 0.18) using vis-NIR 

Spectroscopy as a covariate in SOC mapping. Conversely, the first scenario results (Table 4.11) 

indicate better values than previous studies that applied traditional wet chemistry to map SOC. 

Simbahan et al., (2006) and  Yang et al., (2023) obtained low results for SOC mapping with 

RMSE=9.60 and R2 of 0.10 respectively. In this way, some results achieved by (Chabala et al., 

2017) with RMSE=0.64, (Akpa et al., 2016) and (Owusu et al., 2020) with  R2 of 0.34 in different 

regions were in agreement with our results. In Hungary, Dobos et al., (2006) used the same 

Hungarian SIMS database for spatial mapping of soil organic matter and had lower R2 of 0.238 

compared with one of our results. Recently, Szatmári et al., (2023) utilised the same SIMS dataset 

for spatial prediction of organic carbon using a machine learning-based pedotransfer function with 

an R2 of 0.56, indicating the first scenario model result had the same range of performance.  

On the other hand, there is still a gap in model performance accuracy in this study. The RF spatial 

model did not produce a more accurate result than many other researchers, such as Sanderman et 

al. (2021), who used a similar application of mapping-based MIR-estimated SOC and Peng et al. 

(2015), who used visible near-infrared reflectance (Vis-NIR) spectra for SOC at a regional scale. 

Several factors, including the number of observations, the type of model, the variability of soil 

properties, and the ability of environmental variables to describe soil variations, can affect the 

accuracy of model prediction (Taghizadeh-Mehrjardi et al., 2020). This study's imprecision result 

may be due to sampling size and density, especially on a large national scale. Besalatpour et al. 

(2013) support this assumption by stating that a considerable amount of information is required 

for building appropriate tree-based machine-learning models like random forests despite numerous 

studies showing that the effectiveness of ML models was not related to sampling size when 

estimating soil attributes (Tajik et al., 2020; Zeraatpisheh et al., 2019). Therefore, improving this 

spectral library using sampling strategy by optimising the number and placement of sampling 

points within the target area and adding new soil samples, in addition to the remaining soil samples 

from the SIMS survey, can enhance not only the spatial model accuracy but can be used to 
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successfully reduce the maps' prediction uncertainty, as several papers have shown (Szatmári et 

al., 2019; Zhang et al., 2016), but this decision might be expensive and time-consuming. On the 

other hand, to improve model accuracy, Dobos et al. (2006) suggest that a block sampling design 

would be more suitable for the monitoring system and produce a much better and more consistent 

SOC database. Additionally, it would aid in data regionalisation, which is one of the most 

significant issues at the national level. In addition, the low-performance accuracy may be caused 

by the lower spatial resolution of some environmental covariates (climate layers) and the narrow 

range in the values of those covariates used in this study. 

4.6.2.3 Spatial prediction of SOC content  

A useful application of MIR technology is to use estimates of soil properties from MIR 

spectroscopy to increase the amount of data available for efforts at predictive soil mapping (Chagas 

et al., 2016; Sanderman et al., 2021). In this study, SOC content estimated from the MIR spectral 

library for 542 soil profiles spread across the study area was successfully predicted using an RF 

predictive soil mapping approach to arrive at a 30 m resolution digital map of SOC for the 10 

Hungarian counties. Figure 4.16 presents the spatial distribution of SOC content based on the MIR 

spectral library over 10 Hungarian counties. The estimated SOC content shows significant 

variation in their spatial distribution across the study area. Generally, a trend of decreasing SOC 

content from the eastern region to the central sector of the country is clearly recognised. Therefore, 

the highest values of SOC content were observed in the northeast and southeast of Hungary (Figure 

4.16). The SOC content decreased in the central region and certain parts of the southwestern and 

northwestern regions (Figure 4.16). This may be because sandy and skeletal soils with low original 

organic matter contents are situated in the southwestern and central parts of Hungary. A 

remarkable increase in some spots showed between these regions. Many factors, including climatic 

conditions, mineralogy, texture, altitude, topography, and land use, impact the SOC distribution 

(Vos et al., 2019; Zhang et al., 2017). Dobos et al., (2006) stated that in Hungary the spatial 

distribution of SOC content is influenced by climatic, geological, biotic, and human influences on 

soil formation. The area with a high SOC content was expected to be mainly distributed in the 

regions covered with clay and organic soil texture, chernozems, meadow and organic soil types, 

and the high-elevation and forest areas. Generally, trees, grassland and cropland produce a lot of 

leaf litter, which, after being mineralised, becomes a source of SOC. Additionally, many ecological 

processes, including micro and macrofauna, as well as other physical processes critical to the 
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equilibrium of soil carbon dynamics, are preserved in forest soils (Lal, 2005). However, it can 

sometimes be difficult to accurately model SOC because it can exhibit extraordinarily wide 

variations even within the same land-use and land-cover classes (Minasny et al., 2017).  

 

 
Figure 4. 16.  Spatial prediction of SOC content based on MIR spectroscopy for 10 Hungarian counties (0 – 30 cm) 

Spatial distribution of SOC content based on the wet chemistry dataset over 10 Hungarian counties 

as a result of the application of the fitted random forest model shown in Figure 4.17. Despite the 

weak statistical correlation, the map's overall appearance is encouraging. It is consistent with how 

we currently understand the spatial distribution of SOM content in Hungary, which is influenced 

by climate, geology, biotics, and human influences on soil formation. 

By comparing the first and second scenario maps (Figures 4.16 and 4.17), these two maps showed 

similar features and spatial distribution patterns of SOC, and there weren't many differences 

between them. In the second scenario, where the SOC-based wet chemistry dataset was used, the 

high SOC contents were observed in the study area's east, northeast and southeast. In contrast, low-
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high SOC contents were concentrated in the central part, southwestern and northwestern Hungary 

(Figure 4.17). Although the second scenario map looks similar to the first scenario map, the first 

scenario still has some spatial differences, which are related to the predictor variables that they 

used for predicting the SOM contents and produced a much more detailed and accurate picture 

based on visual inspection by experts than a map of the second scenario. 

 
Figure 4. 17. Spatial prediction of SOC content based on the traditional laboratory dataset  for 10 Hungarian counties (0 – 30 cm) 

The most significant difference between the two scenario maps is located in the small line from 

the corner at the southwest part until the middle of the study area (Figure 4.17). The main 

difference was a higher SOM content in the wet chemistry dataset (second scenario) model in this 

line. Still, there was a lower SOM content in the MIR spectral library (first scenario) model (Figure 

4.16). Another main difference was located in the east corner part of the study area, where the 

SOC value from the first scenario was higher than that from the second scenario. There were some 

slight differences between the two scenario maps in the middle, southwest and northwest of the 
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study area, where the SOM value from wet chemistry was lower in a wide area than in that from 

the first scenario. Generally, the map predicted using the MIR spectral library dataset model was 

smoother than those predicted using the wet chemistry laboratory-based model, which was the 

overall distinguishing factor between the two scenario maps. These can be accounted for by the 

fact that the MIR model's prediction tends to smooth out variation. 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

We report the contribution to the first middle infrared (MIR) soil spectral library with 2200 soil 

samples for Hungary based on legacy soil samples of the SIMS project and the prediction of nine 

soil attributes in the Hungarian SIMS system. Models were built using PLSR for the “10-county” 

level, ten counties, and six soil types using the SIMS reference soil database and the spectral library 

data.  

The MIR spectral library is valuable for estimating soil properties such as SOC, CaCO3, and 

physical soil texture with variable results between “10-county”, county and main soil type model 

scenarios.  

The results were logical for spectrally active elements, including SOC, CaCO3, sand and clay, and 

silt and CEC, which are not spectrally active but correlated with other active constituents. Further, 

it was noted that for soil properties that are not spectrally active with low content in the soil or 

have small sizes of samples, the prediction could turn out to be inaccurate (like pH water).  

In terms of DSM, the current study proposed a novel method for estimating SOC that combines 

environmental covariates with an MIR spectral library using the RF model. The main result is 

producing a SOC information map based on the MIR spectral library in the form of unique digital 

soil map products, which were optimally elaborated for the “10 counties” level. The 542 predicted 

point results from the spatial models with the SOC data expected from the MIR spectral library 

and traditional wet chemistry datasets were compared. This study tested and compared the MIR 

spectral library spectroscopy and conventional wet chemistry analysis methods in mapping SOC. 

Therefore, combining the MIR spectral library with environmental covariates and models is an 

efficient method for assessing the SOC contents in understudied settings. RF predicted the map of 

the spatial distribution of the SOC was more realistic and interpretable in terms of the soil–

environmental covariates and produced a fine spatial resolution (30m × 30m) digital soil map of 

the SOC. Such maps can be used for planning purposes to understand better the impacts of land 

use and climate on SOC cycling and site-based nutrient optimisation strategies and contribute to 

reducing potential environmental concerns.  

This methodology could be used as a basis for rapidly developing spatial models based on the 

information contained in the Hungarian MIR spectral library at the “10 counties” scale (10 
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counties) and, thereby, initiate a step toward large-scale soil mapping (19 counties) based on the 

current and upcoming environmental covariates data in supporting and tracking the progress of the 

Sustainable Development Goals.  

The results showed that legacy soil samples could generate a spectral library with good-quality 

information. This study contributed to building the first Hungarian Mid-infrared spectral library, 

which provides rapid soil estimates at a low cost and forms the basis for updating soil information 

and monitoring systems. It can be used in soil surveys, DSM, and soil classification. Furthermore, 

the current study prediction findings demonstrated that the MIR spectral library could be a source 

of information for determining soil spatial distribution and mapping SOC at the “10 counties” 

level. The approach could get around the national scale's lack of comprehensive spatial data on 

the soil. 

5.2 Recommendations 

Based on the final findings of this study, the following points can be recommended: 

✓ Further work is required to produce maps of the remaining fundamental soil properties 

predicted with high-accuracy assessment from the MIR spectral library (CaCO3, soil 

texture) based on the developed database (MIR spectral library and environmental 

covariates) in the study area.  

✓ Improving this Hungarian MIR spectral library is suggested by adding new soil samples, 

in addition to the remaining soil samples from the SIMS survey to include all soil types in 

Hungary 

✓ Generating a SOC content map and other main soil properties representing all the 

Hungarian counties after improving the Hungarian MIR spectral library.  

✓  We hope its soil information will be available to soil scientists, land managers, 

conservationists and other stakeholders for informed decision-making. 
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6 KEY SCIENTIFIC FINDINGS AND IMPORTANT OUTPUT 

 

1. In my doctoral studies, I recorded the middle-infrared absorbance of 2,200 legacy soil 

samples from the Soil Conservation Information and Monitoring System (SIMS) project to 

contribute to developing the first Hungarian middle-infrared spectral library. This spectral 

library was built for the first time and successfully used in Hungary at a regional scale, 

representing the spectral variability the soils of 10 Hungarian counties and six main soil 

types. The spectral library enables efficient soil property prediction and spatial mapping, 

supports efficient soil monitoring, and serves as a base for numerous future research topics.  

2. In this research, the developed middle-infrared (MIR) spectral library was tested for the 

prediction of a set of soil properties using three Partial Least-squares Regression model 

scenarios, “10 counties”, “county”, and “main soil type”, based on calibration between 

MIR spectra and reference soil data (Soil Conservation Information and Monitoring 

System database). I achieved excellent results for predicting soil organic carbon (R2 = 0.80, 

RMSE = 0.57), CaCO3 content (R2 = 0.77, RMSE = 5.96) and soil texture (Clay – R2 = 

0.80, RMSE = 6.97; Sand –R2 = 0.85, RMSE = 10.97; Silt – R2 = 0.69, RMSE = 10.79) 

even on “10 counties” scale making this study the first to test the efficiency of a mid-

infrared spectral library across such a large area in Hungary.  

3. Based on the developed mid-infrared spectral library and 21 environmental covariates, I 

have produced the first digital soil organic carbon content map (0 – 30 cm) using spectrally 

predicted soil organic carbon values at Hungary's “10 counties” level using a random forest 

model selected from the set of 5 models.  

4. By comparing the produced SOC map based on the MIR spectral library against the SOC 

map generated from the SIMS reference soil database, this study validated the accuracy of 

the SOC from the MIR spectral library (R2 = 0.34 vs R2 = 0.20). This research lays an 

excellent and novel base for validating the MIR database map using a reference soil 

database.  
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7 SUMMARY 
Updating Soil Information Systems (SIS) requires using advanced, environmentally friendly, time-

saving, and cost-effective technologies. Furthermore, given the significant spatial heterogeneity of 

soils, additional representative soil observations are required to capture soil spatial variation more 

accurately and improve the accuracy of digital soil maps. Budgets for fieldwork surveys and soil 

laboratory analysis are typically constrained due to their high costs and ineffectiveness. In this 

work, the use of mid-infrared (MIR) spectroscopy as an alternative to wet chemistry is proposed. 

MIR spectroscopy is a useful technique for predicting certain soil attributes with high accuracy, 

efficiency, and low cost. The creation of the spectral library, via modelling and prediction, can 

provide more soil attribute information for  Digital Soil Mapping (DSM), which is an efficient 

approach to delivering fine-spatial-resolution and up-to-date soil information in evaluating soil 

ecosystem services. Enhancing the knowledge of Soil Organic Carbon (SOC) spatial distribution 

is also essential in efficient nutrient management and carbon storage capacity. 

This study focuses on the potential of the MIR spectral library in enhancing the Hungarian SIS by 

providing the opportunity for good cost-benefit and fast soil data acquisition that data can be used 

in DSM as well. 

In this thesis, the establishment of chemometric models and spectral-based prediction of a wide 

range of key soil properties will be presented based on 2200 soil samples (representing 10 

Hungarian counties) collected from the soil archives of the Soil Information and Monitoring 

System (SIMS). Spectral information in the MIR region (2500 – 25000 nm) was acquired using 

the Bruker Alpha II Fourier Transform Infrared Spectrometer. Archived soil samples were 

prepared and scanned based on the Diffuse Reflectance Infrared spectroscopy (DRIFT) technique, 

and spectra were saved in the Fourier Transform Infrared (FTIR) spectrometer OPUS software. 

As preprocessing data filtering, outlier detection methods and calibration sample selection 

methods were applied. MIR prediction models were built for soil attributes using the Partial Least 

Square Regression (PLSR) method; later, properties were predicted and validated using training 

and testing datasets, respectively. Coefficient determination (R2), root mean square error (RMSE), 

and ratio performance to deviation (RPD) were used to assess the goodness of calibration and 

validation models. The second part of the research involved mapping and comparing soil organic 

carbon (SOC) content based on the MIR spectral library and reference soil data, as well as 

environmental covariates. The SOC content results were predicted, mapped and compared using 
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two scenarios. The first scenario included a predicted SOC content dataset from the MIR spectral 

library and 21 environmental covariates. This scenario was applied to evaluate the potential of the 

MIR spectral library for spatial mapping of SOC at 10 Hungarian County level. The Random 

Forest (RF) model was selected from a set of models and used for spatial digital SOC map 

modelling using a calibration set (70%). The second scenario contained SOC based on traditional 

wet chemistry and 21 environmental variables. RF model and calibration set (70%) was selected 

from a set of models and used for spatial SOC map. This scenario was used to compare and check 

the accuracy of the first scenario. 

The results of this research showed the MIR spectral library can provide information for modelling 

and estimating significant soil properties through various scale models (10-county, county, and 

main soil types). There were good results for SOC, CaCO3, and physical soil texture with variable 

results between 10 counties, counties, and main soil type model scenarios. The results were logical 

for the CEC, exchangeable Ca and Mg. Poor results were achieved for pH water. Spatial mapping 

SOC results indicated that the first scenario (SOC based on the spectral library) and 21 

environmental covariates had better spatial prediction accuracy (R2 = 0.34, RMSE = 0.69 and MSE 

= 0.48 than the second scenario (SOC based on the wet chemistry dataset) with R2 = 0.20, RMSE 

= 0.96 and MSE = 0.93 using a validation set (30%). The two maps showed significant variation 

in SOC spatial distribution, and both have similar SOC spatial distribution patterns with some 

spatial differences in some parts. Maximum temperature, digital elevation model, Landsat band6 

layer, and minimum temperature were the significant environmental covariates affecting spatial 

SOC distribution based on the MIR spectral library. In contrast, maximum temperature, digital 

elevation model, profile curvature layer, and topographic wetness index layer were the major 

environmental variables affecting spatial SOC distribution based on the wet chemistry dataset in 

the study area.  

The findings showed that the Hungarian MIR spectral library soil predictions are precise enough 

to provide information on 10-county, county, and main soil type levels. They also enable a wide 

range of soil applications that demand extensive soil sampling, such as DSM and precision 

agriculture. The combination of SOC based on the MIR spectral library and environmental 

covariates is a precise approach to monitoring SOC content at 10 Hungarian counties. 

  



96 
 

8  RELATED PUBLICATIONS 
 

Mohammedzein, M. A., Csorba, A., Rotich, B., Justin, P. N., Melenya, C., Andrei, Y., & Micheli, 

E. (2023). Development of Hungarian spectral library: Prediction of soil properties and 

applications. Eurasian Journal of Soil Science, 12(3), 244-256. 

https://doi.org/10.18393/ejss.1275149. (Q3). 

Mohammedzein, M. A., Csorba, A., Rotich, B., Justin, P. N., Mohamed, H. T., & Micheli, E. 

(2023). Prediction of some selected soil properties using the Hungarian Mid-infrared spectral 

library. Eurasian Journal of Soil Science, 12(4), 300-309. https://doi.org/10.18393/ejss.1309753. 

(Q3). 

MohammedZein, M. A., Micheli, E., Rotich, B., Justine, P. N., Ahmed, A. E. E., Tharwat, H., & 

Csorba, Á. (2023). Rapid Detection of Soil Texture Attribute based on Mid-Infrared Spectral 

Library In Salt Affected Soils of Hungary. Hungarian Agricultural Engineering, 42, 5–13. 

https://.www.doi.org/10.17676/HAE.2023.42.5. 

Michéli, E., Fuchs, M., Gelsleichter, Y., Zein, M., Csorba, Á. (2023). Spectroscopy Supported 

Definition and Classification of Sandy Soils in Hungary. In: Hartemink, A.E., Huang, J. (eds) 

Sandy Soils. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-031-50285-

9_6. 

Wawire, A., Csorba, Á., Zein, M., Rotich, B., Phenson, J., Szegi, T., Tormáné Kovács, E., & 

Michéli, E. (2023). Farm Household Typology Based on Soil Quality and Influenced by Socio-

Economic Characteristics and Fertility Management Practices in Eastern Kenya. Agronomy, 

13(4), 1101. https://doi.org/10.3390/agronomy13041101. 

 

MohammedZein, M. A. Csorba, Á. Application of spectral library for rapid prediction soil 

attributes: Pest County, World Congress of Soil Science 31st July - 5th August 2022. Glasgow. 

UK. 

MohammedZein, M. A., Csorba, Á. Detection of some physical soil properties based on the mid-

infrared spectral library: Salt affected soils type. 5th International Scientific Conference on Water 

„5th ISCW 2022” 22-24 March 2022, Szarvas, Hungary. 

 

https://doi.org/10.18393/ejss.1275149
https://doi.org/10.18393/ejss.1309753
https://.www.doi.org/10.17676/HAE.2023.42.5
https://doi.org/10.1007/978-3-031-50285-9_6
https://doi.org/10.1007/978-3-031-50285-9_6


97 
 

REFERENCES 
Abrams, M., & Hook, S. (2002). ASTER User Handbook Version 2. Jet Propulsion, 

2003(23/09/2003), 135. Abrams2002NASA.pdf 

Aguiar, N. O., Novotny, E. H., Oliveira, A. L., Rumjanek, V. M., Olivares, F. L., & Canellas, L. 

P. (2013). Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. 

Journal of Geochemical Exploration, 129, 95–102. 

https://doi.org/10.1016/j.gexplo.2012.10.005 

Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A., & Hartemink, A. E. (2014). Digital Mapping of 

Soil Particle-Size Fractions for Nigeria. Soil Science Society of America Journal, 78(6), 

1953–1966. https://doi.org/10.2136/sssaj2014.05.0202 

Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A., Hartemink, A. E., & Amapu, I. Y. (2016). Total 

soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271, 202–215. 

https://doi.org/10.1016/j.geoderma.2016.02.021 

Alajali, W., Zhou, W., Wen, S., & Wang, Y. (2018). Intersection traffic prediction using decision 

tree models. Symmetry, 10(9), 386. https://doi.org/10.3390/sym10090386 

Albaladejo, J., Ortiz, R., Garcia-Franco, N., Navarro, A. R., Almagro, M., Pintado, J. G., & 

Martínez-Mena, M. (2013). Land use and climate change impacts on soil organic carbon 

stocks in semi-arid Spain. Journal of Soils and Sediments, 13(2), 265–277. 

https://doi.org/10.1007/s11368-012-0617-7 

Allard M.J., M., Carlos R, V., & Ann, S. (1988). ILWIS : integrated land and watershed 

management information system : scientific status report on the project, Geo Information 

System for Land Use Zoning and Watershed Management. Enschede, The Netherlands : 

International Institute for Aerospace Survey and Earth Sciences (ITC), [1988] ©1988. 

https://search.library.wisc.edu/catalog/999618884502121 

Ao, Y., Li, H., Zhu, L., Ali, S., & Yang, Z. (2019). The linear random forest algorithm and its 

advantages in machine learning assisted logging regression modeling. Journal of Petroleum 

Science and Engineering, 174, 776–789. https://doi.org/10.1016/j.petrol.2018.11.067 

Archive USGS EROS. (2020). Landsat Archives - Landsat 4-5 TM Collection 2 Level-2 Science 

Products. https://doi.org/10.5066/P9IAXOVV 

Austin, M. P., Belbin, L., Meyers, J. A., Doherty, M. D., & Luoto, M. (2006). Evaluation of 

statistical models used for predicting plant species distributions: Role of artificial data and 

theory. Ecological Modelling, 199(2), 197–216. 

https://doi.org/10.1016/j.ecolmodel.2006.05.023 

Azhar, H. S. (1993). Vegetation Studies Using Remote Sensing Techniques. Master Thesis, 

Univesiti Teknologi Malaysia. 

Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P. A., Tao, B., Hui, D., Yang, J., & Matocha, 

C. (2019). Responses of soil carbon sequestration to climate-smart agriculture practices: A 

meta-analysis. Global Change Biology, 25(8), 2591–2606. https://doi.org/10.1111/gcb.14658 

Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., 

Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K. E. O., & Wallenstein, M. D. 

(2018). Soil carbon cycling proxies: Understanding their critical role in predicting climate 

change feedbacks. Global Change Biology, 24(3), 895–905. 

https://doi.org/10.1111/gcb.13926 

Ballabio, C., Fava, F., & Rosenmund, A. (2012). A plant ecology approach to digital soil mapping, 

improving the prediction of soil organic carbon content in alpine grasslands. Geoderma, 187–



98 
 

188, 102–116. https://doi.org/10.1016/j.geoderma.2012.04.002 

Ballabio, C., Panagos, P., & Monatanarella, L. (2016). Mapping topsoil physical properties at 

European scale using the LUCAS database. Geoderma, 261, 110–123. 

https://doi.org/10.1016/j.geoderma.2015.07.006 

Bangroo, S. A., Najar, G. R., Achin, E., & Truong, P. N. (2020). Application of predictor variables 

in spatial quantification of soil organic carbon and total nitrogen using regression kriging in 

the North Kashmir forest Himalayas. Catena, 193. 

https://doi.org/10.1016/j.catena.2020.104632 

Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil 

Science, 47(2), 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x 

Batjes, Niels H. (2014). Batjes, N. H. 1996. Total carbon and nitrogen in the soils of the world: 

European Journal of Soil Science, 47, 151-163. Reflections by N.H. Batjes. European Journal 

of Soil Science, 65(1), 2–3. https://doi.org/10.1111/ejss.12115 

Baumann, K., Schöning, I., Schrumpf, M., Ellerbrock, R. H., & Leinweber, P. (2016). Rapid 

assessment of soil organic matter: Soil color analysis and Fourier transform infrared 

spectroscopy. Geoderma, 278, 49–57. https://doi.org/10.1016/j.geoderma.2016.05.012 

Baumann, P., Helfenstein, A., Gubler, A., Keller, A., Meuli, R. G., Wächter, D., Lee, J., Viscarra 

Rossel, R., & Six, J. (2021). Developing the Swiss mid-infrared soil spectral library for local 

estimation and monitoring. Soil, 7(2), 525–546. https://doi.org/10.5194/soil-7-525-2021 

Beaudette, D. E., & O’Geen, A. T. (2009). Quantifying the Aspect Effect: An Application of Solar 

Radiation Modeling for Soil Survey. Soil Science Society of America Journal, 73(5), 1755–

1755. https://doi.org/10.2136/sssaj2008.0229er 

Beebe, K. R., & Kowalski, B. R. (1987). An Introduction to Multivariate Calibration and Analysis. 

Analytical Chemistry, 59(17), 1007A-1017A. https://doi.org/10.1021/ac00144a725 

Behrens, T., Zhu, A. X., Schmidt, K., & Scholten, T. (2010). Multi-scale digital terrain analysis 

and feature selection for digital soil mapping. Geoderma, 155(3–4), 175–185. 

https://doi.org/10.1016/j.geoderma.2009.07.010 

Ben-Dor, E., Taylor, R. G., Hill, J., Demattê, J. A. M., Whiting, M. L., Chabrillat, S., & Sommer, 

S. (2008). Imaging Spectrometry for Soil Applications. In Advances in Agronomy (Vol. 97, 

pp. 321–392). https://doi.org/10.1016/S0065-2113(07)00008-9 

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine 

Learning, 2(1), 1–27. https://doi.org/10.1561/2200000006 

Besalatpour, A. A., Ayoubi, S., Hajabbasi, M. A., Mosaddeghi, M. R., & Schulin, R. (2013). 

Estimating wet soil aggregate stability from easily available properties in a highly 

mountainous watershed. Catena, 111, 72–79. https://doi.org/10.1016/j.catena.2013.07.001 

Bhattacharyya, T., Sarkar, D., Pal, D. K., Mandal, C., Baruah, U., Telpande, B., & Vaidya, P. H. 

(2010). Soil information system for resource management - Tripura as a case study. Current 

Science, 99(9), 1208–1217. 

Bickel, P. J., & Doksum, K. A. (1981). An analysis of transformations revisited. Journal of the 

American Statistical Association, 76(374), 296–311. 

https://doi.org/10.1080/01621459.1981.10477649 

Bish, D. L., & Plötze, M. (2011). X-ray powder diffraction with emphasis on qualitative and 

quantitative analysis in industrial mineralogy. In European Mineralogical Union Notes in 

Mineralogy (Vol. 9, Issue 1, pp. 35–76). European Mineralogical Union. 

https://doi.org/10.1180/EMU-notes.9.3 

Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. (1999). Modelling soil attribute depth 



99 
 

functions with equal-area quadratic smoothing splines. Geoderma, 91(1–2), 27–45. 

https://doi.org/10.1016/S0016-7061(99)00003-8 

Boettinger, J. L. (2010). Environmental Covariates for Digital Soil Mapping in the Western USA. 

In Digital Soil Mapping (pp. 17–27). Springer Netherlands. https://doi.org/10.1007/978-90-

481-8863-5_2 

Boettinger, J. L., Ramsey, R. D., Bodily, J. M., Cole, N. J., Kienast-Brown, S., Nield, S. J., 

Saunders, A. M., & Stum, A. K. (2008). Landsat spectral data for digital soil mapping. In 

Digital Soil Mapping with Limited Data (pp. 193–202). Springer Netherlands. 

https://doi.org/10.1007/978-1-4020-8592-5_16 

Bouma, J., Broll, G., Crane, T. A., Dewitte, O., Gardi, C., Schulte, R. P. O., & Towers, W. (2012). 

Soil information in support of policy making and awareness raising. Current Opinion in 

Environmental Sustainability, 4(5), 552–558. https://doi.org/10.1016/j.cosust.2012.07.001 

Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., Lili-Chabaane, Z., Baghdadi, N., Aissa, N. Ben, 

& Mougenot, B. (2019). Soil texture estimation using radar and optical data from Sentinel-1 

and Sentinel-2. Remote Sensing, 11(13), 1520. https://doi.org/10.3390/rs11131520 

Breiman, L. (2001). Random forests. Machine Learning, . 45 (1), 5–32. 

https://doi.org/https://doi.org/10.1023/ A:1010933404324 

Breure, T. S., Prout, J. M., Haefele, S. M., Milne, A. E., Hannam, J. A., Moreno-Rojas, S., & 

Corstanje, R. (2022). Comparing the effect of different sample conditions and spectral 

libraries on the prediction accuracy of soil properties from near- and mid-infrared spectra at 

the field-scale. Soil and Tillage Research, 215, 105196. 

https://doi.org/10.1016/j.still.2021.105196 

Bui, E. N., Loughhead, A., & Corner, R. (1999). Extracting soil-landscape rules from previous soil 

surveys. Australian Journal of Soil Research, 37(3), 495–508. 

https://doi.org/10.1071/S98047 

Buis, E., Veldkamp, A., Boeken, B., & van Breemen, N. (2009). Controls on plant functional 

surface cover types along a precipitation gradient in the Negev Desert of Israel. Journal of 

Arid Environments, 73(1), 82–90. https://doi.org/10.1016/j.jaridenv.2008.09.008 

Bullock, P., & Montanarella, L. (1987). Soil Information : Uses and Needs in Europe. European 

Soil Bureau Research Report, 397–417. 

Burns, D. A., & Ciurczak, E. W. (2007). Handbook of Near-Infrared Analysis. CRC Press, 35. 

https://doi.org/10.1201/9781003042204 

Buzás, I. (Ed. . (1993). Talaj- és agrokémiai vizsgálati módszerkönyv, 1–2 (Methods of Soil 

Analysis. Parts 1–2). – INDA, Budapest (in Hungarian). 

Cambule, A. H., Rossiter, D. G., & Stoorvogel, J. J. (2013). A methodology for digital soil 

mapping in poorly-accessible areas. Geoderma, 192(1), 341–353. 

https://doi.org/10.1016/j.geoderma.2012.08.020 

Cambule, A. H., Rossiter, D. G., Stoorvogel, J. J., & Smaling, E. M. A. (2015). Rescue and renewal 

of legacy soil resource inventories: A case study of the limpopo national park, mozambique. 

Catena, 125, 169–182. https://doi.org/10.1016/j.catena.2014.10.019 

Carré, F., McBratney, A. B., Mayr, T., & Montanarella, L. (2007). Digital soil assessments: 

Beyond DSM. Geoderma, 142(1–2), 69–79. https://doi.org/10.1016/j.geoderma.2007.08.015 

CCRS. (2009). Fundamentals of Remote Sensing. Canada Centre for Remote Sensing. 

Cécillon, L., Barthès, B. G., Gomez, C., Ertlen, D., Genot, V., Hedde, M., Stevens, A., & Brun, J. 

J. (2009). Assessment and monitoring of soil quality using near-infrared reflectance 

spectroscopy (NIRS). European Journal of Soil Science, 60(5), 770–784. 



100 
 

https://doi.org/10.1111/j.1365-2389.2009.01178.x 

Certini, G., & Scalenghe, R. (2023). The crucial interactions between climate and soil. Science of 

the Total Environment, 856, 159169. https://doi.org/10.1016/j.scitotenv.2022.159169 

CHABALA, L. M., MULOLWA, A., & LUNGU, O. (2017). Application of Ordinary Kriging in 

Mapping Soil Organic Carbon in Zambia. Pedosphere, 27(2), 338–343. 

https://doi.org/10.1016/S1002-0160(17)60321-7 

Chagas, C. da S., de Carvalho Junior, W., Bhering, S. B., & Calderano Filho, B. (2016). Spatial 

prediction of soil surface texture in a semiarid region using random forest and multiple linear 

regressions. Catena, 139, 232–240. https://doi.org/10.1016/j.catena.2016.01.001 

Chen, L., Ren, C., Li, L., Wang, Y., Zhang, B., Wang, Z., & Li, L. (2019). A comparative 

assessment of geostatistical, machine learning, and hybrid approaches for mapping topsoil 

organic carbon content. ISPRS International Journal of Geo-Information, 8(4), 174. 

https://doi.org/10.3390/ijgi8040174 

Ciampalini, R., Lagacherie, P., & Hamrouni, H. (2012). Documenting GlobalSoilMap.net grid 

cells from legacy measured soil profile and global available covariates in Northern Tunisia. 

Digital Soil Assessments and Beyond - Proceedings of the Fifth Global Workshop on Digital 

Soil Mapping, 439–444. https://doi.org/10.1201/b12728-86 

Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., McDougal, R. 

R., & Gent, C. A. (2003). Imaging spectroscopy: Earth and planetary remote sensing with the 

USGS Tetracorder and expert systems. Journal of Geophysical Research: Planets, 108(12). 

https://doi.org/10.1029/2002je001847 

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, 

V., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. 

Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-

2015 

D’Acqui, L. P., Pucci, A., & Janik, L. J. (2010). Soil properties prediction of western 

Mediterranean islands with similar climatic environments by means of mid-infrared diffuse 

reflectance spectroscopy. European Journal of Soil Science, 61(6), 865–876. 

https://doi.org/10.1111/j.1365-2389.2010.01301.x 

de Brogniez, D., Ballabio, C., Stevens, A., Jones, R. J. A., Montanarella, L., & van Wesemael, B. 

(2015). A map of the topsoil organic carbon content of Europe generated by a generalized 

additive model. European Journal of Soil Science, 66(1), 121–134. 

https://doi.org/10.1111/ejss.12193 

de Carvalho Júnior, O. A., Guimarães, R. F., Montgomery, D. R., Gillespie, A. R., Gomes, R. A. 

T., Martins, É. de S., & Silva, N. C. (2013). Karst depression detection using ASTER, 

ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí group, Brazil. 

Remote Sensing, 6(1), 330–351. https://doi.org/10.3390/rs6010330 

De Carvalho, W., Lagacherie, P., da Silva Chagas, C., Calderano Filho, B., & Bhering, S. B. 

(2014). A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope 

environment. Geoderma, 232–234, 479–486. 

https://doi.org/10.1016/j.geoderma.2014.06.007 

Demattê, J. A.M., Galdos, M. V., Guimarães, R. V., Genú, A. M., Nanni, M. R., & Zullo, J. (2007). 

Quantification of tropical soil attributes from ETM+/LANDSAT-7 data. International 

Journal of Remote Sensing, 28(17), 3813–3829. https://doi.org/10.1080/01431160601121469 

Demattê, José A.M., Campos, R. C., Alves, M. C., Fiorio, P. R., & Nanni, M. R. (2004). Visible-

NIR reflectance: A new approach on soil evaluation. Geoderma, 121(1–2), 95–112. 



101 
 

https://doi.org/10.1016/j.geoderma.2003.09.012 

Demattê, José A.M., Dotto, A. C., Paiva, A. F. S., Sato, M. V., Dalmolin, R. S. D., de Araújo, M. 

do S. B., da Silva, E. B., Nanni, M. R., ten Caten, A., Noronha, N. C., Lacerda, M. P. C., de 

Araújo Filho, J. C., Rizzo, R., Bellinaso, H., Francelino, M. R., Schaefer, C. E. G. R., Vicente, 

L. E., dos Santos, U. J., de Sá Barretto Sampaio, E. V., … do Couto, H. T. Z. (2019). The 

Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. 

Geoderma, 354, 113793. https://doi.org/10.1016/j.geoderma.2019.05.043 

Demattê, José Alexandre M., Dotto, A. C., Bedin, L. G., Sayão, V. M., & Souza, A. B. e. (2019). 

Soil analytical quality control by traditional and spectroscopy techniques: Constructing the 

future of a hybrid laboratory for low environmental impact. Geoderma, 337, 111–121. 

https://doi.org/10.1016/j.geoderma.2018.09.010 

Demyan, M. S., Rasche, F., Schulz, E., Breulmann, M., Müller, T., & Cadisch, G. (2012). Use of 

specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy 

to study the composition of organic matter in a Haplic Chernozem. European Journal of Soil 

Science, 63(2), 189–199. https://doi.org/10.1111/j.1365-2389.2011.01420.x 

Deng, F., Minasny, B., Knadel, M., McBratney, A., Heckrath, G., & Greve, M. H. (2013). Using 

Vis-NIR spectroscopy for monitoring temporal changes in soil organic carbon. Soil Science, 

178(8), 389–399. https://doi.org/10.1097/SS.0000000000000002 

Deng, Y., Wilson, J. P., & Bauer, B. O. (2007). DEM resolution dependencies of terrain attributes 

across a landscape. International Journal of Geographical Information Science, 21(2), 187–

213. https://doi.org/10.1080/13658810600894364 

Dickens Ateku. (2014). Method for analysing samples for spectral characteristics in Mid IR range 

using Alpha. 1–10. http://www.worldagroforestry.org/research/land-health 

Dikau, R. (1989). The application of a digital relief model to landform analysis in geomorphology. 

Three Dimensional Applications in GIS, 51–77. https://doi.org/10.1201/9781003069454-5 

Dobos, E., Micheli, E., & Montanarella, L. (2006). Chapter 36 The Population of a 500-m 

Resolution Soil Organic Matter Spatial Information System for Hungary. In Developments in 

Soil Science (Vol. 31, Issue C, pp. 487–628). https://doi.org/10.1016/S0166-2481(06)31036-

7 

Dobos, E, Hengl, T., & Reuter, H. (2006). Digital soil mapping as a support to production of 

functional maps. Office for Official Publications of the European Communities, 68. 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Digital+Soil+Mapping+a

s+a+support+to+production+of+functional+maps.#0 

Dobos, Endre, Micheli, E., Baumgardner, M. F., Biehl, L., & Helt, T. (2000). Use of combined 

digital elevation model and satellite radiometric data for regional soil mapping. Geoderma, 

97(3–4), 367–391. https://doi.org/10.1016/S0016-7061(00)00046-X 

Dorji, T., Odeh, I. O. A., Field, D. J., & Baillie, I. C. (2014). Digital soil mapping of soil organic 

carbon stocks under different land use and land cover types in montane ecosystems, Eastern 

Himalayas. Forest Ecology and Management, 318, 91–102. 

https://doi.org/10.1016/j.foreco.2014.01.003 

Drǎgut, L., Eisank, C., & Strasser, T. (2011). Local variance for multi-scale analysis in 

geomorphometry. Geomorphology, 130(3–4), 162–172. 

https://doi.org/10.1016/j.geomorph.2011.03.011 

Duchesne, L., & Ouimet, R. (2021). Digital mapping of soil texture in ecoforest polygons in 

Quebec, Canada. PeerJ, 9, e11685. https://doi.org/10.7717/peerj.11685 

FAO. (2018). Soil Organic Carbon Mapping Cookbook. Yigini, Y., Olmedo, G.F., Reiter, S., 



102 
 

Baritz, R., Viatkin, K., Vargas, R.R. 2nd Editio. 

FAO and ITPS. (2020). Global Soil Organic Carbon Map V1.5: Technical Report. Rome, FAO. 

https://doi.org/10.4060/ca7597en 

Farooq, I., Bangroo, S. A., Bashir, O., Shah, T. I., Malik, A. A., Iqbal, A. M., Mahdi, S. S., Wani, 

O. A., Nazir, N., & Biswas, A. (2022). Comparison of Random Forest and Kriging Models 

for Soil Organic Carbon Mapping in the Himalayan Region of Kashmir. Land, 11(12), 2180. 

https://doi.org/10.3390/land11122180 

Farr, T. G. (2000). The shuttle radar topography mission. IEEE Aerospace Conference 

Proceedings, 1, 63. 

Ferrari, E., Francioso, O., Nardi, S., Saladini, M., Ferro, N. D., & Morari, F. (2011). DRIFT and 

HR MAS NMR characterization of humic substances from a soil treated with different 

organic and mineral fertilizers. Journal of Molecular Structure, 998(1–3), 216–224. 

https://doi.org/10.1016/j.molstruc.2011.05.035 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces 

for global land areas. International Journal of Climatology, 37(12), 4302–4315. 

https://doi.org/10.1002/joc.5086 

FitzPatrick, E. A. (1986). An Introduction to Soil Science. Soil Science, 125(4), 271. 

https://doi.org/10.1097/00010694-197804000-00018 

Francioso, O., Montecchio, D., Gioacchini, P., Cavani, L., Ciavatta, C., Trubetskoj, O., & 

Trubetskaya, O. (2009). Structural differences of Chernozem soil humic acids SEC-PAGE 

fractions revealed by thermal (TG-DTA) and spectroscopic (DRIFT) analyses. Geoderma, 

152(3–4), 264–268. https://doi.org/10.1016/j.geoderma.2009.06.011 

French, A. N., Jacob, F., Anderson, M. C., Kustas, W. P., Timmermans, W., Gieske, A., Su, Z., 

Su, H., McCabe, M. F., Li, F., Prueger, J., & Brunsell, N. (2005). Surface energy fluxes with 

the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 

2002 SMACEX site (USA). Remote Sensing of Environment, 99(1–2), 55–65. 

https://doi.org/10.1016/j.rse.2005.05.015 

Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning 

and an Application to Boosting. Journal of Computer and System Sciences, 55(1), 119–139. 

https://doi.org/10.1006/jcss.1997.1504 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of 

Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451 

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica 

Acta, 185(C), 1–17. https://doi.org/10.1016/0003-2670(86)80028-9 

Genovese, G. P. (2001). Introduction to the MARS Crop Yield Forecasting System (MCYFS). 

Space Applications Institute, Joint Research Centre of the European Commission, 15. 

Gerzabek, M. H., Antil, R. S., Kögel-Knabner, I., Knicker, H., Kirchmann, H., & Haberhauer, G. 

(2006). How are soil use and management reflected by soil organic matter characteristics: A 

spectroscopic approach. European Journal of Soil Science, 57(4), 485–494. 

https://doi.org/10.1111/j.1365-2389.2006.00794.x 

Gomez, C., Gholizadeh, A., Boruvka, L., & Lagacherie, P. (2015). Using legacy soil data for 

standardizing predictions of topsoil clay content obtained from VNIR/SWIR hyperspectral 

airborne images. International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences - ISPRS Archives, 40(3W3), 439–444. 

https://doi.org/10.5194/isprsarchives-XL-3-W3-439-2015 

Goydaragh, M. G., Taghizadeh-Mehrjardi, R., Jafarzadeh, A. A., Triantafilis, J., & Lado, M. 



103 
 

(2021). Using environmental variables and Fourier Transform Infrared Spectroscopy to 

predict soil organic carbon. Catena, 202, 105280. 

https://doi.org/10.1016/j.catena.2021.105280 

Griffiths, P. R., & De Haseth, J. A. (2007). Introduction to vibrational spectroscopy. In Chemical 

Analysis (Vol. 171, pp. 1–18). John Wiley & Sons, Inc. 

https://doi.org/10.1002/9780470106310.ch1 

Grunwald, S., Thompson, J. A., & Boettinger, J. L. (2011). Digital Soil Mapping and Modeling at 

Continental Scales: Finding Solutions for Global Issues. Soil Science Society of America 

Journal, 75(4), 1201–1213. https://doi.org/10.2136/sssaj2011.0025 

GSP. (2017). Global Soil Organic Carbon Map - Leaflet. FAO, Rome, Italy. 

Guerrero, C., Wetterlind, J., Stenberg, B., Mouazen, A. M., Gabarrón-Galeote, M. A., Ruiz-

Sinoga, J. D., Zornoza, R., & Viscarra Rossel, R. A. (2016). Do we really need large spectral 

libraries for local scale SOC assessment with NIR spectroscopy? Soil and Tillage Research, 

155, 501–509. https://doi.org/10.1016/j.still.2015.07.008 

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. 

Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 

Guo, Y., Shi, Z., Li, H. Y., & Triantafilis, J. (2013). Application of digital soil mapping methods 

for identifying salinity management classes based on a study on coastal central China. Soil 

Use and Management, 29(3), 445–456. https://doi.org/10.1111/sum.12059 

Häring, V., Fischer, H., Cadisch, G., & Stahr, K. (2013a). Implication of erosion on the assessment 

of decomposition and humification of soil organic carbon after land use change in tropical 

agricultural systems. Soil Biology and Biochemistry, 65, 158–167. 

https://doi.org/10.1016/j.soilbio.2013.04.021 

Häring, V., Fischer, H., Cadisch, G., & Stahr, K. (2013b). Improved δ13C method to assess soil 

organic carbon dynamics on sites affected by soil erosion. European Journal of Soil Science, 

64(5), 639–650. https://doi.org/10.1111/ejss.12060 

Hartemink, A. E., & McBratney, A. (2008). A soil science renaissance. Geoderma, 148(2), 123–

129. https://doi.org/10.1016/j.geoderma.2008.10.006 

Hengl, T., MacMillan, R. A. (2019). Predictive Soil Mapping with R. OpenGeoHub foundation, 

Wageningen, the Netherlands, ISBN: 978-0-359-30635-0. 370 pages. www.soilmapper.org 

Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., 

Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, 

R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., 

& Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine 

learning. PLoS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748 

Hengl, T., & Wheeler, I. (2018). Soil organic carbon stock in kg/m2 for 5 standard depth intervals 

(0–10, 10–30, 30–60, 60–100 and 100–200 cm) at 250 m resolution (Version v0.2). Data Set. 

https://doi.org/https://doi.org/10.5281/zenodo.2536040 

Hijmans, R. J. (2018). raster: geographic analysis and modeling with raster data. R package version 

2.7-15. R Package Version 2.7-15. http://cran.r-project.org/package=raster 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution 

interpolated climate surfaces for global land areas. International Journal of Climatology, 

25(15), 1965–1978. https://doi.org/10.1002/joc.1276 

Hong, Y., Chen, Y., Chen, S., Shen, R., Hu, B., Peng, J., Wang, N., Guo, L., Zhuo, Z., Yang, Y., 

Liu, Y., Mouazen, A. M., & Shi, Z. (2022). Data mining of urban soil spectral library for 

estimating organic carbon. Geoderma, 426, 116102. 



104 
 

https://doi.org/10.1016/j.geoderma.2022.116102 

Houborg, R., & McCabe, M. F. (2018). A hybrid training approach for leaf area index estimation 

via Cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and 

Remote Sensing, 135, 173–188. https://doi.org/10.1016/j.isprsjprs.2017.10.004 

Hounkpatin, K. O. L., Stendahl, J., Lundblad, M., & Karltun, E. (2021). Predicting the spatial 

distribution of soil organic carbon stock in Swedish forests using a group of covariates and 

site-specific data. Soil, 7(2), 377–398. https://doi.org/10.5194/soil-7-377-2021 

Howell, D., Kim, Y. G., & Haydu-Houdeshell, C. A. (2008). Development and application of 

digital soil mapping within traditional soil survey: What will it grow into? In Digital Soil 

Mapping with Limited Data (pp. 43–51). Springer Netherlands. https://doi.org/10.1007/978-

1-4020-8592-5_4 

Huang, J., Wu, C., Minasny, B., Roudier, P., & McBratney, A. B. (2017). Unravelling scale- and 

location-specific variations in soil properties using the 2-dimensional empirical mode 

decomposition. Geoderma, 307, 139–149. https://doi.org/10.1016/j.geoderma.2017.07.024 

Ingram, J. S. I., & Fernandes, E. C. M. (2001). Managing carbon sequestration in soils: concepts 

and terminology. Agriculture, Ecosystems & Environment, 87(1), 111–117. 

https://doi.org/10.1016/S0167-8809(01)00145-1 

Jakab, G., Szabó, J., Szalai, Z., Mészáros, E., Madarász, B., Centeri, C., Szabó, B., Németh, T., & 

Sipos, P. (2016). Changes in organic carbon concentration and organic matter compound of 

erosion-delivered soil aggregates. Environmental Earth Sciences, 75(2), 1–11. 

https://doi.org/10.1007/s12665-015-5052-9 

Janik, L. J., Merry, R. H., Forrester, S. T., Lanyon, D. M., & Rawson, A. (2007). Rapid Prediction 

of Soil Water Retention using Mid Infrared Spectroscopy. Soil Science Society of America 

Journal, 71(2), 507–514. https://doi.org/10.2136/sssaj2005.0391 

Janik, L. J., Merry, R. H., & Skjemstad, J. O. (1998). Can mid infrared diffuse reflectance analysis 

replace soil extractions? Australian Journal of Experimental Agriculture, 38(7), 681–696. 

https://doi.org/10.1071/EA97144 

Janik, L. J., Skjemstand, J. O., & Raven, M. D. (1995). Characterization and analysis of soils using 

mid-infrared partial least squares. I. correlations with xrf-determined major element 

composition. Australian Journal of Soil Research, 33(4), 621–636. 

https://doi.org/10.1071/SR9950621 

Jenny, H. (1941). Factors of soil formation: : A System of Quantitative Pedology. McGraw-Hill 

Book Company New York, NY, USA. 

Johnson, J. M., Vandamme, E., Senthilkumar, K., Sila, A., Shepherd, K. D., & Saito, K. (2019). 

Near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for assessing soil 

fertility in rice fields in sub-Saharan Africa. Geoderma, 354, 113840. 

https://doi.org/10.1016/j.geoderma.2019.06.043 

Jones, R. J. A., Houskova, B., Bullock, P., & Montanarella, L. (2005). Soil Resources of Europe. 

Office, 433. 

Julien, Y., & Sobrino, J. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: An 

analysis of global vegetation from NDVI and LST parameters. Remote Sensing of 

Environment, 113(2), 329–334. https://doi.org/10.1016/j.rse.2008.09.016 

Jun, C., Ban, Y., & Li, S. (2014). Open access to Earth land-cover map. Nature, 514(7253), 434. 

https://doi.org/10.1038/514434c 

Kaiser, M., Walter, K., Ellerbrock, R. H., & Sommer, M. (2011). Effects of land use and mineral 

characteristics on the organic carbon content, and the amount and composition of Na-



105 
 

pyrophosphate-soluble organic matter, in subsurface soils. European Journal of Soil Science, 

62(2), 226–236. https://doi.org/10.1111/j.1365-2389.2010.01340.x 

Kasprzhitskii, A., Lazorenko, G., Khater, A., & Yavna, V. (2018). Mid-infrared spectroscopic 

assessment of plasticity characteristics of clay soils. Minerals, 8(5), 184. 

https://doi.org/10.3390/min8050184 

Kempen, B., Brus, D. J., & Stoorvogel, J. J. (2011). Three-dimensional mapping of soil organic 

matter content using soil type-specific depth functions. Geoderma, 162(1–2), 107–123. 

https://doi.org/10.1016/j.geoderma.2011.01.010 

Kempen, Bas, Brus, D. J., & Heuvelink, G. B. M. (2012). Soil type mapping using the generalised 

linear geostatistical model: A case study in a Dutch cultivated peatland. Geoderma, 189–190, 

540–553. https://doi.org/10.1016/j.geoderma.2012.05.028 

Kempen, Bas, Brus, D. J., Stoorvogel, J. J., Heuvelink, G. B. M., & de Vries, F. (2012). Efficiency 

Comparison of Conventional and Digital Soil Mapping for Updating Soil Maps. Soil Science 

Society of America Journal, 76(6), 2097–2115. https://doi.org/10.2136/sssaj2011.0424 

Kennard, R. W., & Stone, L. A. (1969). Computer Aided Design of Experiments. Technometrics, 

11(1), 137. https://doi.org/10.2307/1266770 

Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil 

carbon turnover to warming. Nature, 433(7023), 298–301. 

https://doi.org/10.1038/nature03226 

Knox, N. M., Grunwald, S., McDowell, M. L., Bruland, G. L., Myers, D. B., & Harris, W. G. 

(2015). Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared 

(MIR) spectroscopy. Geoderma, 239–240, 229–239. 

https://doi.org/10.1016/j.geoderma.2014.10.019 

KUMMERT, A., CSILLAG, F., SZABÓ, J., VÁRALLYAI, G., & ZILAHY, P. (1989). A 

geographical information system for soil analysis and mapping: HunSIS. Agrokémia És 

Talajtan, 38 (3-4), 822–835. 

Kunkel, V. R., Wells, T., & Hancock, G. R. (2022). Modelling soil organic carbon using vegetation 

indices across large catchments in eastern Australia. Science of the Total Environment, 817, 

152690. https://doi.org/10.1016/j.scitotenv.2021.152690 

Laborczi, A., Szatmári, G., Takács, K., & Pásztor, L. (2016). Mapping of topsoil texture in 

Hungary using classification trees. Journal of Maps, 12(5), 999–1009. 

https://doi.org/10.1080/17445647.2015.1113896 

Lagacherie, P., McBratney, A. B., & Voltz, M. (2006). Digital Soil Mapping: An Introductory 

Perspective. Access Online via Elsevier, 658. 

http://books.google.fr/books?id=OjhtrR5QgqMC 

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. 

Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396 

Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220(1–3), 

242–258. https://doi.org/10.1016/j.foreco.2005.08.015 

Lal, Rattan, Walsh, M., & Shepherd, K. (2005). Diffuse Reflectance Spectroscopy for Rapid Soil 

Analysis. Encyclopedia of Soil Science, Second Edition. 

https://doi.org/10.1201/noe0849338304.ch97 

Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates 

for soil organic carbon mapping and their implications: A review. Geoderma, 352, 395–413. 

https://doi.org/10.1016/j.geoderma.2019.05.031 

Leue, M., Ellerbrock, R. H., Bänninger, D., & Gerke, H. H. (2010). Impact of Soil Microstructure 



106 
 

Geometry on DRIFT Spectra: Comparisons with Beam Trace Modeling. Soil Science Society 

of America Journal, 74(6), 1976–1986. https://doi.org/10.2136/sssaj2009.0443 

Li, Y. (2010). Can the spatial prediction of soil organic matter contents at various sampling scales 

be improved by using regression kriging with auxiliary information? Geoderma, 159(1–2), 

63–75. https://doi.org/10.1016/j.geoderma.2010.06.017 

Li, Z., Zhu, Q., & Gold, C. (2004). Digital terrain modeling: Principles and methodology. In 

Digital Terrain Modeling: Principles and Methodology. CRC Press. 

https://doi.org/10.1201/9780203357132 

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 

18–22. 

Lillesand, M & Kiefer, R. (1993). Remote sensing and image interpretation. John Villey, New 

York., Third Edit, 736. 

Lillesand, T. M., & Kiefer, R. W. (1987). Remote sensing and image interpretation. Remote 

Sensing and Image Interpretation., 2nd editio. https://doi.org/10.2307/634969 

Lim, K. J., & Engel, B. A. (2003). Extension and enhancement of national agricultural pesticide 

risk analysis (NAPRA) WWW decision support system to include nutrients. Computers and 

Electronics in Agriculture, 38(3), 227–236. https://doi.org/10.1016/S0168-1699(03)00002-4 

Liu, J. K., Chang, K. T., Lin, C., & Chang, L. C. (2015). Accuracy evaluation of ALOS DEM with 

airborne LiDAR data in Southern Taiwan. International Geoscience and Remote Sensing 

Symposium (IGARSS), 2015-Novem, 3025–3028. 

https://doi.org/10.1109/IGARSS.2015.7326453 

Lorber, A., Wangen, L. E., & Kowalski, B. R. (1987). A theoretical foundation for the PLS 

algorithm. Journal of Chemometrics, 1(1), 19–31. https://doi.org/10.1002/cem.1180010105 

Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–

10. https://doi.org/10.1016/S0924-2031(02)00065-6 

Malone, B., Minasny, B., & Mcbratney, A. B. (2017). Progress in Soil Science Using R for Digital 

Soil Mapping. Springer International Publishing. https://doi.org/10.1007/978-3-319-44327-0 

Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth 

functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. 

https://doi.org/10.1016/j.geoderma.2009.10.007 

Mattivi, P., Franci, F., Lambertini, A., & Bitelli, G. (2019). TWI computation: a comparison of 

different open source GISs. Open Geospatial Data, Software and Standards, 4(1), 6. 

https://doi.org/10.1186/s40965-019-0066-y 

Mattsson, T., Kortelainen, P., Laubel, A., Evans, D., Pujo-Pay, M., Räike, A., & Conan, P. (2009). 

Export of dissolved organic matter in relation to land use along a European climatic gradient. 

Science of the Total Environment, 407(6), 1967–1976. 

https://doi.org/10.1016/j.scitotenv.2008.11.014 

Max, K., Weston, S., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Team, R. C., 

Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., & Candan, C. (2016). 

Classification and Regression Training. Packages R CRAN, 198. 

https://github.com/topepo/caret/%5CnBugReports 

McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. 

Geoderma, 117(1–2), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4 

McKenzie, N. J., Gessler, P. E., Ryan, P. J., & O’Connell, D. A. (2000). The role of terrain analysis 

in soil mapping. Terrain Analysis Principles and Applications, 245–265. 

Mckenzie2000TA.pdf 



107 
 

Mclean, E. O. (1982). Soil pH and Lime Requirement. In: Page, A.L., Ed., Methods of Soil 

Analysis. Part 2. Chemical and Microbiological Properties, Soil Science Society of America, 

Madison,. American Society of Agronomy, 199-224. 

Medina, H., de Jong van Lier, Q., García, J., & Ruiz, M. E. (2017). Regional-scale variability of 

soil properties in Western Cuba. Soil and Tillage Research, 166, 84–99. 

https://doi.org/10.1016/j.still.2016.10.009 

Mehrabi-Gohari, E., Matinfar, H. R., Jafari, A., Taghizadeh-Mehrjardi, R., & Triantafilis, J. 

(2019). The spatial prediction of soil texture fractions in arid regions of Iran. Soil Systems, 

3(4), 1–18. https://doi.org/10.3390/soilsystems3040065 

Meng, X., Bao, Y., Wang, Y., Zhang, X., & Liu, H. (2022). An advanced soil organic carbon 

content prediction model via fused temporal-spatial-spectral (TSS) information based on 

machine learning and deep learning algorithms. Remote Sensing of Environment, 280, 

113166. https://doi.org/10.1016/j.rse.2022.113166 

Mevik, B.-H., Wehrens, R., & Liland, K. H. (2016). Partial Least Squares and Principal 

Component Regression. Packages R CRAN, 1–59. https://cran.r-

project.org/web/packages/pls/pls.pdf 

Minár, J., & Evans, I. S. (2008). Elementary forms for land surface segmentation: The theoretical 

basis of terrain analysis and geomorphological mapping. Geomorphology, 95(3–4), 236–259. 

https://doi.org/10.1016/j.geomorph.2007.06.003 

Minasny, B., & McBratney, A. B. (2010). Methodologies for Global Soil Mapping. In Digital Soil 

Mapping (pp. 429–436). Springer Netherlands. https://doi.org/10.1007/978-90-481-8863-

5_34 

Minasny, Budiman, Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., 

Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, 

S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … 

Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. 

https://doi.org/10.1016/j.geoderma.2017.01.002 

Minasny, Budiman, & McBratney, A. B. (2006). A conditioned Latin hypercube method for 

sampling in the presence of ancillary information. Computers and Geosciences, 32(9), 1378–

1388. https://doi.org/10.1016/j.cageo.2005.12.009 

Minasny, Budiman, & McBratney, A. B. (2008). Regression rules as a tool for predicting soil 

properties from infrared reflectance spectroscopy. Chemometrics and Intelligent Laboratory 

Systems, 94(1), 72–79. https://doi.org/10.1016/j.chemolab.2008.06.003 

Minasny, Budiman, & McBratney, A. B. (2016). Digital soil mapping: A brief history and some 

lessons. Geoderma, 264, 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017 

Minasny, Budiman, McBratney, A. B., Pichon, L., Sun, W., & Short, M. G. (2009). Evaluating 

near infrared spectroscopy for field prediction of soil properties. Australian Journal of Soil 

Research, 47(7), 664–673. https://doi.org/10.1071/SR09005 

Minasny, Budiman, Tranter, G., McBratney, A. B., Brough, D. M., & Murphy, B. W. (2009). 

Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil 

chemical properties. Geoderma, 153(1–2), 155–162. 

https://doi.org/10.1016/j.geoderma.2009.07.021 

Mirzaeitalarposhti, R., Demyan, M. S., Rasche, F., Cadisch, G., & Müller, T. (2017). Mid-infrared 

spectroscopy to support regional-scale digital soil mapping on selected croplands of South-

West Germany. Catena, 149, 283–293. https://doi.org/10.1016/j.catena.2016.10.001 

Misra, A. A. (2022). Remote Sensing Fundamentals. In Atlas of Structural Geological and 



108 
 

Geomorphological Interpretation of Remote Sensing Images (pp. 7–14). Wiley. 

https://doi.org/10.1002/9781119813392.ch1 

MohammedZein, M. A., Abdelmagid A. Elmobarak, Hamad, M. E., & Adel, Y. Y. (2017). The 

Use of Remote Sensing for Soils Mapping in North East of Rufaa, Gezira State, Sudan. Sudan 

Journal of Agricultural Research, Agricultural Research Corporation, 27 (1)(ISSN: 1561-

770X), 129–140. 

Mohammedzein, M. A., Csorba, A., Rotich, B., Justin, P. N., Melenya, C., Andrei, Y., & Micheli, 

E. (2023). Development of Hungarian spectral library: Prediction of soil properties and 

applications. Eurasian Journal of Soil Science, 12(3), 244–256. 

https://doi.org/10.18393/ejss.1275149 

MohammedZein, M. A., Elmobarak, A. A., & Abdalrahim Eltayb. (2018). Change detection in 

land cover classes using remote sensing techniques, case study White Nile state, Sudan. 

Sudanese Journal of Agricultural Sciences, Faculty of Agriculture, Alzaiem Alazhari 

University, 4(1). 

MohammedZein, M. A., Elmobarak, A. A., Eltayb, A., & Elkhalil., S. A. (2015). Mapping and 

Assessment of Sand Dunes by Remote Sensing and GIS in Sufia Project Area, White Nile 

State, Sudan. Sudan Journal of Desertification Research, University of Khartoum., 

7(ISSN:1858-5515), (1): 1-39. 

Moore, I.D., Gessler, P.E., Nielsen, G.A., Peterson, G. A. (1993). Soil attribute prediction using 

Terrain Analysis. Soil Science Society of America Journal, 57(2), NP-NP. 

https://doi.org/10.2136/sssaj1993.572npb 

Moore, A. B., Morris, K. P., Blackwell, G. K., Jones, A. R., & Sim, P. C. (2003). Using 

geomorphological rules to classify photogrammetrically-derived digital elevation models. 

International Journal of Remote Sensing, 24(13), 2613–2626. 

https://doi.org/10.1080/0143116031000066891 

Mulder, V. L., de Bruin, S., Schaepman, M. E., & Mayr, T. R. (2011). The use of remote sensing 

in soil and terrain mapping - A review. Geoderma, 162(1–2), 1–19. 

https://doi.org/10.1016/j.geoderma.2010.12.018 

Næs, T. (1987). The design of calibration in near infra-red reflectance analysis by clustering. 

Journal of Chemometrics, 1(2), 121–134. https://doi.org/10.1002/cem.1180010207 

Nash, D. B. (1986). Mid-infrared reflectance spectra (23–22 μm) of sulfur, gold, KBr, MgO, and 

halon. Applied Optics, 25(14), 2427. https://doi.org/10.1364/ao.25.002427 

Nelson, R. . (1982). Carbonate and gypsum. – In: Page, A.L., R.H. Miller, D.R. Keeny (Eds): 

Methods of Soil Analysis. Part 2. American Society of Agronomy, Inc. Soil Science Society of 

America, Inc. Madison, WI, USA. 181–197. 

Ng, W., Minasny, B., Jeon, S. H., & McBratney, A. (2022). Mid-infrared spectroscopy for accurate 

measurement of an extensive set of soil properties for assessing soil functions. Soil Security, 

6, 100043. https://doi.org/10.1016/j.soisec.2022.100043 

Nguyen, T. T., Janik, L. J., & Raupach, M. (1991). Diffuse reflectance infrared fourier transform 

(Drift) spectroscopy in soil studies. Australian Journal of Soil Research, 29(1), 49–67. 

https://doi.org/10.1071/SR9910049 

Nield, S. J., Boettinger, J. L., & Ramsey, R. D. (2007). Digitally Mapping Gypsic and Natric Soil 

Areas Using Landsat ETM Data. Soil Science Society of America Journal, 71(1), 245–252. 

https://doi.org/10.2136/sssaj2006-0049 

Nikolakopoulos, K. G. (2020). Accuracy assessment of ALOS AW3D30 DSM and comparison to 

ALOS PRISM DSM created with classical photogrammetric techniques. European Journal 



109 
 

of Remote Sensing, 53(sup2), 39–52. https://doi.org/10.1080/22797254.2020.1774424 

Nikolakopoulos, K. G., & Chrysoulakis, N. (2006). Updating the 1:50.000 topographic maps 

using ASTER and SRTM DEM: the case of Athens, Greece (M. Ehlers & U. Michel (eds.); p. 

636606). https://doi.org/10.1117/12.689016 

Nikolakopoulos, K. G., & Vaiopoulos, A. D. (2011). Validation of ALOS DSM. In U. Michel & 

D. L. Civco (Eds.), Earth Resources and Environmental Remote Sensing/GIS Applications II 

(Vol. 8181, p. 818103). https://doi.org/10.1117/12.898382 

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Dor, E. 

Ben, Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., 

Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., … 

Wetterlind, J. (2015). Soil Spectroscopy: An Alternative to Wet Chemistry for Soil 

Monitoring. In Advances in Agronomy (Vol. 132, pp. 139–159). 

https://doi.org/10.1016/bs.agron.2015.02.002 

Nouri, M., Gomez, C., Gorretta, N., & Roger, J. M. (2017). Clay content mapping from airborne 

hyperspectral Vis-NIR data by transferring a laboratory regression model. Geoderma, 298, 

54–66. https://doi.org/10.1016/j.geoderma.2017.03.011 

Novais, J. J., Lacerda, M. P. C., Sano, E. E., Demattê, J. A. M., & Oliveira, M. P. (2021). Digital 

soil mapping by multispectral modeling using cloud-computed landsat time series. Remote 

Sensing, 13(6), 1181. https://doi.org/10.3390/rs13061181 

Nualchawee, K. (1984). Remote sensing in agriculture and the role of ground truth as supporting 

data. Proc. the symposium. Proc. the Symposium, Third Asian Agricultural Remote Sensing 

Symposium, Third Asia, p.269-285. 

Oksanen, J., & Sarjakoski, T. (2005). Error propagation of DEM-based surface derivatives. 

Computers and Geosciences, 31(8), 1015–1027. https://doi.org/10.1016/j.cageo.2005.02.014 

Oldeman, L. R. (1993). An international methodology for assessment of soil degradation and 

georeferenced soils and terrain database. Third Expert Consultation of the Asian Network of 

Problem Soils, Bangkok, Thailand, 25-29 October 1993, 1–22. 

Omuto, C. T., & Vargas, R. R. (2015). Re-tooling of regression kriging in R for improved digital 

mapping of soil properties. Geosciences Journal, 19(1), 157–165. 

https://doi.org/10.1007/s12303-014-0023-9 

Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Abbasi, M., Dematte, A. M., Arthur, E., & 

Panagos, P. (2018). Towards prediction of soil erodibility, SOM and CaCO3 using laboratory 

Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma, 314, 102–112. 

https://doi.org/10.1016/j.geoderma.2017.11.014 

Owusu, S., Yigini, Y., Olmedo, G. F., & Omuto, C. T. (2020). Spatial prediction of soil organic 

carbon stocks in Ghana using legacy data. Geoderma, 360, 114008. 

https://doi.org/10.1016/j.geoderma.2019.114008 

Panagos, P., Hiederer, R., Van Liedekerke, M., & Bampa, F. (2013). Estimating soil organic 

carbon in Europe based on data collected through an European network. Ecological 

Indicators, 24, 439–450. https://doi.org/10.1016/j.ecolind.2012.07.020 

Pásztor, L., Dobos, E., Szatmári, G., Laborczi, A., Takács, K., Bakacsi, Z., & Szabó, J. (2014). 

Application of legacy soil data in digital soil mapping for the elaboration of novel, 

countrywide maps of soil conditions. Agrokemia Es Talajtan, 63(1), 79–88. 

https://doi.org/10.1556/Agrokem.63.2014.1.9 

Pásztor, L., Laborczi, A., Takács, K., Szatmári, G., Dobos, E., Illés, G., Bakacsi, Z., & Szabó, J. 

(2015). Compilation of novel and renewed, goal oriented digital soil maps using geostatistical 



110 
 

and data mining tools. Hungarian Geographical Bulletin, 64(1), 49–64. 

https://doi.org/10.15201/hungeobull.64.1.5 

Pásztor, L., Szabó, J., Bakacsi, Z., László, P., & Dombos, M. (2007). Large-scale Soil Maps 

Improved by Digital Soil Mapping and  GIS-based Soil Status Assessment. Agrokémia És 

Talajtan, 55(1), 79–88. https://doi.org/10.1556/agrokem.55.2006.1.9 

Pásztor, L., Szabó, J., Bakacsi, Z., Matus, J., & Laborczi, A. (2012). Compilation of 1:50,000 scale 

digital soil maps for Hungary based on the digital Kreybig soil information system. Journal 

of Maps, 8(3), 215–219. https://doi.org/10.1080/17445647.2012.705517 

Peng, Y., Xiong, X., Adhikari, K., Knadel, M., Grunwald, S., & Greve, M. H. (2015). Modeling 

Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory 

Spectra. PLOS ONE, 10(11), e0142295. https://doi.org/10.1371/journal.pone.0142295 

Philipp, B. (n.d.). https://github.com/philipp-baumann/simplerspec/. 

Pirie, A., Singh, B., & Islam, K. (2005). Ultra-violet, visible, near-infrared, and mid-infrared 

diffuse reflectance spectroscopic techniques to predict several soil properties. Australian 

Journal of Soil Research, 43(6), 713–721. https://doi.org/10.1071/SR04182 

Planchon, O., & Darboux, F. (2002). A fast, simple and versatile algorithm to fill the depressions 

of digital elevation models. Catena, 46(2–3), 159–176. https://doi.org/10.1016/S0341-

8162(01)00164-3 

Polyakov, V. O., & Lal, R. (2008). Soil organic matter and CO2 emission as affected by water 

erosion on field runoff plots. Geoderma, 143(1–2), 216–222. 

https://doi.org/10.1016/j.geoderma.2007.11.005 

Pouladi, N., Møller, A. B., Tabatabai, S., & Greve, M. H. (2019). Mapping soil organic matter 

contents at field level with Cubist, Random Forest and kriging. Geoderma, 342, 85–92. 

https://doi.org/10.1016/j.geoderma.2019.02.019 

QGIS Development Team. (2020). QGIS Geographic Information System. Open Source 

Geospatial Foundation Project. http://qgis.osgeo.org. Qgisorg, February. 

http://www.qgis.org/ 

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

Rabbinge, R., & van Ittersum, M. K. (1994). Tension between aggregation levels. The Future of 

the Land, Mobilizing and Integrating Knowledge for Land Use Options, 31–40. 

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Stevens, A., Demattê, J. A. M., & Scholten, T. 

(2013). The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra 

of complex datasets. Geoderma, 195–196, 268–279. 

https://doi.org/10.1016/j.geoderma.2012.12.014 

Raphael, L. (2011). Application of FTIR Spectroscopy to Agricultural Soils Analysis. Fourier 

Transforms - New Analytical Approaches and FTIR Strategies. https://doi.org/10.5772/15732 

Reddy, G. P. O. (2018). Satellite Remote Sensing Sensors: Principles and Applications (pp. 21–

43). https://doi.org/10.1007/978-3-319-78711-4_2 

Reeves, J. B. (2010). Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis 

emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to 

be done? Geoderma, 158(1–2), 3–14. https://doi.org/10.1016/j.geoderma.2009.04.005 

Reeves, J. B., & Smith, D. B. (2009). The potential of mid- and near-infrared diffuse reflectance 

spectroscopy for determining major- and trace-element concentrations in soils from a 

geochemical survey of North America. Applied Geochemistry, 24(8), 1472–1481. 

https://doi.org/10.1016/j.apgeochem.2009.04.017 



111 
 

Reyna, L., Dube, F., Barrera, J. A., & Zagal, E. (2017). Potential model overfitting in predicting 

soil carbon content by visible and near-infrared spectroscopy. Applied Sciences (Switzerland), 

7(7), 708. https://doi.org/10.3390/app7070708 

Richer-de-Forges, A. C., Chen, Q., Baghdadi, N., Chen, S., Gomez, C., Jacquemoud, S., Martelet, 

G., Mulder, V. L., Urbina-Salazar, D., Vaudour, E., Weiss, M., Wigneron, J. P., & Arrouays, 

D. (2023). Remote Sensing Data for Digital Soil Mapping in French Research—A Review. 

Remote Sensing, 15(12), 3070. https://doi.org/10.3390/rs15123070 

Richter, N., Jarmer, T., Chabrillat, S., Oyonarte, C., Hostert, P., & Kaufmann, H. (2009). Free Iron 

Oxide Determination in Mediterranean Soils using Diffuse Reflectance Spectroscopy. Soil 

Science Society of America Journal, 73(1), 72–81. https://doi.org/10.2136/sssaj2008.0025 

Rinnan, Å., Berg, F. van den, & Engelsen, S. B. (2009). Review of the most common pre-

processing techniques for near-infrared spectra. TrAC - Trends in Analytical Chemistry, 

28(10), 1201–1222. https://doi.org/10.1016/j.trac.2009.07.007 

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. 

Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-

4257(95)00186-7 

Rossel, R. A. V., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse 

reflectance spectra. Geoderma, 158(1–2), 46–54. 

https://doi.org/10.1016/j.geoderma.2009.12.025 

Rossel, R. A. V., Jeon, Y. S., Odeh, I. O. A., & McBratney, A. B. (2008). Using a legacy soil 

sample to develop a mid-IR spectral library. Australian Journal of Soil Research, 46(1), 1–

16. https://doi.org/10.1071/SR07099 

Rossel, R. A. V., & McBratney, A. B. (2008). Diffuse reflectance spectroscopy as a tool for digital 

soil mapping. In Digital Soil Mapping with Limited Data (pp. 165–172). Springer 

Netherlands. https://doi.org/10.1007/978-1-4020-8592-5_13 

Rossel, R. A. V., & Webster, R. (2012). Predicting soil properties from the Australian soil visible-

near infrared spectroscopic database. European Journal of Soil Science, 63(6), 848–860. 

https://doi.org/10.1111/j.1365-2389.2012.01495.x 

Rossi, J., Govaerts, A., De Vos, B., Verbist, B., Vervoort, A., Poesen, J., Muys, B., & Deckers, J. 

(2009). Spatial structures of soil organic carbon in tropical forests-A case study of 

Southeastern Tanzania. Catena, 77(1), 19–27. https://doi.org/10.1016/j.catena.2008.12.003 

Rossiter, D. G., & Rossiter, D. G. (2004). Digital soil resource inventories: status and prospects. 

Soil Use and Management, 20(3), 296–301. https://doi.org/10.1079/sum2004258 

Ryan, P. J., McKenzie, N. J., O’Connell, D., Loughhead, A. N., Leppert, P. M., Jacquier, D., & 

Ashton, L. (2000). Integrating forest soils information across scales: Spatial prediction of soil 

properties under Australian forests. Forest Ecology and Management, 138(1–3), 139–157. 

https://doi.org/10.1016/S0378-1127(00)00393-5 

Sabetizade, M., Gorji, M., Roudier, P., Zolfaghari, A. A., & Keshavarzi, A. (2021). Combination 

of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-

arid region. Catena, 196, 104844. https://doi.org/10.1016/j.catena.2020.104844 

Sain, S. R., & Vapnik, V. N. (1996). The Nature of Statistical Learning Theory. Technometrics, 

38(4), 409. https://doi.org/10.2307/1271324 

Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., Lagacherie, P., 

McBratney, A. B., McKenzie, N. J., De Lourdes Mendonça-Santos, M., Minasny, B., 

Montanarella, L., Okoth, P., Palm, C. A., Sachs, J. D., Shepherd, K. D., Vågen, T. G., 

Vanlauwe, B., Walsh, M. G., … Zhang, G. L. (2009). Digital soil map of the world. Science, 



112 
 

325(5941), 680–681. https://doi.org/10.1126/science.1175084 

Sanderman, J., Baldock, J. A., Dangal, S. R. S., Ludwig, S., Potter, S., Rivard, C., & Savage, K. 

(2021). Soil organic carbon fractions in the Great Plains of the United States: an application 

of mid-infrared spectroscopy. Biogeochemistry, 156(1), 97–114. 

https://doi.org/10.1007/s10533-021-00755-1 

Sanderman, J., Savage, K., & Dangal, S. R. S. (2020). Mid-infrared spectroscopy for prediction of 

soil health indicators in the United States. Soil Science Society of America Journal, 84(1), 

251–261. https://doi.org/10.1002/saj2.20009 

Sandorfy, C., Buchet, R., & Lachenal, G. (2006). Principles of Molecular Vibrations for Near-

Infrared Spectroscopy. Near-Infrared Spectroscopy in Food Science and Technology, 11–46. 

https://doi.org/10.1002/9780470047750.ch2 

Santanello, J. A., Peters-Lidard, C. D., Garcia, M. E., Mocko, D. M., Tischler, M. A., Moran, M. 

S., & Thoma, D. P. (2007). Using remotely-sensed estimates of soil moisture to infer soil 

texture and hydraulic properties across a semi-arid watershed. Remote Sensing of 

Environment, 110(1), 79–97. https://doi.org/10.1016/j.rse.2007.02.007 

Sarathjith, M. C., Das, B. S., Wani, S. P., & Sahrawat, K. L. (2014). Dependency Measures for 

Assessing the Covariation of Spectrally Active and Inactive Soil Properties in Diffuse 

Reflectance Spectroscopy. Soil Science Society of America Journal, 78(5), 1522–1530. 

https://doi.org/10.2136/sssaj2014.04.0173 

Schelling, J. (1970). Soil genesis, soil classification and soil survey. Geoderma, 4(3), 165–193. 

https://doi.org/10.1016/0016-7061(70)90002-9 

Schmidtlein, S., Zimmermann, P., Schüpferling, R., & Weiß, C. (2007). Mapping the floristic 

continuum: Ordination space position estimated from imaging spectroscopy. Journal of 

Vegetation Science, 18(1), 131. https://doi.org/10.1658/1100-

9233(2007)18[131:mtfcos]2.0.co;2 

Sena, N. C., Veloso, G. V., Fernandes-Filho, E. I., Francelino, M. R., & Schaefer, C. E. G. R. 

(2020). Analysis of terrain attributes in different spatial resolutions for digital soil mapping 

application in southeastern Brazil. Geoderma Regional, 21, e00268. 

https://doi.org/10.1016/j.geodrs.2020.e00268 

Seybold, C. A., Ferguson, R., Wysocki, D., Bailey, S., Anderson, J., Nester, B., Schoeneberger, 

P., Wills, S., Libohova, Z., Hoover, D., & Thomas, P. (2019). Application of Mid‐Infrared 

Spectroscopy in Soil Survey. Soil Science Society of America Journal, 83(6), 1746–1759. 

https://doi.org/10.2136/sssaj2019.06.0205 

Shepherd, K. D., & Walsh, M. G. (2002). Development of Reflectance Spectral Libraries for 

Characterization of Soil Properties. Soil Science Society of America Journal, 66(3), 988–998. 

https://doi.org/10.2136/sssaj2002.9880 

Shepherd, K. D., & Walsh, M. G. (2007). Infrared Spectroscopy—Enabling an Evidence-Based 

Diagnostic Surveillance Approach to Agricultural and Environmental Management in 

Developing Countries. Journal of Near Infrared Spectroscopy, 15(1), 1–19. 

https://doi.org/10.1255/jnirs.716 

Siebielec, G., McCarty, G. W., Stuczynski, T. I., & Reeves, J. B. (2004). Near- and Mid-Infrared 

Diffuse Reflectance Spectroscopy for Measuring Soil Metal Content. Journal of 

Environmental Quality, 33(6), 2056–2069. https://doi.org/10.2134/jeq2004.2056 

Sila, A. M., Shepherd, K. D., & Pokhariyal, G. P. (2016). Evaluating the utility of mid-infrared 

spectral subspaces for predicting soil properties. Chemometrics and Intelligent Laboratory 

Systems, 153, 92–105. https://doi.org/10.1016/j.chemolab.2016.02.013 



113 
 

Sila, A., Pokhariyal, G., & Shepherd, K. (2017). Evaluating regression-kriging for mid-infrared 

spectroscopy prediction of soil properties in western Kenya. Geoderma Regional, 10, 39–47. 

https://doi.org/10.1016/j.geodrs.2017.04.003 

Silva, E. B., Giasson, É., Dotto, A. C., Caten, A. Ten, Demattê, J. A. M., Bacic, I. L. Z., & da 

Veiga, M. (2019). A regional legacy soil dataset for prediction of sand and clay content with 

VIS-NIR-SWIR, in southern Brazil. Revista Brasileira de Ciencia Do Solo, 43. 

https://doi.org/10.1590/18069657rbcs20180174 

Simbahan, G. C., Dobermann, A., Goovaerts, P., Ping, J., & Haddix, M. L. (2006). Fine-resolution 

mapping of soil organic carbon based on multivariate secondary data. Geoderma, 132(3–4), 

471–489. https://doi.org/10.1016/j.geoderma.2005.07.001 

Singh, D., Meirelles, M. S. P., Costa, G. A., Herlin, I., Berroir, J. P., & Silva, E. F. (2006). 

Environmental degradation analysis using NOAA/AVHRR data. Advances in Space 

Research, 37(4), 720–727. https://doi.org/10.1016/j.asr.2004.12.052 

Sinha, S., Sharma, L. K., & Nathawat, M. S. (2015). Improved Land-use/Land-cover classification 

of semi-arid deciduous forest landscape using thermal remote sensing. Egyptian Journal of 

Remote Sensing and Space Science, 18(2), 217–233. 

https://doi.org/10.1016/j.ejrs.2015.09.005 

Skjemstad, J. O., & Dalal, R. C. (1987). Spectroscopic and chemical differences in organic matter 

of two vertisols subjected to long periods of cultivation. Australian Journal of Soil Research, 

25(3), 323–335. https://doi.org/10.1071/SR9870323 

Slaymaker, O. (2001). The role of remote sensing in geomorphology and terrain analysis in the 

Canadian Cordillera. ITC Journal, 3(1), 11–17. https://doi.org/10.1016/S0303-

2434(01)85016-9 

Smith, P. (2012). Soils and climate change. Current Opinion in Environmental Sustainability, 4(5), 

539–544. https://doi.org/10.1016/j.cosust.2012.06.005 

Smith, P., Fang, C., Dawson, J. J. C., & Moncrieff, J. B. (2008). Impact of Global Warming on 

Soil Organic Carbon. In Advances in Agronomy (Vol. 97, pp. 1–43). 

https://doi.org/10.1016/S0065-2113(07)00001-6 

Soil Survey Division Staff. (1993). Soil survey manual. Soil conservation service. US Department 

of Agriculture Handbook 18. 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054262 

Sommer, M., Wehrhan, M., Zipprich, M., Weller, U., Zu Castell, W., Ehrich, S., Tandler, B., & 

Selige, T. (2003). Hierarchical data fusion for mapping soil units at field scale. Geoderma, 

112(3–4), 179–196. https://doi.org/10.1016/S0016-7061(02)00305-1 

Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., MacDonald, L. M., & McLaughlin, M. 

J. (2014). The performance of visible, near-, and mid-infrared reflectance spectroscopy for 

prediction of soil physical, chemical, and biological properties. Applied Spectroscopy 

Reviews, 49(2), 139–186. https://doi.org/10.1080/05704928.2013.811081 

Stefan Milton, B., Hadley, W., Lionel, H., & RStudio. (2020). . magrittr: A Forward-Pipe Operator 

for R. R Package Version 2.0.1. 

Stenberg, B., & Rossel, R. A. V. (2010). Diffuse Reflectance Spectroscopy for High-Resolution 

Soil Sensing. In Proximal Soil Sensing (pp. 29–47). Springer Netherlands. 

https://doi.org/10.1007/978-90-481-8859-8_3 

Stenberg, Bo, Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Visible and Near 

Infrared Spectroscopy in Soil Science. In Advances in Agronomy (Vol. 107, Issue C, pp. 163–

215). https://doi.org/10.1016/S0065-2113(10)07005-7 



114 
 

Stevens, A., Nocita, M., Tóth, G., Montanarella, L., & van Wesemael, B. (2013). Prediction of 

Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance 

Spectroscopy. PLoS ONE, 8(6), e66409. https://doi.org/10.1371/journal.pone.0066409 

Stoorvogel, J. J., Kempen, B., Heuvelink, G. B. M., & de Bruin, S. (2009). Implementation and 

evaluation of existing knowledge for digital soil mapping in Senegal. Geoderma, 149(1–2), 

161–170. https://doi.org/10.1016/j.geoderma.2008.11.039 

Stuart, B. H. (2005). Infrared Spectroscopy: Fundamentals and Applications. In Infrared 

Spectroscopy: Fundamentals and Applications. Wiley. https://doi.org/10.1002/0470011149 

Sumfleth, K., & Duttmann, R. (2008). Prediction of soil property distribution in paddy soil 

landscapes using terrain data and satellite information as indicators. Ecological Indicators, 

8(5), 485–501. https://doi.org/10.1016/j.ecolind.2007.05.005 

Summers, D., Lewis, M., Ostendorf, B., & Chittleborough, D. (2011). Visible near-infrared 

reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 

11(1), 123–131. https://doi.org/10.1016/j.ecolind.2009.05.001 

Suzuki, S. (2003). Level 1 Data Processing Algorithm for ALOS PRISM and AVNIR-2. 

International Geoscience and Remote Sensing Symposium (IGARSS), 3, 1842–1844. 

https://doi.org/10.1109/igarss.2003.1294268 

SZALAI, Z., SZABÓ, J., KOVACS, J., MÉSZÁROS, E., ALBERT, G., CENTERI, C., SZABO, 

B., MADARÁSZ, B., ZACHÁRY, D., & JAKAB, G. (2016). Redistribution of Soil Organic 

Carbon Triggered by Erosion at Field Scale Under Subhumid Climate, Hungary. Pedosphere, 

26(5), 652–665. https://doi.org/10.1016/S1002-0160(15)60074-1 

Szatmári, G., Pásztor, L., Laborczi, A., Illés, G., Bakacsi, Z., Zacháry, D., Filep, T., Szalai, Z., & 

Jakab, G. (2023). Countrywide mapping and assessment of organic carbon saturation in the 

topsoil using machine learning-based pedotransfer function with uncertainty propagation. 

CATENA, 227, 107086. https://doi.org/10.1016/j.catena.2023.107086 

Szatmári, G., Pirkó, B., Koós, S., Laborczi, A., Bakacsi, Z., Szabó, J., & Pásztor, L. (2019). Spatio-

temporal assessment of topsoil organic carbon stock change in Hungary. Soil and Tillage 

Research, 195, 104410. https://doi.org/10.1016/j.still.2019.104410 

Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2016). 

Generation of the 30 M-Mesh Global Digital Surface Model By Alos Prism. The International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 

157–162. https://doi.org/10.5194/isprs-archives-xli-b4-157-2016 

Taghizadeh-Mehrjardi, R., Schmidt, K., Amirian-Chakan, A., Rentschler, T., Zeraatpisheh, M., 

Sarmadian, F., Valavi, R., Davatgar, N., Behrens, T., & Scholten, T. (2020). Improving the 

spatial prediction of soil organic carbon content in two contrasting climatic regions by 

stacking machine learning models and rescanning covariate space. Remote Sensing, 12(7), 

1095. https://doi.org/10.3390/rs12071095 

Tajik, S., Ayoubi, S., & Zeraatpisheh, M. (2020). Digital mapping of soil organic carbon using 

ensemble learning model in Mollisols of Hyrcanian forests, northern Iran. Geoderma 

Regional, 20, e00256. https://doi.org/10.1016/j.geodrs.2020.e00256 

Takaku, J., Futamura, N., Iijima, T., Tadono, T., & Shimada, M. (2007). High resolution DSM 

generation from ALOS PRISM. International Geoscience and Remote Sensing Symposium 

(IGARSS), 1974–1977. https://doi.org/10.1109/IGARSS.2007.4423215 

Takele, C., & Iticha, B. (2020). Use of infrared spectroscopy and geospatial techniques for 

measurement and spatial prediction of soil properties. Heliyon, 6(10), e05269. 

https://doi.org/10.1016/j.heliyon.2020.e05269 



115 
 

Teng, H. T., Viscarra Rossel, R. A., Shi, Z., & Behrens, T. (2018). Updating a national soil 

classification with spectroscopic predictions and digital soil mapping. Catena, 164, 125–134. 

https://doi.org/10.1016/j.catena.2018.01.015 

Terhoeven-Urselmans, T., Vagen, T.-G., Spaargaren, O., & Shepherd, K. D. (2010). Prediction of 

Soil Fertility Properties from a Globally Distributed Soil Mid-Infrared Spectral Library. Soil 

Science Society of America Journal, 74(5), 1792–1799. 

https://doi.org/10.2136/sssaj2009.0218 

Terra, F. S., Demattê, J. A. M., & Viscarra Rossel, R. A. (2015). Spectral libraries for quantitative 

analyses of tropical Brazilian soils: Comparing vis-NIR and mid-IR reflectance data. 

Geoderma, 255–256, 81–93. https://doi.org/10.1016/j.geoderma.2015.04.017 

Thode, H. C. (2002). Testing For Normality. In Testing For Normality. CRC Press. 

https://doi.org/10.1201/9780203910894 

Thompson, J. A., Roecker, S., Grunwald, S., & Owens, P. R. (2012). Digital soil mapping: 

Interactions with and applications for hydropedology. In Hydropedology: Synergistic 

Integration of Soil Science and Hydrology (pp. 665–709). Elsevier. 

https://doi.org/10.1016/B978-0-12-386941-8.00021-6 

Tiessen, H., Cuevas, E., & Chacon, P. (1994). The role of soil organic matter in sustaining soil 

fertility. Nature, 371(6500), 783–785. https://doi.org/10.1038/371783a0 

TIM. (1995). Soil Conservation and Monitoring System. (In Hungarian) Ministry of Agriculture. 

Budapest., 1. 

Tinti, A., Tugnoli, V., Bonora, S., & Francioso, O. (2015). Recent applications of vibrational mid-

Infrared (IR) spectroscopy for studying soil components: a review. Journal of Central 

European Agriculture, 16(1), 1–22. https://doi.org/10.5513/JCEA01/16.1.1535 

Tucker, C. J., Vanpraet, C. L., Sharman, M. J., & Van Ittersum, G. (1985). Satellite remote sensing 

of total herbaceous biomass production in the senegalese sahel: 1980-1984. Remote Sensing 

of Environment, 17(3), 233–249. https://doi.org/10.1016/0034-4257(85)90097-5 

Tucker, Compton J. (1979). Red and photographic infrared linear combinations for monitoring 

vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-

4257(79)90013-0 

Tziolas, N., Tsakiridis, N., Ogen, Y., Kalopesa, E., Ben-Dor, E., Theocharis, J., & Zalidis, G. 

(2020). An integrated methodology using open soil spectral libraries and Earth Observation 

data for soil organic carbon estimations in support of soil-related SDGs. Remote Sensing of 

Environment, 244, 111793. https://doi.org/10.1016/j.rse.2020.111793 

van der Westhuizen, S., Heuvelink, G. B. M., & Hofmeyr, D. P. (2023). Multivariate random forest 

for digital soil mapping. Geoderma, 431, 116365. 

https://doi.org/10.1016/j.geoderma.2023.116365 

Várallyay, Gy. (1994). Soil data-base for longterm field experiments and sustainable land use. 

Agrokémia És Talajtan, 43, 269–290. 

Várallyay, Gy. (2002). Soil survey and soil monitoring in Hungary. European Soil Bureau. 

European Soil Bureau, Research Report, 139–149. 

Várallyay, György. (2005). Soil survey and soil monitoring in Hungary. Soil Resources of Europe, 

169–179. 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Soil+Survey+and+Soil+

Monitoring+in+Hungary#0 

Varmuza, K., & Filzmoser, P. (2016). Introduction to Multivariate Statistical Analysis in 

Chemometrics. In Introduction to Multivariate Statistical Analysis in Chemometrics. CRC 



116 
 

Press. https://doi.org/10.1201/9781420059496 

Vasques, G. M., Grunwald, S., & Myers, D. B. (2012). Associations between soil carbon and 

ecological landscape variables at escalating spatial scales in Florida, USA. Landscape 

Ecology, 27(3), 355–367. https://doi.org/10.1007/s10980-011-9702-3 

Vaysse, K., & Lagacherie, P. (2015). Evaluating Digital Soil Mapping approaches for mapping 

GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). 

Geoderma Regional, 4, 20–30. https://doi.org/10.1016/j.geodrs.2014.11.003 

Viscarra Rossel, R. A. (2011). Fine-resolution multiscale mapping of clay minerals in Australian 

soils measured with near infrared spectra. Journal of Geophysical Research: Earth Surface, 

116(4), F04023. https://doi.org/10.1029/2011JF001977 

Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., Demattê, J. A. M., Shepherd, K. 

D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B. G., Bartholomeus, 

H. M., Bayer, A. D., Bernoux, M., Böttcher, K., Brodský, L., Du, C. W., Chappell, A., … Ji, 

W. (2016). A global spectral library to characterize the world’s soil. Earth-Science Reviews, 

155, 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012 

Viscarra Rossel, R. A., Bui, E. N., De Caritat, P., & McKenzie, N. J. (2010). Mapping iron oxides 

and the color of Australian soil using visible-near-infrared reflectance spectra. Journal of 

Geophysical Research: Earth Surface, 115(4), F04031. 

https://doi.org/10.1029/2009JF001645 

Viscarra Rossel, R. A., McGlynn, R. N., & McBratney, A. B. (2006). Determining the composition 

of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma, 

137(1–2), 70–82. https://doi.org/10.1016/j.geoderma.2006.07.004 

Viscarra Rossel, R.A., Fouad, Y., & Walter, C. (2008). Using a digital camera to measure soil 

organic carbon and iron contents. Biosystems Engineering, 100(2), 149–159. 

https://doi.org/10.1016/j.biosystemseng.2008.02.007 

Viscarra Rossel, R.A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). 

Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for 

simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. 

https://doi.org/10.1016/j.geoderma.2005.03.007 

Viscarra Rossel, Raphael A., & Bui, E. N. (2016). A new detailed map of total phosphorus stocks 

in Australian soil. Science of the Total Environment, 542, 1040–1049. 

https://doi.org/10.1016/j.scitotenv.2015.09.119 

Viscarra Rossel, Raphael A., Webster, R., Bui, E. N., & Baldock, J. A. (2014). Baseline map of 

organic carbon in Australian soil to support national carbon accounting and monitoring under 

climate change. Global Change Biology, 20(9), 2953–2970. 

https://doi.org/10.1111/gcb.12569 

Vos, C., Don, A., Hobley, E. U., Prietz, R., Heidkamp, A., & Freibauer, A. (2019). Factors 

controlling the variation in organic carbon stocks in agricultural soils of Germany. European 

Journal of Soil Science, 70(3), 550–564. https://doi.org/10.1111/ejss.12787 

Wadoux, A., Malone, B., Minasny, B., Fajardo, M., & Mcbratney, A. (2020). Soil Spectral 

Inference With R (Vol. 49, Issue 0). Springer International Publishing. 

https://doi.org/10.1007/978-3-030-64896-1 

Wang, D., & Zhu, A. X. (2020). Soil mapping based on the integration of the similarity-based 

approach and random forests. Land, 9(6), 174. https://doi.org/10.3390/LAND9060174 

Wang, H., Liu, C., & Deng, L. (2018). Enhanced Prediction of Hot Spots at Protein-Protein 

Interfaces Using Extreme Gradient Boosting. Scientific Reports, 8(1), 14285. 



117 
 

https://doi.org/10.1038/s41598-018-32511-1 

Wang, J., He, T., Lv, C., Chen, Y., & Jian, W. (2010). Mapping soil organic matter based on land 

degradation spectral response units using Hyperion images. International Journal of Applied 

Earth Observation and Geoinformation, 12(SUPPL. 2), S171–S180. 

https://doi.org/10.1016/j.jag.2010.01.002 

Waruru, B. K., Shepherd, K. D., Ndegwa, G. M., Sila, A., & Kamoni, P. T. (2015). Application of 

mid-infrared spectroscopy for rapid characterization of key soil properties for engineering 

land use. Soils and Foundations, 55(5), 1181–1195. 

https://doi.org/10.1016/j.sandf.2015.09.018 

Waruru, Bernard K., Shepherd, K. D., Ndegwa, G. M., Kamoni, P. T., & Sila, A. M. (2014). Rapid 

estimation of soil engineering properties using diffuse reflectance near infrared spectroscopy. 

Biosystems Engineering, 121, 177–185. https://doi.org/10.1016/j.biosystemseng.2014.03.003 

Washington-Allen, R. A., West, N. E., Ramsey, R. D., & Efroymson, R. A. (2006). A protocol for 

retrospective remote sensing-based ecological monitoring of rangelands. Rangeland Ecology 

and Management, 59(1), 19–29. https://doi.org/10.2111/04-116R2.1 

Wei, X., Shao, M., Gale, W., & Li, L. (2014). Global pattern of soil carbon losses due to the 

conversion of forests to agricultural land. Scientific Reports, 4(1), 4062. 

https://doi.org/10.1038/srep04062 

Wei, Y. C., Zhao, M. F., Zhu, C. Da, Zhang, X. X., & Pan, J. J. (2022). Predicting soil property in 

hilly regions by using landscape and multiscale micro-landform features. Chinese Journal of 

Applied Ecology, 33(2), 467–476. https://doi.org/10.13287/j.1001-9332.202202.013 

Weil, R., Brady, N. . (2016). The Nature and Properties of Soils. 15th Edition. Pearson Education. 

Wiesmeier, M., Barthold, F., Blank, B., & Kögel-Knabner, I. (2011). Digital mapping of soil 

organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant 

and Soil, 340(1), 7–24. https://doi.org/10.1007/s11104-010-0425-z 

Wijewardane, N. K., Ge, Y., Wills, S., & Libohova, Z. (2018). Predicting Physical and Chemical 

Properties of US Soils with a Mid-Infrared Reflectance Spectral Library. Soil Science Society 

of America Journal, 82(3), 722–731. https://doi.org/10.2136/sssaj2017.10.0361 

Wijewardane, N. K., Ge, Y., Wills, S., & Loecke, T. (2016). Prediction of Soil Carbon in the 

Conterminous United States: Visible and Near Infrared Reflectance Spectroscopy Analysis 

of the Rapid Carbon Assessment Project. Soil Science Society of America Journal, 80(4), 

973–982. https://doi.org/10.2136/sssaj2016.02.0052 

Wilcox, C. H., Frazier, B. E., & Ball, S. T. (1994). Relationship between soil organic carbon and 

Landsat TM data in eastern Washington. Photogrammetric Engineering and Remote Sensing, 

60(6), 777–781. 

Wilford, J. R., Bierwirth, P. N., & Craig, M. A. (1997). Application of airborne gamma-ray 

spectrometry in soil/regolith mapping and applied geomorphology. AGSO Journal of 

Australian Geology and Geophysics, 17(2), 201–216. 

Wilson, J.P., Gallant, J.C. (2000). Digital Terrain Analysis. In: J.P. Wilson, J.C. Gallant (Eds.), 

Terrain analysis: Principles and Applications. John Wiley & Sons, Inc, New York, 1–27. 

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. 

Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. 

https://doi.org/10.1016/S0169-7439(01)00155-1 

Workman, J., & Mark, H. (2004). Chemometrics in spectroscopy comparison of goodness of fit 

statistics for linear regression, part I. Spectroscopy (Santa Monica), 19(4), 38–41. 

Yadav, A., Saraswat, S., & Faujdar, N. (2022). Geological Information Extraction from Satellite 



118 
 

Imagery Using Machine Learning. 2022 10th International Conference on Reliability, 

Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2022, 1–5. 

https://doi.org/10.1109/ICRITO56286.2022.9964623 

Yang, M., Chen, S., Guo, X., Shi, Z., & Zhao, X. (2023). Exploring the Potential of vis-NIR 

Spectroscopy as a Covariate in Soil Organic Matter Mapping. Remote Sensing, 15(6), 1617. 

https://doi.org/10.3390/rs15061617 

Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate 

and land cover changes in Europe. Science of the Total Environment, 557–558, 838–850. 

https://doi.org/10.1016/j.scitotenv.2016.03.085 

Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., & Finke, P. (2019). Digital mapping of soil 

properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 

338, 445–452. https://doi.org/10.1016/j.geoderma.2018.09.006 

Zhai, M. (2019). Inversion of organic matter content in wetland soil based on Landsat 8 remote 

sensing image. Journal of Visual Communication and Image Representation, 64, 102645. 

https://doi.org/10.1016/j.jvcir.2019.102645 

Zhang, F., Zhan, J., Zhang, Q., Yao, L., & Liu, W. (2017). Impacts of land use/cover change on 

terrestrial carbon stocks in Uganda. Physics and Chemistry of the Earth, 101, 195–203. 

https://doi.org/10.1016/j.pce.2017.03.005 

Zhang, P., Wang, Y., Sun, H., Qi, L., Liu, H., & Wang, Z. (2021). Spatial variation and distribution 

of soil organic carbon in an urban ecosystem from high-density sampling. Catena, 204, 

105364. https://doi.org/10.1016/j.catena.2021.105364 

Zhang, S. J., Zhu, A. X., Liu, J., Yang, L., Qin, C. Z., & An, Y. M. (2016). An heuristic uncertainty 

directed field sampling design for digital soil mapping. Geoderma, 267, 123–136. 

https://doi.org/10.1016/j.geoderma.2015.12.009 

Zhang, Yangchengsi, Guo, L., Chen, Y., Shi, T., Luo, M., Ju, Q. L., Zhang, H., & Wang, S. (2019). 

Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan 

Plain in Hubei Province, China. Remote Sensing, 11(14), 1683. 

https://doi.org/10.3390/rs11141683 

Zhang, Yue, Shen, H., Gao, Q., & Zhao, L. (2020). Estimating soil organic carbon and pH in Jilin 

Province using Landsat and ancillary data. Soil Science Society of America Journal, 84(2), 

556–567. https://doi.org/10.1002/saj2.20056 

Zhou, Q. (2017). Digital Elevation Model and Digital Surface Model. In International 

Encyclopedia of Geography (pp. 1–17). Wiley. 

https://doi.org/10.1002/9781118786352.wbieg0768 

Zhou, Y., Chen, S., Zhu, A. X., Hu, B., Shi, Z., & Li, Y. (2021). Revealing the scale- and location-

specific controlling factors of soil organic carbon in Tibet. Geoderma, 382, 114713. 

https://doi.org/10.1016/j.geoderma.2020.114713 

 

 


