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ELŐSZÓ 

 

 

 

Az Eszterházy Károly Egyetem kiemelt figyelmet fordít kutatási eredményeinek, valamint 

innovációinak a megismertetésére mind szélesebb körben konferenciák, workshopok, 

nyomtatott és elektronikus folyóiratok formájában egyaránt. 

Ez utóbbi megvalósításához nyújt lehetőséget az intézmény számára a TÁMOP-4.2.3-

12/1/1KONV-2012-0047 „Kutatási eredmények és innovációk disszeminációja az energetikai 

biomassza (zöldenergia) termelés, átalakítás, hasznosítás a vidékfejlesztés és a környezeti 

fenntarthatóság terén a Zöld Magyarországért” program, melynek keretében útnak indítjuk a 

„Journal of Central European Green Innovation (JCEGI)” című elektronikus folyóiratot. 

Az intézményben folyó széles körű kutatások egyik kiemelt iránya a fizika, azon belül is a 

femtoszkópia. Több mint egy évtizeddel ezelőtt, 2005-ben Workshop on Particle Correlations 

and Femtoscopy (WPCF) elnevezéssel új konferencia sorozat indult, amelynek célja a 

mikrométer milliomod része ezredrészén, a femtométer hossztartományban történő 

távolságmérések szakterülete, a femtoszkópia éves fejlődésének áttekintése. A X. jubileumi 

konferencia megrendezésére a gyöngyösi Károly Róbert Főiskola, a Magyar Tudományos 

Akadémia Wigner Fizikai Kutatóközpontja és az Eötvös Lóránd Tudományegyetem csapata 

nyerte el a jogot, így a jubileumi, 10. WPCF konferenciának a Károly Róbert Főiskola adott 

otthont 2014. augusztus 25-29. között. A rendezvénynek 85 résztvevője volt, 73 előadás 

hangzott el, 37 doktorandusz jött el a világ 23 országából, 5 nap alatt 4 világrész femtoszkópiai 

eredményeit tekintve át. 

Jelen kötetben a konferencia legérdekesebb eredményeit közöljük. Részletesebb konferencia 

összefoglaló tanulmányt pedig a JCEGI korábbi kötetében (JCEGI, 2(4) pp. 183-187 (2014)) 

talál az olvasó. 

A WPCF 2014 konferencia szervezése elektronikusan történt, így a rendezvény teljes anyaga 

(beleértve a résztvevők listáját, az előadások anyagait, illetve a konferenciakötet elektronikus 

archivumát) megtalálható a konferencia honlapján: 

https://indico.cern.ch/e/wpcf2014  

 

 

A WPCF 2014 konferenciakiadványt szerkesztette: 

 

Csanád M. (tudományos titkár)    Csörgő T. (elnök)    Novák T. (társelnök) 

A szerkesztők 

 

 

 

 

http://greeneconomy.karolyrobert.hu/sites/greeneconomy.foiskola.krf/files/upload/h%C3%ADr3.pdf
https://indico.cern.ch/e/wpcf2014
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A WPCF2014 KONRENECIA TÁMOGATÓI 

Ezúton is szeretnénk köszönetet mondani támogatóinknak a segítségnyújtásukért, mely 

nagyban hozzájárult ahhoz, hogy a WPCF 2014 egy valóban sikeres, inspiráló és hasznos 

konferencia legyen. Külön szeretnénk köszönetet mondani az alábbiaknak 

 Academia Humana Foundation, Budapest, Magyarország; 

 Berze Secondary/Middle School, and Berze Science Club Gyöngyös, Magyarország; 

 CERN, Genf, Svájc; 

 Eötvös University, Budapest, Hungary; 

 Hungarian Academy of Sciences, Budapest, Magyarország; 

 Károly Róbert College, Gyöngyös, Magyarország; 

 OTKA, Budapest, Magyarország; 

 Rubik Studio, Budapest, Magyarország; 

 TÁMOP 4.1.1.C-12/1/KONV-2012-0001 "KEZEK – Észak-Magyarország 

felsőoktatási intézményeinek együttműködése" 

 TÁMOP-4.1.1.C-12/1/KONV - 2012-0012 "Zöld Energia Felsőoktatási 

Együttműködés" 

 TÁMOP-4.2.3-12/1/1KONV-2012-0047 „Kutatási eredmények és innovációk 

disszeminációja…” 

 Széchenyi 2020 fund by the Europan Union and the Government of Hungary; 

 US Department of Energy, USA; 

 MTA Wigner Fizikai Kutatóközpont, Budapest, Magyarország; 

 anonim magánvállalkozások Gyöngyös környékéről, Magyarország; 

 anonim magánszemélyek Gyöngyös környékéről, Magyarország. 

Ez a lista a konferenciakötet zárásakor készült. 

 

 

 

http://pictorialsreview.blogspot.hu/
http://www.berze.hu/
https://sites.google.com/site/berzetok/
http://www.cern.ch/
http://www.elte.hu/
http://www.mta.hu/
http://honlap.karolyrobert.hu/
http://www.otka.hu/
http://www.rubik.hu/
http://uni-miskolc.hu/kezek/index.php?p=projekt
http://www.nyme.hu/index.php?id=23686&L=1&id=23686
https://www.palyazat.gov.hu/node/55545
https://indico.cern.ch/event/300974/picture/11.jpg
http://www.doe.gov/
http://wigner.mta.hu/
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INTRODUCTION 

 

 

 

Eszterházy Károly University pays special attention to disseminate its research results and 

innovations increasingly as widely as possible in conferences and workshops as well as in print 

and electronic journals. 

The implementation of the latter by the institution is aided by the TÁMOP-4.2.3-12/1/1KONV-

2012-0047 program “dissemination of research results and innovations in the field of biomass 

energy (green energy) production, transformation and utilization in the field of rural 

development and environmental sustainability for a Green Hungary” in the framework of which 

the electronic version of the “Journal of Central European Green Innovation” will be 

launched. 

One of the key directions of the wide range of research at the institution is physics, within it 

femtoscopy. More than ten years ago, in 2005, a new series of international Workshop on 

Particle Correlations and Femtoscopy (WPCF) conferences was initiated and started, with the 

aim of overviewing the annual developments in femtoscopy, the science of measuring length 

scales in the range of a femtometer, corresponding to a thousandth part of a millionth part of a 

micrometer or 10-15 m. The 10th, anniversary conference was organized by a consortium of 

the Wigner Research Centre for Physics (Wigner RCP), the Eötvös University (ELTE), both 

located in Budapest and by the Károly Róbert College (KRF), located in Gyöngyös. Hungary. 

The Károly Róbert College of Gyöngyös provided the site for the anniversary, 10th WPCF 

meeting in the period of August 25-29, 2014. 

In the present publication of JCEGI the most interesting results of the conference are published. 

A more detailed conference summary can be found in the former edition of this electronic 

journal. (JCEGI, 2(4) pp. 189-194 (2014)) 

WPCF 2014 was organized mainly electronically, and the conference materials (including the 

full list of participants, archive of the talks and electronic archive of the proceedings) is archived 

and availabe from the home page of WPCF 2014 at 

https://indico.cern.ch/e/wpcf2014  

 

 

The proceedings of WPCF 2014 was edited by: 

 

M. Csanád (Scientific Secretary)    T. Csörgő (Chair)   T. Novák (Co-Chair) 

The Editors 

 

 

http://greeneconomy.karolyrobert.hu/sites/greeneconomy.foiskola.krf/files/upload/h%C3%ADr4.pdf
https://indico.cern.ch/e/wpcf2014
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SUPPORTERS OF WPCF2014 

We would like to sincerely thank for the various contributions from our supporters that helped 

us to organize WPCF 2014 as a gateway to knowledge and to create an inspiring and useful, 

successful meeting in Gyöngyös, Hungary. In particular, we would like to express our gratitude 

to: 

 Academia Humana Foundation, Budapest, Hungary; 

 Berze Secondary/Middle School, and Berze Science Club Gyöngyös, Hungary; 

 CERN, Geneva, Switzerland; 

 Eötvös University, Budapest, Hungary; 

 Hungarian Academy of Sciences, Budapest, Hungary; 

 Károly Róbert College, Gyöngyös, Hungary; 

 OTKA, Hungarian National Science Fund, Budapest, Hungary 

 Rubik Studio, Budapest, Hungary; 

 TÁMOP 4.1.1.C-12/1/KONV-2012-0001 "KEZEK – Észak-Magyarország 

felsőoktatási intézményeinek együttműködése" 

 TÁMOP-4.1.1.C-12/1/KONV - 2012-0012 "Zöld Energia Felsőoktatási 

Együttműködés" 

 TÁMOP-4.2.3-12/1/1KONV-2012-0047 „Kutatási eredmények és innovációk 

disszeminációja…” 

 Széchenyi 2020 fund by the Europan Union and the Government of Hungary; 

 US Department of Energy, USA; 

 Wigner Research Centre, Hungarian Academy of Sciences, Budapest, Hungary; 

 an anonymous private company from Gyöngyös region, Hungary; 

 some anonymous private persons from Gyöngyös region, Hungary. 

This is the full list of WPCF2014 supporters and patrons, at the time of finalizing the 

proceedings of the conference. 

 

 

 

http://pictorialsreview.blogspot.hu/
http://www.berze.hu/
https://sites.google.com/site/berzetok/
http://www.cern.ch/
http://www.elte.hu/
http://www.mta.hu/
http://honlap.karolyrobert.hu/
http://www.otka.hu/
http://www.rubik.hu/
http://uni-miskolc.hu/kezek/index.php?p=projekt
http://www.nyme.hu/index.php?id=23686&L=1&id=23686
https://www.palyazat.gov.hu/node/55545
https://indico.cern.ch/event/300974/picture/11.jpg
http://www.doe.gov/
http://wigner.mta.hu/
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Finite size of hadrons and Bose-Einstein
correlations
Andrzej Bialas

M. Smoluchowski Institute of Physics,
Jagellonian University, PL-30-059 Krakow

Abstract
In this presentation I report on the results of the paper we published re-

cently together with Kacper Zalewski [1]. It exploits the consequences of the
observation that the hadrons, being the composite objects, cannot be pro-
duced too close to each other and thus must be correlated in space-time. One
of these consequences, which we discuss here, is that the correlation function
need not be larger than 1 (as is necessary if the space-time correlations are
absent). Since the data from LEP [2, 3] and from LHC [4] do show that the
correlation function falls below 1, the particles must be correlated and we
show that our observation does explain this unexpected effect.

In absence of correlations between produced hadrons, the Bose-Einstein corre-
lation function between momenta of two identical particles

C(p1, p2) =
N(p1, p2)

N(p1)N(p2)
(1)

is given by [5]

C(p1, p2) =
w̃(P12;Q)w̃(P12;−Q)

w(p1)w(p2)
= 1 +

|w̃(P12;Q)|2

w(p1)w(p2)
≥ 1 (2)

where w(p, x) is the single-particle “distribution” (Wigner function) and

w̃(P12;Q) =

∫
dxeiQxw(P12;x); w(p) =

∫
dxw(p;x), (3)

13
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Figure 1: L3 data for two-jet and three-jet events.

Figure 2: Two-pion correlation function from CMS (pp at 7 TeV)
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Figure 3: Illustration of the excluded volume effect.

P12 = (p1 + p2)/2; Q = p1− p2.
In Fig. 1 the data from L3 collaboration and in Fig. 2 the data from CMS

collaboration are shown. They clearly indicate that the correlation function C(q)
takes values below 1, contrary to the Eq. (2)

These data show that particles must be correlated and we claim that the cor-
relations responsible for this effect are caused by the composite nature of hadrons.
Indeed, since hadrons are composite, they cannot be produced too close to each
other because in this case they are not hadrons anymore but rather a mixture of
the hadronic constituents. This is illustrated in Fig. 3.

Since the HBT experiment measures the quantum interference between the
wave functions of hadrons, it cannot see hadrons which are too close to each other.
Consequently the “source function” W (P12;P12;x1;x2) must vanish at x1 close
to x2 and thus can be written as

w(P, x) = e−|~x|
2/R2

e−t
2/τ2

f(P )

W (P12;P12;x1;x2) = w(P12;x1)w(P12;x2)[1−D(x1 − x2)]. (4)

where the cut-off function D(x1 − x2) equal 1 and (x1 − x2) (below, say, 1 fm)
and vanishes at larger distances.

Thus the HBT correlation function becomes:

C(p1, p2) = 1 +
|w̃(P12;Q)|2

w(p1)w(p2)
− Ccorr(p1, p2); (5)

Ccorr =

∫
dx1dx2e

i(x1−x2)Qw(P12;x1)w(P12;x2)D(x1 − x2)

w(p1)w(p2)

One sees that the contribution from the part responsible for space-time correlation
is negative. Moreover, since it obtains contribution from a small region of space-
time, its dependence on Q is much less steep than that of the uncorrelated part.
Consequently, at Q large enough C(P12;Q)may easily fall below one.

For illustration, take D(x1−x2) = Θ[r2cut− |~x1− ~x2|2− (t1− t2)2]; The result
is shown in Fig. 4 where one sees that, indeed, C(Q) is smaller than 1 at Q larger
than 400 MeV.

15
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Figure 4: Oscillating two-pion correlation function. R = rcut = τ = 1 fm.

In conclusion, the presented qualitative argument shows that the observed falling
of the HBT correlation function below one at large Q is not accidental but re ects
the fundamental fact that hadrons are NOT POINT-LIKE. Therefore this region
of Q2 deserves special attention in data analysis. It seems that the effect simply
MUST BE THERE and the real experimental challenge is to determine its position
and its size. Precise measurements may allow to determine the distance at which
the hadron structure is affected by its neighbors and thus also the density at which
the hadron gas starts melting into quarks and gluons.

More serious calculations, as well as a detailed comparison with data are clearly
needed and are in progress (together with W.Florkowski) [6]. The preliminary results
indicate that the effect significantly depends on the orientation of Q. This points
to interest in separate measurements in side, out and long directions.
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Event geometrical anisotropy and fluctuation
viewed by HBT interferometry

Takafumi Niida
University of Tsukuba

1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan

Abstract
Azimuthal angle dependence of the pion source radii was measured ap-

plying the event shape selection at the PHENIX experiment. The measured
final source eccentricity is found to be enhanced when selecting events with
higher magnitude of the second-order flow vector, as well as the elliptic flow
coefficient v2. The spatial twist of the particle-emitting source was also ex-
plored using a transport model. Results indicate a possible twisted source in
the final state due to the initial longitudinal fluctuations.

1 Introduction

Higher-order flow coefficients vn are useful observables to constrain the properties
of the quark-gluon plasma, such as a shear viscosity over entropy density ratio, in
heavy ion collisions [1, 2]. The vn are found to largely fluctuate in each event even
if the collision centrality is fixed [3], which is due to the initial spatial fluctuation
of participating nucleons. To control such event-by-event initial fluctuations, the
event shape engineering was suggested [4]. The event shape engineering can be
performed by selecting the magnitude of the event flow vector Q2:

Q2 =
√
q2
2,x + q2

2,y/
√
M, (1)

q2,x =
∑
i

wi cos(2φi), q2,y =
∑
i

wi sin(2φi),

17
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where M is the particle multiplicity, φi is the azimuthal angle of particles, and wi is
a weight for particle i. The magnitude of Q2 is proportional to the strength of event-
by-event v2 and also reflects the resolution of the second order event plane. This
technique could allow us to test the effect of the initial geometry on the final state
distribution of emitted particles, which help to understand the medium response
through the system evolution.

The event shape engineering focuses on the fluctuations in the transverse plane.
It is naturally considered that there would be the fluctuations not only in the trans-
verse plane but also in the longitudinal direction. The presence of such fluctuations
could cause a twisted source along the longitudinal direction [5]. The number of
participants going to the forward and backward directions would be different, and
therefore participant planes might also be different. As a result, the event plane
angle in the final state could be different between the forward and backward an-
gles. Thus the initial spatial twist may survive in the final state as well as a twisted
flow [8, 9].

In this proceedings, we present results on HBT measurements using charged
pions and applying the event shape engineering technique for Au+Au collisions at√
s
NN

=200 GeV recorded with the PHENIX experiment. Also, we examine the
possibility of a spatially twisted source in the final state using HBT interferometry
in AMPT model.

2 The event shape engineering at the PHENIX

The flow vector was determined by the Reaction Plane Detector (RXN, 1 < |η| <
2.8). In our analysis, the wi in Eq. (2) reflects the multiplicity or energy measured
in a segment i of the RXN and M is

∑
wi. The tracking for charged particles was

performed by the Drift Chamber and the Pad Chamber, and the particle identifica-
tion was done by the electromagnetic calorimeter, where they have the acceptance
of |η| < 0.35 and |φ| < π/2 in the west and east central arms.

The measured Q2 distributions were fitted with the Bessel-Gaussian function [4],
and then the events were classified with the magnitude of Q2. Figure 1 shows
charged hadron v2 for the higher 20% and the lower 30% Q2 events. Results
without Q2 selection are also plotted for the comparison. The effect of Q2 selection
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Figure 1: Charged hadron v2 as a function of pT for four centrally bins with and
without the Q2 selection in Au+Au 200 GeV collisions. The lower and higher
Q2 events were selected.

on the v2 is clearly observed, that is, the higher (lower) Q2 enhances (decreases)
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the strength of v2 compared to the v2 without the Q2 selection.
Then the Q2 selection was applied to the HBT measurements using charged

pion pairs. In the HBT analysis, pion pairs were analyzed with the out-side-long
parameterization [10, 11] in the longitudinally co-moving system. The effect of
the event plane resolution was also corrected for both cases with and without Q2

selection. Figure 2(left) shows the extracted pion HBT radii, R2
s and R2

o, as a
function of azimuthal pair angle φ relative to the second-order event plane Ψ2.
Results show that the higher Q2 selection increases the oscillation strength compared
to the case without Q2 selection.

These oscillations of HBT radii are supposed to be sensitive to the final source
eccentricity at freeze-out, εfinal. Blast-wave studies suggest that the quantity of
2R2

s,2/Rs,0 would be a good probe of εfinal in the limit of kT = 0, where kT denotes
a mean transverse momentum of pairs. The oscillation amplitudes of R2

s and R2
o in a

form of the final eccentricity are plotted as a function of the number of participants
calculated by Glauber model in Fig. 2(right). The higher Q2 selection enhances the
measured εfinal as well as v2. It could be originating from a larger initial eccentricity,
although there should be a bias from selecting the larger v2 events because the radii
modulations also depend on the anisotropy in the momentum space [6, 7].
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Figure 2: (Left and center) Azimuthal angle dependence of R2
s and R2

o relative
to Ψ2. (Right) 2nd-order azimuthal oscillation on R2

s and R2
o. In both panels,

results with and without higher Q2 selection are shown.

3 Study on the event twist effect

The data of Pb+Pb 2.76 TeV collisions simulated using a Multi Phase Transport
Model (AMPT, v2.25 with string melting) were used for the study on the twist effect
of the particle-emitting source in the final state. The impact parameter was fixed
to 8 fm. For the HBT study, the interference effect between two identical particles,
1 + cos(∆r · ∆p), was calculated and weighted to the relative pair momentum
distributions. Then the correlation functions were reconstructed by taking a ratio
of the distributions with and without the weight. Also, all charged pions were
allowed to make a pair with each other including π+π− to increase the statistics
(the consistency between results for positive and negative pairs was checked). The
event plane was determined using particles in 4 < |η| < 6, where particles were
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divided into two sub-groups. A set of forward and backward event planes (ΨF
2 ,Ψ

B
2 )

were used for the event cut which requires finite difference between ΨF
2 and ΨB

2 as a
event twist selection, whereas the other set of event planes was used for a reference
angle of azimuthal HBT measurements. The effect of the event plane resolution
was not taken into account in this study, assuming the resolution hardly affects the
phase of the radii oscillations but the magnitude of the oscillations.

Figure 3 shows R2
s , R2

o, and R2
os as a function of azimuthal pair angle relative

to the ΨB
2 (∆φ) for four η regions, where (ΨB

2 − ΨF
2 ) > 0.6 was required. The

oscillations of the HBT radii measured in η > 0 are shifted to the direction of
∆φ < 0, which is the direction of ΨF

2 in the current event cut. This phase shift can
be understood to be a possible twist effect in the final source distribution. The radii
oscillations measured in η < 0 have no phase shift because the negative η is closer to
the backward angle used for a reference of the HBT measurement and therefore the
twist effect is supposed to be small. Figure 4 shows all the extracted radii parameters
measured with respect to ΨB

2 and ΨF
2 with the event cut of (ΨB

2 −ΨF
2 ) > 0.6. The

phase shift can be seen in the transverse radii (not in the longitudinal radii including
the cross terms) when comparing the results for ΨB

2 and ΨF
2 in the same η region.

It indicates the twist of the event plane angles in the backward and forward angles.
These oscillations were fitted with the following functions:

R2
µ(∆φ) = R2

µ,0 + 2R2
µ,2 cos(2∆φ+ α) (for µ = o, s), (2)

R2
µ(∆φ) = R2

µ,0 + 2R2
µ,2 sin(2∆φ+ α) (for µ = os), (3)

to extract the magnitude of the phase shift (α). The phase shift parameter α
obtained from the results with respect to ΨF

2 and ΨB
2 is plotted as a function of

η in Fig. 4. The α increases going from backward to forward angle in all cases.
The variation of α in the η dependence is comparable to the difference between
results relative to ΨF

2 and ΨB
2 at the same η. The finite slope in the η dependence

of α indicates the twisted source in the final state due to the initial longitudinal
fluctuations, as well as the twisted event plane and flow as discussed in Ref. [8, 9].
In this study, the effect of the event plane resolution is assumed to be negligible,
but there should be an uncertainty derived from the event cut of (ΨB

2 − ΨF
2 ) and

their finite event plane resolutions.
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Figure 3: Azimuthal angle dependence of R2
s , R2

o, and R2
os relative to the back-

ward Ψ2 with the event cut of (ΨB
2 − ΨF

2 ) > 0.6, where the dashed lines show
R2

os = 0 and the dotted lines show ∆φ = π/2.
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Figure 4: Azimuthal angle dependence of the radii parameters relative to the
backward and forward Ψ2 with the event cut of (ΨB

2 − ΨF
2 ) > 0.6, where the

dashed lines show R2
os = 0.

4 Summary

We presented the results of HBT measurements using the event shape engineering
for Au+Au collisions at √s

NN
= 200 GeV at the PHENIX experiment. We found

that the higher Q2 selection enhances the measured final source eccentricity as well
as v2. Although the model comparison is needed to disentangle both spatial and
dynamical effects on the HBT radii, this study would clarify the relation between
the initial and final source eccentricities and constrain better the system dynamics.

We also studied the event twist effect using AMPT model. When selecting
events with finite difference between forward and backward event plane angles, the
oscillations of HBT radii are shifted in the phase and the phase shift increases with
η. The results indicate a possible twisted source in the final state preserving the
initial twist due to the longitudinal fluctuations. This effect might be measured in
experiments at RHIC and the LHC.

Both techniques could be useful to probe and control initial fluctuations in
transverse plane and longitudinal directions, as well as to study the response of the
system to the space-time evolution.
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Multiplicity, Jet, and Transverse Mass dependence
of Bose-Einstein Correlations in e+e−- Annihilation∗

Wesley J. Metzger1,
1IMAPP, Radboud University, 6525 AJ Nijmegen, The Netherlands

Abstract

Bose-Einstein correlations of pairs of identical charged pions produced
in hadronic Z decays are analyzed for both two- and three-jet events. A
parametrization suggested by the τ -model is used to investigate the depen-
dence of the Bose-Einstein correlation function on track multiplicity, number
of jets, and transverse momentum.

1 Introduction

After a brief review of relevant previous results, new preliminary results are pre-
sented on the dependence of the Bose-Einstein correlation function on track and
jet multiplicity and transverse momentum, using a parametrization which has been
found [1] to describe well Bose-Einstein correlations (BEC) in hadronic Z decay,
namely that of the τ -model [2, 3],

1.1 Review

The Bose-Einstein correlation function, R2, is usually parametrized as

R2 = γ
[
1 + λ exp

(
− (rQ)

2
)]

(1 + εQ) , (1)

∗This talk was also given at XLIV International Symposium on Multiparticle Dynamics,
Bologna, 8–12 September 2014.
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Figure 1: λ and r at
√
s = MZ found in the lep experiments [4–10].

and is measured by R2(Q) = ρ(Q)/ρ0(Q), where ρ(Q) is the density of identi-
cal boson pairs with invariant four-momentum difference Q =

√
−(p1 − p2)2 and

ρ0(Q) is the similar density in an artificially constructed reference sample, which
should differ from the data only in that it does not contain BEC.

Dependence on the reference sample Two methods were frequently used at
lep to construct ρ0: unlike-sign pion pairs from the same event, and like-sign pairs
from different events. The latter method is generally referred to as mixed events.
However, it must be pointed out that the observed values of the parameters r and
λ depend to a great extent on which reference sample is used. This is clearly seen
in Fig. 1 where the values of λ and r found for charged-pion pairs from hadronic Z
decays by the lep experiments aleph [4, 5], delphi [6], l3 [7] and opal [8–10]
are displayed. Solid points are corrected for pion purity; open points are not. This
correction increases the value of λ but has little effect on the value of r. All of the
results with r > 0.7 fm were obtained using an unlike-sign reference sample, while
those with smaller r were obtained with a mixed reference sample. The choice of
reference sample clearly has a large effect on the observed values of λ and r. In
comparing results we must therefore be sure that the reference samples used are
comparable.

Dependence on the particle mass It has been suggested, on several grounds
[17], that r should depend on the particle mass as r ∝ 1/

√
m. Values of r found

at lep for various types of particle are shown in Fig. 2. Comparing only results
using the same type of reference sample (in this case mixed), we see no evidence
for a 1/

√
m dependence. Rather, the data suggest one value of r for mesons and

a smaller value for baryons. The value for baryons, about 0.1 fm, seems very small,
since the size of a proton is an order of magnitude greater. If true it is telling us
something unexpected about the mechanism of baryon production.
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Figure 2: Dependence of r on the mass of the particle as determined at
√
s = MZ

from 2-particle BEC for charged pions [4–10], charged kaons [11,12] and neutral
kaons [11,13,14] and from Fermi-Dirac correlations for protons [13] and lambdas
[15,16]. The curves illustrate a 1/

√
m dependence.

Dependence on the transverse mass However, r has been observed to de-
pend on the transverse mass of the particle pair, [18, 19] as is shown in Fig. 3.

Dependence on particle and jet multiplicity The opal collaboration has
studied the dependence of r and λ on the charged track multiplicity and on the
number of jets [9]. They used an opposite-sign reference sample, which necessitated
the exclusion of regions of Q where R2 was too strongly affected by resonances in
the reference sample. To describe the long-range correlations they introduced a
quadratic term resulting in

R2(Q) = γ
[
1 + λ exp

(
−(rQ)2

)] (
1 + εQ+ δQ2

)
. (2)

longitudinal side out

Figure 3: The transverse mass dependence of the components of r in the LCMS
from Refs. 18,19.
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They observed a linear rise of r with charged track multiplicity as well as an
increase of r with the number of jets. The behavior of λ was the opposite. However,
when only two-jet (or only three-jet) events were selected, r was approximately
independent of multiplicity.

1.2 τ-model

However, the “classic” parametrization of Eq. (1) is found to be inadequate, even
when it is generalized to allow for a Lévy distribution of the source:

R2 = γ [1 + λ exp (− (rQ)
α

)] (1 + εQ) , 0 < α ≤ 2 (3)

This was not realized for a long time because the correlation function was only
plotted up to Q = 2 GeV or less. In Ref. 1 Q was plotted to 4 GeV, and it became
apparent that there is a region of anti-correlation (R2 < 1) extending from about
Q = 0.5 to 1.5 GeV. This anti-correlation, as well as the BEC correlation are well
described by the τ -model.

In the τ -model R2 is found to depend not only on Q, but also on quantities a1
and a2. For two-jet events a = 1/mt, where mt =

√
m2 + p2t is the transverse mass

of a particle). Parameters of the model are the parameters of the Lévy distribution
which describes the proper time of particle emission: α, the index of stability of the
Lévy distribution; a width parameter ∆τ ; and the proper time τ0 at which particle
production begins.

We shall use a simplified parametrization [1] where τ0 is assumed to be zero and
a1 and a2 are combined with ∆τ to form an effective radius R:

R2(Q) = γ
[
1 + λ cos

(
(RaQ)

2α
)

exp
(
− (RQ)

2α
)]

(1 + εQ) , (4a)

R2α
a = tan

(απ
2

)
R2α . (4b)

Note that the difference between the parametrizations of Eqs. (3) and 4 is the
presence of the cos term, which accounts for the description of the anti-correlation.
The parameter R describes the BEC peak, and Ra describes the anti-correlation
region. While one might have had the insight to add, ad hoc, a cos term to Eq. (3),
it is the τ -model which predicts a relationship, Eq. (4b), between R and Ra.

A fit of Eq. (4) to l3 two-jet events is shown in Fig. 4, from which it is seen
that the τ -model describes both the BEC peak and the anti-correlation region quite
well. Also the three-jet data is well described [1], which is perhaps surprizing since
the τ -model is inspired by a picture of fragmentation of a single string.

It must also be pointed out that the τ -model has its shortcomings: The τ -model
predicts that R2 depends on the two-particle momentum difference only through
Q, not through components of Q. However, this is found not to be the case [1].
Nevertheless, regardless of the validity of the τ -model, Eq. (4) provides a good
description of the data. Accordingly, we shall use it in the following.

Since the results on the dependence of the BEC parameters on particle and jet
multiplicities and on transverse mass mentioned in Sect. 1.1 were obtained using the
classic Gaussian parametrization, Eq. (1), and since this parametrization has been
shown to be inadequate, in the rest of this paper we investigate these properties
using the τ -model parametrization, Eq. (4). The results are preliminary.
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Figure 4: The Bose-Einstein correlation function R2 for two-jet events. The
curve corresponds to the fit of Eq. (4). Also plotted is ∆, the difference between
the fit and the data. The dashed line represents the long-range part of the fit,
i.e., γ(1 + εQ). The figure is taken from Ref. 1.
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1.3 l3 Data

The data were collected by the l3 detector at an e+e− center-of-mass energy of√
s ' 91.2 GeV. Approximately 36 million like-sign pairs of well-measured charged

tracks from about 0.8 million hadronic Z decays are used. This data sample is
identical to that of Ref. 1.

The same event mixing technique is used to construct ρ0 as in Ref. 1.
Using the JADE algorithm, events can be classified according to the number

of jets. The number of jets in a particular event depends on the jet resolution
parameter of the algorithm, ycut. We define yJ23 as that value of ycut at which the
number of jets in the event changes from two to three. Small y23 corresponds to
narrow two-jet events, large y23 to events with three or more well-separated jets.

2 New Preliminary Results

The parameters of the Bose-Einstein correlation function have been found to depend
on charged multiplicity, the number of jets, and the transverse mass. However these
quantities are related. Both the charged particle multiplicity and the transverse mass
increase rapidly with the number of jets. This is seen in Fig. 5, where the average
transverse mass and the average charged multiplicity are plotted vs. yJ23. In the
following we investigate the dependence of R and λ on these three quantities.

An unfortunate property of the τ -model parameterization, Eq. (4), is that the
estimates of α and R from fits tend to be highly correlated. Therefore, to stabilize
the fits, α is fixed to the value 0.44, which corresponds to the value obtained in a
fit to all events.

While we show only the results using the JADE jet algorithm, we have also
performed the same analysis using the Durham algorithm. It is found to lead to the
same conclusions.

2.1 Dependence of R and λ on track and jet multiplicities

The dependence of R and λ on the detected charge multiplicity,1 is shown in Figs. 6
and 7, respectively, for two- and three-jet events as well as for all events.

For all events R is seen to increase linearly with the multiplicity, as was observed
for R by opal. However, the same linear increase is also seen for two- and three-jet
events, with R for three-jet events and for all events being approximately equal and
R for two-jet events shifted lower by about a 0.5 fm. This contrasts with the opal
observation of little dependence of r on multiplicity for two- and three-jet events.

For all events, as well as for two- and three-jet events, λ decreases with multiplic-
ity, the rate of decrease becoming less for high multiplicity. It is higher for three-jet
events than for two-jet events, with the values for all events lying in between. This
contrasts with the opal observation that λ was higher for two-jet events, as well
as the opal observation that the decrease of λ with multiplicity is linear.

1The charge multiplicity is approximately given by Nch ≈ 1.7Ndet
ch .
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Figure 6: R obtained in fits of Eq. (4) as function of detected charged multiplicity
for two-jet events (yJ23 < 0.23), for three-jet events (yJ23 > 0.23), and all events

2.2 Dependence of R and λ on trasverse mass and jet
multiplicity

The dependence of R and λ on track multiplicity is shown in Figs. 8 and 9, respec-
tively, for various selections on the transverse momentum, pt, (or, equvilantly, mt)
of the tracks. For two-jet events both R and λ are slightly higher when both tracks
have pt < 0.5 GeV than when only one track is required to have so small a pt. For
three-jet events the same may be true, but the statistical significance is less; the
difference decreases with multiplicity. When neither track has pt < 0.5 GeV, the
values of both R and λ are much lower for both two- and three-jet events. In all
cases both R and λ increase with multiplicity, and the values for two-jet events are
roughly equal to those for three-jet events.

3 Conclusions

The dependence of R and λ for the τ -model parametrization is different from that
of r and λ found by opal for the usual Gaussian parametrization. However, it is
unclear how much the differences depend on the use of different reference samples
and how much on the parametrization used.

Multiplicity, number of jets, and transverse mass all affect the values of R and
λ in the τ -model parametrization, Eq. (4).
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Figure 7: λ obtained in fits of Eq. (4) as function of detected charged multiplicity
for two-jet events (yJ23 < 0.23), for three-jet events (yJ23 > 0.23), and all events

JADE 2-jet, yJ23 < 0.023 JADE 3-jet, yJ23 > 0.023

Figure 8: R obtained in fits of Eq. (4) as function of detected charged multiplicity
(left) for two-jet events (yJ23 < 0.23) and (right) for three-jet events (yJ23 > 0.23)
with the following selections on pt: 4 both tracks having pt < 0.5 GeV; � at
least one track having pt < 0.5 GeV; O one track with pt < 0.5 GeV and one
with pt > 0.5 GeV; ◦ all tracks; � both tracks having pt > 0.5 GeV. Note that
pt = 0.5 GeV corresponds to mt = 0.52 GeV.
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JADE 2-jet, yJ23 < 0.023 JADE 3-jet, yJ23 > 0.023

Figure 9: λ obtained in fits of Eq. (4) as function of detected charged multiplicity
(left) for two-jet events (yJ23 < 0.23) and (right) for three-jet events (yJ23 > 0.23)
with the following selections on pt: 4 both tracks having pt < 0.5 GeV; � at
least one track having pt < 0.5 GeV; O one track with pt < 0.5 GeV and one
with pt > 0.5 GeV; ◦ all tracks; � both tracks having pt > 0.5 GeV. Note that
pt = 0.5 GeV corresponds to mt = 0.52 GeV.
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Femtoscopy with identified hadrons in pp, pPb,
and peripheral PbPb collisions in CMS
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Abstract
Short range correlations of identified charged hadrons in pp (

√
s = 0.9,

2.76, and 7 TeV), pPb (√sNN = 5.02 TeV), and peripheral PbPb collisions
(√sNN = 2.76 TeV) are studied with the CMS detector at the LHC. Charged
pions, kaons, and protons at low pT and in laboratory pseudorapidity |η| < 1
are identified via their energy loss in the silicon tracker. The two-particle cor-
relation functions show effects of quantum statistics, Coulomb interaction,
and also indicate the role of multi-body resonance decays and mini-jets. The
characteristics of the one-, two-, and three-dimensional correlation functions
are studied as a function of pair momentum and the charged-particle multi-
plicity of the event. The extracted radii are in the range 1-5 fm, reaching
highest values for very high multiplicity pPb, also for similar multiplicity PbPb
collisions, and decrease with increasing kT. The dependence of radii on mul-
tiplicity and kT largely factorizes and appears to be insensitive to the type of
the colliding system and center-of-mass energy.

1 Introduction

Measurements of the correlation between hadrons emitted in high energy collisions
of nucleons and nuclei can be used to study the spatial extent and shape of the
created system. The characteristic radii, the homogeneity lengths, of the particle
emitting source can be extracted with reasonable precision [1]. The topic of quan-
tum correlations was well researched in the past by the CMS Collaboration [2, 3]
using unidentified charged hadrons produced in

√
s = 0.9, 2.36, and 7 TeV pp
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Figure 1: The distribution of ln ε as a function of total momentum p, for positively
(left) and negatively (right) charged particles, in case of pPb collisions at

√
sNN =

5.02 TeV. Here ε is the most probable energy loss rate at a reference path length
l0 = 450 µm. The z scale is shown in arbitrary units and is linear. The curves
show the expected ln ε for electrons, pions, kaons, and protons (full theoretical
calculation, Eq. (30.11) in Ref. [8]).

collisions. Those studies only included one-dimensional fits (qinv) of the correlation
function. Our aim was to look for effects present in pp, pPb, and PbPb interactions
using the same analysis methods, producing results as a function of the transverse
pair momentum kT and of the fully corrected charged-particle multiplicity Ntracks

(in |η| < 2.4) of the event. In addition, not only charged pions, but also charged
kaons are studied. All details of the analysis are given in Ref. [4].

2 Data analysis

The analysis methods (event selection, reconstruction of charged particles in the
silicon tracker, finding interaction vertices, treatment of pile-up) are identical to
the ones used in the previous CMS papers on the spectra of identified charged
hadrons produced in

√
s = 0.9, 2.76, and 7 TeV pp [5] and √sNN = 5.02 TeV pPb

collisions [6]. A detailed description of the CMS (Compact Muon Solenoid) detector
can be found in Ref. [7].

For the present study 8.97, 9.62, and 6.20 M minimum bias events are used
from pp collisions at

√
s = 0.9 TeV, 2.76 TeV, and 7 TeV, respectively, while 8.95

M minimum bias events are available from pPb collisions at √sNN = 2.76 TeV. The
data samples are completed by 3.07 M peripheral (60–100%) PbPb events, where
100% corresponds to fully peripheral, 0% means fully central (head-on) collision.
The centrality percentages for PbPb are determined via measuring the sum of the
energies in the forward calorimeters.

The multiplicity of reconstructed tracks, Nrec, is obtained in the region |η| <
2.4. Over the range 0 < Nrec < 240, the events were divided into 24 classes, a
region that is well covered by the 60–100% centrality PbPb collisions. To facilitate
comparisons with models, the corresponding corrected charged particle multiplicity
Ntracks in the same acceptance of |η| < 2.4 is also determined.

The reconstruction of charged particles in CMS is bounded by the acceptance of
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the tracker and by the decreasing tracking efficiency at low momentum. Particle-by-
particle identification using specific ionization is possible in the momentum range
p < 0.15 GeV/c for electrons, p < 1.15 GeV/c for pions and kaons, and p <
2.00 GeV/c for protons (Fig. 1). In view of the (η, pT) regions where pions, kaons,
and protons can all be identified, only particles in the band −1 < η < 1 (in the
laboratory frame) were used for this measurement. In this analysis a very high
purity (> 99.5%) particle identification is required, ensuring that less than 1% of
the examined particle pairs would be fake.

2.1 Correlations

The pair distributions are binned in the number of reconstructed charged particles
Nrec of the event, in the transverse pair momentum kT = |pT,1 +pT,2|/2, and also
in the relative momentum (q) variables in the longitudinally co-moving system of the
pair. One-dimensional (qinv = |q|), two-dimensional (ql, qt), and three-dimensional
(ql, qo, qs) analyses are performed. Here qo is the component of qt parallel to kT,
qs is the component of qt perpendicular to kT.

The construction of the q distribution for the “signal” pairs is straightforward: all
valid particle pairs from the same event are taken and the corresponding histograms
are filled. There are several choices for the construction of the background. We
considered the following three prescriptions:

• particles from the actual event are paired with particles from some given
number of, in our case 25, preceding events (“event mixing”); only events
belonging to the same multiplicity (Nrec) class are mixed;

• particles from the actual event are paired, the laboratory momentum vector of
the second particle is rotated around the beam axis by 90 degrees (“rotated”);

• particles from the actual event are paired, but the laboratory momentum
vector of the second particle is negated (“mirrored”).

Based on the goodness-of-fit distributions the event mixing prescription was used
while the rotated and mirrored versions, which give worse or much worse χ2/ndf
values, were employed in the estimation of the systematic uncertainty.

The measured two-particle correlation function C2(q) is the ratio of signal and
background distributions

C2(q) =
Nsignal(q)

Nbckgnd(q)
, (1)

where the background is normalized such that it has the same integral as the sig-
nal distribution. The quantum correlation function CBE, part of C2, is the Fourier
transform of the source density distribution f(r). There are several possible func-
tional forms that are commonly used to fit CBE present in the data: Gaussian (1 +
λ exp

[
−(qR)2/(h̄c)2

]
) and exponential parametrizations (1+λ exp [−(|q|R)/(h̄c)]),

and a mixture of those in higher dimensions. (The denominator h̄c = 0.197 GeV fm
is usually omitted from the formulas, we will also do that in the following.) Fac-
torized forms are particularly popular, such as exp(−q2l R2

l − q2oR
2
o − q2sR

2
s) or

exp(−qlRl − qoRo − qsRs) with some theoretical motivation. (Here qo is the com-
ponent of the transverse relative momentum qt parallel to kT, while qs is the com-
ponent of qt perpendicular to kT.) The fit parameters are usually interpreted as
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Figure 2: Contribution of clusters (mini-jets and multi-body decays of resonances)
to the measured Coulomb-corrected correlation function of π+π− (open squares)
for some selected kT bins, 20 ≤ Nrec < 30, in case of pPb interactions at

√
sNN =

5.02 TeV. The solid curves show the result of the Gaussian fit.

chaoticity λ, and characteristic radii R, the homogeneity lengths, of the particle
emitting source.

As will be shown in Sec. 3, the exponential parametrization does a very good
job in describing all our data. It corresponds to the Cauchy (Lorentz) type source
distribution f(r) = R/(2π2

[
r2 + (R/2)2

]2
). Theoretical studies show that for the

class of stable distributions, with index of stability 0 < α ≤ 2, the Bose-Einstein
correlation function has a stretched exponential shape [9, 10]. The exponential
correlation function implies α = 1. (The Gaussian would correspond to the special
case of α = 2.) The forms used for the fits are

CBE(qinv) = 1 + λ exp [−qinvR] , (2)

CBE(ql, qt) = 1 + λ exp
[
−
√

(qlRl)2 + (qtRt)2
]
, (3)

CBE(ql, qo, qs) = 1 + λ exp
[
−
√

(qlRl)2 + (qoRo)2 + (qsRs)2
]
, (4)

meaning that the system in multi-dimensions is an ellipsoid with differing radii Rl,
Rt, or Rl, Ro, and Rs.

2.2 Coulomb interaction

After the removal of the trivial phase space effects (ratio of signal and back-
ground distributions), one of the most important source of correlations is the mutual
Coulomb interaction of the emitted charged particles. The effect of the Coulomb
interaction is taken into account by the factor K, the squared average of the rela-
tive wave function Ψ, as K(qinv) =

∫
d3r f(r) |Ψ(k, r)|2, where f(r) is the source

intensity discussed above. For pointlike source, f(r) = δ(r), and we get the Gamow
factor G(η) = |Ψ(0)|2 = 2πη/[exp(2πη)− 1], where η = ±αm/qinv is the Landau
parameter, α is the fine-structure constant, m is the mass of the particle. The
positive sign should be used for repulsion, and the negative is for attraction.

For an extended source, a more elaborate treatment is needed [11, 12]. The
use of the Bowler-Sinyukov formula [13, 14] is popular. Our data on unlike-sign
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correlation functions show that while the Gamow factor might give a reasonable
description of the Coulomb interaction for pions, it is clearly not enough for kaons. In
the q range studied in this analysis η � 1 applies. The absolute square of confluent
hypergeometric function of the first kind F , present in Ψ, can be well approximated
as |F |2 ≈ 1+2η Si(x) where Si is the sine integral function. Furthermore, for Cauchy
type source functions the factor K is nicely described by the formula K(qinv) =
G(η) [1 + πηqinvR/(1.26 + qinvR)]. In the last step we substituted qinv = 2k. The
factor π in the approximation comes from the fact that for large kr arguments
Si(kr) → π/2. Otherwise it is a simple but faithful approximation of the result of
a numerical calculation, with deviations less than 0.5%.

2.3 Clusters: mini-jets, multi-body decays of resonances

The measured unlike-sign correlation functions show contributions from various res-
onances. The seen resonances include the K0

S, the ρ(770), the f0(980), the f2(1270)
decaying to π+π−, and the φ(1020) decaying to K+K−. Also, e+e− pairs from γ
conversions, when misidentified as pion pairs, can appear as a very low qinv peak in
the π+π− spectrum. With increasing Nrec values the effect of resonances dimin-
ishes, since their contribution is quickly exceeded by the combinatorics of unrelated
particles.

Nevertheless, the Coulomb-corrected unlike-sign correlation functions are not
always close to unity at low qinv, but show a Gaussian-like hump (Fig. 2). That
structure has a varying amplitude but a stable scale (σ of the corresponding Gaus-
sian) of about 0.4 GeV/c. This feature is often related to particles emitted inside low
momentum mini-jets, but can be also attributed to the effect of multi-body decays
of resonances. In the following we will refer to those possibilities as fragmentation
of clusters, or cluster contribution. We have fitted the one-dimensional unlike-sign
correlation functions with a (Nrec, kT)-dependent Gaussian parametrization [4].
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Figure 3: The like-sign correlation function of pions (red triangles) corrected for
Coulomb interaction and cluster contribution (mini-jets and multi-body resonance
decays) as a function of qinv or the combined momentum, in some selected Nrec

bins for all kT. The solid curves indicate fits with the exponential Bose-Einstein
parametrization.
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Figure 4: The like-sign correlation function of kaons (red triangles) corrected for
Coulomb interaction and cluster contribution (mini-jets and multi-body resonance
decays) as a function of qinv, in some selected Nrec bins for all kT. The solid curves
indicate fits with the Bose-Einstein parametrization.

The cluster contribution can be also extracted in the case of like-sign correlation
function, if the momentum scale of the Bose-Einstein correlation and that of the
cluster contribution (≈ 0.4 GeV/c) are different enough. An important element
in both mini-jet and multi-body resonance decays is the conservation of electric
charge that results in a stronger correlation for unlike-sign pairs than for like-sign
pairs. Hence the cluster contribution is expected to be also present for like-sign
pairs, with similar shape but a somewhat smaller amplitude. The form of the
cluster-related contribution obtained from unlike-sign pairs, but now multiplied by
the extracted relative amplitude z, is used to fit the like-sign correlations. A selection
of correlation functions and fits are shown in Figs. 3 and 4.

In the case of two and three dimensions the measured unlike-sign correlation
functions show that instead of qinv, the length of the weighted sum of q components
is a better common variable.

3 Results

The systematic uncertainties are dominated by two sources: the dependence of
the final results on the way the background distribution is constructed, and the
uncertainties of the amplitude z of the cluster contribution for like-sign pairs with
respect to those for unlike-sign ones.

The characteristics of the extracted one- and two-dimensional correlation func-
tions as a function of the transverse pair momentum kT and of the charged-particle
multiplicity Ntracks (in the range |η| < 2.4 in the laboratory frame) of the event
are presented here. Three-dimensional results are detailed in Ref. [4]. In all the
following plots (Figs. 5–8), the results of positively and negatively charged hadrons
are averaged. For clarity, values and uncertainties of the neighboring Ntracks bins
were averaged two by two, and only the averages are plotted. The central values of
radii and chaoticity parameter λ are given by markers. The statistical uncertainties
are indicated by vertical error bars, the combined systematic uncertainties (choice
of background method; uncertainty of the relative amplitude z of the cluster con-
tribution; low q exclusion) are given by open boxes. Unless indicated, the lines are
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Figure 5: Ntracks dependence of the one-dimensional pion radius (top) and the one-
dimensional pion chaoticity parameter (bottom), shown here for several kT bins, for
all studied reactions. Lines are drawn to guide the eye.

drawn to guide the eye (cubic splines whose coefficients are found by weighing the
data points with the inverse of their squared statistical uncertainty).
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Figure 7: Ntracks dependence of the two-dimensional pion radii (Rl – open symbols,
Rt – closed symbols), shown here for several kT bins, for all studied reactions. Lines
are drawn to guide the eye.

The extracted exponential radii for pions increase with increasing Ntracks for all
systems and center-of-mass energies studied, for one, two, and three dimensions
alike. Their values are in the range 1–5 fm, reaching highest values for very high
multiplicity pPb, also for similar multiplicity PbPb collisions. The Ntracks dependence
of Rl and Rt is similar for pp and pPb in all kT bins, and that similarity also applies
to peripheral PbPb if kT > 0.4 GeV/c. In general there is an ordering, Rl > Rt,
and Rl > Rs > Ro, thus the pp and pPb source is elongated in the beam direction.
In the case of peripheral PbPb the source is quite symmetric, and shows a slightly
different Ntracks dependence, with largest differences for Rt and Ro, while there is a
good agreement for Rl and Rs. The most visible divergence between pp, pPb and
PbPb is seen in Ro that could point to the differing lifetime of the created systems
in those collisions.

The kaon radii also show some increase with Ntracks, although its magnitude is
smaller than that for pions. Longer lived resonances and rescattering may play a
role here.
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Figure 8: Left: radius parameters as a function of Ntracks scaled to kT = 0.45 GeV/c
with help of the parametrization Rparam (Eq. (5)). Right: ratio of the radius pa-
rameter and the value of the parametrization Rparam (Eq. (5)) at kT = 0.45 GeV/c
as a function kT. (Points were shifted to left and to right with respect to the center
of the kT bin for better visibility.) Upper row: R from the one-dimensional (qinv)
analysis. Middle row: Rl from the two-dimensional (ql, qt) analysis. Bottom row:
Rt from the two-dimensional (ql, qt) analysis. Fit results are indicated in the figures,
for details see text.
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3.1 Scaling

The extracted radii are in the range 1–5 fm, reaching highest values for very high
multiplicity pPb, also for similar multiplicity PbPb collisions, and decrease with
increasing kT. By fitting the radii with a product of two independent functions
of Ntracks and kT, the dependences on multiplicity and pair momentum appear to
factorize. In some cases the radii are less sensitive to the type of the colliding
system and center-of-mass energy. Radius parameters as a function of Ntracks at
kT = 0.45 GeV/c are shown in the left column of Fig. 8. We have also fitted and
plotted the following Rparam functions

Rparam(Ntracks, kT) =
[
a2 + (bNβ

tracks)
2
]1/2 · (0.2 GeV/c/kT)

γ
, (5)

where the minimal radius a and the exponents γ of kT are kept the same for a
given radius component, for all collision types. This choice of parametrization is
based on previous results [15]. The minimal radius can be connected to the size
of the proton, while the power-law dependence on Ntracks is often attributed to the
freeze-out density of hadrons. The ratio of radius parameter and the value of the
above parametrization at kT = 0.45 GeV/c as a function kT is shown in the right
column of Fig. 8.

4 Conclusions

The similarities observed in the Ntracks dependence may point to a common critical
hadron density in pp, pPb, and peripheral PbPb collisions, since the present corre-
lation technique measures the characteristic size of the system near the time of the
last interactions.

Acknowledgments

This work was supported by the Hungarian Scientific Research Fund (K 109703),
and the Swiss National Science Foundation (SCOPES 152601).

References

[1] B. Erazmus, R. Lednicky, L. Martin, D. Nouais, and J. Pluta, “Nuclear
interferometry from low-energy to ultrarelativistic nucleus-nucleus collisions.”
SUBATECH-96-03, 1996.

[2] CMS Collaboration, “Measurement of Bose-Einstein correlations with first
CMS data,” Phys. Rev. Lett. 105 (2010) 032001, arXiv:1005.3294
[hep-ex].

[3] CMS Collaboration, “Measurement of Bose-Einstein Correlations in pp
Collisions at

√
s = 0.9 and 7 TeV,” JHEP 05 (2011) 029, arXiv:1101.3518

[hep-ex].

[4] CMS Collaboration, “Femtoscopy with identified charged hadrons in pp, pPb,
and peripheral PbPb collisions at LHC energies,” CMS PAS HIN-14-013
(2014) .

44



Journal of Central European Green Innovation 4(4) pp 34-45 (2016)

[5] CMS Collaboration, “Study of the inclusive production of charged pions,
kaons, and protons in pp collisions at

√
s = 0.9, 2.76, and 7 TeV,” Eur. Phys.

J. C 72 (2012) 2164, arXiv:1207.4724 [hep-ex].

[6] CMS Collaboration, “Study of the production of charged pions, kaons, and
protons in pPb collisions at √sNN = 5.02 TeV,” Eur. Phys. J. C 74 (2014)
2847, arXiv:1307.3442 [hep-ex].

[7] CMS Collaboration, “The CMS experiment at the CERN LHC,” JINST 3
(2008) S08004.

[8] Particle Data Group, J. Beringer, et al., “Review of Particle Physics,” Phys.
Rev. D 86 (2012) 010001.
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M. Csanád, A. Szabó, S. Lökös, A. Bagoly,
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Abstract

In the last years it has been revealed that if measuring relative to higher
order event planes Ψn, higher order flow coefficients vn for n > 2 can be
measured. It also turned out that Bose-Einstein (HBT) correlation radii also
show 3rd order oscillations if measured versus the third order event plane
Ψ3. In this paper we investigate how these observables can be described via
analytic hydro solutions and hydro parameterizations. We also investigate
the time evolution of asymmetry coefficients and the mixing of velocity field
asymmetries and density asymmetries.

1 Introduction

In relativistic heavy ion collisions, an expanding and cooling medium is created,
usually referred to as the strongly interacting quark gluon plasma. Hydrodynamics
provides a tool to investigate the time evolution of this medium, and exact analytic
models are particularly useful in this regards. Usually spherical, axial or ellipsoidal
symmetry is assumed in these solutions, as these are simple to handle and rep-
resent geometries that yield realistic results for many soft observables. However,
event-by-event fluctuating nuclear distributions yield event-by-event fluctuating ini-
tial conditions, and thus higher order azimuthal asymmetries arise. In order to
describe these one has to utilize higher order asymmetries in hydro as well. This
was successfully done in numerical calculations, see for example [1, 2].

In this paper we discuss the first exact analytic solutions [3] of relativistic hydro-
dynamics that assume higher order asymmetries and thus give realistic higher order
flow coefficients. We also discuss possible extensions of this approach, by analyzing
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the time evolution of the asymmetries in a numerical approach, and by investigating
the effect of spatial versus momentum space anisotropies.

2 Multipole solutions and higher order anisotropies

The first 1+3D relativistic solution with ellipsoidal geometry was discovered in
Ref. [4]. In this solution the thermodynamic quantities at a given proper-time τ are
constant on the surfaces of an expanding ellipsoid, defined by the s scale variable

s =
r2x
X2

+
r2y
Y 2

+
r2z
Z2

, (1)

where rx,ry,rz are the spatial coordinates, while X, Y , Z are the time-dependent
axes of the ellipsoid. The velocity profile as a function of space-time coordinates xµ
is given in form of a 3D Hubble flow, i.e. uµ = xµ/τ . With these, uµ∂µs = 0 holds
(if the expansion of the axes is linear in time). In Ref. [4] it was already indicated,
that more complicated scale variables can also be written up (with uµ∂µs = 0
still holding). In Ref. [3] we showed that this solution can indeed be extended to
multipole symmetries with a generalized scale variable

s =
rN

RN
(1 + ε cos(Nφ)) (2)

With the s given in Eq. (2), the new solutions can be given in cylindrical coor-
dinates (r, φ, z) as:

s =
∑
N

rN

RN
(1 + εN cos(N(φ− ψN ))) +

zN

RN
(3)

n = nf

(τf
τ

)3
ν(s) (4)

T = Tf

(τf
τ

)3/κ 1

ν(s)
(5)

p = pf

(τf
τ

)3+3/κ

(6)

and uµ still representing a Hubble-flow, as in the original paper of Ref. [4]. In
the formula for s, ψN being the N th order reaction planes (which cancel from the
observables). This way we get new solutions with almost arbitrary shaped initial
distributions, see Fig. 1. It is important to note here that however, the initial
state fluctuation in the observed collision is present through the orientation of the
N th order reaction planes and the strength of higher order asymmetries, the event
plane orientation itself does not affect the measured quantities. Thus if every vN is
measured relatively to the N th order reaction plane, then the (event-through-event)
averaged value of vN will correspond to an average n-pole anisotropy εN .

We also calculated hadronic observables from the above solution (see details
of the freeze-out scenario in Ref [3] or Ref. [5]. A comparison to PHENIX data
on higher order harmonics measured in 200 GeV Au+Au collisions [6] is shown in
Fig. 2. Fit parameters of the model are εN (for N = 2, 3, 4), ut and b (T0 and τ0
was fixed to values given from spectra and HBT comparisons of a similar model, as
described in Refs. [3, 5]).
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Figure 1: Heat map of s values in the transverse plane, with multiple superim-
posed symmetries. The more εN components are included, the more asymmetric
the shape gets.

Figure 2: Fits to PHENIX 200 GeV Au+Au data [6] in 5 centrality bins. Fit
parameters are summarized in Ref. [3]
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Figure 3: Time evolution of energy density. Top row shows viscosity free case,
the bottom row with µ = 10MeV · fm viscosity.

3 Time evolution of the anisotropies

In the above described solution, the anisotropies don’t change over time - due to
the lack of pressure gradients and the Hubble-flow. In a numerical framework, we
investigated how the introduction of pressure gradients, various speeds of sound
and viscosity coefficients influence the time evolution of the asymmetries, when
starting from an initial condition that is very similar to one described by know
analytic solutions – except in pressure, where we used a pressure profile similar
to the density profile given in usual Hubble-expansion models [4, 3]. We used a
multi-stage predictor-corrector method outlined in Ref. [7]. This is a finite volume
scheme, where the initial flux is a weighted average of the Lax-Friedrichs and Lax-
Wendroff fluxes, called GFORCE. This flux is used to make a new prediction on
the grid points, which is used to get a better flux approximation. This procedure is
repeated for a number of times, as described e.g. in Ref. [7]. This multi-stage flux
gives results that are comparable to those of the Godunov method. We tested our
method with known analytic solutions given in Refs. [8, 4, 3]. We analyzed both
non-relativistic and relativistic hydrodynamics, and arrived at similar conclusions.

Fig. 3 shows the result of a nonrelativistic calculation of the time evolution of
the energy density. If we assume a small amount of viscosity, it makes the flow
itself and thus the disappearance of asymmetries slower. The time evolution of the
asymmetries themselves is shown in Fig. 4. In this figure we also see the effect of
speed of sound in this nonrelativistic calculation: the reduction of speed of sound
makes the asymmetries disappear slower – due to the reduction of the speed of
sound waves. A similar effect is seen in case of a relativistic calculation, as shown
in Fig. 5: the increase of κ = c−2

s makes the disappearance of asymmetries slower.
It is important to see that this also slows down the speed of cooling, which means
the system will freeze out latter.
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Figure 4: The time evolution of the asymmetry coefficients ε1,2,3,4 in the energy
density, as modified by a small amount of viscosity (left plot) and the change in
speed of sound (right plot).

Figure 5: The time evolution of the asymmetry coefficients in the energy density
in a relativistic calculation, as modified by the change in κ = c−2

s (right plot).
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4 Anisotropy mixing

It is important to see that there may be asymmetries in both momentum space
(i.e. in the velocity field) and in density (i.e. in energy density or pressure), and
both influence the measured anisotropies. To investigate this effect, we created a
multipole version of the Buda-Lund model [9], with a scale variable given in Eq. 3,
but we introduced a multipole flow field as well. We start from a “flow potential”
Φ, which gives us the flow:

v = (∂xΦ, ∂yΦ, ∂zΦ). (7)

The flow field at a given time is spherically symmetric if Φ = r2

2H with H being
a Hubble-coefficient at that given time. Elliptical symmetry is obtained with Φ =
r2

2H (1 + χ2 cos(2ϕ)), while

Φ =
r2

2H
(1 + χ2 cos(2ϕ)) +

r3

3H2
χ3 cos(3ϕ)) (8)

represents a triangular perturbation of the elliptical flow. Of course the various
anisotropies can have various event planes (symmetry planes), but the specific angle
of these does not enter into the results. Inspired by Ref. [10], we analyzed how χ2,3

and ε2,3 influence flow coefficients v2 and v3 – see results in Fig. 6. Compared to
the spatial anisotropy, velocity field anisotropy has a much larger effect on elliptic
and triangular flow coefficients.

Figure 6: Dependence of flow anisotropy coefficients v2,3 on asymmetry param-
eters χ2,3 and ε2,3. Velocity field asymmetry has a stronger influence on flow
coefficients.

5 Summary and acknowledgments

In this paper we showed an extension of the scope of analytic relativistic hydro-
dynamics to higher order azimuthal asymmetries, compatible with realistic (event-
by-event fluctuating) geometries. Higher order flow observables were calculated
from this model, and are found to be compatible with data. In the analytic model,
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anisotropy parameters were independent of time, thus we investigated their time
evolution in a numerical framework, developed for this purpose. We also inves-
tigated how velocity- and density-field anisotropies “mix”, in the framework of a
multipole Buda-Lund model. We are thankful to Tamás Csörgõ and Márton Nagy
for useful discussions with respect to this project. We thank the WPCF commu-
nity and the WPCF 2014 organizers, in particular the local hosts, Tamás Novák
and Tamás Csörgõ, for the possibility to present this work. We also thankfully
acknowledge the support of the OTKA grant NK 101438.
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Abstract

Using event-by-event viscous fluid dynamics to evolve fluctuating initial
density profiles from the Monte-Carlo Glauber model for U+U collisions, we
report a “knee”-like structure in the elliptic flow as a function of collision
centrality, located near 0.5% centrality as measured by the final charged mul-
tiplicity. This knee is due to the preferential selection of tip-on-tip collision
geometries by a high-multiplicity trigger. Such a knee structure is not seen
in the STAR data. This rules out the two-component MC-Glauber model for
initial energy and entropy production. An enrichment of tip-tip configurations
by triggering solely on high-multiplicity in the U+U collisions thus does not
work. On the other hand, using the Zero Degree Calorimeters (ZDCs) coupled
with event-shape engineering, we identify the selection purity of body-body
and tip-tip events in the full-overlap U+U collisions. With additional con-
straints on the asymmetry of the ZDC signals one can further increases the
probability of selecting tip-tip events in U+U collisions.
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1 Introduction

High energy collisions between heavy ions are used to probe emergent phenomena
in Quantum Chromodynamics (QCD), the theory of strong interaction. One feature
of QCD is the transition from hadronic matter to a color-deconfined quark-gluon
plasma (QGP) [1–3] as the temperature is increased. This transition can occur
in heavy-ion collisions of sufficient energy for the system to melt into a hot dense
fireball of asymptotically free quarks and gluons.

Relativistic hydrodynamic models have been successful in describing the dynam-
ical evolution of QGP [4]. Motivated as a testing ground for these models, a U+U
collisions program was recommended in order to study the unique collision geome-
try resulting from the prolate deformation of the uranium nucleus [5–11]. Such a
program was carried out in 2012 at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Lab [12].

To understand the attraction of uranium, consider that the initial temperature
distribution of each QGP droplet is controlled by two main factors: deterministic
collision geometry (i.e. the shape of the overlap region between two nuclei), and
quantum mechanical fluctuations in the nucleon positions. For spherical nuclei,
the collision geometry is entirely a function of the impact parameter. However, in
prolate deformed uranium, the geometry of the initial temperature distribution also
depends on the relative spatial orientation of the two nuclei which can be described
by the Euler angles between their long major axis.

We focus in this paper on two limiting cases for fully overlapping uranium col-
lisions. In one extreme we have “tip-tip” events, defined when the major axes of
both nuclei are parallel to the beam direction. The opposite limit are “body-body”
events, where the major axes of both nuclei are perpendicular to the beam direction
and parallel to each other. We are interested in answering the question how, and
with what precision, we can distinguish experimentally between these configurations.
Their conceptual importance is explained in [7].

2 The model

To model the initial energy density distribution of U+U collisions we employ the
two-component (wounded nucleon/binary collision) Monte-Carlo Glauber model.
We use the deformed Woods-Saxon distribution

ρ(r, θ, ϕ) =
ρ0

1 + e(r−r(θ,ϕ))/d
(1)

to sample the positions of nucleons inside a uranium nucleus. In Eq. (1), the surface
diffusiveness parameter is d = 0.44 fm and the saturation density parameter is
ρ0 = 0.1660 fm−3 [14, 15]. The spatial configuration of a uranium nucleus is
deformed; we model its radius as [16]

r(θ, ϕ) = r0(1 +

∞∑
l=1

l∑
m=−l

βlmY
m
l (θ, φ)), (2)

where the average radius r0 = 6.86 fm is adjusted in such a way that, after folding
Eq. (1) with the finite charge radius of an individual nucleon, the resulting nuclear
charge density distribution agrees with experimental constraints [15]. We assume
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the uranium nucleus is azimuthally symmetric and choose [17] the non-vanishing
deformation parameters β20 = 0.28 and β40 = 0.093 for the quadrupole and hex-
adecupole deformations along its main axis, respectively. The choices of these
parameters agree well with a recent reanalysis in [18], except for β20 for which
Ref. [18] gives the value 0.265.

We use the Woods-Saxon density (1) to Monte-Carlo sample the nucleon centers
and represent each nucleon in the transverse plane by a gaussian areal density
distribution about its center:

ρn(~r⊥) =
1

(2πB)3/2
e−r

2/(2B). (3)

The width parameter B = σinNN (
√
sNN )/14.30 depends on collision energy as de-

scribed in [19]. The sum of these gaussian nucleon density distributions represents
the nuclear density distribution for the sampled nucleus at the time of impact and is
used to compute the initial energy density distribution generated in the collision. For
this calculation, the two-component Monte-Carlo Glauber model weighs a relative
contribution from binary collisions Nb and wounded nucleon participants Np [20].

The binary collision term counts the entropy deposited by pairs of colliding
nucleons and is modeled by a gaussian distribution with the same size as a nucleon
(see Eq .(3)) [21]; the total binary collision density per unit transverse area is

nBC(~r⊥) =
∑
i,j

γi,j
1

2πB
e−|~r⊥−~Ri,j|2/(2B) (4)

where the sum is over all pairs of colliding nucleons and the normalization γi,j
is a Γ-distributed random variable with unit mean that accounts for multiplicity
fluctuations in individual nucleon-nucleon collisions.

Each struck nucleon is said to be wounded by (or participating in) the collision
and contributes a portion of the initial entropy density distributed symmetrically
about its center; the resulting total wounded nucleon density per unit area is given
by

nWN(~r⊥) =
∑
i

γi
1

2πB
e−|~r⊥−~ri,⊥|

2/(2B) (5)

where the sum is over all wounded nucleons in both nuclei and γi is again a fluctu-
ating normalization factor with unit mean.

We model multiplicity fluctuations in a single nucleon-nucleon collision by taking
the normalizations γi,j and γi to be Γ-distributed random variables with unit mean
and variances controlled by parameters θBC and θWN, respectively. The generic Γ
distribution with unit mean and scale parameter θ is given by

Γ (γ; θ) =
γ1/θ−1e−γ/θ

Γ (1/θ) θ1/θ
, γ ∈ [0,∞) (6)

The multiplicity fluctuations from wounded nucleons and binary collisions are related
by requiring [21]:

θpp =
1− α

2
θWN = αθBC. (7)

where the parameter θpp = 0.9175 has been fit to the measured multiplicity distri-
butions in p+p collisions [21].

55



Journal of Central European Green Innovation 4(4) pp 53-63 (2016)

The distribution in the transverse plane of the deposited entropy per unit volume
is determined by mixing the binary collision and wounded nucleon sources using

s0(~r⊥) =
κs
τ0

(
1− α

2
nWN(~r⊥) + αnBC(~r⊥)

)
(8)

where τ0 is the starting time for the (hydro)dynamical evolution of the collision
fireball. We choose κs = 17.16 and the mixing ratio α = 0.12 to reproduce
the measured charged multiplicities and their dependence on collision centrality in
Au+Au collisions at 200 AGeV. The shape of the resulting energy density distribu-
tion in the transverse plane is calculated from the entropy density using the equation
of state (EoS) s95p-v0-PCE from Lattice QCD [22]. The initial energy profile is
evolved using the viscous relativistic fluid dynamic code package iEBE-VISHNU [21]
with specific shear viscosity η/s = 0.08. Simulations begin at time τ0 = 0.6 fm/c
and decouple at a temperature Tdec = 120 MeV. The single particle momentum
distribution is then computed using the Cooper-Fyre Formula. A full calculation of
charged hadron observables that includes all hadronic resonance decay processes on
an event-by-event basis is numerically costly; for this reason we computed only the
directly emitted positively charged “thermal pions”, π+, and take this quantity as a
measure for total charged multiplicity. At a fixed freeze-out temperature of 120 MeV,
the two quantities are related by a constant factor 4.6, dNch/dη ' 4.6 dNπ+/dy.

The initial energy density profiles fluctuate from event to event. Each profile can
be characterized by the rn-weighted eccentricity coefficients εn and their associated
“participant plane angles” Φn:

En := εne
inΦn = −

∫
d~r⊥r

neinϕe(~r⊥)∫
d~r⊥rne(~r⊥)

, (9)

where (r, ϕ) are the standard polar coordinates in the transverse plane and e(~r⊥) is
the initial energy density [23,24]. Through the hydrodynamic evolution, these spatial
eccentricities {εn,Φn} translate themselves into the anisotropic flow coefficients
{vn,Ψn} [24–27]:

Vn := vne
inΨn =

∫
dϕpdpT e

inϕpdN/(pT dpT dϕp)∫
dϕpdpT dN/(pT dpT dϕp)

. (10)

Apart from the Monte-Carlo Glauber model, there exist various other initializa-
tion models. These include the IP-Glasma model [28], the MC-KLN model [29,30],
and the TRENTO model [31]. As we will see, U+U collisions can provide experi-
mental measurements to distinguish between these various initializations.

3 Constraining collision geometry with multi-
plicity, flow, and ZDC cuts

3.1 Eccentricity and flow coefficients as a function of mul-
tiplicity

In Fig. 1, we present the centrality dependence of the initial eccentricities and the
final anisotropic flow coefficients of thermal pions for harmonic order n = 2 − 5
in U+U collisions at 193 AGeV. In Figs. 1a,c minimum bias results are shown as
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Figure 1: Panels (a,b) show the event-averaged eccentricities εn, before hydro-
dynamic evolution, panels (c,d) the event-averaged flows vn after hydrodynamic
evolution. The left panels (a,c) represent 35,000 minimum bias events that in-
clude multiplicity fluctuations whereas the right panels (b,d) were obtained from
a different set of 35,000 multiplicity-selected events covering the 0-5% centrality
range without multiplicity fluctuations.
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functions of the thermal pion yields, dNπ+/dy. We notice that the variance of ε2,4

and v2,4 in “most central” (i.e. highest multiplicity) collisions are larger than in
the rest of the centrality range. This is because there the two uranium nuclei are
colliding almost centrally (i.e. with impact parameter b ≈ 0) but, as a result of
the large spatial deformation, not always with full overlap. A mixture of tip-tip and
body-body collisions in these high-multiplicity events increases the variance of the
initial ε2,4 which then drives a larger variance in v2,4.

In Figs. 1b and 1d, we increase the statistics and focus on the 0-5% most cen-
tral U+U collisions. We find a “knee” structure in the high multiplicity regime
(< 0.5% centrality) for both ε2 and v2. This can be understood as follows: First,
while the ellipticity in the transverse plane for a tip-tip collision is small (as the
overlap area is approximately circular), body-body collisions produce an ellipsoidally
deformed overlap region with larger ellipticity ε2. Second, although fully overlap-
ping tip-tip and body-body collisions share the same number of participants, more
binary collisions between nucleons can happen in the optically thicker tip-tip event,
implying (in our two-component Glauber model) a larger initial dS/dy deposited
in the tip-tip configuration. In the presence of fluctuations which lead to a range
of ε2 values for a given dS/dy and vice-versa, the larger average multiplicity in
tip-tip collisions implies an increasing bias toward small ε2 when selecting events
with larger and larger values of dS/dy. This preferential selection of tip-tip orien-
tations at high multiplicities accounts for the appearance of a knee structure in the
initial ellipticity [11] (Fig. 1). We see in Fig. 1c that the knee is preserved after an
event-by-event hydrodynamic simulation when plotting the elliptic flow of the final
particle distribution as a function of multiplicity.

We emphasize that experimental results from STAR do not show this knee
structure [12]. Considering the preservation of the structure after hydrodynamic
evolution as seen in Fig. 1, we conclude that, in contrast to Au+Au collisions
where it has been extensively tested, the two-component MC-Glauber model fails
to correctly identify entropy production in ultra central U+U collisions where the
knee is predicted by the model but not found experimentally. Hence the non-
linear dependence of multiplicity on the number of wounded nucleons observed in
spherical Au+Au and Pb+Pb collisions as a function of collision centrality cannot
be attributed to a binary collision component as implemented in the two-component
MC-Glauber model.

Some corrections to the entropy production in these ultra central events arise
from the inclusion of p+p multiplicity fluctuations. We see in Fig. 2 that adding
said multiplicity fluctuations weakens but does not erase the knee structure in ε2 vs.
dS/dy. Hence, this effect alone does not appear sufficient to reach agreement of
the MC-Glauber model with data for ultra central U+U collisions. We acknowledge
that more drastic fluctuation models [32] have been suggested in order to more
successfully adjust the theoretical predictions of MC-Glauber to experimental results.

Also of note is the success of the gluon saturation physics as implemented in the
IP-Glasma model. Interestingly, this model is able to simultaneously accomodate a
strong nonlinearity of dN/dy as a function of Npart in Au+Au and Pb+Pb and a
weak dependence of dN/dy on collision orientation in central U+U at fixed number
of participants, while the MC-Glauber model cannot [33]. Alternatively, it has been
suggested in [34] that a model that produces entropy according to the number of
wounded valence gluons (rather than wounded nucleons) can also reproduce the
observed nonlinearity of dN/dy as a function of particpant nucleons in Au+Au
and Pb+Pb at RHIC and LHC, without a binary collision component. It would be
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Figure 2: The ellipticity ε2 as a function of dS/dy from the MC-Glauber model,
for collisions roughly in the 0-5% centrality range, with (blue dashed line) and
without (black solid line) including multiplicity fluctuations from single p+p
collisions.

interesting to study the preduction of such a model for central U+U collisions of
varying orientations.

3.2 Selecting high overlap events with combined ZDC and
multiplicity cuts

In an experimental analysis of relativistic heavy ion collisions, the charged hadron
multiplicity, dNch/dy and its elliptic flow coefficient v2 can be used to classify
events. Hydrodynamic studies have shown that the initial ε2 maps linearly to the
v2 of hadrons [26] and the the initial dS/dy is monotonically related the final total
particle multiplicity, dN/dy [21]. We can therefore use dS/dy and ε2 from the
initial conditions as a satisfactory proxy for charged hadron dNch/dy and v2 to test
whether we can select the fully overlapping tip-tip and body-body U+U collisions.

For our analysis, we make theoretical approximations for the use of experimental
forward and backward zero degree calorimeters (ZDCs). Placed at zero degrees
far from the colliding pair, ZDCs catch information about the spectator neutrons
that pass through a collision without participating. We classify our collisions by
using the number of spectators Ns = 476−Npart to mimic the experimental ZDC
signal [8]. For our study we look at 65,000 events in the 1% most participating ZDC
range (Ns < 19). Selecting on the most participating ZDC collisions allows for a
restriction of the set of collisions to more fully overlapping events. In such a regime,
any initial geometric effects should come more exclusively from the deformed shape
of the uranium nucleus.

We define the tip-tip and body-body event classes using the pair of angles
(θ1,2, φ1,2) from the two incoming nuclei, where θ denote the polar angle be-
tween the long major axis of the uranium nucleus and the beam direction and
φ is the azimuthal angle in the transverse plane. An event is defined as tip-tip
if
√

cos2 θ1 + cos2 θ2 > 0.86. We classify an event as a body-body event if both
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Figure 3: Probability distribution for dS/dy (left) and ε2 (right) for different
event classes within a sample of 1% ZDC events. The top panels show the
distributions of tip-tip and body-body collisions scaled according to their con-
tribution to the total population within the 1% ZDC sample. The bottom panels
show relative probabilities for tip-tip and body-body events among all events of
a given dS/dy (left) or ε2 (right).

√
cos2 θ1 + cos2 θ2 < .31 and |φ1 − φ2| < π/10. The polar angle constraints im-

ply that for equal θ1 = θ2, this common angle θ is less than π/10 for tip-tip and
greater than 4π/10 for body-body. For body-body events, the additional azimuthal
constraint forces alignment of the long major axes.

In Fig. 3 we plot the probability distributions for ε2 and dS/dy. Using our
collision definitions we can directly read off from the figure the likelihood of selecting
a certain orientation based on a given eccentricity or multiplicity cut. We see in the
left bottom panel that by cutting (within our 1% ZDC sample) on events with large
dS/dy we can enrich the fraction of tip-tip events to about 50%, whereas cutting on
low dS/dy enriches the fraction of body-body events, but never to more than about
20%. The 20% limit arises from admixtures from imperfectly aligned collisions that
are not really ”full overlap”. The enrichment of tip-tip or body-body by varying
dS/dy relies on the assumed two-component nature of entropy production which
also produced the knee structure discussed before. Indeed, selection efficiency of
specific collision geometries by cutting on dS/dy is model dependent.

We therefore consider “event engineering”, i.e. selecting events by the magni-
tude of their v2 flow vectors (for us, of the linearly related ε2), shown in the right
panels of Fig. 3. Since tip-tip events have on average smaller ellipticities (see up-
per right panel), selecting events with small ellipticity (or, in experiment, small v2)
enriches the tip-tip fraction. However, in this way we will never reach more than
about 25% purity of the tip-tip sample. On the other hand, cutting the 1% ZDC
events on large ε2 (or v2) will enrich the sample in body-body events, with a purity
that can reach about 40% for the largest ε2 values. While we have not yet been
able to verify this with an actual cut on v2, we expect this feature to survive the
hydrodynamic evolution due to the almost perfect linearity between ε2 and v2.

The current ZDC cut strategy can be refined further to increase the probability
of selecting tip-tip events. Rather than looking at the ZDC signal in one of the
two ZDC detectors or the sum of the ZDC signals in both detectors, we can look
at the correlation of these two signals. Events with equal forward and backward
ZDC signals (i.e. equal numbers of spectators from both nuclei) provide a better
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Figure 4: The black curve is the distribution of tip-tip events scaled according
to their contribution to the total probability distribution for ε2 as seen in the
bottom right pannel in Fig. 3. The blue dashed curve shows the increased
contribution of tip-tip collisions within the 10% of events having the smallest
difference in participants ∆Npart (a proxy for ZDC correlation).

definition of the categories full overlap, tip-tip, and body-body than events with
asymmetric ZDC signals where all spectators come from only one of the colliding
nuclei. The difference in participants ∆Npart = |Npart,1 −Npart,2| quantifies the
ZDC correlation in our model. Low values of ∆Np correspond to the most correlated
forward and backward ZDC signals. To demonstrate one application, we reconsider
the events from the bottom right panel in Fig. 3 and now select from the sample
only events in the lowest 10% of ∆Npart. The selection on small values of ∆Npart

eliminates from the sample asymmetric configurations that we loosely describe as
“tip-body”. Collisions of this type produce low values of ε2 without the angular
criteria necessary to be considered tip-tip and therefore dilute the contribution of
the true tip-tip configurations at the lower range of ε2. We show in Fig. 4 that
selecting the lowest 10% of ∆Npart increases the selection efficiency of ε2 for tip-
tip configurations by a factor of 1.4. As a final comment, we point out that it might
also be interesting to use ZDC correlations in the opposite way and to select and
study events with asymmetric tip-body configurations.

4 Conclusion

Within the two-component MC-Glauber model for initial energy production, the
prolate deformation of the uranium nucleus was shown to generate a knee in the
centrality dependence of the ellipticity of the initial temperature distribution. The
knee was seen to be preserved by hydrodynamic evolution, after which it manifests
itself in the centrality dependence of v2. Such a knee structure is not seen in the
STAR data. This rules out the two-component MC-Glauber model for initial energy
and entropy production. An enrichment of tip-tip configurations by triggering only
on high-multiplicity in the U+U collisions thus does not work.
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To increase the selection capability between different collision geometries, we
impose combined cuts on initial conditions using the spectators (ZDC), dS/dy, and
ε2. For 1% ZDC events, we found that we could enrich tip-tip collision geometries
to about 50% by cutting on high multiplicity within that sample, and body-body
configurations to about 20% purity by selecting low-multiplicity events. These
numbers rely on the binary collision admixture in the two-component MC-Glauber
model and are thus model-dependent. They do include effects from multiplicity
fluctuations.

We also studied the efficiency of selecting different collision geometries by “event
engineering”, i.e. by cutting on ε2 (by cutting on v2 in the experiment). In this
case events selected for high ε2 can enrich body-body collisions to about 40% purity
while cutting on low ε2 gives a tip-tip sample with about 25% purity. The latter
can be boosted to about 35% purity by eliminating events with asymmetric ZDC
signals. These results should not be sensitive to the binary collision admixture in
the two-component MC-Glauber model and thus should be less model dependent.
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Abstract

We review the properties of chaoticity and coherence in Bose-Einstein con-
densation and correlations, for a dense boson system in its mean-field repre-
sented approximately by a harmonic oscillator potential. The order parameter
and the nature of the phase transition from the chaotic to the condensate
states are studied for different fixed numbers of bosons. The two-particle
correlation function in momentum space is calculated to investigate how the
Bose-Einstein correlation depends on the degree of condensation and other
momentum variables. We generalize the Bose-Einstein correlation analysis to
three-particle correlations to show its dependence on the degree of conden-
sation.

1 Introduction

As is well known, a fundamental assumption for the occurrence of Bose-Einstein
correlation (BEC) is the presence of a chaotic source of identical bosons [1, 2]. The
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Bose-Einstein correlation occurs in a chaotic source but not in a coherent source
[3, 4, 5, 6, 7, 8].

The properties of chaoticity and coherence are complementary attributes. Both
chaoticity and coherence should be examined on equal footings in a single theoretical
framework with the description of both the BE condensation and BE correlations.
In such a unified framework, it is then possible to investigate not only the states of
chaoticity and coherence, but also the transition from a chaotic state to a coherent
state. How can the degrees of chaoticity or coherence be quantified? Is the transi-
tion from a chaotic state to a coherent state a first-order with a sudden onset, or is
it a gradual transition that is closer to a second-order? What is the relevant order
parameter that best describes the transition? How does Bose-Einstein condensation
quantitatively affects the two-particle and three-particle Bose-Einstein correlations?

Questions of Bose-Einstein correlations and condensation arise not only in atomic
physics [9, 10, 11] but also in high-energy heavy-ion collisions [5, 6, 8] where pions
are the most copiously produced particles. The use of two-pion Bose-Einstein cor-
relations to probe the source coherence was proposed at the end of 1970s [12, 3].
The introduction of the “chaoticity” parameter λ of BEC in pions is only a tool to
represent experimental data. However, the experimental measurement of λ is beset
by the presence of many other effects such as particle misidentification, long-live
resonance decay, final state Coulomb interaction, non-Gaussian source distribution,
etc. [5, 7]. The explanation of the experimental λ results remains an open question.
In 1993, S. Pratt proposed a pion laser model in high energy collisions and studied
the influence of pion laser on two-pion Bose-Einstein correlation function and the
chaoticity parameter [13]. In 1998, T. Csörgő and J. Zimányi investigated the effect
of Bose-Einstein condensation on two-pion Bose-Einstein correlations [14]. They uti-
lized Gaussian formulas describing the space and momentum distributions of a static
non-relativistic boson system, and investigated the influence of the condensation on
pion multiplicity distribution. In 2007, C. Y. Wong and W. N. Zhang studied how λ
in Bose-Einstein correlations depends on the degree of Bose-Einstein condensation
or chaoticity, for static non-relativistic and relativistic boson gases within a spherical
mean-field harmonic oscillator potential [15]. The model can be analytically solved
in the non-relativistic case and be used in atomic physics [9, 10, 11]. The limiting
conditions and circumstances under which the parameter λ can be approximately
related to the degrees of chaoticity were clarified [15]. A similar study for cylindri-
cal static boson gas sources was completed [16] and the chaoticity parameter λ in
two-pion Bose-Einstein correlations in an expanding boson gas model was recently
examined [17]. The investigation of chaoticity and coherence was also carried out
using a model of q-deformed oscillator algebraic commutative relations [18] and the
model of partial indistinguishability and coherence of closely located emitters [19].
In another related topic, initial conditions such as the color-glass condensate (CGC)
with the coherent production of partons [20] in heavy-ion collisions may also lead
to condensate formation [21].

Recently, experimental investigation of the source coherence in Pb-Pb collisions
at √sNN = 2.76 TeV at the Large Hadron Collider (LHC) was carried out by the
ALICE collaboration [22]. A substantial degree of source coherence was measured
[22] using a new three-pion Bose-Einstein correlations technique with an improve-
ment over past efforts [23, 24, 25, 26]. Earlier work on three-particle correlations
were carried out in [6, 13, 27, 28, 29, 30, 31, 32, 33, 34].

A proper theoretical framework to study the above topics is the theory of the
Bose-Einstein condensation and correlations in their own mean field potential [15].

65



Journal of Central European Green Innovation 4(4) pp 64-79 (2016)

We would like to review the essential elements here and examine further the related
question of three-body correlations.

2 Bose-Einstein Condensation for attractively In-
teracting Bosons

We seek a description of chaoticity in Bose-Einstein correlations through the consid-
eration of Bose-Einstein condensation. Why is Bose-Einstein condensation relevant
to Bose-Einstein correlations (BEC)? Glauber in many private communications and
in his talk in QM2005 suggested that the consistent experimental observations of
λ < 1 may be due partly to the coherence of the pions in Bose Einstein correlations
[35]. Furthermore, there have been major advances in Bose-Einstein condensation in
atomic physics [9, 10, 11]. In particular, the works of Politzer [9], and Naraschewski
& Glauber [10] reveals that BE condensation and the BE correlations are intimately
related.

We envisage the possibility of the occurrence of a Bose-Einstein condensation
in dense boson media of identical bosons with the following reasoning [15, 16, 17]

1. Identical bosons with mutual attractive interaction generate a mean field po-
tential, which depends on the boson density ρ(r) as [36]

V (r) = −4πf(0)ρ(r) ∼ 1

2
h̄ω
( r
a

)2
, (1)

where f(0) is the forward scattering amplitude, and a is the length scale that
defines the spatial region of boson occupation.

2. Therefore, for a given length scale a, the h̄ω of the underlying mean-field
potential increases with increasing density ρ of the produced bosons.

3. The order parameter that determines the degree of BE coherence or chaoticity
is T/h̄ω. Thus the order parameter T/h̄ω decreases with increasing boson
density.

4. For a given temperature T at freeze out, a high density of produced bosons will
lead to a lower value of the order parameter T/h̄ω, which in turn will lead to a
greater condensate fraction f0=N0/N , where N is the total number of bosons
and N0 is the number of bosons in the lowest state. A greater condensate
fraction f0 brings about a greater coherence in Bose-Einstein correlations and
a reduction in the degree of chaoticity.

In high energy heavy-ion collisions when bosons (gluons or pions) are copiously
produced within a small region in a short time interval, the density of the bosons
increases as the collision energy increases. Following the above reasoning, general-
ized to systems with differential transverse and longitudinal spatial distributions, we
expect the occurrence of boson condensation in high energy heavy-ion collisions at
some high collision energies. It is useful to examine the Bose-Einstein condensation
for bosons in an exactly solvable model.
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3 Bose-Einstein Condensation for Bosons in a
Spherical Harmonic Oscillator Potential

We consider a system of N bosons in a spherical harmonic oscillator potential,
which arises either externally or from the bosons’ own mean-fields. We study how
the occupation numbers of different states change as a function of the temperature
T , in relation to the oscillator frequency h̄ω. Bose-Einstein condensation occurs
when the occupation number N0 for the lowest state (the condensate state) is a
substantial fraction of the total particle number N . The degree of coherence or
chaoticity is quantified by the condensate fraction f0 = N0/N , which varies as a
function of the order parameter T/h̄ω.

In such a study, it is important to use the proper statistical ensemble [9]. In
a grand canonical ensemble, we fix the chemical potential µ and the temperature
T , and we allow the number of particles Nn in the n-th single-particle state to
vary. We obtain the average occupation number for the single-particle state n to
be Nn = 〈a+n an〉. The square fluctuation of Nn is then given by

〈(a+n an − 〈a+n an〉)2〉 ≈ Nn(Nn + 1). (2)

As the fluctuation of Nn in a grand canonical ensemble is of the same order as
the occupation number itself, we cannot treat the lowest n = 0 state in the grand
canonical ensemble. The lowest n = 0 state needs to be treated in the canonical
ensemble with a fixed total number of bosons.

It was shown however that while the lowest n = 0 state needs to be treated
in the canonical ensemble, the n > 0 state can be treated in the grand canonical
ensemble without incurring large errors [9]. We shall follow such a description for
the ensemble of N identical bosons in a spherical harmonic oscillator potential. In
such a canonical ensemble for the lowest n=0 state but a grand canonical ensemble
for the n>0 states, the total number of bosons is fixed and yields the condensate
number condition

N = N0 +
∑

n=1,2,3,...

Nn =
z

1− z
+

∑
n=1,2,3,...

gnze
−(εn−ε0)/T

1− ze−(εn−ε0)/T
, (3)

where z = eµ/T is the fugacity of the system, gn is the degeneracy number
gn=(n+1)(n+2)/2 for the n-th single-particle level, and εn is the single-particle
energy in the spherical harmonic oscillator potential

εn = (n+ 3/2)h̄ω. (4)

For a given N , equation (3) contains only a single unknown, z, which can be solved
as a function of the order parameter T/h̄ω. The solutions of z for N=25, 500,
1000 and 2000 are given in Fig. 1, and the corresponding condensate fractions
f0 = N0/N are shown in Fig. 2.

We observe in Fig. 1 that the fugacity parameter z is close to unity in the
strongly coherent region at low temperatures. In fact, the fugacity parameter z
at T=0 assumes the value z(T=0) = N/(N + 1). For a given boson number N ,
the fugacity z decreases very slowly in the form of a plateau, as the temperature
increases from T = 0. The plateau region persists until the condensate temperature
Tc is reached, and z then decreases rapidly thereafter. The greater the number of
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Figure 1: (Color online) (a) The fugacity parameter z satisfying the condensate
number condition Eq. (3) for different boson numbers N in a spherical har-
monic oscillator potential, as a function of the order parameter T/h̄ω and (b)
an expanded view in the z ∼ 1 region.

bosons N , the greater is the plateau region, as shown in Fig. 1(b). For example,
for N = 2000 the value of z is close to unity for 0 < T/h̄ω < 11 in the plateau,.

We note in Fig. 2 that for a given value of the total number of bosons N in
the spherical harmonic oscillator potential, the condensate fraction f0 is close to
unity when the order parameter T/h̄ω is below a limit, and this limit depends on
N . We can plot the condensate fraction f0 as a function of the order parameter
T/h̄ω. The functional form of f0(T ) can be approximated by

f0(T ) =

{
1− [(T/h̄ω)/(Tc/h̄ω)]3 for (T/h̄ω) ≤ (Tc/h̄ω),
O(1/N)→ 0 for (T/h̄ω) ≥ (Tc/h̄ω).

(5)

The results from the above one-parameter fit to f0(T ) are shown as the dashed
curves in Fig. 2, to be compared with the f0(T ) calculated with the condensate
configuration condition Eq. (3) shown as the solid curves. The values of Tc/h̄ω
that give the best fit to f0(T ) for different N values are listed in Table I.

The above results provide a comprehensive description for the transition from
a chaotic state to a coherent state. Fig. 2 indicates that the transition from the
completely chaotic state with f0=0 to the state of coherence with f0→1 is a second-
order-type transition under a gradual decrease of the order parameter T/h̄ω. It is
not a first-order phase transition.

Table I. Critical order parameter Tc/h̄ω obtained from (i) fitting f0 as a function
of T/h̄ω with Eq. (5), and from (ii) the analytical formula of Eq. (6).
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Figure 2: (Color online) Solid curves represent the condensate fractions f0(T ),
calculated with the condensate number condition Eq. (3), as a function of T/h̄ω
for different boson numbers N in a spherical harmonic oscillator potential. The
abscissa labels for the corresponding chaotic fraction fT (T )=[1 − f0(T )] are
indicated on the right. The dashed curves are the fits to the solid curve results
of f0(T ) with the function 1−[(T/h̄ω)/(Tc/h̄ω)]3 of Eq. (5) where the values of
Tc/h̄ω for different N values are listed in Table I.

Number of Bosons Tc/h̄ω obtained Tc/h̄ω obtained
N from fitting f0 with Eq. (5) with Eq.(6)

2000 10.97 11.00
1000 8.56 8.53
500 6.63 6.62
250 5.12 5.13

It is remarkable that the critical order parameter Tc/h̄ω and the boson number
N obeys the following simple relationship

Tc/h̄ω = 0.6777N0.36666, (6)

as shown by the third column in Table I. Thus, the knowledge of N suffices to
determine the critical order parameter Tc/h̄ω by the above simple equation and the
knowledge of Tc/h̄ω subsequently yields the approximate condensate fraction at all
other temperatures by Eq. (5).

4 Single-particle and Two-Particle Density
Matrices in Momentum Space

The determination of the fugacity z from the condensate number condition (3)
allows the calculation of various physical quantities. Specifically, the one-body
density matrix in momentum space is given by

G(1)(p1,p
′
1) =

∞∑
n=0

u∗n(p′1)un(p1)〈â†nân〉, (7)

69



Journal of Central European Green Innovation 4(4) pp 64-79 (2016)

where un(p) is the single-particle wave function and the occupation number
Nn=〈â†nân〉 can be inferred from the terms in the summation in Eq. (3). The
two-particle density matrix in momentum space

G(2)(p1,p2;p′1,p
′
2) =

∑
klmn

u∗k(p′1)u∗l (p′2)um(p2)un(p1)〈â†kâ
†
l âmân〉 (8)

can be written in terms of one-body density matrices as [10, 15]

G(2)(p1,p2;p′1,p
′
2) = G(1)(p1,p

′
1)G(1)(p2,p

′
2) +G(1)(p1,p

′
2)G(1)(p2,p

′
1)

+

∞∑
n=0

u∗n(p′1)u∗n(p′2)un(p2)un(p1)

{
〈â†nânân〉 − 2〈â†nân〉〈â†nân〉

}
. (9)

1

2

1′

2′
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Figure 3: Two-particle distribution function expanded in terms of products of
one-particle distribution functions in uncorrelated mean-field approximation.

The uncorrelated part in the first two terms of the above two-particle density ma-
trix, G(1)(p1,p

′
1)G(1)(p2,p

′
2) +G(1)(p1,p

′
2)G(1)(p2,p

′
1), is represented schemati-

cally by the diagram in Fig. 3. Our task is to obtain the correlated part arising from
Bose-Einstein condensation represented by the last term in Eq. (9).

In the limit of a large number of bosons N in a grand canonical ensemble for
the non-condensed states, the contributions from the set of {n > 0} states in the
summation in Eq. (9) can be neglected. We are left with only the n = 0 condensate
state contribution for this summation.

To describe the contribution from the n = 0 condensate state, we shall follow
Ref. [9, 10] and use the canonical ensemble which gives the canonical fluctuation

〈(â†0â0 − 〈â
†
0â0〉)2〉 = 〈â†0â

†
0â0â0〉 − 〈â

†
0â0〉〈â

†
0â0〉 = O(N0). (10)

Thus, we have

〈â†0â
†
0â0â0〉 − 2〈â†0â0〉〈â

†
0â0〉 = −〈â†0â0〉〈â

†
0â0〉+O(N0). (11)

In the limit of a large number of particles, we can neglect the last term O(N0) in
the above equation which is small in comparison with the first term of order N2

0 .
The two-particle distribution of Eq. (9) is therefore

G(2)(p1,p2;p1,p2) = G(1)(p1,p1)G(1)(p2,p2) + |G(1)(p1,p2)|2

−N2
0 |u0(p1)|2|u0(p2)|2, (12)

which gives the conditional probability for the occurrence of a pion of momentum
p1 in coincidence with another identical pion of momentum p2.
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5 Two-Particle Momentum Correlation Function

In BE correlation measurements, we normalize the probability relative to the proba-
bility of detecting particle p1 and p2, and define the momentum correlation function
C(p1,p2) as

C(p1,p2) =
G(2)(p1,p2;p1,p2)

G(1)(p1,p1)G(1)(p2,p2)
. (13)

It is convenient to introduce the average and the relative momenta of the pair

p = (p1 + p2)/2, q = p1 − p2. (14)

The momentum correlation function can be expressed as a function of the kinematic
variables p1 and p2 or alternatively of p and q. From Eq. (12), we have the general
expression for the correlation function

C(p, q) = C(p1,p2) = 1 +
|G(1)(p1,p2)|2 −N2

0 |u0(p1)|2|u0(p2)|2

G(1)(p1,p1)G(1)(p2,p2)
. (15)

This is the general Bose-Einstein correlation function for all situations: coherent,
chaotic, and the transition between coherent and chaotic systems.

The evaluation of the correlation function C(p, q) in Eq. (15) requires the knowl-
edge of G(1)(p1,p2) and the ground state wave function u0(p1). For a system of
bosons in a spherical harmonic oscillator, the wave functions are all known, and the
correlation function can be written out analytically. Specifically, we have

G(1)(p1,p2) =

∞∑
k=1

zkG̃0(p1,p2; kβh̄ω), (16)

G̃0(p1,p2; τ)=

(
a2

πh̄2(1− e−2τ )

)3/2
exp

(
−a

2

h̄2
(p2

1+p2
2)(cosh τ−1)+(p1−p2)2

2 sinh τ

)
,(17)

and the ground state wave function is

u0(p) =

(
a2

πh̄2

)3/4

exp

{
−a

2

h̄2
p2

2

}
. (18)

The knowledge of the single-particle G(1)(p1,p2) and u0(p) will then allow the
determination of the two-particle correlation function C(p, q).

The correlation function C(p, q) in Eq. (15) possesses the proper coherent and
chaotic limits. For a nearly completely coherent source with almost all particles
populating the ground condensate state, N0 → N , the two terms in the numerator
cancel each other and we have C(p, q) = 1, with the absence of the BE correlation.
For the other extreme of a completely chaotic source with N0�N , the second term
in the numerator proportional to N2

0 in Eq. (15) gives negligible contribution and
can be neglected. The correlation function C(p, q) then becomes the usual BE
correlation for a completely chaotic source.
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Figure 4: (Color online) The correlation function C(p, q) at different values of
the pair average momentum pa/h̄ and temperatures. Figures (a), (b), and (c)
are for p=1, 2, and 3h̄/a, respectively.

6 Evaluation of the Two-Particle Momentum Cor-
relation Function

For a given number of bosons N in a spherical harmonic oscillator, the solution
of fugacity z obtained as a function of the order parameter T/h̄ω allows us to
evaluate the momentum correlation function C(p, q) with Eqs. (15)-(18). In Fig.
4, we show C(p, q) for example for the case of N=2000 for which the critical
order parameter is Tc/h̄ω=10.97, as tabulated in Table I. We observe that the
correlation function is a complicated function of the average pair momentum p
and the order parameter T/h̄ω. For p=h̄/a in Fig. 4(a), the correlation function
C(p, q) at q=0 is close to unity for temperatures below and up to T/h̄ω=9 (below
Tc/h̄ω), but increases to 2 rather abruptly at T/h̄ω=12, (above Tc/h̄ω). For
p=2h̄/a in Fig. 3(b), the correlation function C(p, q) at q = 0 is substantially
above unity and increases gradually as temperature increases. For p=3h̄/a in Fig.
4(c), the correlation function C(p, q) at q=0 is about 2 for all cases of temperatures
examined. If one follows the standard phenomenological analysis and introduces the
“chaoticity” parameter λ to represent the intercept of the correlation function at
zero relative momentum, then this parameter λ is a function of the average pair
momentum p and temperature T

λ(p, T ) = [C(p, q = 0;T )− 1]. (19)

We display explicitly the dependence λ(p, T ) as a function of p in Fig. 5(a) for
different order parameters T/h̄ω, for the case of N = 2000. At T/h̄ω=12, which is
above the critical condensate order parameter of Tc/h̄ω=10.97, the λ parameter is
1 for all p values. At T/h̄ω=9, as p increases the λ parameter rises gradually from
∼0.1 at p = h̄/a and reaches the constant value of 1 at p=2.4h̄/a. At T/h̄ω=6 and
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Figure 5: (Color Online) (a) The parameter λ as a function of p for different
temperatures for N=2000. (b) Experimental measured values of λ as a func-
tion of pT for AuAu Collisions at RHIC at

√
sNN=200 GeV from the PHENIX

Collaboration [37] and the STAR Collaboration [38].

3, for which the systems are significantly coherent with large condensate fractions,
the λ parameter starts close to zero at p=h̄/a, but as p increases the λ parameter
increases gradually to unity at p=2.9 and 3.1h̄/a for T/h̄ω=6 and 3 respectively.
The location where the λ parameter attains unity changes with temperature. The
lower the temperature, the greater is the value of p at which the λ parameter attains
unity.

We conclude from our results that the parameter λ(p, T ) is a sensitive function
of both p and T , and λ(p, T ) = 1 is not a consistent measure of the absence of the
condensate fraction, as it attains the value of unity in some kinematic regions for
significantly coherent systems with large condensate fractions at temperatures much
below Tc. Only for the region of small p will the parameter λ(p, T ) be correlated
with the chaotic fraction fT (T ) of the system.

It is interesting to note that experimentally measured values of λ from different
collaborations and different method of analysis [37, 38] exhibit an increase of λ as
pT of the average momentum of the pair increase as shown in Fig. 5(b). There
is a similar trend of increasing λ as a function of pT . This may be an indication
of the dependence of the correlation function on the average momentum of the
pair arising for a partially coherent pion source. The increase of λ as a function
of the average pair momentum has also been obtained in the q-deformed harmonic
oscillator model of Bose-Einstein correlations [18].

7 Bose-Einstein Condensation of Pions in their
Men Fields

With regard to heavy-ion collisions at RHIC & LHC, it is instructive to raise the
following question. If we have a pion system that has a root-mean squared radius
rrms=10 fm, the number of identical pions N from a few hundred to a few thou-
sand, at a freezeout temperature T=80 to 160 MeV, typical of those revealed by
Bose-Einstein correlation measurements [37, 38], then, what will be the condensate
fraction f0? To answer this question, it is useful to calculate the root-mean-squared
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radius rrms of the pion system as a function of the order parameter T/h̄ω for a pion
system with N=250 to 2000 as shown in Fig. 6. We can schematically represent
the functional relation between rrms/a and T/h̄ω in Fig. 6 as

rrms/a = fN (T/h̄ω). (20)

For a given value of N and rrms, as a is equal to h̄/
√
mπh̄ω, the above equation

0 2 4 6 8 10 12 14 16

T /  h
_

ω

0

1

2

3

4

5

6

7

r rm
s 
/a

 

N=250
N=500
N=1000
N=2000

Figure 6: (Color online) The root-mean-squared radius in unit of a and the root-
mean-squared momentum in units of h̄/a, as a function of T/h̄ω for different
numbers of identical bosons in the system.

contains only a single variable h̄ω that can be determined as a function of T .
Subsequently, the order parameter T/h̄ω and the condensate fraction f0 can also
be determined as a function of T as shown in Fig. 7.

One finds that for the pion system with a given root-mean-squared radius of 10
fm, the value of h̄ω ranges from about 12 to 20 MeV for N=2000 and about 20 to
30 MeV for N=250. The ratio of T/h̄ω about 7 for N=2000, and is about 4.5 for
N=250, as shown in Fig. 7(b). From these ratios of T/h̄ω, one can use Fig. 2 to
find out the condensate fraction. The condensate fractions f0(T ) for a pion gas at
various temperatures with N=2000 and N=250 are shown in Fig. 7(c). One finds
that f0(T ) is about 0.67− 0.8 for N=2000 and is about 0.9 for N=250.

We reach the conclusion from the above study that if a non relativistic pion
system maintains a static equilibrium within its mean field, and if it contains a
root-mean-squared radius, a pion number, and a temperature typical of those in
high-energy heavy-ion collisions, then it will contain a large fraction of the Bose-
Einstein pion condensate. For a relativistic pion system, while the absolute scale of
the order parameter T/h̄ω may change, the condensate fraction f0 remains substan-
tial [15]. Pion condensation will affect the parameter λ in momentum correlation
measurements.

8 Three-particle Correlations and Coherence

Bose-Einstein condensation has important influence on the three-particle correla-
tion function. We can determine the dependence of the three-particle correlation
function on the degree of Bose-Einstein coherence in a way similar to what has been
carried out for two-particle correlations.
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Figure 7: (Color online) (a) the potential strength h̄ω, (b) the ratio T/h̄ω, (c)
the condensate fraction f0, and (d) the oscillator length parameter a for non-
relativistic boson systems with N = 2000 and N = 250 in a static equilibrium
with a rrms = 10 fm, plotted as a function of the temperature T .

The extraction of the coherence properties from experimental three-particle cor-
relation data has the advantage that the problems of the resonances can be mini-
mized. It has however the disadvantage that the statistics in the number of three-
particle events may be lowered because of the restriction on the occurrence of
three-particle coincidences.

Recently there has much interest in three-particle correlation measurements
[22]. Bose-Einstein condensation of pions in a heavy-ion collision may suppress
Bose-Einstein correlations. Furthermore, initial conditions such as the color-glass
condensate (CGC) with the coherent production of partons [20] may also lead to
condensate formation [21]. Experimental results indicate the presence of a substan-
tial condensate fraction [22]. It is of interest to formulate an analytical model to
investigate how the three-particle correlation function will depend on the coherence
of the underlying boson system. In a completely chaotic source when multi-particle
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1 1 1 1 1
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Figure 8: Three-particle distribution function expanded in terms of one-particle
distribution function in uncorrelated mean-field approximation.

Bose-Einstein-type correlations are neglected, the three-particle correlation function
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can be written in terms of products of one-body distribution functions:

G(3)(p1, p2.p3; p′1, p
′
2, p
′
3)

=G(1)(1, 1′)G(1)(2, 2′)G(1)(3, 3′) +G(1)(1, 2′)G(1)(2, 1′)G(1)(3, 3′)

+G(1)(1, 3′)G(1)(2, 2′)G(1)(3, 1′) +G(1)(1, 1′)G(1)(2, 3′)G(1)(3, 2′)

+G(1)(1, 3′)G(1)(2, 1′)G(1)(3, 2′) +G(1)(1, 2′)G(1)(2, 3′)G(1)(3, 1′), (21)

as represented by the diagrams in Fig. 8. With Bose-Einstein correlations, we can
generalize our two-particle correlation case to the three-particle correlation functions
and write down the three-particle correlation function as

C(p1, p2, p3) ≡ G(3)(1, 2, 3; 1′, 2′, 3′)

G(1)(1, 1′)G(1)(2, 2′)G(1)(3, 3′)

∣∣∣∣
1′→1,2′→2,3′→3

= 1 +
G(1)(1, 2)G(1)(2, 1)−N0u

2
0(p1)u20(p2)

G(1)(1, 1)G(1)(2, 2)

+
G(1)(1, 3)G(1)(3, 1)−N2

0u
2
0(p1)u20(p3)

G(1)(1, 1)G(1)(3, 3)

+
G(1)(2, 3)G(1)(3, 2)−N2

0u
2
0(p2)u20(p3)

G(1)(2, 2)G(1)(3, 3)

+
G(1)(1, 3)G(1)(2, 1)G(1)(3, 2)−N3

0u
2
0(p1)u20(p2)u20(p3)

G(1)(1, 1)G(1)(2, 2)G(1)(3, 3)

+
G(1)(1, 2)G(1)(2, 3)G(1)(3, 1)−N3

0u
2
0(p1)u20(p2)u20(p3)

G(1)(1, 1)G(1)(2, 2)G(1)(3, 3)
. (22)

The above correlation function C(p1,p2,p3) possesses the proper coherent and
chaotic limits. For a nearly completely coherent source with almost all particles
populating the ground condensate state, N0→N , the terms in the numerator can-
cel each other and we have C(p1,p2,p3)=1, and the BE correlation is absent. For
the other extreme of a completely chaotic source with N0�N , the second terms
in the numerators proportional to N2

0 give negligible contribution and can be ne-
glected. The correlation function C(p1,p2,p3) becomes the usual BE correlation
for a completely chaotic source. These results will allow the evaluation of the three-
particle correlation function using the functions of G(1)(p1,p2) and u20(p) in Eqs.
(15)-(18). Different ways of re-combining some of the terms in Eq. (22) in terms of
two-particle correlation functions may allow one to extract quantities that minimize
the systematic errors in two-particle correlation function measurements.

9 Conclusions and Summary

A proper framework to study Bose-Einstein correlations is the theory of Bose-
Einstein condensation. We examine the condition for the occurrence of the Bose-
Einstein condensation in an exactly solvable model. We place identical bosons in a
spherical harmonic oscillator potential that arises either externally or approximately
from its own mean fields. The order parameter is T/h̄ω, the ratio of the tem-
perature to the energy gap between the lowest and the first excited single-particle
state. The degree of chaoticity or condensation is quantified by the condensate
fraction f0 = N0/N which specifies the transition from a chaotic state to a coher-
ent condensate state. The condensate fraction f0 is a cubic function of the order
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parameter T/h̄ω. The critical order parameter Tc/h̄ω varies with the boson number
N as Tc/h̄ω=0.6777N0.3666. The transition from the completely chaotic state with
f0=0 to the completely coherent state with f0→1 is a second-order-type transition
under a gradual decrease of the order parameter T/h̄ω. It is not a first-order phase
transition. A pion gas with rrms, T , and N , typical of those in RHIC and LHC, is
expected to contain a large condensate fraction and a high degree of suppression of
Bose-Einstein correlation.

The evaluation of the two-particle correlation function indicates that the usual
“chaoticity parameter” λ can only be interpreted as an experimental tool to label the
intercept of the correlation function C(p, q) at q=0. The parameter λ is correlated
with the degree of chaoticity only for small values of p but is at variance from such
an interpretation of chaoticity at high values of p, as shown in Figs. 4 and 5(a).

We have written out the functional form of the three-particle distribution func-
tion as a function of the momenta of the three particles that contains the proper
chaotic and coherent limits. It permits the description for the transition from the
chaotic states to coherent states. These results will allow the evaluation of the
three-particle correlation function in an exactly solvable problem that will assist the
comparison with three-particle correlation measurements.
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Abstract

The Bialas-Bzdak model of elastic proton-proton scattering assumes a
purely imaginary forward scattering amplitude, which consequently van-
ishes at the diffractive minima. We extended the model to arbitrarily large
real parts in a way that constraints from unitarity are satisfied. The re-
sulting model is able to describe elastic pp scattering not only at the lower
ISR energies but also at

√
s =7 TeV in a statistically acceptable manner,

both in the diffractive cone and in the region of the first diffractive min-
imum. The total cross-section as well as the differential cross-section of
elastic proton-proton scattering is predicted for the future LHC energies of√
s =8, 13, 14, 15 TeV and also to 28 TeV. A non-trivial, significantly non-

exponential feature of the differential cross-section of elastic proton-proton
scattering is analyzed and the excitation function of the non-exponential
behavior is predicted. The excitation function of the shadow profiles is
discussed and related to saturation at small impact parameters.
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1 Introduction

In a pair of recent papers the Bialas-Bzdak model [1] (BB) of small angle elastic
proton-proton (pp) scattering at high energies was studied at 7 TeV LHC en-
ergy [2,3]. In those papers a terse overview is reported about the field of elastic
scattering at high energies. Here we would like to highlight only some recent
works which influenced us.

In this manuscript the BB model is extrapolated to future LHC energies.
Our method to include the energy evolution of the parameters is somewhat
similar to the so-called “geometric scaling” discussed in Ref. [4] and also in
Ref. [5].

Using 2012 data the TOTEM experiment recently made an important ex-
perimental observation at

√
s = 8 TeV: the pp elastic differential cross-section

shows a deviation from the most simple non-exponential behavior at low-|t|, [6]
where t is the squared four-momentum transfer of the pp scattering process.
This feature of the

√
s = 8 TeV (preliminary) TOTEM dataset, was related

to t-channel unitarity of the forward scattering amplitude (FSA) in Ref. [7], a
concept that we also focus on, using and generalizing in a unitary manner the
quark-diquark model of Bialas and Bzdak for the determination of the shape of
the FSA of elastic pp scattering.

In its original form, the BB model [1] assumes that the real part of the
FSA is negligible, correspondingly, the FSA vanishes at the diffractive minima.
At the ISR energies of

√
s =23.5−62.5 GeV, that were first analyzed in the

inspiring paper of Bialas and Bzdak [1], this assumption is indeed reasonable,
as confirmed in Ref. [2]. At these ISR energies, only very few data points
were available in the dip region around the first diffractive minimum of elastic
pp scattering, which were then left out from the BB model fits of Ref. [2] to
achieve a quality description of the remaining data points. However, in recent
years, TOTEM data [8] explored the dip region at the LHC energy of 7 TeV in
great details, at several different values of the squared four-momentum transfer
t. Ref. [2] demonstrated, that the original BB model cannot describe this dip
region, not without at least a small real part that has to be added to its FSA
in a reasonable way.

Subsequently, the BB model has been generalized in Ref. [3] by allowing for
a perturbatively small real part of the FSA, which improved the agreement of
the model with TOTEM data on elastic pp scattering at the LHC energy of√
s = 7 TeV. It was expected that the main reason for the appearance of this

real part is that certain rare elastic scattering of the constituents of the protons
may be non-collinear thus may lead to inelastic events even if the elementary
interactions are elastic. The corresponding phenomenological generalization of
the Bialas-Bzdak model [3] was indeed based on the assumption that the real
part of the FSA is small, and can be handled perturbatively. The resulting α-
generalized Bialas-Bzdak (αBB) model was compared to ISR data in Ref. [3],
and it was demonstrated that a small, of the order of 1 % real part of the FSA
indeed results in excellent fit qualities and a statistically acceptable description
of the data in the region of the diffractive minimum or dip. However, at the
LHC energy of 7 TeV, the same αBB model does not result in a satisfactory,
statistically acceptable fit quality, although the visual quality of the fitted curves
improve significantly as compared to that of the original BB model [3].

These results indicate that at the LHC energies the real part of the FSA
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may reach significant values where unitarity constraints may already play an
important role. The unitarity of the S-matrix provides also the basis for the
optical theorem, which in turn provides a method to determine the total cross-
section from an extrapolation of the elastic scattering measurements to the t = 0
point.

In the αBB model of Ref. [3], unitarity constraints were not explicitly con-
sidered: as the original BB model with zero real parts obeyed unitarity, adding
a small real part may possibly resulted only in small violations of unitarity and
the optical theorem. However, when the model was fitted to the 7 TeV TOTEM
data in the dip region in Ref. [3], the extrapolation to the point of t = 0 and
the related value of the total cross-section underestimated the measured total
cross-section by about 40%, suggesting, that perhaps the real part of the FSA
may be large, and unitarity relations should be explicitly considered.

These indications motivate the present manuscript, where the Bialas-Bzdak
model is further generalized to arbitrarily large real parts of the FSA, fully
taking into account unitarity constraints. The resulting model is referred to as
the real extended Bialas-Bzdak (ReBB) model.

The structure of the manuscript is as follows: in Section 2, the general form
of the forward scattering amplitude is re-derived for the case of a non-vanishing
real part starting from S-matrix unitarity. Then this result is applied to the
extension of the BB model to a non-vanishing and possibly large real part of
the FSA.

In Section 3, the resulting ReBB model is fitted to TOTEM data on elastic
pp scattering at

√
s = 7 TeV, both in the diffractive cone [9, 10] and in the dip

region [8], separately.
Based on these fits and comparisons of the ReBB model to

√
s = 7 TeV

data, in Section 4.1 the shadow profile function A(b) is evaluated. This func-
tion characterizes the probability of inelastic pp scattering at a given impact
parameter b, and is compared to the shadow profile functions of elastic pp col-
lisions at lower, ISR energies. Section 4.2 is devoted to study the structure of
the differential cross-section dσ/dt at low-|t| values and also to compare it with
a purely exponential behavior.

In Section 5, the excitation function of the fit parameters is investigated and
their evolution with

√
s is obtained based on a geometrical picture. The model

parameters are extrapolated to the expected future LHC energies of 8, 13, 14
and 15 TeV, as well as for 28 TeV, that is not foreseen to be available at man-
made accelerators in the near future, but may be relevant for the investigation of
cosmic ray events. The excitation functions of the shadow profile functions A(b)
are also discussed. Finally we summarize and conclude.

2 The real extended Bialas-Bzdak model

Although the original form of the Bialas-Bzdak model neglects the real part of
the FSA in high energy elastic pp scattering, the model is based on Glauber
scattering theory and obeys unitarity constraints.

The phenomenological generalization of the Bialas-Bzdak model [3] is based
on the assumption, that the real part of the FSA is small, and can be handled
perturbatively, so unitarity constraints are not violated strongly. However, it
turned out that the addition of a small real part does not lead to a statistically
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acceptable description of TOTEM data on elastic pp collisions at
√
s = 7 TeV.

In this manuscript, we consider the case, when the real part of the FSA is not
perturbatively small. We restart from S-matrix unitarity, and consider how the
BB model can be extended to significant, real values of the FSA while satisfying
the constraints of unitarity.

2.1 S-matrix unitarity in the context of elastic proton-
proton scattering

In this subsection some of the basic equations of quantum scattering theory
are recapitulated. The scattering or S matrix describes how a physical system
changes in a scattering process. The unitarity of the S matrix ensures that the
sum of the probabilities of all possible outcomes of the scattering process is one.

The unitarity of the scattering matrix S is expressed by the equation

SS† = I , (1)

where I is the identity matrix. The decomposition S = I + iT , where T is the
transition matrix, leads the unitarity relation Eq. (1) to

T − T † = iTT † , (2)

which can be rewritten in the impact parameter b representation as

2 Im tel(s, b) = |tel(s, b)|2 + σ̃inel(s, b) , (3)

where s is the squared total center-of-mass energy.
The functions σ̃inel(s, b) = d2σinel/d

2b and |tel(s, b)|2 = d2σel/d
2b are the

inelastic and elastic scattering probabilities per unit area, respectively. The elas-
tic amplitude tel(s, b) is defined in the impact parameter space and corresponds
to the `th partial wave amplitude T`(s) through the relation `+ 1/2↔ b

√
s/2,

which is valid in the high energy limit,
√
s→∞.

The unitarity relation (3) is a second order polynomial equation in terms of
the (complex) elastic amplitude tel(s, b). If one introduces the opacity or eikonal
function [11–16]

tel(s, b) = i
[
1− e−Ω(s,b)

]
, (4)

σ̃inel can be expressed as

σ̃inel(s, b) = 1− e−2 Re Ω(s,b) .

The formula for tel is the so called eikonal form. From Eq. (4) the real part of
the opacity function Ω(s, b) can be expressed as

Re Ω(s, b) = −1

2
ln [1− σ̃inel(s, b)] . (5)

In the original BB model it is assumed that the real part of tel vanishes. In this
case Eqs. (4) and (5) implies that

tel(s, b) = i
[
1−

√
1− σ̃inel(s, b)

]
. (6)
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If the imaginary part Im Ω is taken into account in Eq. (4) the result is

tel(s, b) = i
[
1− e−i Im Ω(s,b)

√
1− σ̃inel(s, b)

]
, (7)

where the concrete parametrization of Im Ω(s, b) is discussed later.
To compare the model with data the amplitude Eq. (7) has to be transformed

into momentum space

T (s,∆) =

+∞∫
−∞

+∞∫
−∞

ei
~∆·~btel(s, b)d

2b (8)

= 2πi

∞∫
0

J0 (∆ · b)
[
1− e−Ω(s,b)

]
bdb , (9)

where b = |~b|, ∆ = |~∆| is the transverse momentum and J0 is the zero order
Bessel-function of the first kind. In the high energy limit,

√
s → ∞, ∆(t) '√

−t where t is the squared four-momentum transfer. Consequently the elastic
differential cross-section can be evaluated as

dσ

dt
=

1

4π
|T (s,∆)|2 . (10)

According to the optical theorem the total elastic cross-section is

σtot = 2 T (s,∆)|t=0 , (11)

while the ratio of the real to the imaginary FSA is

ρ =
ReT (s, 0)

ImT (s, 0)
. (12)

2.2 The Bialas-Bzdak model with a unitarily extended
amplitude

The original BB model [1] describes the proton as a bound state of a quark
and a diquark, where both constituents have to be understood as “dressed”
objects that effectively include all possible virtual gluons and qq̄ pairs to valence
or dressed quarks. The quark and the diquark are characterized with their
positions with respect to the proton’s center of mass using their transverse
position vectors ~sq and ~sd in the plane perpendicular to the proton’s incident
momentum. Hence, the coordinate space H of the colliding protons is spanned
by the vector h = (~sq, ~sd, ~s

′
q, ~s
′
d) where the primed coordinates indicate the

coordinates of the second proton.
The inelastic proton-proton scattering probability σ̃inel(b) in Eq. (6) is cal-

culated as an average of “elementary” inelastic scattering probabilities σ(h;~b)
over the coordinate space H [17]

σ̃inel(b) =
〈
σ(h;~b)

〉
H

=

+∞∫
−∞

...

+∞∫
−∞

dh p(h) · σ(h;~b) , (13)
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where the weight function p(h) is a product of probability distributions

p(h) = D(~sq, ~sd) ·D(~s ′q, ~s
′
d) . (14)

TheD(~sq, ~sd) function is a two-dimensional Gaussian, which describes the center
of mass distribution of the quark and diquark with respect to the center of mass
of the proton

D (~sq, ~sd) =
1 + λ2

R2
qd π

e−(s2
q+s2

d)/R2
qdδ2(~sd + λ~sq), λ =

mq

md
. (15)

The parameter Rqd, the standard deviation of the quark and diquark distance,
is fitted to the data. Note that the two-dimensional Dirac δ function preserves
the proton’s center of mass and reduces the dimension of the integral in Eq. (13)
from eight to four.

Note that the original BB model is realized in two different ways: in one
of the cases, the diquark structure is not resolved. This is referred to as the
p = (q, d) BB model. A more detailed variant is when the diquark is assumed to
be a composition of two quarks, referred as the p = (q, (q, q)). Our earlier studies
using the αBB model indicated [3], that the p = (q, d) case gives somewhat
improved confidence levels as compared to the p = (q, (q, q)) case. So for the
present manuscript we discuss results using the p = (q, d) scenario only, however,
it is trivial to extend the investigations to the p = (q, (q, q)) case and they result
in fits which are not acceptable at

√
s = 7 TeV. For the case of brevity we do not

present the results of the analysis with the p = (q, (q, q)) variant of the ReBB
model, only the fit quality is reported.

It is assumed that the “elementary” inelastic scattering probability σ(h;~b)
can be factorized in terms of binary collisions among the constituents with a
Glauber expansion

σ(h;~b) = 1−
∏
a

∏
b

[
1− σab(~b+ ~s ′a − ~sb)

]
, a, b ∈ {q, d} , (16)

where the indices a and b can be either quark q or diquark d.
The σab (~s) functions describe the probability of binary inelastic collision

between quarks and diquarks and are assumed to be Gaussian

σab (~s) = Aabe
−s2/S2

ab , S2
ab = R2

a +R2
b , a, b ∈ {q, d} , (17)

where the Rq, Rd and Aab parameters are fitted to the data.
The inelastic cross-sections of quark, diquark scatterings can be calculated

by integrating the probability distributions Eq. (17) as

σab,inel =

+∞∫
−∞

+∞∫
−∞

σab (~s) d2s = πAabS
2
ab . (18)

In order to reduce the number of free parameters, it is assumed that the ratios
of the inelastic cross-sections σab,inel satisfy

σqq,inel : σqd,inel : σdd,inel = 1 : 2 : 4 , (19)
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which means that in the BB model the diquark contains twice as many partons
than the quark and also that these quarks and diquarks do not “shadow” each
other during the scattering process. This assumption is not trivial. The p =
(q, (q, q)) version of the BB model allows for different σqq,inel : σqd,inel : σdd,inel

ratios. However, as it was mentioned before, the p = (q, (q, q)) is less favored
by the data as compared to the p = (q, d) case presented below.

Using the inelastic cross-sections Eq. (18) together with the assumption Eq. (19)
the Aqd and Add parameters can be expressed with Aqq

Aqd = Aqq

4R2
q

R2
q +R2

d

, Add = Aqq

4R2
q

R2
d

. (20)

In this way only five parameters have to be fitted to the data Rqd, Rq, Rd, λ,
and Aqq. In practice we fix Aqq = 1 assuming that head on quark-quark (qq)
collisions are completely inelastic according to Eq. (17).

The last step in the calculation is to perform the Gaussian integrals in the av-
erage Eq. (13) to obtain a formula for σ̃inel(b). The Dirac δ function in Eq. (15)
expresses the protons’ diquark position vectors as a function of the quarks po-
sition

~sd = −λ~sq, ~s ′d = −λ~s ′q . (21)

After expanding the products in the Glauber expansion Eq. (16) the follow-
ing sum of contributions is obtained

σ(h;~b) =σqq + 2 · σqd + σdd − (2σqqσqd + σ2
qd + σqqσdd + 2σqdσdd)

+ (σqqσ
2
qd + 2σqqσqdσdd + σddσ

2
qd)− σqqσ2

qdσdd , (22)

where the arguments of the σab(~s) functions are suppressed to abbreviate the
notation.

The average over H in Eq. (13) has to be calculated for each term in the
above expansion Eq. (22). Take the last, most general, term and calculate the
average; the remaining terms are simple consequences of it. The result is

I =
〈
−σqqσ2

qdσdd
〉
H

=

+∞∫
−∞

...

+∞∫
−∞

dh p(h) · (−σqqσ2
qdσdd ) , (23)

where the p(h) weight function Eq. (14) is a product of the quark-diquark dis-
tributions, given by Eq. (15). Substitute into this result Eq. (23) the definitions
of the quark-diquark distributions Eq. (15)

I = −4v2

π2

+∞∫
−∞

+∞∫
−∞

d2sqd2s′q e
−2v(s2

q+s′2q )
∏
k

∏
l

σkl(~b− ~sk + ~s ′l ), k, l ∈ {q, d} ,

(24)

where v = (1 + λ2)/(2 · R2
qd) and the integral over the coordinate space H

is explicitly written out; it is only four dimensional due to the two Dirac δ
functions in p(h). Using the definitions of the σab (~s) functions Eq. (17) and the
expression A = AqqAqdAdqAdd the integral Eq. (24) can be rewritten, to make
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all the Gaussian integrals explicit

I = −4v2A

π2

+∞∫
−∞

+∞∫
−∞

d2sqd2s′q e
−2v(s2

q+s′2q )
∏
k

∏
l

e−ckl(~b−~sk+~s ′
l )

2

, (25)

where the abbreviations ckl = S−2
kl refer to the coefficients in Eq. (17). Finally,

the four Gaussian integrals have to be evaluated in our last expression Eq. (25),
which leads to

I = −4v2A

B
e−b

2 Γ
B , (26)

where

B = Cqd,dq

(
v + cqq + λ2cdd

)
+ (1− λ)

2
Dqd,dq ,

Γ = Cqd,dqDqq,dd + Cqq,ddDqd,dq , (27)

and

Ckl,mn = 4v + (1 + λ)
2

(ckl + cmn) ,

Dkl,mn = v (ckl + cmn) + (1 + λ)
2
cklcmn . (28)

Each term in Eq. (13) can be obtained from the master formula Eq. (26), by
setting one or more coefficients to zero, ckl = 0 and the corresponding amplitude
to one, Akl = 1.

Up to now, according to Eq. (5) and Eq. (6), tel(s, b) is purely imaginary and
Ω(s, b) is real. Now we have to specify the imaginary part of the opacity function,
that determines the real part of the FSA. Here several model assumptions are
possible, but from the analysis of the ISR data and the first studies of the 7 TeV
TOTEM data at LHC we learned, that the real part of the FSA is perturbatively
small at ISR energies, it becomes non-perturbative at LHC but the scattering
is still dominated by the imaginary part of the scattering amplitude.

We have studied several possible choices. One possibility is to introduce
the imaginary part of the opacity function so that it is proportional to the
probability of inelastic scatterings, which is known to be a decreasing function
of the impact parameter b. A possible interpretation of this assumption may be
that the inelastic collisions arising from non-collinear elastic collisions of quarks
and diquarks follow the same spatial distributions as the inelastic collisions of
the same constituents

Im Ω(s, b) = −α · σ̃inel(s, b) , (29)

where α is a real number.
For the α = 0 case, one recovers the p = (q, d) version of the BB model of

Ref. [1], while in the |α| � 1 perturbative limit the αBB model of Ref. [3] is
obtained (but note the that the values of the parameter α in the two models
need to be correspondingly re-scaled).

The above proportionality between Im Ω(s, b) and σ̃inel(b) in formula (29)
provided the best fits from among the relations that we have tried. For example,
we have also investigated the assumption that the real and the imaginary parts
of the opacity function are proportional to one another

Im Ω(s, b) = −α · Re Ω(s, b) . (30)
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However, as the results using Eq. (30) were less favorable as the results
obtained with Eq. (29), we do the data analysis part, described in the next
section, using Eq. (29). We mention this possibility to highlight that here some
phenomenological assumptions are necessary as the ReBB model does allow for
a broad range of possibilities for the choice of the imaginary part of the opacity
function.

In this way, the ReBB model is fully defined, and at a given colliding energy
only six parameters determine the differential (10) and total cross-sections (11)
and also the ρ parameter, defined with Eq. (12). The parameters that have
to be fitted to the data include the three scale parameters, Rq, Rd, Rqd, that
fix the geometry of the proton-proton collisions, as well as the three additional
parameters α, λ and Aqq. Two of the latter three can be fixed: λ = 0.5 if the
diquark is very weakly bound, so that its mass is twice as large as that of the
valence quark, while Aqq = 1 suggests that head-on qq collisions are inelastic
with a probability of 1. Thus in the actual data analysis only four parameters
are fitted to the data at each

√
s: the three scale parameters Rq, Rd and Rqd,

as well as the parameter α. As we shall see, the parameter α will play a key role
when describing the shape of the dip of the differential cross-sections of elastic
pp scatterings at LHC energies.

3 Fit method and results

The proton-proton elastic differential cross-section data measured by the LHC
TOTEM experiment at 7 TeV is a compilation of two subsequent measure-
ments [8, 9]. The squared four-momentum transfer value tsep = −0.375 GeV2

separates the two data sets.1 Note, that the two datasets were taken with two
different settings of the machine optics of the LHC accelerator.

The ReBB model, defined with Eq. (10), was fitted to the data at ISR
energies and at LHC energy of

√
s = 7 TeV. The relation between the imaginary

part of Ω(s, b) and α is defined with Eq. (29). In agreement with our previous
investigations the Aqq = 1 and λ = 1

2 parameters can be kept constant, which
reduces the number of free parameters to four Rqd, Rq, Rd and α.

First we have attempted to fit the ReBB model in the 0 < |t| < 2.5 GeV2

range, fitting simultaneously both the low-|t| and the dip region. In the course
of the minimization of the ReBB model at

√
s = 7 TeV in this t-range, covering

the two different TOTEM data sets, we found that the χ2/NDF value decreases
significantly, if a relative normalization constant γ is introduced between the fit
of the two data sets. Therefore, the calculated differential cross-section is fitted
with

dσ

dt
→ γ · dσ

dt
, (31)

if |t| < |tsep|, where γ is an additional parameter to be minimized. The fit at√
s = 7 TeV is shown in Fig. 1.

Although the fit looks reasonable and reproducing the data qualitatively
rather well, the fit quality it is not yet statistically acceptable, when the fit
is extended to the whole t-region of the combined data set. Note that we
determined the fit quality using statistical errors only, and as claimed in the

1The squared four-momentum transfer value tsep separates the bin centers at the common
boundary, the two bins actually overlap [8, 9].
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original TOTEM publications [8, 9], the systematic errors in the two data set
might be slightly different, that is rather difficult to handle correctly in the
present analysis. So instead of determining the systematic errors of the model
parameters from the systematic errors of the data we decided to analyze the
two TOTEM data sets separately and check for the consistency of the results.
As detailed below, this strategy lead to a reasonable fit qualities (CL = 2.6 %,
statistically acceptable fit in the cone region and CL = 0.04 %, statistically
marginal fit in the dip region) with a remarkable stability of fit parameters as
detailed below.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

|t| [GeV2] (0, 2.5) (0, |tsep|) (|tsep|,2.5)

χ2/NDF 124.7/102 95.9/47 100.1/48 76.6/47 109.9/83 120.42/73

CL [%] 6.3 3× 10−3 2× 10−3 0.41 2.6 4× 10−2

Rq [fm] 0.27±0.01 0.28±0.01 0.27±0.01 0.28±0.01 0.45±0.01 0.43±0.01

Rd [fm] 0.72±0.01 0.74±0.01 0.74±0.01 0.75±0.01 0.94±0.01 0.91±0.01

Rqd [fm] 0.30±0.01 0.29±0.01 0.33±0.01 0.32±0.01 0.33±0.01 0.37±0.02

α 0.03±0.01 0.02±0.01 0.04±0.01 0.04±0.01 0.12 0.12±0.01

Table 1: The values of the fitted ReBB model parameters. The proton-
proton elastic dσ/dt data measured by the TOTEM experiment at 7 TeV is
a composition of two subsequent measurements, which can be separated at
tsep. The overall fit involving the whole 0 < |t| < 2.5 GeV2 range provides
χ2/NDF = 336.4/159 which is not statistically acceptable, while the fits be-
low and above |tsep| provide either a statistically acceptable (CL > 0.1%) or
marginally good (CL = 0.04%) fit quality.

If a separated fit to
√
s = 7 TeV elastic differential cross-section dσ/dt data

is evaluated, below and above the separation |tsep|, a quality result can be
obtained, which is shown in Figs. 2 and 3 and reported in Table 1, together
with our results at ISR energies [8,9,18,19]. Note that the normalization factor
γ, introduced in Eq. (31), is not applied at

√
s = 7 TeV, as the two data set

were fitted separately.
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Figure 1: The fit of the ReBB model at
√
s = 7 TeV in the 0 < |t| < 2.5 GeV2

squared four momentum |t| range. The real part of the amplitude tel is defined
with expression Eq. (29). According to Eq. (31) we use a relative normalization
constant γ between the two TOTEM datasets at

√
s = 7 TeV. The fitted pa-

rameters are shown in the left bottom corner, parameters without errors were
fixed in the minimization. The total cross-section σtot and the parameter ρ are
derived quantities according to Eqs. (11) and (12), respectively.
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Figure 2: The same as Fig. 1, but the fit is evaluated in the 0 < |t| < |tsep|
range. The fitted curve is shown with solid line, its extrapolation above |tsep|
is indicated with a dashed line. Note that the extrapolated curve remains close
to the data points, following the measured differential cross-sections well even
far away from the region where the model was fitted to the data.
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Figure 3: The same as Fig. 1, but the fit is performed in the |tsep| < |t| <
2.5 GeV2 range. The fitted curve is shown with solid line, its extrapolation
is indicated with a dashed line. Note that when the curve is extrapolated to
the low-|t| region, the extrapolated curve again follows the measured differential
cross-section remarkably well even far away the fit region: the ReBB model fit
is remarkably stable over the whole |t|-range.

The resulting parameters coming from the two separate fits at 7 TeV dσ/dt,
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over and below the |tsep| value, are consistent with each other within 2σ error.
Note that at

√
s = 7 TeV the dip is not part of the fit range (0, |tsep|), thus

the minimization procedure cannot determine the value of parameter α. In this
case we have fixed α to the value of the fit from the other |t| range above |tsep|.
The MINUIT status of the fit is successful in both cases.

Due to the stability of the fit parameters the extrapolation of the fit curves
to the not fitted |t| range remains close to the data points. The stability and
consistency of the model description is visible in Fig. 2 and 3.

The calculated total cross-section of the low-|t| fit σtot = 99.6±0.5 mb, where
the uncertainty is the propagated uncertainty of the fit parameters, agrees well
with the value σtot = 98.0 ± 2.5 mb measured by the TOTEM experiment at√
s = 7 TeV [10].

The parameter ρ can be better estimated from the fit over |tsep| which in-
cludes the dip. As the measured value of the ρ parameter ρ = 0.145 ± 0.091
has large uncertainty the ρ = 0.103± 0.001 calculated from the ReBB model is
consistent with the measurement, see Fig. 2.

Also note that if Im Ω(s, b) is defined to be proportional to Re Ω(s, b), ac-
cording to Eq. (30), the MINUIT fit result of χ2/NDF = 405.6/159 = 2.55 is
obtained at

√
s = 7 TeV, which is disfavored as compared to fits with Eq. (29).

In our introduction we shortly mentioned the p = (q, (q, q)) version of the
ReBB model, when the diquark is assumed to be a composition of two quarks [3].
This scenario provides a fit results with χ2/NDF = 15509/159 ≈ 97.5, which
means that the p = (q, (q, q)) ReBB version can be clearly rejected. The failure
of this version is basically due the wrong shape of the differential cross-section:
the second diffractive minimum appears too close to the first one.
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Figure 4: The shadow profile functions A(b) indicate a saturation effect at
LHC, while at ISR energies a Gaussian shape can be observed. Note that
the dashed black curve is based on the statistically acceptable fit result in the
0 < |t| < 0.38 GeV2 range. The distributions’ edge shows approximately the
same width at each energy, corresponding to a constant “skin-width” of the
proton.
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4 Discussion

4.1 Shadow profile functions and saturation

The fits, from which the model parameters were determined, also permit us to
evaluate the shadow profile function

A(s, b) = 1− |exp [−Ω(s, b)]|2 . (32)

The obtained curves to A(b) are shown in Fig. 4. The shadow profile functions
at ISR energies exhibit a Gaussian like shape, which smoothly change with the
center of mass energy

√
s. At LHC something new appears: the innermost

part of the distribution shows a saturation, which means that around b = 0
the function becomes almost flat and stay close to A(b) ≈ 1. Consequently, the
shape of the shadow profile function A(b) becomes non-Gaussian and somewhat
“distorted” with respect to the shapes found at ISR.

At the same time the width of the edge of the shadow profile function A(b),
which can be visualized as the proton’s “skin-width”, remains approximately
independent of the center of mass energy

√
s.

4.2 Non-exponential behavior of dσel/dt

To compare the obtained ReBB fit with a purely exponential distribution the
following exponential parametrization is used

dσel

dt
=

dσel

dt

∣∣∣∣
t=0

· e−B·|t| , (33)

where dσel/dt|t=0 = 506.4 mb/GeV2 and slope parameter B = 19.89 GeV−2 is
applied, according to the TOTEM paper Ref. [9].

The result, shown in Fig. 5, indicates a clear non-exponential behavior of
the elastic differential cross-section in the 0.0 ≤ |t| ≤ 0.2 GeV2 range at

√
s =7

TeV. Note that a similar non-exponential behavior was recently discussed by
the TOTEM experiment [6] and also by the theoretical work of Ref. [7].

5 Extrapolation to future LHC energies and be-
yond

The ReBB model can be extrapolated to energies which have not been measured
yet at LHC. The fit results of Table 1 and the parametrization

P (s) = p0 + p1 · ln (s/s0) (34)

is applied for each parameter P ∈ {Rq, Rd, Rqd, α}, where s0 = 1 GeV2. The
parametrization Eq. (34) implies that the four free parameters of the original
ReBB model are replaced with eight parameters pi. The fit of the ReBB pa-
rameters are shown in Fig. 6 and the fit parameters are collected in Table 2.
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Figure 5: The ReBB model, fitted in the 0.0 ≤ |t| ≤ 0.36 GeV2 range, with
respect to the exponential fit of Eq. (33). In the plot only the 0.0 ≤ |t| ≤
0.2 GeV2 range is shown. The curve indicates a significant deviation from the
simple exponential at low |t| values.
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Figure 6: The results, collected in Table 1, are fitted with Eq. (34) for each
parameter Rq, Rd, Rqd and α. The plots about the resulting fits are collected
here, the parameters are collected in Table 2. The statistically acceptable quality
of these fits allow the ReBB model to be extrapolated to center of mass energies
which have not been measured yet at LHC.

The logarithmic dependence of the geometric parameters on the center of
mass energy

√
s in the parametrization Eq. (34) is motivated by the so-called
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“geometric picture“ based on a series of studies [20–25].
Table 2 shows that the rate of increase with

√
s, parameter p1, is an order of

magnitude larger for Rq and Rd than for Rqd. The saturation effect, described
in Section 4.1, is consistent with this observation as the increasing components
of the proton, the quark and the diquark, are confined into a volume which is
increasing more slowly.

Parameter Rq [fm] Rd [fm] Rqd [fm] α

χ2/NDF 6.2/3 2.4/3 7.5/3 1.2/3
CL [%] 10.2 49.4 5.8 75.3
p0 0.15± 0.01 0.59± 0.01 0.3± 0.01 −0.036± 0.01
p1 0.017± 0.001 0.019± 0.001 0.0019± 0.001 0.009± 0.001

Table 2: Table 1 allows the extrapolation of the model parameters over the
center of mass energy

√
s. The parametrization Eq. (34) is applied to extrapolate

the ReBB model and the fits are shown in Fig. 6. The fit quality information
is provided in the first and second row of the table. Note that the fit quality is
acceptable for each parameter.
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Figure 7: The pp elastic differential
cross-section is extrapolated to future
LHC energies and beyond.

Using the extrapolation formula
Eq. (34) and the value of the parame-
ters from Table 2 it is straightforward
to calculate the values of the parame-
ters at expected future LHC energies
of
√
s =8, 13, 14, 15 TeV and also

at 28 TeV, which is beyond the LHC
capabilities. Using the extrapolated
values of the parameters we plot our
predicted pp elastic differential cross-
section curves at each mentioned en-
ergy in Fig. 7. The shadow profile
functions A(b) can be also extrapo-
lated, see Fig. 8. The shadow pro-
file functions even allow us to visual-
ize the increasing effective interaction
radius of the proton in the impact pa-
rameter space in Fig. 9.

It is also important to see how the
most important features change with
center of mass energy

√
s: the extrap-

olated values of the total cross-section
σtot, the position of the first diffrac-
tive minimum |tdip| and the parame-
ter ρ is given in Table 3.
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Figure 8: The shadow profile function at the extrapolated energies
√
s. The

results show the increase of the proton interaction radius with increasing
√
s

energies. Also note that the “edge” of the distributions remains of approxi-
mately constant width and shape.

According to the results, the predicted value of |tdip| and σtot moves more
than 10% when

√
s increases from 8 TeV to 28 TeV, while the value of Cexp =

|tdip| · σtot ≈ 49.8 mb GeV2 changes only about 2 %, which is an approximately
constant value, within the errors of the extrapolation.

√
s [TeV] σtot [mb] |tdip|[GeV2] ρ |tdip| · σtot [mb GeV2]

8 100.1 0.494 0.103 49.45
13 107.1 0.465 0.108 49.8
14 108.1 0.461 0.108 49.83
15 109.1 0.457 0.109 49.86
28 118.5 0.426 0.114 50.48

Table 3: The extrapolated values of the total cross-section σtot at future LHC
energies and beyond. The position of the first diffractive minimum |tdip|, the
parameter ρ and the |tdip| ·σtot value is also provided at each energy. Note that
the predicted value of |tdip| and σtot moves more than 10% when

√
s increases

from 8 TeV to 28 TeV, while the value of |tdip| · σtot changes only about 2%.

A similar, and exact, scaling can be derived for the case of photon scattering
on a black disk, where the elastic differential cross-section is [26]

dσblack
dt

= πR4

[
J1(q ·R)

q ·R

]2

, (35)

where t = −q2 and R is the radius of the black disk. The total cross-section is
given by

σtot,black = 2πR2 . (36)

In this simple theoretical model the position of the first diffractive minimum,
following from Eq. (35), and the total cross-section Eq. (36) satisfies

Cblack = |tdip,black| · σtot,black = 2πj2
1,1(~c)2 ≈ 35.9 mb GeV2 , (37)
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where j1,1 is the first root of the first order Bessel-function of the first kind J1(x).
The scaling behavior indicated by the stability of the value Cexp is somewhat

different from the black disk model, described by Eq. (37), as the corresponding
value Cblack is significantly different

Cblack 6= Cexp . (38)

In this sense the value of Cexp indicates a more complex scattering phenomena,
than the photon black disc scattering.
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Figure 9: Visualization of the shadow profile functions A(b) in the transverse
plane of the impact parameter vector (bx, by). The figures show the increase
of the proton effective interaction radius in the impact parameter space with
increasing center of mass energy

√
s. It can be also observed that the black

innermost core of the distributions is increasing, while the thickness of the pro-
ton’s “skin”, the gray transition part of the distributions, remains approximately
independent of the center of mass energy

√
s.

6 Summary and conclusions

The real part of the forward scattering amplitude (FSA) is derived from unitarity
constraints in the Bialas-Bzdak model leading to the so-called ReBB model. The
added real part of the FSA significantly improves the model ability to describe
the data at the first diffractive minimum. In total the ReBB model describes
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both the ISR and LHC data in the 0 < |t| < 2.5 GeV2 squared momentum
transfer range in a statistically acceptable manner; in the latter case the fit
range has to be divided to two parts, according to the compilation of the two
independent TOTEM measurements. The results are collected in Table 1.

The fit results also permit us to evaluate the shadow profile functions A(b),
see Fig. 4. The plots indicate a Gaussian shape at ISR energies, while at LHC
a saturation effect can be observed: the innermost part of the shadow profile
function A(b) around b = 0 is almost flat and close to A(b) ≈ 1. The elastic
differential cross-section can be compared to a purely exponential distribution
and the comparison shows a significant deviation from pure exponential in the
0.0 ≤ |t| ≤ 0.2 GeV2 range.

The fit results allow the determination of the excitation functions of the
ReBB model at future LHC energies and beyond, with parameters collected in
Table 2 and predicted differential cross-section curves shown in Fig. 7. The
shadow profile functions can be also extrapolated, see Fig. 8, which predicts
that the saturated part of the proton is expected to increase with increasing
center of mass energy

√
s. The edge of the distribution, the “skin-width” of the

proton, expected to remain approximately constant. It is worth to mention that
the extrapolated version of the ReBB model utilizes of only eight parameters,
the pi parameters of Table 2, and in this sense a “minimal“ set of parameters
is applied.
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Abstract

Peripheral heavy ion reactions at ultra relativistic energies have large an-
gular momentum that can be studied via two particle correlations using the
Differential Hanbury Brown and Twiss method. We analyze the possibili-
ties and sensitivity of the method in a rotating system. We also study an
expanding solution of the fluid dynamical model of heavy ion reactions.

1 Introduction

Collective flow is one of the most dominant observable features in heavy ion re-
actions up to the highest available energies, and its global symmetries as well as
its fluctuations are extensively studied. Especially at the highest energies for pe-
ripheral reaction the angular momentum of the initial state is substantial, which
leads to observable rotation according to fluid dynamical estimates [1]. Further-
more the low viscosity quark-gluon fluid may lead to to initial turbulent instabilities,
like the Kelvin Helmholtz Instability (KHI), according to numerical fluid dynamical
estimates [2], which is also confirmed in a simplified analytic model [3]. These
turbulent phenomena further increase the rotation of the system, which also leads
to a large vorticity and circulation of the participant zone one order of magnitude
larger than from random fluctuations in the transverse plane [4, 5, 6].

The Differential Hanbury Brown and Twiss (DHBT) method has been introduced
in [9]. The method has been applied to a high resolution Particle in Cell Relativistic
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(PICR) fluid dynamical model [10].

2 The two particle correlation

The pion correlation function is defined as the inclusive two-particle distribution
divided by the product of the inclusive one-particle distributions, such that [12]:

C(p1, p2) =
P2(p1, p2)

P1(p1)P1(p2)
, (1)

where p1 and p2 are the 4-momenta of the pions and k and q are the average and
relative momentum respectively.

We use a method for moving sources presented in Ref.[14]. In the formulae the
h̄ = 1 convention is used and k and q are considered as the wavenumber vectors.
The correlation function is:

C(k, q) = 1 +
R(k, q)∣∣∫ d4xS(x, k)

∣∣2 , (2)

where

R(k, q) =

∫
d4x1 d

4x2 cos[q(x1 − x2)]S(x1, k + q/2)S(x2, k − q/2) . (3)

Here R(k, q) can be calculated [14] via the function and we obtain the R(k, q)
function as

R(k, q) = Re [J(k, q) J(k,−q)] (4)

The corresponding J(k, q) function will become

J(k, q) =

∫
d4x S(x, k) exp

[
−q · u(x)

2T (x)

]
exp(iqx) . (5)

For the phase space distribution we frequently use the Jüttner (relativistic Boltz-
mann) distribution, in terms of the local invariant scalar particle density the Jüttner
distribution is [15]

fJ(x, p) =
n(x)

Cn
exp

(
−p

µuµ(x)

T (x)

)
, (6)

where Cn = 4πm2TK2(m/T ). We assume a spatial distribution:

G(x) = γn(x) = γns exp

(
−x

2 + y2 + z2

2R2

)
. (7)

Here ns is the average density of the Gaussian source, s, (or fluid cell) of mean
radius R.

Asymmetric Sources: we have seen in few source model examples [9] that
a highly symmetric source may result in correlation functions that are sensitive to
rotation, however, these results were not sensitive to the direction of the rotation,
which seems to be unrealistic. We saw that this result is a consequence of the
assumption that both of the members of a symmetric pair contribute equally to the
correlation function even if one is at the side of the system facing the detector and
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the other is on the opposite side. The expansion velocities are also opposite at the
opposite sides. The dense and hot nuclear matter or the Quark-gluon Plasma are
strongly interacting, and for the most of the observed particle types the detection
of a particle from the side of the system, – which is not facing the detector but
points to the opposite direction, – is significantly less probable. The reason is partly
in the diverging velocities during the expansion and partly to the lower emission
probability from earlier (deeper) layers of the source from the external edge of the
timelike (or spacelike) FO layer.

For the study of realistic systems where the emission is dominated by the side
of the system, which is facing the detector, we cannot use the assumption of the
symmetry among pairs or groups of the sources from opposite sides of the system.
Even if the FO layer has a time-like normal direction, σ̂µ the (kµσ̂µ) factor yields a
substantial emission difference between the opposite sides of the system.

The correlation function, C(k, q) is always measured in a given direction of the
detector, ~k. Obviously only those particles can reach the detector, which satisfy
kµσ̂µ > 0. Thus in the calculation of C(k, q) (see Fig. 1) for a given ~̂k- direction
we can exclude the parts of the freeze out layer where kµσ̂µ < 0 (see Eq. (10)
of Ref.[16] or Ref.[18]. For time-like FO a simplest approximation for the emission
possibility is Pesc(x) ∝ kµuµ(x) [17].

3 The DHBT method and fluid dynamical re-
sults

Based on the few source model results the Differential HBT method [9] was in-
troduced by evaluating the difference of two correlation functions measured at two
symmetric angles, forward and backward shifted in the reaction plane in the partic-
ipant c.m. frame by the same angle, i.e. at η = ±const., so that

∆C(k, q) ≡ C(k+, qout)− C(k−, qout). (8)

For the exactly ±x -symmetric spatial configurations (i.e. k+x = k−x and
k+z = −k−z), e.g. central collisions or spherical expansion, ∆C(k, q) would vanish!
It would become finite if the rotation introduces an asymmetry.

The sensitivity of the standard correlation function on the fluid cell velocities
decreases with decreasing distances among the cells. So, with a large number of
densely placed fluid cells where all fluid cells contribute equally to the correlation
function, the sensitivity on the flow velocity becomes negligibly weak.

Thus, the emission probability from different ST regions of the system is essential
in the evaluation. This emission asymmetry due to the local flow velocity occurs
also when the FO surface or layer is isochronous or if it happens at constant proper
time.

We studied the fluid dynamical patterns of the calculations published in Ref.
[2], where the appearance of the KHI is discussed under different conditions. We
chose the configuration, where both the rotation [1], and the KHI occurred, at
b = 0.7bmax with high cell resolution and low numerical viscosity at LHC energies,
where the angular momentum is large, L ≈ 106h̄ [13]. Fig. 2 shows the DHBT for
the FD model.

The standard correlation function is both influenced by the ST shape of the
emitting source as well as its velocity distribution. The correlation function becomes
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Figure 1: (color online) The dependence of the standard correlation function in

the ~k+ direction from the collective flow, at the final time. From ref. [10].
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Figure 2: (color online) The differential correlation function ∆C(k, q) at the
final time with and without rotation. From ref. [10].

narrower in q with increasing time primarily due to the rapid expansion of the system.
At the initial configuration the increase of |~k| leads to a small increase of the width
of the correlation function.

Nevertheless, in theoretical models we can switch off the rotation component
of the flow, and analyse how the rotation influences the correlation function and
especially the DCF, ∆C(k, q).

Fig. 1 compares the standard correlation functions with and without the rotation
component of the flow at the final time moment. Here we see that the rotation
leads to a small increase of the width in q for the distribution at high values of |~k|,
while at low momentum there is no visible difference.

In Fig. 2 ∆C(k, q) is shown for the configuration with and without rotation. For
k = 5/fm the rotation increases both the amplitude and the width of ∆C. The
dependence on |~k| is especially large at the final time.

Fig. 3 shows the result where the rotation component of the velocity field is
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Figure 3: (color online) The Differential Correlation Function (DCF) at average
pion wavenumber, k = 5/fm and fluid dynamical evolution time, t = 3.56fm/c,
as a function of the functions of momentum difference in the ”out” direction
q (in units of 1/fm). The DCF is evaluated in a frame rotated in the reaction
plane, in the c.m. system by angle α. From ref. [10].

removed. The DCF shows a minimum in its integrated value over q, for α =
−11 degrees. The shape of the DCF changes characteristically with the angle α.
Unfortunately this is not possible experimentally, so the direction of the symmetry
axes should be found with other methods, like global flow analysis and/or azimuthal
HBT analysis.

Finally we separated the effect of the rotation by finding the symmetry angle
where the rotation-less configuration yields vanishing or minimal DCF for a given
transverse momentum k. This could be done in the theoretical model. We did this
for two different energies, Pb+Pb / Au+Au at √sNN = 2.36/0.2 TeV respectively,
while all other parameters of the collision were the same. The deflection angle of the
symmetry axis was α = −11/ − 8 degrees1 respectively. In these deflected frames
we evaluated the DCF for the original, rotating configurations, which are shown in
Fig. 4. This provides an excellent measure of the rotation.

4 Summary

We show that two particle correlation measurements can be sensitive to the rotation
of the emitting system. The analysed model calculations show that the Differential
HBT analysis can give a good quantitative measure of the rotation in the reaction
plane of a heavy ion collision.
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Abstract

Two-particle correlations at small relative momenta give insight into
the size of the emitting source. Of particular interest is the test of hydro-
dynamic models which predict a universal, apparent decrease of the extent
of the system with increasing transverse mass mT as a consequence of the
strong radial flow in heavy-ion collisions at LHC energies. This contribu-
tion presents a study of correlations for protons and Λ particles in Pb-Pb
collisions at

√
sNN = 2.76 TeV measured with ALICE. The investigated

particle species expand the experimental reach in mT due to their high
rest mass. Residual impurities in the samples from misidentification and
contributions from feed-down are corrected using data-driven techniques.
Correlation functions are obtained in several centrality classes and mT

intervals at large mT and show the expected decrease in volume of the
strongly interacting fireball for more peripheral collisions. We observe
the decrease of the source size with mT, predicted by hydrodynamical
calculations, out to 〈mT〉 = 2.18 GeV/c2.

1 Introduction

Femtoscopy aims at measuring the size of the particle emitting source. Experi-
mentally, this is achieved by studying two-particle correlations at small relative

∗email: Hans.Beck@cern.ch
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momenta. If the size of the system is large, the emissions of the two parti-
cles will likely be substantially separated in space. Therefore, no interaction or
symmetrization will take place and the momenta will be uncorrelated. If – on
the other hand – the extent of the source is small, the vicinity of the emanation
points will trigger the species-specific interplay with a characteristic dependence
of the correlation on the momentum difference. Given that the two-particle in-
teraction is known, a source size can be inferred from the correlation function.

No Coulomb or quantum-statistical effects take place in the pΛ system and
the strong interaction parameters are sufficiently well known from, e. g., bubble
chamber experiments. A typical reaction for studying the pΛ final-state inter-
action is the production of Λ baryons by shooting a beam of negatively charged
kaons on a hydrogen target as done with the Saclay bubble chamber [1]. The Λ
hyperon – created via K− + p → Λ + π0 – can subsequently scatter elastically
off another proton. Measuring the cross-section of the elastic process differen-
tially vs. the excess energy directly quantifies the attractive final-state strong
interaction, which turns out to be comparable to the nucleon-nucleon one.

Based on the model by Lednický and Lyuboshits [2], the sensitivity of the
pΛ correlation function to the volume of the hot and dense medium created
in heavy-ion collisions was first explored in [3]. The correlation was found to
be affected in height and shape by the size of the source. Furthermore, the
interdependence of the two momenta was shown to keep its susceptibility to a
change in source size for radii larger than 4 fm – an advantage over the Coulomb-
depleted proton-proton correlations.

A particularly interesting subject is the investigation of the reaction dynam-
ics of the strongly interacting matter generated in Pb-Pb collisions. The large
pressure gradients give rise to an expansion of the medium. The resulting col-
lective velocity competes with the thermal velocity

√
T/mT; consequently the

mT dependence of the radii probes the dynamics of the source. At low mT, no
strong collective motion is present and the particles will be correlated over the
full extent of the source. At high mT in contrast, the radial flow introduces a
positive correlation between the emission point and the particle’s momentum.
Looking only at pairs of particles with a small momentum difference, the cou-
ple’s constituents will originate from the same region, which is smaller than the
geometrical size of the fireball, leading to the apparent shrinking of the particle
source with mT. To probe the high mT regime, it is experimentally beneficial to
investigate particles with a high rest mass. So far, the pΛ system is the heaviest
studied system [4–6].

2 Particle Selection

The analyzed Pb-Pb data was taken with ALICE [7]. The T0 and V0 scintil-
lator arrays provided an event-trigger signal and an estimate for the collision
centrality. The main detectors for particle tracking in ALICE are the Inner
Tracking System, Time Projection Chamber (TPC), and Transition Radiation
Detector. Particle identification for this analysis was performed by the TPC
and the Time Of Flight (TOF) detector. The vanishing µB at the LHC entails
that matter and anti-matter are produced in equal abundance. While the corre-
lation functions for pairs of pΛ and pΛ were obtained separately, the selections
for particles discussed in the following hold true for their charge conjugates as
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well.
The proton selection depended on the reconstructed momentum and used the

TPC and/or TOF. The resolution of the truncated specific energy loss measure-
ment (dE/dx) can be parametrized with a Gaussian of width σ. The TPC pro-
vided a separation of the most probable dE/dx measurement for protons to the
one of any other species of more than four σ up to p = 0.75 GeV/c. Above this
kinematic restriction, the expected dE/dx for protons and the ultra-relativistic
electrons becomes too similar, which impeded an unambiguous particle identi-
fication by the TPC alone. For higher momenta up to p = 5.0 GeV/c, TOF
allowed for an unambiguous proton identification [8]. With the chosen criteria a
proton purity – defined as the number of protons over the number of all selected
particles including misidentified tracks – above 99% was achieved over the full
dynamic span.

The Λ selection was based upon a V0 topology finder, which reconstructs
the charged decay Λ→ p +π−; the hyperon is identified via the invariant mass.
Fig. 1 (left) shows a fit to the invariant mass distribution of all Λ candidates
employing a Monte-Carlo template for the signal shape in an exemplary phase-
space bin with a high yield, namely 0.5 < |y| < 0.6 and 1.0 ≤ pT (GeV/c) < 1.5,
for the 10% most central events. The parametrization allows to determine the
purity of the sample – defined as the ratio of picked Λ particles to all taken
V0 vertices – which amounts in this case to purΛ = 91% within the window
in invariant mass of ±4 MeV around the PDG value. Determining the purity
enables one to correct the correlation function for the uncorrelated background
in a following step. Fig. 1 (right) shows the evolution of the Λ purity as a
function of rapidity and transverse momentum for the 10% most central events.
Protons knocked-out from an interaction with the detector material resemble
displaced tracks from weak particle decay vertices. A contribution of protons
from material manifests itself in a degradation of the purity for pT < 0.5 GeV/c;
the effect is absent for the case of Λ. For higher transverse momenta, the purity
is 81% for |y| > 1.0, within |η| < 0.9 it is better than 90%.
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Figure 1: Left: Invariant mass spectrum of Λ candidates in an exemplary phase-
space bin with a fit using a Monte-Carlo template for the signal shape. Right:
Λ purity as a function of rapidity and transverse momentum for the 10% most
central events.
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3 Feed-Down Determination

The pΛ strong interaction is limited in its range to a few fm. Hence, any prod-
uct from electro-magnetic or weak decays will not contribute to the excess seen
at small relative momenta. The contamination in the proton sample mostly
stems from the decay Λ → pdecπ

−. Since no significant ΛΛ correlation was
seen by the STAR Collaboration [9], the decay proton will also not carry any
residual correlation [10–12] from the mother particle.1 The determination of the
amount of this uncorrelated feed-down allows for a correction of the pΛ corre-
lation function with the feed-down fraction fp = non-primary

all . The outstanding
performance of ALICE allows to determine this feed-down fraction in the pro-
ton sample directly from the data via the distance of closest approach (DCA)
of the track extrapolation to the primary vertex. The two-dimensional (trans-
verse and longitudinal) DCA distribution was obtained differentially in rapidity,
transverse momentum, and centrality for the data, as well as for templates from
Monte-Carlo simulations for primary protons2, protons from weak decays, and
protons from an interaction with the detector material. The distinct shapes of
the templates – almost flat in DCA for the material contribution, wide for the
weak decays, and peaked for the primaries – allow to disentangle the different
origins of the charged nucleons by fitting the templates to the data, as pictured
in Fig. 2 (left). Selecting only tracks with a DCA smaller than 1 mm in the
transverse and smaller than 1.5 mm in the longitudinal direction enhances the
primaries in the sample. In the exemplary phase-space bin 0.0 ≤ y < 0.25 and
1.0 ≤ pT (GeV/c) < 1.5, the feed-down fraction fp totals to 15%. This arises
from the amount of particles which are from weak decays and from material of
15% and less than 1%, respectively.

Also the Λ sample is contaminated by feed-down. The contributing, dom-
inating weak decays are Ξ0 → Λπ0 (BR 99.5%), Ξ− → Λπ− (BR 99.9%),
Ω− → ΛK− (BR 67.8%), and Ω− → Ξ(→ Λπ)π (BR 32.2%). The reconstruc-
tion efficiencies with the chosen Λ selection criteria in this analysis for all Y =
Ξ0,Ξ0,Ξ−,Ξ+,Ω−, and Ω+ were obtained three-dimensionally in pY

T → (pΛ
T, y

Λ)
for each centrality class of [15] from a Monte-Carlo simulation. Using the pT-
differential spectra of Ξ−,Ξ+,Ω−, and Ω+ measured by ALICE [15] for several
centrality classes and assuming isospin symmetry for the unmeasured Ξ0 and
Ξ0, enabled us to determine the fraction of Λ hyperons from weak decays.

The cτ = 22 pm of the electro-magnetic decay Σ0 → Λγ (BR 100%) is
much larger than the range of the strong interaction, but also too small to be
resolved experimentally. In [16] it was found that the final-state interaction in
the pΣ0 channel is much smaller than in the pΛ system. Thus, a significant
fraction of Λ come from Σ0 and are uncorrelated with primary protons. We use
the fraction of Λ from Σ0 – properly taking into account all strongly decaying
resonances – from the thermal model of [17], while systematically considering
the study in [18] with an additional variation in the freeze-out temperature,
and the results of [19] with the value at the kinetic and chemical freeze-out. All
models give that about 30% of the Λ originate from a electromagnetic decay.

1Recent data from ALICE [13] and STAR [14] suggest a slight ΛΛ anti-correlation. The
momentum released in the Λ decay will wash this correlation out; the small fraction of pdecΛ
pairs in the pΛ sample will make it a tiny, likely negligible, correction.

2According to the common ALICE definition, primary protons include decay products,
except products from weak decays of strange hadrons.
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protons to the primary vertex in data with a fit utilizing Monte-Carlo templates
in an exemplary phase-space bin. Right: Λ pair purity for pairs with mT ≥
1.9 GeV/c for the 10% most central events with a constant fit in the region
0.0 ≤ q (GeV/c) < 0.15.

We unite the fraction from weak and electromagnetic hyperon decays in the
feed-down fraction fΛ.

4 Corrections and Results

The raw pΛ correlation as a function of the momentum difference is obtained
as the ratio of pairs from real events over those reconstructed from mixed
events for three centrality divisions and up to four mT classes for each cen-
trality class. Dealing with non-identical particles, we use the generalized mo-
mentum difference introduced in [20] by R. Lednický q̃ = |q − P (qP )/P 2|, q =
p1 − p2, P = p1 + p2, where p1 and p2 are the momenta of the particles. In the
following, we omit the tilde. The overall pair purity factorizes: pur(q,mT) =
purΛ(q,mT) · (1− fp(q,mT)) · (1− fΛ(q,mT)). The Λ pair purity purΛ(q,mT)
is shown exemplary in Fig. 2 (right) for the 10% most central events and the
highest mT class, mT ≥ 1.9 GeV/c2. Its value of 95.1% is constant over the
region of interest q < 0.15 (GeV/c) and beyond. It is obtained by looking up
the single-particle Λ purity in the (y, pT)-differential histograms for the given
centrality; the same holds for fp and fΛ accordingly. All impurities constitute
– as discussed – an uncorrelated background. Hence, the corrected correlation
function can be attained by scaling the raw correlation function with the inverse
pair purity:

Ccorr.
2 (q,mT) =

(
1

pur(q,mT)
· (Craw

2 (q,mT)− 1)

)
+ 1. (1)

The effect of the finite momentum resolution was studied with a Monte-
Carlo simulation. For small relative momenta, i. e. (qrec + qgen)/2 ≤ 0.1 GeV/c,
where qrec is the reconstructed and qgen is the generated relative momentum, the
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deviation, quantified as (qrec − qgen)/
√

2, can be parametrized with a Gaussian
with a mean of −0.32±0.02 and −0.38±0.08 MeV/c and a width of 7.26±0.02
and 7.13 ± 0.07 MeV/c for the 0–10 and 30–50% most central events. In an
mT-differential study, the width turned out to slightly increase by less than
2 MeV/c for higher mT.
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Figure 3: Exemplary pΛ and pΛ correlation func-
tion corrected for weak and electromagnetic de-
cays. Centrality dependence at the top, mT de-
pendence at the bottom.

Fig. 3 shows a set of
exemplary correlation func-
tions corrected via Eq. 1,
i. e. remedied for the un-
correlated background com-
ing from weak and electro-
magnetic decays. The cor-
relation functions for pairs
of particles and pairs of
anti-particles were merged
following the recipe of the
Particle Data Group [21].
The systematic errors in-
clude a variation of the
correction for the electro-
magnetic feed-down, a change
in the hyperon input spec-
tra for the correction of the
Λ from weak decays, an
altered momentum resolu-
tion, normalization, invari-
ant mass selection of the Λ,
changed DCA cuts on the
proton, a varied two-track
resolution cut, and domi-
nantly the uncertainty on
the pΛ interaction when fit-
ting the data. The top
panel shows the centrality dependence, i. e. the 0–10% most central events in
red and the 30–50% most central events in blue; both samples have a mean
transverse mass of 1.5 GeV/c2. One clearly sees the expected effect of an
increased width and height of the excess at small relative momenta, which
translates into a smaller source size, for the more peripheral collisions. The
bottom panel shows the dependence on mT with the green points representing
1.0 ≤ mT (GeV/c2) < 1.4 resulting in 〈mT〉 = 1.27 GeV/c2 and the orange sym-
bols depicting mT ≥ 1.9 GeV/c2 yielding 〈mT〉 = 2.18 GeV/c2 for the 0–10%
most central events. Also here, a clear ordering is apparent with the higher mT

giving evidence for a smaller source than at lower mT, matching the expectation
within the hydrodynamic picture outlined in the introduction. Note that the
correlation function with 〈mT〉 = 2.18 GeV/c2 exceeds the 〈mT〉 of any previous
measurement from [6] at the SPS, [5] at RHIC or [22,23] at the LHC.
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5 Summary

The supreme performance of ALICE makes it possible to collect very pure sam-
ples of protons and Λ with rich statistics. We obtained pΛ correlation functions
multi-differentially in centrality and transverse mass. They were corrected for
misidentification and contamination from weak and electromagnetic decays, em-
ploying data-driven methods to quantify the impurities. The correlation func-
tions presented here represent the largest mT reach of any femtoscopic measure-
ment, with result being shown for mT ≥ 1.9 GeV/c2. The conveyed centrality
dependence of the pΛ correlations exhibits the expected behavior of a smaller
source for more peripheral collisions. The communicated mT-differential corre-
lations, spanning a range in 〈mT〉 of more than 0.9 GeV/c2, display the decrease
in source size with mT, qualitatively agreeing with hydrodynamic predictions,
out to highest 〈mT〉 = 2.18 GeV/c2.
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in Pb-Pb Collisions at LHC Energies
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Abstract

With large volumes of data available from LHC, it has become possible
to study the multiplicity distributions for the various possible behaviours of
the multiparticle production in collisions of relativistic heavy ion collisions,
where a system of dense and hot partons has been created. In this context
it is important and interesting as well to check how well the Monte Carlo
generators can describe the properties or the behaviour of multiparticle pro-
duction processes. One such possible behaviour is the self-similarity in the
particle production, which can be studied with the intermittency studies and
further with chaoticity/erraticity, in the heavy ion collisions. We analyse the
behaviour of erraticity index in central Pb-Pb collisions at centre of mass
energy of 2.76 TeV per nucleon using the AMPT monte carlo event gener-
ator, following the recent proposal by R.C. Hwa and C.B. Yang, concerning
the local multiplicity fluctuation study as a signature of critical hadronization
in heavy-ion collisions. We report the values of erraticity index for the two
versions of the model with default settings and their dependence on the size
of the phase space region. Results presented here may serve as a reference
sample for the experimental data from heavy ion collisions at these energies.
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1 Introduction

Dynamics of the initial processes, that is the distributions and the nature of inter-
actions of quarks and gluons, in the heavy ion collisions affect the final distribution
of the particles produced [1]. Of the various distributions, multiplicity distributions
play fundamental role in extracting first hand information on the underlying particle
production mechanism. If QGP is formed at these energies the QGP-hadron phase
transition is expected to be accompanied by large local fluctuations in the number
of produced particles in the regions of phase space [2]. Thus the study of fluctua-
tions in the multiplicity is an important tool to understand the dynamics of initial
processes and consequently the processes of strong interactions, phase transition
and also to understand correlations of QGP formation [3].

A comprehensive theoretical model which can explain and give answers to all
the complexities of the physics involved at high energy and densities, as is created
in the heavy ion collisions, is still not available. A successful model focussed on one
aspect of the problem may not say much about the other aspects, but at least should
not contradict what is observed. The measures which are studied in the present
work rely on the large bin multiplicities. At LHC energies multiplicities are high
and it is possible to have detailed study of the local properties in (η, φ) space for
narrow pT bins and thus to explore the dynamical properties of the system created
in the heavy ion collisions. Thus as an initial attempt to understand the nature of
global properties, as manifested in local fluctuations, here we develop and test the
methodology and effectiveness of the analysis, analysing simulated events for Pb-Pb
collisions at √sNN= 2.76 TeV using A Multi-Phase Transport (AMPT) model.

Study of charged particle multiplicity fluctuations is one of the sensitive probes
to learn about the properties of the system produced in the heavy ion collisions.
Factorial moments are one of the convenient tools for studying fluctuations in the
particle production. The concept of factorial moments was first used by A. Bialas
and R. Peschanski [4] to explain unexpectedly large local fluctuations in high mul-
tiplicity events recorded by the JACEE Collaboratin. Advantage of studying fluctu-
ations using factorial moments is that these filter out statistical fluctuations. The
normalised factorial moment Fq is defined as

Fq(δ
d) =

〈n!/(n− q)!〉
〈n〉q

(1)

where n is the number of particles in a bin of size δd in a d-dimensional space
of observables and 〈. . .〉 is either vertical or horizontal averaging. q is the order of
the moment and is a positive integer ≥ 2. Then a power-law behaviour

Fq(δ) ∝ δ−ϕq (2)

over a range of small δ is referred to as intermittency. In terms of the number
of bins M ∝ 1/δ, Eq. 2 may be written as

Fq(M) ∝Mϕq (3)

where ϕq is the intermittency index, a positive number.
Even if the scaling behaviour in Eq. 2 is not satisfied, to a high degree of

accuracy, Fq satisfies the power law behaviour

Fq ∝ F
βq

2 (4)

117



Journal of Central European Green Innovation 4(4) pp 116-126 (2016)

Multiplicity
0 1000 2000 3000 4000

e
v

e
n

ts
c
o

u
n

ts
/N

­5
10

­4
10

­3
10

­2
10

­1
10

(a)
SM
DF

(GeV/c)
T

P
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
d

n
 /
 N

d
P

­6
10

­5
10

­410

­3
10

­210

(b)

η
­1 ­0.5 0 0.5 1

η
d

n
/N

 d

0

0.001

0.002

0.003

0.004

0.005
(c)

φ
0 1 2 3 4 5 6

φ
d

n
/N

d

0.003

0.0032

0.0034

0.0036

0.0038

0.004

(d)

Figure 1: (a) Multiplicity distribution (b) pT (c) η and (d) φ distributions of
charged particles generated in Pb-Pb collisions at

√
sNN =2.76 TeV using the

DF and SM AMPT.

This is referred to as F-scaling. In attempts to quantify systems undergoing
second order phase transition, in Ginzburg-Landau (GL) theory [5], it is observed
that

βq = (q − 1)ν , ν = 1.304, (5)

the scaling exponent, ν, is essentially idependent of the details of the GL pa-
rameters.

Factorial moments (Fq’s) do not fully account for the fluctuations that the
system exhibits. Vertically averaged horizontal moments, can gauge the spatial
fluctuations, neglecting the event space fluctuations. On the other hand, horizon-
tally averaged vertical moments lose information about spatial fluctuations and only
measure the fluctuations from event-to-event. Erraticity analysis introduced in [6],
where one finds moments of factorial moment distribution, takes into account the
spatial as well as the event space fluctuations. It measures fluctuations of the spatial
patterns and quantifies this in terms of an index named as erraticity index (µq). In
a recent work [7], µq is observed to be a measure sensitive to the dynamics of the
particle production mechanism and hence to the different classes of quark-hadron
phase transition.

In erraticity analysis, event factorial moments are studied, defined for an eth

event as

F eq (M) =
feq (M)

[fe1 (M)]q
(6)

wherein,

feq (M) = 〈nm(nm − 1)......(nm − q + 1)〉h (7)

where nm ≥ q is the bin multiplicity of the mth bin, and 〈. . .〉h is the average
over all bins such that for M2 cells

feq (M) =
1

M2

M2∑
m=1

nm(nm − 1) . . . (nm − q + 1) (8)
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Now if F eq (M) fluctuates from event-to-event, then the deviation of F eq (M) from
〈F eq (M)〉v (〈. . .〉v is for averaging over all events) for each event can be quantified
using pth order moments of the normalised qth order factorial (horizontal) moments
that can be defined as

Cp,q(M) = 〈φpq(M)〉v (9)

where p is a positive real number and

φpq(M) =
[F eq (M)]p

〈Fq(M)〉pv
(10)

To search for M -independent property of Cp,q(M) one looks for a power-law be-
haviour of Cp,q(M) in M ,

Cp,q(M) ∝Mψq(p) (11)

this is referred to as erraticity [6]. If ψq(p) is found to have a linear dependence on
p, then erraticity index µq can be defined as

µq =
dψq(p)

dp
(12)

in the linear region so that it is independent of both M and p. µq is a number
that characterizes the fluctuations of spatial patterns from evevt-to-event. µ4 is ob-
served [7] to be an effective measure to distinguish different criticality classes, viz.,
critical, quasicritical, pseudocritical and non-critical, having low value for critical
hadronization compared to those having random hadronization. To a good approxi-
mation, it is observed [7] that for the model with contraction owing to confinement,
µ4(critical and quasicritical case) = 1.87±0.84 and for models without contraction
µ4(pseudocritical and noncritical) = 4.65±0.06. These model values are suggestive
of the significance of erraticity index to characterize dynamical processes.

2 Data Analysed

Charged particles in |η| ≤ 0.8 and full azimuth, generated using two versions of
A MultiPhase Transport (AMPT) model [8, 9], in Pb-Pb collisions at √sNN =
2.76 TeV are analysed. AMPT model is a hybrid model that includes both initial
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pT Default String Melting
window < N > < N >

0.2 ≤ pT ≤ 0.3 285.2 434.8
0.3 ≤ pT ≤ 0.4 279.2 355.5
0.4 ≤ pT ≤ 0.5 243.7 271.6
0.6 ≤ pT ≤ 0.7 163.3 155.5
0.9 ≤ pT ≤ 1.0 80.5 66.1

Table 1: Average Multiplicity of the Simulated Data sets analyzed in different
pT windows
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Figure 3: (X(η), X(φ)) phase space of an event with M = 32 in DF and SM
case

partonic and the final hadronic state interactions and transition between these two
phases. This model addresses the non-equilibrium many body dynamics. Depending
on the way the partons hadronize there are two versions, default (DF) and the string
melting (SM). In the DF version partons are recombined with their parent strings
when they stop interacting and the resulting strings are converted to hadrons using
Lund String Fragmentation model. Whereas in the SM version, a quark coalescence
model is used to obtain hadrons from the partons.

We have generated 23424 DF and 19669 SM events with impact parameter,
b ≤ 5, using the model parameters, a = 2.2, b = 0.5, µ = 1.8 and α = 0.47 .
Multiplicity, pT , pseudorapidity and φ distributions of the simulated events is shown
in the Figure 1. Charged particles generated in the |η| ≤ 0.8 and full azimuth having
pT ≤ 1.0 GeV/c in the small pT bins of width 0.1 GeV/c are studied for the local
multiplicity fluctuations in the spatial patterns. Five pT bins are considered in the
present analysis, as tabulated in the Table 1, along with the average multiplicity of
the generated charged particles in the respective pT bins.

Though AMPT does not contain the dynamics of collective interactions that are
responsible for critical behaviour, but it is a good model to test the effectiveness
of the methodology of analysis for finding observable signal of quark-hadron phase
transition (intermittency analysis) and the quantitative measure of critical behaviour
of the system (erraticity analysis) at LHC energies.
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Figure 4: Average bin multiplicity dependence on M for the five pT bins, in
case of DF and the SM AMPT model

3 Analysis and Observations

For an ‘eth’ event, the qth order event factorial moment (F eq (M)) as defined in Eq.
(6) are determined so as to obtain a simple characterization of the spatial patterns
in two dimensional (η, φ) space in narrow pT windows. However we first obtain flat
single particle density distribution using cumulative variable X(η) and X(φ) [10],
which are defined as

X(y) =

∫ y
ymin

ρ(y)dy∫ ymax

ymin
ρ(y)dy

(13)

here y is η or φ, ymin and ymax denote respectively the minimum and maximum
values of y interval considered. η and φ is mapped to X(η) and X(φ) between 0
and 1 such that ρ(y) is the single particle η or φ density. (X(η), X(φ)) unit square
of an event in a selected pT window, is binned into a square matrix with M2 bins
where the maximum value that M can take depends on the multiplicity in the ∆pT
interval and the order parameter, so that the important part of the M dependence
is captured.

To give a visualization of the binning in the (η, φ) space in narrow pT bin, alego
plot for an arbitrary event from DF AMPT data, in 0.2 ≤ pT ≤ 0.3 window, with
M = 32, is shown in Fig. 3.

As value of M and pT increases, the (η, φ) space becomes empty, as is observed
from Figure 4 which shows the dependence of the average bin multiplicity (〈n〉) on
M . Because of the denominator in Eq. (6), a cluster of particles with multiplicity
n ≥ q in an event would produce a large value for F eq (M) for that event. On the
other hand, if the particles are evenly distributed, F eq (M) would be smaller. Thus
the spatial pattern of the event structure should be revealed in the distribution of
F eq (M) after collecting all events.

Study of the event factorial moment distributions, (P (Fq)) reveal that the dis-
tributions become wider as M increases and develop long tailsat higher q, especially
at higher M values. Further the peaks of the distributions shift towards left with
increase in M leading to decrease in 〈F eq 〉 (referred to as Fq hereafter) with M
whereas the upper tails move towards right, at higher q values as M increases. It
means that in small bins the average bin multiplicity 〈n〉 is so small that when there
is a spike of particles in one such bin with n ≥ q, the non-vanishing numerator in
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Figure 5: P (F eq ) distributions for order moment q = 2 and q = 4 for DF and
SM (0.3 ≤ pT ≤ 0.4). M values in multiples of 2 are shown only.

Eq. (6) results in a large value for F eq (M) for that eth event.
Dependence of Fq on M can be studied in log-log plots as shown in Fig. 6 for

various pT cuts. From the plots, it is observed that Fq’s decrease as the bin size
decreases or in other words, as M value increases. We observe for both the DF and
SM in AMPT that relationship between Fq(M) and M is inverse of that in the Eq.
(3); that is

FAMPT
q (M) ∝Mϕ−

q , ϕ−
q < 0 (14)

Hence, with negative ϕ−
q it is found that the charged particles generated by the

default and the string melting version of the AMPT model exhibit negative inter-
mittency.

Eq. (14) suggests that FAMPT
q (M) → 0 at large M and q, implying that in

AMPT there are too few rare high-multiplicity spikes anywhere in phase space. Eq.
(14) is a quantification of the phenomenon exemplified by Fig. 3 for one event, and
is a mathematical characterization after averaging over many events. This same
behaviour was observed in [7] for the events belonging to the non-critical class.

We plot Fq versus F2 in Fig. 7 to check F-scaling. For each set of pT bins
linear fit has been performed to determine the value, βq, the slope, as exemplified
by the straight lines in Fig. 7 (a). The dependence of βq on (q − 1) is shown in
Fig. 8, which exhibits good linearity in the log-log plots. Thus we obtain a scaling
exponent, denoted here as ν−. In Table 2 are given the value of the negative scaling
exponent for different pT windows and for both versions of the AMPT model studied
here. Since the scaling that is there in Eq. 3 is different to that we observe here for
AMPT data, thus the scaling exponent obtained here cannot be compared with the
ν = 1.304 for the second order phase transition, as obtained from the GL theory.

Since large fluctuations result in the high Fq tails of P (Fq), as exemplified in
Fig. 5 (b) and (d), it is advantageous to put more weight on the high Fq side in
averaging over P (Fq). That is just what the double moment Cp,q(M) does. We
have determined Cp,q(M) for q = 2, 3, 4, 5 and p = 1.0, 1.25, 1.5, 1.75 and 2.0.
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Figure 7: F-Scaling for DF as well as SM mode of AMPT

The number of bins, M , takes on values from 2 to the maximum value possible
while having reasonable 〈nm〉 such that Fq 6= 0. To check whether Cp,q(M) follows
the scaling behaviour with M , Cp,q is plotted against M . Fig. 9 (a) to (d) shows
respectively, for q = 2, 3, 4 and 5, the Cp,q versus M plot in the log-log scale
for the window 0.6 ≤ pT ≤ 0.7 GeV/c, and for various values of p between 1 and
2. As expected for all values of q, for p = 1.0, the Cp,q = 1. For p > 1.0, Cp,q
increases with M and q values. Similar calculations are also done for the other pT
windows. In the high M region linear fits are performed for each q and p value so as
to determine ψq(p). We see in Fig. 10 that for 0.6 ≤ pT ≤ 0.7 ψq(p) depends on
p linearly for each q. Thus the erraticity indices defined in Eq. (12) are determined.
Similar plots are obtained for the other pT windows also and the values of µq are
given in Table 3. It can be seen from the table that as pT value increases, the
erraticity indices increase for both versions of the AMPT model.

Comparing the µq values for the DF and SM data within the same window and
for the same values of q, it is observed that µq has higher values for the DF version
in comparison to SM for the pT windows below 0.6 GeV/c. That phenomenon
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Figure 8: βq versus (q − 1) plot for determination of the scaling exponents.

pT ν− ν−
(Default) (String Melting)

0.2 ≤ pT ≤ 0.3 1.738± 0.008 1.753± 0.004
0.3 ≤ pT ≤ 0.4 1.774± 0.007 1.793± 0.005
0.4 ≤ pT ≤ 0.5 1.758± 0.006 1.755± 0.006
0.6 ≤ pT ≤ 0.7 1.824± 0.008 1.869± 0.016
0.9 ≤ pT ≤ 1.0 1.778± 0.013 1.781± 0.011

Table 2: Scaling exponents for negative intermittency in the Default and String
Melting versions of the AMPT Model

is related to the average multiplicities of the two versions reversing their relative
magnitudes at higher pT . However it is to be noted from Fig. 10 that the dependence
of ψq(p) on p is better distinguishable for the two versions of the AMPT for only q
= 4. Coincidentally, as observed in [7], µ4 seems to be a good measure to compare
the erraticity indices of the different systems and data sets at these energies.

We observe that the values of µDF4 and µSM4 for all pT windows are larger
than those obtained for the critical data set in [7], on the same side as the non-
critical case. We have found ϕ− to be negative because P (Fq) broadens, as M
increases, with 〈Fqe〉 shifting to the lower region of F eq , thus resulting in negative
intermittency. We did notice that the upper tails move to the right, suggesting
the presence of some degree of clustering. To emphasize that part of P (Fq) we
have taken higher p-power moments of φq(M), which suppress the lower side of
Fq while boosting the upper side. The scaling properties of Cp,q(M) therefore
deemphasize what leads to negative intermittency. Thus the erraticity indices µq
reveal a different aspect of the fluctuation patterns than the scaling indices ν−.
Our study here has revealed interesting properties of scale-invariant fluctuations
that should be compared to the real data.

4 Summary

Fluctuations in the spatial patterns of charged particles and their event-by-event
fluctuations, as are present in the events generated using the default and string
melting version of A MultiPhase Transport (AMPT) model are studied. This is a first
attempt to study intermittency and erraticity at such high energies. It is observed
that as the bin size decreases, the factorial moments decrease. This behaviour is in
contrast to usual properties of intermittency observed at lower energies indicating
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Figure 9: M dependence of Cp,q for the pT window 0.6 ≤ pT ≤ 0.7 GeV/c in
case of DF and SM versions of the AMPT model

p
0.5 1 1.5 2 2.5

(p
)

q
ψ

0

2

4

6

8

10

12

 DF 

q = 2

q = 3

q = 4

q = 5

 SM
q = 2

q = 3

q = 4

q = 5

 0.7 GeV/c≤ 
T

 p≤0.6 

Figure 10: The ψq dependence on the p for DF and SM AMPT in the 0.6 ≤
pT ≤ 0.7 GeV/c window.

that events with localization of even moderate multiplicities in the small bins, at low
pT are not present in the AMPT. Further the erraticity analysis of the model shows
that the systems generated in it is not near criticality. The µq values determined
here give the quantification of the event-by-event fluctiations in the spatial patterns
of the charged particles in the midrapidity region, which can be used effectively to
compare with other models. More importantly comparison of the values with that
from the LHC would help to get a better understanding of the particle production
mechanism at high energies.
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Abstract

Multidimensional two-particle Bose-Einstein correlation functions of charged
hadrons are reported for pp collisions at 2.76 and 7 TeV in terms of dif-
ferent components of the pair relative momentum, extending the previous
one-dimensional (1-D) analyses of CMS. This allows for investigating the ex-
tension of the source accessible to the femtoscopic correlation technique in
different directions, revealing a more detailed picture of the emitting source
in these collisions at increasing energies. The measurements are performed
for different intervals of the pair average transverse momentum, kT , and for
increasing charged particle multiplicitiy, Nch. Results in 1-D, 2-D and 3-D
show a decrease of the fit radius parameters with kT , whereas a clear rise with
Nch is observed in all cases. In addition, the fit radius parameters at both
energies show close similarity in size and behavior within the same intervals
of (Nch, kT ).

1 Introduction

Femtoscopic Bose-Einstein correlations, also known as HBT/GGLP effect, were in-
vestigated in Ref. [3, 4] by CMS for pp collisions at

√
s =0.9 TeV [3, 4], 2.36 TeV

[3] and 7 TeV [4]. Such phenomenon was discovered by Goldhaber, S. Goldhaber,
W. Lee and A. Pais (GGLP effect) [1], being the analogous in high-energy collisions
to a similar method proposed by R. Hanbury-Brown and R. Q. Twiss (HBT effect)
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[2] for estimating angular dimensions of stars. A broad investigation was carried
out in these studies in terms of the invariant relative momenum Qinv. In Ref. [4],
similarly to what was previously observed in e+e− collisions [5], an anticorrelation
was reported. This result required a study of different fitting functions, as had been
suggested in the case of small systems, such as the τ model [6], which considers
strong correlations between the space-time coordinates and the momentum compo-
nents of the emitted particles, and was found to describe better the overall behavior
of the correlation functions.

A natural extension of those analyses is to investigate the GGLP/HBT correla-
tions with respect to different components of the pair relative momentum, which
allows for exploring the source sizes in different directions. Such analyses have also
been studies by other experiments at RHIC and LHC [7, 8, 9, 10, 11, 12, 13].
Therefore, the HBT/GGLP correlation is measured in two-dimensions (2-D) as a
function of the relative momenta along and transverse to the beam direction, qL
and qT , respectively. In three-dimensions (3-D) the Bose-Einstein correlations are
studied in terms of qL, qO and qS , these last two obtained, respectively, by pro-
jecting the transverse component ~qT in orthogonal directions, i.e., parallel to the
average transverse momentum of the pair (kT ), and orthogonal to both qL and qO.

Using the same framework as in Ref. [3, 4], the HBT/GGLP effect is further
scrutinised here for charged hadrons produced in minimum bias events in pp col-
lisions at

√
s = 2.76 and 7 TeV with the data collected by CMS at the CERN

LHC. New 1-D results at both these energies are discussed and then the analysis is
extended to 2-D and 3-D cases.

2 Bose-Einstein Correlation measurements

2.1 Event and Track Selections

The data sets used in this analysis correspond to minimum bias samples obtained
in pp collisions at 2.76 and 7 TeV recorded with the CMS detector at the LHC
[15]. A detailed description of the CMS detector can be found in Ref. [14]. The
minimum bias sample at

√
s = 2.76 TeV was triggered on-line by requiring at least

one track with pT > 0.4 GeV to be found in the pixel tracker with |η| < 2.4 for a
pp bunch crossing. Besides, in the offline analysis hadronic collisions were selected
by requiring a coincidence of at least one Forward Hadronic (HF) calorimeter tower
with more than 3 GeV of total energy in each of the HF detectors. In the case of pp
collisions at 7 TeV events were selected by a trigger signal in each side of the Beam
Scintillation Counter (BSC), coincident with a signal from either of the two detectors
indicating the presence of at least one proton bunch crossing the interaction point
(IP). Collision events were then selected offline by requiring a Beam Pickup for
Timing for the eXperiments (BPTX) signal from both beams passing the IP.

The set of pp collision events at
√
s = 2.76 TeV used in this analysis comprises

the data collected by CMS in 2013 at the CERN LHC (3.4 million events). At√
s = 7 TeV, a combined sample from pp collisions was considered, which uses data

from three periods of the CMS data taking, i.e., commissioning run (23 million
events), as well as from the runs 2010A (16 million events) and run 2010B (4
million events), where the first is almost pileup free, while the later has a non-
negligible fraction of events with multiple interactions. A filter was used for reducing
the contamination in case of multiple vertices (the reconstructed vertex with the
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largest number of associated tracks is selected at 7 TeV, while in pp collisions at
2.76 TeV, an additional primary vertex might be identified as originating from a
second pp collision by looking at its properties). To assess the related systematic
uncertainty, an alternative event selection for reducing pileup contamination was
also investigated by considering only single reconstructed vertex events.

In the case of pp collisions at 2.76 TeV, three Monte Carlo samples were used.
For obtaining the BEC results, minimum bias events simulated with Pythia 6 Z2
Tune [16, 17] were employed, whereas Pythia D6T and Pythia Z2star [16, 17] were
used for estimating the systematic uncertainties related to the choice of Monte Carlo
tune. Each of them contained 2 million events. For the analysis at 7 TeV about 33
million Monte Carlo events were simulated using Pythia 6 Z2 Tune.

The track selection employed in both cases above follows the same criteria as
in Ref. [3, 4], and are discussed in details in these references, as well as in [15].

2.2 The Bose-Einstein Correlation

The procedure adopted is the same as described in Refs. [3, 4]. Although no par-
ticle identification is considered in this analysis, the contamination from non-pions
is not expected to be sizeable, as discussed in [3, 4], since pions are the dominant
type of hadrons in the sample. For each event, the signal containing the Bose-
Einstein correlations is identified by pairing same charge tracks from the same event
and distributing them in bins of the relative momentum of the pair, for instance,
qµ = kµ1−k

µ
2 , being kµi the four-momenta of the individual particles in the pair. The

background distribution or reference sample is formed similarly, by pairing charged
particles from different events and within the same η range (where the full pseudora-
pidity interval is divided in three subranges ∆η, corresponding to −2.4 ≤ η ≤ −0.8,
−0.8 ≤ η ≤ 0.8, and 0.8 ≤ η ≤ 2.4), as in Ref. [4]. This mixed event technique
is referred to as “same track density in ∆η”. A single ratio is then formed, having
the signal pair distribution as numerator and the reference sample as denominator,

with the appropriate normalization, i.e., R =
(Nref
Nsig

) (dNsig/dQinv)

(dNref/dQinv)
. The invariant

relative momentum of the pair is defined as Qinv =
√−qµqµ =

√
−(k1 − k2)2;

Nsig is the integral of the signal pair distribution of all the events, whereas Nref is
the equivalent in the reference sample. A double ratio technique is then taken with
the data and the Monte Carlo single ratios corresponding to the Qinv distributions,
in terms of which the Bose-Einstein Correlation (BEC) effect is investigated [3, 4],

R(Qinv) = R
RMC

=

(
dNsig/dQinv
dNref/dQinv

)/( dNMC/dQinv
dNMC, ref/dQinv

)
, where RMC is the sin-

gle ratio computed with the simulated events generated without BEC. In each case,
the reference samples for data and simulation are obtained in the same way. This
double-ratio procedure has the advantage of considerably reducing the sources of
bias due to track inefficiency and other detector-related effects, as well as other
Bose-Einstein correlations.

The GGLP/HBT method reflects not only the quantum statistics of the pair
of identical particles, but is also sensitive to the underlying dynamics. In particu-
lar, in the case of charged hadrons, the correlation function may be distorted by
strong, as well as by Coulomb interactions. For pions, the strong interactions can
usually be neglected in femtoscopic measurements. As in Ref. [3, 4], the depletion
(enhancement) in the correlation function caused by the Coulomb repulsion (attrac-
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tion) of equal (opposite) charge pairs in the case of pions is corrected by weighting
pair-wise with the inverse Gamow factor [18]. This factor, in case of same charge
and opposite charge, is given by GSSw (ηw) = 2πηw

e2πηw−1 , GOSw (ηw) = 2πηw
1−e−2πηw ,

with ηw = αemmπ/Qinv, where mπ the pion mass and Qinv the invariant relative
momentum of the pair.

For performing the multidimensional analysis, the double ratios are investigated
in terms of the projections of the relative momentum q = k1 − k2 in two or three
directions. In the 2-D case, the decomposition is made in qL (longitudinal com-
ponent, along the beam direction), and qT (transverse component). In the 3-D
case, additional projections are considered in the transverse plane, resulting in qO
(outwards), and qS (sidewards), respectively along the average transverse momen-
tum of the pair, kT = (kT1

+ kT2
)/2, and orthogonal to it; qO, qS , and qL are

mutually orthogonal. This decomposition of the relative momentum of the pair is
also known as Bertsch-Pratt variables [19, 20, 21]. The investigations are carried
out in center-of-mass (CM), i.e., the LHC laboratory frame, as well as in the Local
Co-Moving System (LCMS), characterized by the frame in which the longitudinal
component of the pair average momentum (kL = (kL1

+ kL2
)/2 = (kz1 + kz2)/2)

is zero. Details about the 2-D and 3-D relative momentum projections, as well as
the boost to the LCMS can be found in Ref. [22].

The parameterizations used to fit the correlation functions in one- (1-D), two-
(2-D) and three-dimensions (3-D), respectively in terms of Qinv, (qL, qT ) and
(qS , qL, qO), are listed below. Throughout this analysis h̄ = c = 1 is adopted.

R(Qinv) = C[1 + λe
−(QinvRinv)a

] (1 + δ Qinv), (1)

R(qLqT ) = C
{
1+λ exp

[
−
∣∣∣q2TR2

T + q2LR
2
L + 2qT qLR

2
LT

∣∣∣a/2]}×(1+αqT +βqL), (2)

R(qS , qL, qO) = C
{
1 + λ exp

[
−
∣∣∣q2SR2

S + q2LR
2
L + q2OR

2
O + 2qOqLR

2
LO

∣∣∣a/2]}×
(1 + αqS + βqL + γqO). (3)

In the above expressions, λ is the intercept parameter (intensity of the correlation
in the smallest bin of the pair relative momentum), C, δ, α, β, γ are constants. The
exponent a is the Lévy index of stability satisfying the inequality 0 < a ≤ 2. In
all the above cases, if treated as a free parameter when fitting the double ratios,
this exponent usually results into a number between the value characterizing the
exponential (a = 1) and the Gaussian (a = 2) functions. More details can be found
in Ref. [23]. For the sake of clarity, we denote the longitudinal component of the
relative momentum in the CM frame as qL, and in the LCMS, as q∗L. In particular,
in the case a = 1 the exponential term coincides with the Fourier transform of
the source function ρ(t, ~x), characterised by a Lorentzian distribution; the radius
parameters Rinv, (RT , RL), (RS , RL, RO), correspond to the lengths of homo-
geneity fitted to the correlation function in 1-D, 2-D and 3-D, respectively. The
additional polinomial terms are introduced for accommodating possible deviations
of the baseline from unity at large values of these variables (long-range correlations),
as well as for allowing a better quality fit. In the 2-D and 3-D cases, a = 1 leads
to the so-called stretched exponential function. In Eq. (2), RT = R̄T + τβT cosφ
and RL = R̄L + τβL where βT = kT

k0 and βL = kL
k0 , originated in the mass-shell

constraint (qµkµ = 0 → q0 = q.k
k0 ); φ is the angle between the directions of qT
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and kT and τ is the source life-time. In Eq. (3) R2
S = R̄2

S , R2
L = R̄2

L + τ2β2
L,

R2
O = R̄2

O + τ2β2
T and R2

LO = τ2β2
Lβ

2
T . Both in Eq. (2) and (3) a frame depen-

dent cross-term, respectively proportional to qT qL and qOqL is present. However,
when the analysis is performed in the LCMS, this cross-term does not contribute
for sources symmetric along the longitudinal direction.

2.3 Systematic uncertainties

Various sources of systematical uncertainties were considered in this analysis, as
listed in Table 1, the first four being similar to what was discussed in Ref. [3, 4].
Two additional studies were also performed: the effect of separating positive from
negative charges in the single ratios (since (++), as well as (−−) charges are added
in the signal; in the reference sample, besides these two combinations, the (+−)
case is also added to the sample). The second study added is the effect of pileup
events, investigated by comparing the results to the case where only single-vertex
events are considered. The exponential function in Eq.(1) (Lévy type with a = 1)
was adopted for this investigation. The total values of the systematic uncertainties
are calculated by adding the individual contributions in quadrature. The systematic
uncertainties estimated in 1-D and summarized in Table 1 are extended to both the
2-D and the 3-D cases.

Table 1: Spread with respect to the mean values at
√
s = 2.76 TeV and 7 TeV

Systematical Uncertainties√
s 2.76 TeV 7 TeV

Origin of Systematics λ Rinv (fm) λ Rinv (fm)
Monte Carlo tune 0.032 0.160 0.032 0.160
Reference Sample 0.009 0.047 0.051 0.188
Coulomb Corrections 0.016 0.009 0.018 0.020
Track Cuts 0.014 0.119 0.014 0.119
Charge Dependence 0.006 0.012 0.007 0.006
Pileup filter 5.0 e-4 0.011 0.001 0.0025
Total 0.040 0.206 0.065 0.275

3 Analysis Results

3.1 One-dimensional results

The current analysis extends the previous one for pp at
√
s = 7 TeV reported in

Ref. [4] to full data sample, as well as at
√
s = 2.76 TeV with full available statistics.

The corresponding results for single and double ratios are shown in Fig. 1. The fits
to the double ratios were produced with the exponential function in Eq. (1), with
a = 1.

Figure 2 shows results for the intercept parameter λ and the invariant radius
Rinv from pp collisions at 2.76 and 7 TeV (full statistics), in terms of Nch and
kT . It can be seen that the results corresponding to the two energies are very
similar for the different (Nch, kT ) combinations. The intercept λ decreases with
increasing kT and Nch, whereas Rinv steadily increases with multiplicity and seem
to decrease with kT , at least for the two largest Nch bins, showing that the lengths of
homogeneity accessible to interferometric measurements decrease with the average
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pair momentum, as has been previously observed in several different collision systems
and energy ranges [3, 4, 9, 10, 11, 12, 13].This behavior is expected in the case of
emitting sources originated from expanding systems.

In Fig. 3 (left), Rinv is investigated as a function of the charged particle mul-
tiplicity, < Nch > (efficiency and acceptance corrected), where the curves are fits
proportional to N

1/3
ch . The results for pp collisions at 2.76 TeV and at 7 TeV are

consistent with former studies reported in Ref. [4] at 0.9 and 7 TeV, showing a sim-
ilar increase with N1/3

ch . Such results also suggest an approximate scaling property
of the lengths of homogeneity with increasing collision center-of-mass energy.

As discussed in [4], an anticorrelation (value below unity) was observed in the
double ratios for values of Qinv away from the Bose-Einstein peak, whose depth
was shown to decrease with increasing Nch, for integrated values in kT . This dip
structure is also observed in the present analysis and its depth is further investigated.
More details and discussion on the results are presented in Ref. [15]. An additional
function, R(q) = C

{
1 + λ[cos

[
(qr0)2 + tan(απ/4)(qrα)α

]
e−(qrα)

α

]
}
· (1 + δq),

was used to fit the data points, which better describes such anticorrelation, as
discussed in [4, 15]. It is based on the so-called τ Model [6], which parameterizes the
time evolution of the source by means of a one-sided asymmetric Lévy distribution.
The dip’s depth [4] is estimated by the difference of the base-line function, C(1+δq),
and the remaining fit function based on the τ model at its minimum, leading to the
results shown in Fig. 3 (right), where the results for pp collisions at both 0.9 and 7
TeV from Ref. [4] and the new ones for 2.76 TeV and the full sample at 7 TeV are
shown together (see [15] for details).
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Figure 3: Comparative plots with results in Ref. [4]. Left: Rinv versus < Nch >
(acceptance and efficiency corrected), for pp collisions at 2.76 and 7 TeV (fit
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uncertainties and the outer ones, statistical and systematic uncertainties added
in quadrature. Right: The anticorrelation’s depth, ∆, versus < Nch >.
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3.2 Two-Dimensional Results

The BEC analysis is extended to the 2-D case in terms of the components qL, qT of
the pair relative momentum, with the data samples from pp collisions at

√
s = 2.76

TeV and 7 TeV. It is performed both in the CM frame and in the LCMS, in which
the cross-term depending on qT qL in 2-D, or qLqO, in 3-D, does not contribute, in
case of longitudinally symmetric systems.
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Figure 4: The left panel shows double ratios as a function of (q∗L, qT ), with
data from pp collisions at 2.76 TeV (top) and 7 TeV (bottom) in the LCMS
corresponding to results integrated in allNch and kT bins. The right panel shows
the corresponding 1-D projections of the single and double ratios in terms of q∗L
(for |qT | < 0.05 GeV) and qT (for |q∗L| < 0.05 GeV). Gaussian, exponential and
Lévy (with a = 1) fit functions are shown superimposed to the data points.

As an illustration, the double ratios in the LCMS are shown in Fig. 4, as a
2-D plot (left panel) in terms of (q∗L, qT ), and the corresponding 1-D projections
(right panel) for pp collisions at 2.76 TeV (top), and for 7 TeV (bottom). The
1-D projections, when plotted in terms of q∗L, considers only the first bin in qT
(i.e., qT < 0.05 GeV), and vice-versa, with the data superimposed by the Gaussian,
exponential and Lévy (with a = 1) fit functions.

Analogously to the studies performed in 1-D the double ratios in 2-D were also
investigated in terms of (qL, qT ), in three intervals of the pair average momentum,
kT , and in different Nch bins. The results from the stretched exponential fit
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Figure 5: The fit parameters obtained with the stretched exponential (Lévy-
type with a = 1) function are shown for pp collisions at 2.76 and 7 TeV in
the CM frame (top) and in the LCMS (bottom), as a function of 〈kT 〉 and for
different Nch bins. The statistical uncertainties are indicated by error bars (in
some cases, smaller than the marker’s size), whereas the systematic ones are
indicated by empty (at 2.76 TeV) or shaded boxes (at 7 TeV).

(Lévy-type with a = 1) [23] to the double ratios, performed both in the CM frame
(top) and in the LCMS (bottom), are compiled in Fig. 5. The behaviour of the
directional lengths of homogeneity is very similar in both frames, with RL (R∗L)
and RT increasing with charged multiplicity, Nch, and decreasing with the average
transverse momentum, kT , at least in the larger multiplicity bins, a behaviour similar
to that observed in the 1-D case and expected for expanding sources. Another
interesting feature of the data than can be observed in Fig. 5 is that R∗L (LCMS)
> RL (CM) for the same bins of Nch and kT , suggesting an effect of Lorentz boost
contraction in the longitudinal length of homogeneity in the CM frame. Regarding
λ, as shown in Fig. 5, no significant sensitivity of the intercept is seen as a function
of kT . However, within each kT range, λ slowly decreases with increasing track
multiplicity in an similar way in both frames.

Table 2: 2-D fit parameters for in the LCMS√
s 2.76 TeV 7 TeV
λ 0.830± 0.010 (stat.) ± 0.040 (syst.) 0.700± 0.002 (stat.) ± 0.065 (syst.)

RT (fm) 1.498± 0.013 (stat.) ± 0.206 (syst.) 1.640± 0.003 (stat.) ± 0.206 (syst.)
R∗

L (fm) 1.993± 0.022 (stat.) ± 0.206 (syst.) 2.173± 0.005 (stat.) ± 0.275 (syst.)

Table 2 collects the values of the radius, R∗L, RT , and of the intercept, λ,
fit parameters, integrated both in Nch and kT , and obtained with the stretched
exponential fit (i.e., Lévy-type with a = 1). From Table 2 it can be seen that, in
the LCMS, the rest frame of the pair along the longitudinal direction, R∗L ≈ 4RT /3,
suggesting that the source is longitudinally elongated, at both energies.

In Fig. 6 the 2-D results for the double ratios versus (q∗L, qT ) in the LCMS are
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zoomed along the correlation function axis, which cuts the BEC peak above 1.2.
Figure 6 also shows the 1-D projections in terms of each of these variables, having
the complementary one within the first bin, i.e, |qi| < 0.05 GeV. The results are
shown in four bins of charged particle multiplicity, Nch, which increases from the
top left panel to the bottom right one.

Figure 6: Results obtained in the LCMS for the 2-D double ratios with zoomed
axes, with the BEC peak cut above 1.2, as a function of (q∗L, qT ) for four charged
multiplicity bins, Nch, increasing from top left to bottom right. The 1-D pro-
jections in q∗L (for |qT | < 0.05 GeV) and qT (for |q∗L| < 0.05 GeV) are shown
side-by-side to the corresponding 2-D double ratios.

3.3 Three-Dimensional Results

The 3-D correlation function in terms of the variables (qS , q
∗
L, qO) can be visu-

alised through 2-D projections in terms of the combinations (qS , q
∗
L), (q∗L, qO), and

(qO, qS), with the complementary components within |qO| < 0.05 GeV, |qS | < 0.05
GeV, |q∗L| < 0.05 GeV, respectively, corresponding to the width of the first bins.
The 1-D projections in the LCMS of the single and double ratios are shown in Fig. 7
for pp collisions at 7 TeV. The points represent the data and the curves the expo-
nential, stretched exponential (Lévy-type with a = 1) and Gaussian fit functions.
The fits are performed to the 3-D double ratios and then projected in the directions
of qS , q∗L, qO, similarly to the projections of the data points.

The values of the lengths of homogeneity in the Bertsch-Pratt parameterization
for pp collisions at 7 TeV, obtained with the stretched exponential fit in the LCMS,
integrating over all Nch and kT ranges, are summarized in Table 3, together with
the corresponding intercept fit parameter. Comparing the lengths of homogeneity
in the 3-D case in the LCMS, from Table 3 it is found that R∗L ≈ 1.5 RO fm and
R∗L ≈ 1.2 RS at 7 TeV. Therefore, the source seems to be more elongated along the
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Figure 7: The top panel shows the 1-D projections of the 3-D single ratios of
data and Monte Carlo, in terms of the relative momentum components (qS , q∗L,
qO) analyzed in the LCMS, for pp collisions at 7 TeV; the bottom panel shows
the corresponding double ratios. The Gaussian, the exponential and the Lévy
(with a = 1) fit functions are shown superimposed to the data points.

longitudinal direction in the LCMS also in the 3-D case, with the relation among
the lengths of homogeneity such as R∗L > RS > RO.

Table 3: 3-D fit parameters for pp collisions at
√
s = 7 TeV in the LCMS√

s 7 TeV
λ 0.568± 0.002 (stat.) ± 0.065 (syst.).

RO (fm) 1.370± 0.004 (stat.) ± 0.275 (syst.)
RS (fm) 1.784± 0.004 (stat.) ± 0.275 (syst.)
R∗L (fm) 2.105± 0.005 (stat.) ± 0.275 (syst.)

The fits to the 3-D double ratios were also investigated in three kT bins (inte-
grating over all Nch). The fit parameters were obtained with Gaussian, exponential
and Lévy (with a = 1) fit functions (when treated as a fit parameter a returned
values close to unity also in the 3-D case, both in the CM and in the LCMS). The
results are compiled in Fig. 8 for the data from pp collisions at 7 TeV, showing to
depend noticeably on the type of fit used, the radius parameters being consider-
ably larger in the case of the Lévy-type function. The dependence on kT , however,
seems to be similar for the three fit functions. The RS fit values are among the
largest (except for the Gaussian fit) and seem insensitive to kT , in both frames.
Also RL seems to be insensitive to kT , and is the smallest radius parameter in the
CM frame. However, it shows opposite behavior in the LCMS, where its decrease
with increasing kT is more pronounced, also attaining the largest values of the three
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radius parameters, suggesting an effect related to the Lorentz boost in the longi-
tudinal direction, as in the 2-D case. The RO fit values are slightly smaller in the
LCMS as compared to the CM frame, and decrease moderately with increasing kT .
Its dependence on kT is similar in both frames, although it has a slightly steeper
decrease with increasing kT in the LCMS.

The fits to the double ratios were also studied in four Nch bins (integrating over
all kT ). The corresponding results are shown as a function of 〈Nch〉 (efficiency and
acceptance corrected) in Fig. 9, obtained both in the CM frame (top) and in the
LCMS (bottom). A clear behavior can be seen, common to all fit functions and in
all directions of the relative momentum components: the fit radius parameters RS ,
RL and RO increase with increasing average multiplicity, indicating an increase in
the lengths of homogeneity with Nch, similar to what was seen in the 1-D and 2-D
cases.

The intercept parameter λ was also studied as a function of kT and Nch, both
in the CM frame and in the LCMS. The corresponding results are shown in Fig. 10.
The values of 〈Nch〉 shown in the plots were corrected for efficiency and acceptance.
A moderate decrease with increasing kT is observed. As a function of increasing
Nch, λ first decreases and then seems to saturate.

In the 2-D and 3-D cases, the values of the longitudinal radius fit parameters
coincide within the experimental uncertainties [15], as expected, since both corre-
spond to the length of homogeneity in the beam direction. From Figures 8 and 9 it
can seen that there is an approximate scaling of RL (R∗L) and RT with Nch, when
comparing the results at 2.76 TeV and at 7 TeV.

In Fig. 11 the 3-D results for the double ratios in the LCMS (integrated in Nch
and kT ) are shown as 2-D projections in terms of pairs of qS , qL, qO (the comple-
mentary one within |qi| < 0.05 GeV). The plots are zoomed along the correlation
function axis, cutting values above 1.2. The corresponding 1-D projections along
variable qS , qL, and qO (other two variables within |qi,j | < 0.05 GeV) are also shown.
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Figure 8: The radius parameters in the CM frame (top) and in the LCMS
(bottom), for pp collisions at 7 TeV, obtained from fits to the double ratios
with three different functions, are shown versus 〈kT 〉, integrated in Nch. The
statistical uncertainties are indicated by error bars (in some cases, smaller than
the marker’s size), whereas the systematic ones are indicated by shaded boxes.
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Figure 9: Results of fits to the double ratios with three different fit functions in
the CM frame (top) and in the LCMS (bottom) for pp collisions at 7 TeV are
shown as a function of 〈Nch〉 (efficiency and acceptance corrected), integrated
in kT . The statistical uncertainties are indicated by error bars (in some cases
smaller than the marker’s size), whereas the systematic ones are indicated by
the shaded boxes.
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Figure 11: The results for the 3-D double ratios obtained in the LCMS
are shown, the upper panel corresponding to the 2-D projections in (q∗L, qS),
(qO, qS), and (qO, q

∗
L), integrated in Nch and kT , with |qO| < 0.05 GeV,

|q∗L| < 0.05 GeV and |qS | < 0.05 GeV, respectively. The bottom panel shows 1-D
projections of the same data, with the complementary two variables constrained
to be within the first bin (i.e., |qi,j | < 0.05 GeV).
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4 Summary and conclusions

The analysis discussed here extends the 1-D results reported in the two BEC publica-
tions in [3, 4] by measuring the correlation functions in terms of different components
of the pair relative momentum, as is usually studied by other experiments. This al-
lows to investigate the extension of the source accessible to the correlation technique
in different directions. Two main projections are considered: in two-dimensions (2-
D), the femtoscopic correlation is investigated as a function of the variables qL and
qT , and in three-dimensions (3-D), as function of qL, qS , qO, being qL the same
as in the 2-D case. For achieving this purpose, minimum bias events produced in
proton-proton collisions at 2.76 and 7 TeV (full data sample) are scrutinised in de-
tail, as if by means of a magnifying lens. At 7 TeV, the full data sample is used and
the corresponding results are compared with the ones at the same energy recorded
during the commissioning run at the LHC in 2010. This analysis also extends the
measurements of the BEC correlations to the full minimum bias sample from pp
collisions at 2.76 TeV collected in 2013, which is a very important baseline for the
measurements of this second order interferometry in PbPb collisions at the same
energy per nucleon. In 1-D are the results from both energies are compared with
the ones in Ref. [3, 4] at lower energies, as well as at

√
s = 7 TeV, recorded during

the commissioning run at the LHC in 2010. In particular, comparisons showed that
Rinv steadly increases with the charged multiplicity proportionally to N1/3

ch .
The measurements were performed both in the collision center-of-mass (CM)

frame and in the Local Co-Moving System (LCMS), where the average longitudinal
momentum of the pair is zero. In the 2-D case, for integrated values of Nch and
kT , the lengths of homogeneity in the LCMS suggest that the source is elongated
along the beam direction, i.e., R∗L > RT . In the 3-D case, it was found that
R∗L > RS > RO. In addition, it can be observed that the fit values for the
longitudinal radius parameter, RL are consistent in 2-D and in 3-D cases, as should
be expected, since they correspond to the length of homogeneity in the longitudinal
direction in both cases. This conclusion is attained with respect to the RL fit
parameter in the CM frame, as well as R∗L in the LCMS [15].

The anticorrelation observed in 1-D and reported in Ref. [4], was also observed
in minimum bias pp collisions at 2.76 TeV and further investigated here with the full
statistics at 7 TeV. These new 1-D results are also compared with those in Ref. [4],
verifying a consistent behavior both for the invariant radius parameter and for the
dip’s depth measurements at 2.76 and 7 TeV. Such comparisons showed that the
dip’s depth decreases with increasing Nch.
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[23] T. Csörgő, S. Hegyi, W. A. Zajc, Eur. Phys. J. C36, 67 (2004).

142



v2 of charged hadrons in a ‘soft + hard’ model
for PbPb collisions at

√
s = 2.76 ATeV
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Abstract

We describe transverse spectra as well as azimuthal anisotropy (v2) of
charged hadrons stemming from various centrality PbPb collisions at

√
s =

2.76 ATeV analytically in a ‘soft + hard’ model. In this model, we propose
that hadron yields produced in heavy-ion collisions are simply the sum of yields
stemming from jets (hard yields) and yields stemming from the Quark-Gluon
Plasma (soft yields). The hadron spectra in both types of yields are approx-
imated by the Tsallis distribution. It is found that the anisotropy decreases
for more central collisions.

1 Introduction

Because of its short lifetime, the only way to examine the Quark-Gluon Plasma
(QGP) formed in ultra-relativistic heavy-ion collisions (HIC), is looking at the par-
ticles stemming from it. Spectra, angular correlations and their dependence on the
circumstances of the collision can then be studied. These distributions are effected
by hadron yields stemming not only from the QGP (we refer to as ‘soft’ yields), but
also from jets (we call ‘hard’ yields).
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As a first approximation, we make out hadron spectra in HICs as

p0
dN

d3p
= p0

dN

d3p

hard

+ p0
dN

d3p

soft

, (1)

where we describe both types of yields by a Tsallis distribution with different pa-
rameters for the following reasons.

Hard yields: On the experimental side, the Tsallis distribution describes mea-
sured transverse spectra of charged and identified hadrons in proton-proton
collisions [1]–[14]. On the theoretical side, the Tsallis distribution provides
a reasonably good approximation for the transverse spectra of charged pions
stemming from pp collisions [13, 14], and central as well as peripheral PbPb
collisions obtained via perturbative quantum chromodynamics (pQCD) im-
proved parton model calculations for transverse momenta pT & 4–6 GeV/c
[18].

Soft yields: The Tsallis distribution has been widely used for the description
of hadron yields stemming from the QGP [19]–[32]. However, in those models,
the hard part of the spectrum has not been subtracted. For the emergence of
the Tsallis distribution in the soft part of the spectrum, there is a chance to
bring statistical arguments based on non-extensive thermodynamics [30, 33],
or on super-statistics [7, 20, 21, 22, 29, 32, 39, 40].
We note that transverse spectra and v2 of various identified hadrons measured
at RHIC energy have been described by a similar model [23, 24, 25]. In that
model, spectra measured in pp collisions have been used as hard yields, and
it has been conjectured that hard yields are suppressed at low pT .

In Sec. 2, analytic formulas are decuced for the hadron spectrum and v2. Sec. 3
contains fits to charged hadron spectra and v2 measured in various centrality PbPb
collisions at

√
s = 2.76 ATeV by the CMS [41, 42] and the ALICE [43] collaborations.

Summary is given in Sec. 4.

2 Transverse Spectrum and vn

In statistical models, we obtain the transverse spectrum as a sum of hadrons with
momentum pµ, coming from sources flying with velocities uµ as

p0
dN

d3p

∣∣∣∣
y=0

=

+∞∫
−∞

dζ

2π∫
0

dα f
[
uµp

µ
]
. (2)

Here, α is the azimuth angle and ζ = 1
2 ln[(t+ z)/(t− z)]. We parametrize hadron

momenta as

pµ = (mT cosh y,mT sinh y, pT cosϕ, pT sinϕ) , (3)

with y = 1
2 ln[(p0 + pz)/(p0 − pz)] and ϕ being the azimuth angle of the hadron

momentum. We parametrize the flow as

uµ = (γ cosh ζ, γ sinh ζ, γv cosα, γv sinα) , (4)
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with γ = 1/
√

1− v2, and assume that v depends only on α. Though, it is assumed
that in each source, the momentum distribution of hadrons f is a function of the
co-moving energy

uµp
µ|y=0 = γ

[
mT cosh ζ − vpT cos(ϕ− α)

]
, (5)

the sources may be fireballs [34]–[36], clusters [8, 9, 12, 37, 38] or even jets [39, 40].
We write the transverse flow as a series,

v(α) = v0 +

∞∑
m=1

δvm cos(mα) ≡ v0 + δv(α) , (6)

and suppose that δv(α) << 1. We use the Taylor expansion

f
[
uµp

µ
]∣∣
y=0

=

∞∑
m=0

[δv(α)]
m

m!

∂m

∂vm0
f
[
uµp

µ
]∣∣ v(α)= v0

y=0
, (7)

and keep only the leading non-vanishing terms in δv(α).
Provided that f is a rapidly decreasing function, we approximate integrals with

respect to ζ and ϕ by the maximal value of the integrands times the integration
interval. Thus, the ϕ integrated transverse spectrum becomes

dN

2πpT dpT dy

∣∣∣∣
y=0

=

2π∫
0

dϕ

2π
p0
dN

d3p

∣∣∣∣
y=0

=

∞∑
m=0

am
m!

∂m

∂vm0
f
[
E(v0)

]
≈

≈ f
[
E(v0)

]
+ O

(
δv2
)
, (8)

with E(v0) = γ0(mT − v0pT ) and am =
2π∫
0

dα [δv(α)]
m. Similarly, the azimuthal

anisotropy becomes

vn =

2π∫
0

dϕ cos(nϕ) p0
dN

d3p

∣∣∣∣
y=0

2π∫
0

dϕ p0
dN

d3p

∣∣∣∣
y=0

≈ δvnγ
3
0

2

(v0mT − pT )f ′
[
E(v0)

]
f
[
E(v0)

] +O
(
δv2
)

(9)

with δvn defined in Eq. (6).
For example, in the case of the Boltzmann-distribution f ∼ exp

[
− βE(v0)

]
,

the anisotropy is

vBG
n ≈ δvn β γ

3
0

2
(pT − v0mT ) + O

(
δv2
)
. (10)

Thus, vBG
n ∝ pT if pT >> m.

In the case of the Tsallis distribution, f ∼ [1 + (q − 1)β E(v0)]−1/(q−1), the
anisotropy

vTS
n ≈

δvn β γ
3
0

2

pT − v0mT

1 + (q − 1)β γ0(mT − v0 pT )
+ O

(
δv2
)
. (11)

Thus, vTS
n saturates when (q − 1)β γ0(1− v0)pT >> 1.
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3 Fits to the spectrum and v2 of charged had-
rons in PbPb collisions at

√
sNN = 2.76 ATeV

As conjectured in Sec. 1, we make out the transverse spectrum of charged hadrons
by the sum of hard and soft yields

dN

2πpT dpT dy

∣∣∣∣
y=0

=
∑
i

Ai

[
1 +

(qi − 1)

Ti
[γi(mT − vipT )−m]

]−1/(qi−1)
, (12)

(i = soft or hard) where both contributions are assumed to be Tsallis-distributions.
These yields have maxima at pmaxT, i = γimvi. As long as these maxima are below
the measurement range, which is the case in this analysis, the isotropic part of
the transverse flow, vi (denoted by v0 in Eq. (6) in Sec. 2) cannot be determined
accurately. As the dominant part of charged hadrons consists of pions, the argument
in Eqs. (12) may be approximated by [γi(mT − vipT ) −m]/Ti ≈ pT /T

Dopp
i with

the Doppler-shifted parameters

TDoppi = Ti

√
1 + vi
1− vi

. (13)

As can be seen in the top panels of Fig. 1, Eq. (12) describes CMS [41] and
ALICE [43] data on transverse spectra of charged hadrons stemming from PbPb
collisions of various centralities. Fitted parameters are enlisted in [18] and shown
in the bottom panels of Fig. 1. The dependence of the q and TDopp parameters of
the soft and hard yields on the event centrality (number of participating nucleons
Npart) can be fitted by

qi = q2, i + µi ln(Npart/2) ,

TDoppi = T1, i + τi ln(Npart) . (14)

Though the actual value of the transverse flow velocity cannot be determined in
this model from the spectra of charged hadrons, it may be guessed using the value
of the QGP-hadronic matter transition temperature obtained from lattice-QCD cal-
culations. As the values of fitted TDoppsoft scatter around 340 MeV, in case of a flow
velocity of vsoft ≈ 0.6, the real Tsoft values would scatter around 170 MeV, which
is close to the lattice result obtained e.g. in [44].

While the tendencies of how fit parameters depend on Npart are similar, they are
not the same within errors in the case of CMS [41] and ALICE [43] measurements.
It is to be noted that in [43], centrality is determined using the distribution of hits in
the VZERO detector, which has a rapidity coverage of 2.8 ≤ η ≤ 5.1 and -3.7 ≤ η ≤
-1.7. In the meanwhile, in [41, 42], the collision event centrality is determined from
the event-by-event total energy deposition in both Hadron Forward calorimeters
having rapidity coverage of 2.9 ≤ |η| ≤ 5.2.

As seen from Sec. 2, up to O
(
δv2
)
, the transverse spectrum in Eq. (12) results

in an azimuthal anisotropy of

v2 =
whard fhard + wsoft fsoft

fhard + fsoft
, (15)

where the coefficient functions are

wi =
δvi γ

3
i

2Ti

pT − vimT

1 +
qi − 1

Ti

[
γi(mT − vi pT )−m

] . (16)
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Figure 1: Top, transverse spectra of charged hadrons stemming from various
centrality PbPb collisions at

√
s = 2.76 ATeV measured by the CMS [41] (left)

and ALICE [43] (right) Collaborations. Curves are fits of Eq. (12). Bot-
tom, centrality dependence of the fitted q (left) and δvsoft (right) parameters.
Straight lines are in Eq. (14) with parameters enlisted in [18].
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Figure 2: Fits of Eqs. (15) – (16) to CMS data on v2 [42] in the case of four
types of methods (event plane v2{EP}, 2nd and 4th order cumulant v2{2} and
v2{4} and Lee-Yang zeros v2{LY Z} methods). Fit parameters are plotted and
enlisted in [18].
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Again, i = soft or hard, vi are the isotropic part of the transverse flow (denoted by
v0 in Eq. (6) in Sec. 2). And δvi are the coefficients of cos(2α) (denoted by δv2 in
Eq. (6) in Sec. 2).

Fits of Eqs. (15) – (16) to CMS data [42] on v2 are found in Fig. 2. The
four different methods used in [42] for the extraction of v2 are the 2nd and 4th

order cumulant methods denoted by v2{2} and v2{4}, the event-plane v2{EP}
and Lee–Yang zeros v2{LY Z} methods. Fitted parameters are listed in [18].

Finally, all four methods for the extraction of v2 in [42] suggest that δvsoft
(the 2nd Fourier components of the transverse flow of the soft yields) decreases for
more central collisions (see bottom-right panel of Fig. 1). This observation is in
accordance with smaller anisotropy in more central collisions.

4 Summary

In this paper, we have simultanously reproduced the transverse spectra and the az-
imuthal anisotropy (v2) of charged hadrons stemming from various centrality PbPb
collisions at

√
s = 2.76 ATeV. In the proposed model, the hadron spectrum is as-

sumed to be simply the sum of yields originated from ‘soft’ and ‘hard’ processes,
Eq. (1). It is conjectured that hadrons are distributed according to the Tsallis distri-
bution in both types of yields. As for the hard yields, this assumption is supported
by the observation that the Tsallis distribution provides a reasonably good approxi-
mation for pion spectra obtained via pQCD-improved parton model calculations for
central or peripheral PbPb collisions at LHC energy [18]. Furthermore, the Tsallis
distribution describes hadron spectra in pp collisions as well. The soft yields (which
we identified by what remains of the hadron spectra after the subtraction of the
hard yields) can also be described by a Tsallis distribution with different parameters.

Analytic formulas have been obtained for the spectra and for v2 in the limit of
small transverse flow velocity fluctuations as a function of the azimuth angle. The
parameters of the soft and hard Tsallis distributions have been determined from fits
to transverse spectra and v2 data measured by the CMS [41, 42] and ALICE [43]
collaborations. The dependence of the fitted parameters on the event centrality
(Npart) have been found similar in the case of the CMS and ALICE data. Fits
to CMS data on v2 suggest that in this model, the anisotropy decreases for more
central collisions. Fit parameters are enlisted in [18].
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Study of in-medium mass modification at J-PARC
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Abstract

Study of in-medium mass modification has attracted interest in terms of
the restoration of the spontaneously broken chiral symmetry, which is respon-
sible for the generation of hadron mass. Many experiments were performed
to measure in-medium property of hadrons but there is no consensus yet. J-
PARC E16 has been proposed to study in-medium property of vector mesons
via dilepton decay channel. The status of spectrometer R & D is explained.
Other related experiments planned at J-PARC are also introduced.

1 Introduction

Spontaneous breaking of the chiral symmetry is considered to be the origin of hadron
mass. The chiral symmetry is expected to be (partially) restored in finite density
and the hadron mass is predicted to decrease, even at the normal nuclear density.
Our purpose is to investigate the origin of hadoron mass through mass modification
of hadrons.

The dilepton decay channel of vector mesons produced in nuclear reactions is
a good probe of in-medium mass modification since it is free from the final state
interactions. We take p + A → φ + X reaction as an example to explain the
expected invariant mass distribution of the vector meson. A φ meson produced
inside a target nucleus travels and then decays inside or outside the target nucleus.
When the φ meson decays outside the target nucleus, the mass spectrum is well-
known invariant mass in vacuum as in Fig. 1(a). When the φ meson decays inside
the target nucleus, the observed mass is the one in medium. So if in-medium mass
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modification exists, the mass distribution is modified to some extent as in Fig. 1(b).
What we experimentally measure is the sum of these cases as in Fig. 1(c).

invariant mass invariant mass invariant mass

a.
u. (a) (b) (c)

Figure 1: Invariant mass spectra of φ meson (a) in vacuum , and (b) in medium.
(c) is the sum of (a)+(b). The dashed line indicates the φmeson mass in vacuum.

The KEK E325 experiment was performed at KEK Proton Synchrotron to search
for in-medium mass modification using the method explained above. They mea-
sured the invariant mass spectra of e+e− pairs produced in 12 GeV proton beam
induced nuclear reactions. As the nuclear targets, C and Cu were used. The mass
resolution was about 11 MeV/c2. Figure 2 shows the invariant mass spectrum of
φ meson produced in Cu target with βγ(= P/M) < 1.25 [1]. The blue line rep-
resents an expected line shape assuming mass in vacuum including experimental
effects. There is an excess on the lower side of the φ mass peak over the expected
line shape. Figure 3 shows the amount of excess versus βγ of φ mesons. This
figure support the picture that slower φ meson in larger nuclear target have higher
probability to decay inside the nuclear target so that it experience medium modi-
fication. To quantitatively extract information on the medium effect, they assume
linear dependence of the mass on density as,

m(ρ)

m(0)
= 1− k ρ

ρ0
, (1)

where m(ρ) is the mass at density ρ, ρ0 is the normal nuclear density, and k is the
parameter to be determined. Similarly for the width, they assume

Γ(ρ)

Γ(0)
= 1 + k2

ρ

ρ0
, (2)

where Γ(ρ) is the width at density ρ, and k2 is the parameter to be determined.
They obtained k = 0.034+0.006

−0.007 and k2 = 2.6+1.8
−1.2, which means that the mass of

φ decreases by 3.4% and the width gets wider by 3.6 times at the normal nuclear
density. They also observed modification of ρ and ω mass and concluded that
k = 0.092± 0.002, assuming that the parameter is common for ρ and ω [2]. Width
broadening was not necessary to reproduce the observed invariant mass. The mass
shift parameters k for ρ/ω, and φ are at the same level as the calculations based
on QCD sum rule [3]

The CLAS g7 experiment at Jefferson Laboratory used γ +A reactions and the
light vector mesons were reconstructed using e+e− decay channel [4]. The results
obtained with 2H, C, Fe, Ti targets were presented. For ω and φ meson, no mass
shift was assumed in the analysis due to their long life. The ω and φ contributions
were subtracted to extract the invariant mass spectra of ρ meson. The mass of ρ
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Figure 2: Invariant mass spec-
trum of φ meson obtained with
p+Cu reactions by KEK E325
experiment. βγ of φ is < 1.25.

Figure 3: Amount of excess ver-
sus βγ of φ measured by KEK
E325 experiment.

meson in nuclear medium does not show any mass shift. The width are broadened
and it is consistent with an expectation from collisional broadening.

Dilepton invariant mass spectra were also measured in heavy ion collisions.
CERES /NA45 reported e+e− invariant mass measured in 158 AGeV Pb+Au colli-
sions [5]. An in-medium broadening of the ρ mass scenario is favored over a ρ mass
dropping scenario. PHENIX also reported invariant mass spectra of e+e− in Au+Au
collisions at

√
s = 200A GeV [6]. An enhancement is observed in the low mass re-

gion (below φ peak). The enhancement at quite low mass (mee < 0.3 GeV/c2)
and high pT (1 < pT < 5 GeV/c) is interpreted as the production of virtual direct
photons, which leads to their temperature measurement. No theoretical models
could explain quantitatively the enhancement at the low mass and low pT region.

2 J-PARC E16 Experiment

There exists some modification in e+e− mass spectrum but the origin is not yet
clear. There are even contradiction in the interpretation. We propose to pursue
this problem using the same reaction as KEK-E325 but with 100 times more statis-
tics (103 φ → 105 φ) and with two times better mass resolution (11 MeV/c2 →
5 MeV/c2). The proposal was approved as stage-1 and the experiment was named
E16 [7]. We use 30 GeV p+A→ ρ/ω/φ X reactions and measure dilepton invari-
ant mass spectra. As the nuclear target, CH2, C, Cu, Pb are used. The J-PARC
E16 experiment has the following advantages and disadvantages compared to other
experiments. It observes e+e− decay channel so it can eliminate final state in-
teractions in contrast to the case of experiments using hadronic decay channels.
However, e+e− decay channel has very tiny branching ratio (∼ 3 × 10−4 for φ
meson). The E16 experiment uses proton induced reactions, therefore, the system
is cold and static so is simpler compared to that of heavy ion collisions. The E16
experiment is expected to measure φ meson invariant mass modification. Compared
to ρ and ω mesons, φ meson has a non-overlapping separated peak and a narrower
width. However, the production cross section of φ meson is much smaller than that
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Figure 4: Invariant mass distribu-
tion of φ meson with βγ < 0.5 ex-
pected to be observed by J-PARC
E16 experiment using Pb target.
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Figure 5: Amount of excess versus
βγ of φ expected to be obtained by
J-PARC E16 experiment.

of ρ and ω, thus it is difficult to collect high statistics and CLAS-g7 and CERES
cannot discuss the mass spectra of φ. The disadvantages, mainly come from the
fact that φ→ e+e− is a rare probe, are overcome by collecting high statistics data.

When the statistics is achieved, the invariant mass distribution of slowly moving
φ meson whose βγ is less than 0.5 which is obtained with Pb target is expected to
have double peak as in Fig. 4. Note that the modification parameters obtained by
KEK-E325 are assumed. The βγ and the target size dependence of the modification
expected to be obtained is in Fig. 5. So more systematic study is possible. We are
able to obtain dispersion relation as the blue points in Fig. 6, which is qualitatively
new information. These new information can give further insight on the in-medium
modification.

2.1 J-PARC and the high momentum beam line

To achieve 100 times more statistics, We utilize 10 times more intense beam (109

protons per pulse (ppp)→ 1010 ppp), a spectrometer with 5 times larger acceptance,
and 2 times larger production rate due to the increased beam energy (12 GeV →
30 GeV).

The J-PARC E16 experiment plans to use the high momentum beam line which
will be constructed at J-PARC Hadron Experimental Facility. J-PARC, Japan Proton
Accelerator Research Complex, is a high intensity proton accelerator and is located
at Tokai village in Japan. The Main Ring (MR) of J-PARC can accelerate protons
up to 30 GeV. Figure 7 shows the plan view of the switchyard and the Hadron
Experimental Facility. The protons in the MR are slowly extracted to LINE-A. The
proton beam follows LINE-A through the switchyard and is delivered to the Hadron
Experimental Facility. The protons collide the T1 target to provide secondary beams
to the existing beam lines such as K1.8, K1.8BR, and KL. The beam power was
24 kW as of 2013, which corresponds to 3 × 1013 ppp. To make primary proton
beam available to E16 experiment, the high momentum beam line which is called
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Figure 6: Dispersion relation. The red dotted curve shows a theory calculation
by S.H. Lee [8]. Note that the calculation is limited for momentum of less
than 1 GeV/c and is extrapolated to 3 GeV/c. Black dotted curve shows the
uncertainty of the calculation. Blue points shows the statistical uncertainties
expected to be obtained by the J-PARC E16 experiment. The center values
are taken from the theoretical calculation mentioned above. Purple point is the
results obtained by KEK E325 experiment.

LINE-B is being constructed. LINE-B borrows a small piece of the beam (∼ 10−4) in
LINE-A with a Lambertson-type magnet at the switchyard. The beam is extracted
to the south side of the Hadron Experimental Facility where E16 spectrometer is to
be built.

2.2 E16 spectrometer

A 3D view of the J-PARC E16 spectrometer is shown on the left side of Fig. 8.
The E16 detectors are all installed inside a giant dipole magnet with a field strength
of 1.7 T at the center. A horizontal cut view at the center is presented on the
right side of Fig. 8. The proton beam runs from bottom to the top of the figure,
and hit the target at the center of the spectrometer. The spectrometer consists of
GEM Trackers (GTR) [9], Hadron Blind Detectors (HBD) [11], and lead glass (LG)
calorimeters.

A module is defined as a set of GTR, HBD and LG which covers 30 degrees
both horizontally and vertically. The full design of the spectrometer consists of 26
modules. GTR is made of three layers of position-sensitive GEM tracking chambers
with the sizes of 100 × 100 mm2, 200 × 200 mm2 and 300 × 300 mm2, respec-
tively. HBD is a cherenkov counter and is used for electron identification together
with LG. Particle tracks in the magnetic field are reconstructed with GTR so that
the momenta are measured. Electron candidates are selected with HBD and LG.
Position resolution of 100 µm with incident angles of up to 30 degrees is required
for GTR. Rejection factors of 100 and 25 are required for HBD and LG, respectively.
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Figure 7: Plan view of the switchyard and the Hadron Experimental Facility.
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Figure 8: 3D view (Left) and plan view (Right) of the E16 spectrometer.

Figure 9: Schematic of a GEM
tracking chamber.

Figure 10: Picture of the production
type of the GEM tracking cham-
bers. The sizes are 100 × 100 mm2

and 200 × 200 mm2, respectively.
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Figure 12: Picture of a prototype of
HBD in real size.

2.3 R & D status of the spectrometer

A schematic of a GEM tracking chamber is shown in Fig. 9. Ar + CO2 (70:30)
is used as the amplification gas. Three GEM foils are placed and they amplify
the ionization electrons produced by a traversing charged particle in the gap above
the top GEM. The amplified signal is readout with two dimensional strip readout
board. A custom preamp board using APV25 chip [10] has been developed. The
mass production type of GEM tracking chambers with three different sizes and
preamp boards have been built. The performance of them was evaluated with
charged particle beams at J-PARC and ELPH. The required resolution of 100 µm
was achieved for incident angles of up to 30 degrees. A picture of the GEM chambers
with two sizes are shown in Fig. 10. First level trigger is readout from the bottom
of the GEM foil. A prototype of ASD (Amplifier-Shaper-Discriminator) ASIC for
the trigger readout has also been developed.

HBD is a type of cherenkov detector using CsI evaporated GEM as a photocath-
ode. Our HBD has been developed based on the PHENIX HBD experience [12].
CF4 serves as radiator and amplification gas. With the radiator length of 50 cm, 11
photoelectrons are expected. A schematic of the photocathode is shown in Fig. 11.
The incident electron emit cherenkov photons. The photons are converted into
photoelectrons by the CsI layer which is evaporated on top of the top GEM. The
photoelectrons are then amplified by the GEMs. A weak reverse bias field is applied
in the gap between the mesh and the top GEM, so that the ionization electrons in
the gap are swept into the mesh. Even with the reverse bias field, photoelectrons
produced near the top GEM surface are still attracted by the GEM’s field and are
amplified to be detected. Therefore, HBD is blind to ionization while is sensitive
to cherenkov photons. The size of the photocathode of a HBD module is 600 ×
600 mm2 and four photocathodes with a size of 300 × 300 mm2 are used to fill
the module. Extensive R & D effort has been performed to establish HBD compo-
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nents such as efficient and robust CsI GEMs, airtight chambers and readout boards.
Prototypes of GEMs with and without CsI, chambers and readout boards in small
sizes and real sizes were produced. A picture of a prototype of the HBD chamber
in real size is shown in Fig. 12. It corresponds to a module of the spectrometer. A
beam test was performed with negatively charged particle beam of 1.0 GeV/c at the
J-PARC K1.1BR to evaluate the performance of a prototype HBD in small size. A
pion rejection factor of 100 with an electron efficiency of 80% was achieved using
cluster size analysis. The prototype of HBD in real size also operates well. The
performance meet the required rejection and efficiency for the experiment.

2.4 Schedule

The experiment was approved as stage-1 in 2007. Detector R&D started in 2008.
The construction budget of the high-p beam line was approved in 2013. Technical
design report was submitted and the mass production of detectors started in 2014.
Due to the budgetary limitation, we start with one third of the full design. The one
third of the full design will be ready for the first physics run which is anticipated in
JFY2016.

3 Other related experiments at J-PARC

J-PARC E26 experiment has been proposed to investigate ω meson in nuclear
medium[13, 14]. It plan to use π− beam at J-PARC K1.8 beam line with a mo-
mentum of 1.8 GeV/c and with an intensity of 1 × 107 / pulse. The reaction
π−A→ ωnX is used. Invariant mass of ω meson is measured with ω → π0γ → 3γ
decay mode. When neutron is detected at zero degree, recoilless ω production is
realized. The condition is suitable for the study of in-medium effect. Nuclear ω
bound state can be searched via forward neutron measurement.

J-PARC E29 experiment has been proposed to investigate in-medium mass mod-
ification of φ meson via φ meson bound state in target nucleus[15, 16]. It plan to
use p̄ beam with a momentum of 1.1 GeV/c and with an intensity of 1×106/pulse.
When four strangeness are identified in the final state, the double φ production,
p̄+ p→ φφ, dominates. The forward-going φ meson is detected via K+K− decay.
The φ meson in nucleus is detected via ΛK+ decay, which occur only when φ is
in nucleus (φ + p → ΛK+). Missing mass spectrum is calculated with the beam
momentum and the forward-going φ momentum. The backward φ is at the same
order of Fermi momentum which is detected via ΛK+ decay in nucleus.

When high intensity high resolution secondary beam line (HIHR) which was
proposed by RCNP is realized, experimental study of φ meson in nuclear medium
using a similar method as J-PARC E26 can be done. A 109/pulse π− beam with
a momentum of ∼ 2 GeV is used to induce the π− + p → φn reaction. If the
neutron is identified at the forward angle, ultra slow φ is selected. Forward neutron
measurement may lead to observation of nuclear φ bound state. About 10 times
more φ compared to E16 is expected to be collected with βγ < 0.5.
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4 Summary

The origin of hadron mass is studied through mass modification of vector mesons.
There are many measurements of dilepton invariant mass in hot and cold system.
There exists some modification but the origin is not yet clear. J-PARC E16 ex-
periment pursue it by collecting 100 times more statics compare to the KEK E325
experiment. We expect to obtain double peak structure in φ meson invariant mass
spectra, wide range of system size dependence of the in-medium modification, and
the dispersion relation of φ meson in nuclear medium. We start with one-third of
the design configuration and physics run is anticipated in JFY2016. More experi-
ments regarding vector meson mass modification are planned and whole together
provide further insights on the origin of mass, and the chiral symmetry.
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Abstract

We systematically investigate the pion transverse momentum spectrum,
elliptic flow, and Hanbury-Brown-Twiss (HBT) interferometry in the granular
source model of quark-gluon plasma droplets in ultra-relativistic heavy ion
collisions. The granular source model can well reproduce the experimental
results of the Au-Au collisions at √sNN = 200 GeV and the Pb-Pb collisions at√
sNN = 2.76 TeV with different centralities. We examine the parameters of

the granular source models with an uniform and Woods-Saxon initial energy
distributions in a droplet. The parameters exhibit certain regularities for
collision centrality and energy.

1 Introduction

Single particle transverse momentum spectrum, elliptic flow, and Hanbury-Brown-
Twiss (HBT) interferometry are three important final particle observables in high
energy heavy ion collisions. They reflect the characters of the particle-emitting
sources in different aspects and at different stages. Therefore, a combined investi-
gation of these observables can provide very strong constrains for source models.
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So far, much progress has been made in understanding the experimental data
of the heavy ion collisions at the top energies of the Relativistic Heavy Ion Collider
(RHIC) [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, more detailed investigations of the
physics beneath the data through multiobservable analyses are still needed. On the
other hand, the experimental data of the Pb-Pb collisions at √sNN = 2.76 TeV at
the Large Hadron Collider (LHC) have been recently published [10, 11, 12, 13]. It
is an ambitious goal for models to explain the experimental data of particle spectra,
elliptic flow, and HBT interferometry in different centrality region consistently for
the heavy ion collisions at the RHIC and LHC.

In Refs. [14, 15, 16], W. N. Zhang et al. proposed and developed a granular
source model of quark-gluon plasma (QGP) droplets to explain the HBT data of
the RHIC experiments [17, 18, 19, 20]. In Ref. [21, 22], the granular source model
was used to explain the pion transverse momentum spectrum and HBT data of
the most central heavy ion collisions at the RHIC and LHC. Motivated by these
successes, we systematically investigate the pion transverse momentum spectrum,
elliptic flow, and HBT interferometry for the granular sources in the heavy ion
collisions at the RHIC and LHC energies with different centralities. The granular
source parameters for an uniform and Woods-Saxon initial energy distributions in a
droplet are examined and compared.

2 Granular Source Model

The granular source model of QGP droplets regards the whole source evolution as
the superposition of the evolutions of many QGP droplets. Each droplet has a
position-dependent initial velocity and evolves hydrodynamically. The model con-
struction is based on the following suggestions. In the heavy ion collisions at top
RHIC energies and LHC energies, the created strong coupled QGP (sQGP) systems
at central rapidity region may reach local equilibrium at a very short time, and then
expand rapidly along the beam direction (z-axis). Because the local equilibrium sys-
tem is not uniform in the transverse plane (x-y plane) [23]. The system may form
many tubes along the beam direction during the subsequent fast longitudinal ex-
pansion and finally fragment into many QGP droplets with the effects of “sausage”
instability, surface tension, and bulk viscosity [15, 24, 25, 26].

As in Ref. [15], we suppose the QGP droplets of the granular source initially
distribute within a cylinder along z-axis by

dNd

dx0dy0dz0
∝
[
1− e−(x2

0+y2
0)/∆R2

T

]
θ(RT − ρ0)

×θ(Rz − |z0|). (1)

Here ρ0 =
√
x2

0 + y2
0 and z0 are the initial transverse and longitudinal coordinates

of the droplet centers. The parameters RT and Rz describe the initial transverse
and longitudinal sizes of the source, and ∆RT is a transverse shell parameter [15].

In Ref. [22], the Bjorken hypothesis [27] of longitudinal boost-invariant is used
to describe the longitudinal velocity of droplet for the most central collisions, and
the transverse velocity of droplet has a form of exponential power. Considering
the longitudinal velocity of droplet varying with collision centrality, we introduce
here also a longitudinal power parameter, which will be determined by experimental
data, to describe the longitudinal velocity phenomenologically. The initial velocities
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of the droplets in granular source frame are assumed as [15]

vdi = sign(r0i) · ai
(
|r0i|
Ri

)bi

, i = 1, 2, 3, (2)

where r0i is x0, y0, or z0 for i = 1, 2, or 3, and sign(r0i) denotes the signal of
r0i, which ensures an outward droplet velocity. In Eq. (2), Ri = (RT ,RT ,Rz),
ai = (ax, ay, az) and bi = (bx, by, bz) are the magnitude and exponent parameters
in x, y, and z directions, which are associated with the early thermalization and
pressure gradients of the system at the breakup time. It is also convenient to use
the equivalent parameters aT = (ax + ay)/2 and ∆aT = ax− ay instead of ax and
ay. The parameters aT and ∆aT describe the transverse expansion and asymmetric
dynamical behavior of the system at the breakup time, respectively. For simplicity,
we take bx = by = bT in calculations. The parameters bT and bz describe the co-
ordinate dependence of exponential power in transverse and longitudinal directions.

In the calculations of the hydrodynamical evolution of the droplet, we use the
equation of state (EOS) of the S95p-PCE165-v0 [28], which combines the lattice
QCD data at high temperature with the hadron resonance gas at low temperature.
We assume systems fragment when reaching a certain local energy density ε0, and
take the initial energy density of the droplets to be 2.2 GeV/fm3 for all considered
collisions for simplicity [22]. The initial droplet radius r0 is supposed satisfying a
Gaussian distribution with the standard deviation σd = 2.5 fm in the droplet local
frame [22]. We consider an uniform initial energy distribution in droplet and a
Woods-Saxon distribution,

ε(r) = ε0
1

e
r−r0

a + 1
, (3)

where a = 0.1r0.
With the evolution of the hot droplets, the final pions freeze out at temperature

Tf with the momenta obeying Bose-Einstein distribution. To include the resonance
decayed pions emitted later as well as the directly produced pions at chemical freeze
out earlier, a wide region of Tf is considered with the probability [22]

dP

dTf
∝ fdir e

−
Tchem−Tf

∆Tdir + (1− fdir)

×e−
Tchem−Tf

∆Tdec , (Tchem > Tf > 80 MeV), (4)

where fdir is the fraction of the direct emission around the chemical freeze out
temperature Tchem, ∆Tdir and ∆Tdec are the temperature widths for the direct and
decay emissions, respectively. In the calculations, we take fdir = 0.75, ∆Tdir = 10
MeV, and ∆Tdec = 90 MeV as in Ref. [22]. The value of Tchem is taken to be 165
MeV as it be taken in the S95p-PCE165-v0 EOS [28].

After fixing the parameters used in the calculations of hydrodynamical evolution
and freeze-out temperature, the free model parameters are the three source geome-
try parameters (RT , ∆RT , Rz) and the five droplet velocity parameters (aT , ∆aT ,
az, bT , bz). They are associated with the initial sizes, expansion, and directional
asymmetry of system, and have significant influence on the observables of pion
momentum sprectra, elliptic flow, and HBT radii in the granular source model. In
next section, we will determine these parameters by the experimental data of these
observable, and examine their variations with collision energy and centrality for the
heavy ion collisions at the RHIC and LHC.
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3 Results of Pion Momentum Spectrum, Ellip-
tic Flow and Interferometry
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Figure 1: (Color online) The pion transverse momentum spectra of the granular
sources for the RHIC Au-Au collisions at

√
sNN = 200 GeV and the LHC Pb-Pb

collisions at
√
sNN = 2.76 TeV, for the uniform and Woods-Saxon initial energy

distributions in a droplet. The experimental data of PHENIX [31], STAR [32],
and ALICE [10] are also plotted.

In high energy heavy ion collisions, the invariant momentum distribution of final
particles can be written in the form of a Fourier series [29, 30],

E
d3N

d3p
=

1

2π

d2N

pT dpT dy

[
1 +

∑
n

2vn cos(nφ)

]
, (5)

where E is the energy of the particle, pT is the transverse momentum, y is the
rapidity, and φ is the azimuthal angle with respect to the reaction plane. In Eq.
(5), the first term on right is the transverse momentum spectrum in the rapidity
region dy, and the second harmonic coefficient v2 in the summation is called elliptic
flow.

In Fig. 1, we plot the pion transverse momentum spectra of the granular sources
with the uniform and Woods-Saxon initial energy distributions in a droplet. The
experimental data of the Au-Au collisions at √sNN = 200 GeV at the RHIC [31, 32]
and the Pb-Pb collisions at √sNN = 2.76 TeV at the LHC [10] are also plotted.
In Fig. 2, we plot the pion elliptic flow results of the granular sources with the
uniform and Woods-Saxon initial energy distributions, and the experimental data of
the Au-Au collisions [33] and the Pb-Pb collisions [11].

The transverse momentum spectrum and elliptic flow of the granular sources are
well in agreement with the experimental data, except for the elliptic flow results at
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Figure 2: (Color online) The pion elliptic flow of the granular sources for the
RHIC Au-Au collisions at

√
sNN = 200 GeV and the LHC Pb-Pb collisions at√

sNN = 2.76 TeV, for the uniform and Woods-Saxon initial energy distributions
in a droplet. The experimental data of STAR [33], and ALICE [11] are also
plotted.

pT > 2 GeV/c. The differences between the results of the granular sources with the
uniform and Woods-Saxon initial energy distributions are small. The experimental
data of the momentum spectrum and elliptic flow at the same centralities can si-
multaneously give the strong constraints to the velocity parameters of the granular
sources. After then, the geometry parameters of the granular sources for the colli-
sions with the different centralities can be further determined by the experimental
data of HBT interferometry at the same centralities.

Two-particle HBT correlation function is defined as the ratio of the two-particle
momentum spectrum P (p1,p2) to the product of two single-particle momentum
spectra P (p1)P (p2). It has been widely used to extract the space-time geometry,
dynamic and coherence information of the particle-emitting source in high energy
heavy ion collisions [34, 35, 36, 37, 38]. In the usual HBT analysis in high energy
heavy ion collisions, the two-pion correlation functions are fitted by the Gaussian
parameterized formula

C(qout, qside, qlong)=1+ λ e−R
2
outq

2
out−R

2
sideq

2
side−R

2
longq

2
long , (6)

where qout, qside, and qlong are the Bertsch-Pratt variables [39, 40], which denote
the components of the relative momentum q = p1 − p2 in transverse out and
side directions and in longitudinal direction, respectively. In Eq. (6) λ is chaoticity
parameter of source, Rout, Rside, and Rlong are the HBT radii in out, side, and
long directions.

We plot in Fig. 3 the two-pion HBT results for the granular sources and the
experimental data of the RHIC Au-Au collisions [20] and the LHC Pb-Pb collisions
[13] with the same centralities as the experimental data of the spectrum and elliptic
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Figure 3: (Color online) The HBT results of the granular sources for the uniform
and Woods-Saxon initial energy distribution, and the experimental data for the
Au-Au collisions at the RHIC [20] and the Pb-Pb collisions at the LHC [13]
with different centralities.
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flow. Here, kT is the transverse momentum of pion pair. One can see that the
granular source models can well reproduce the experimental HBT radii and their
variations with kT . The results of the chaotic parameters λ of the granular sources
are larger than the experimental data, because there are many effects in experiments
can decrease λ [34, 35, 36, 37, 38], which exceed our considerations.

In Table 1, we present the parameters of the granular sources with uniform
initial energy distribution in a droplet, determined by the experimental data of
the momentum spectra, elliptic flow, and HBT radii. The values of the source
geometry parameters indicate that the sources are a short cylinder with small shell
effect (small ∆RT ). For certain collision energy, the source geometry parameters
RT , ∆RT and Rz increase with the collision centralities. However, for the 10-20%
centrality, these geometry parameters for the LHC collisions are larger than those for
the RHIC collisions. The large difference between the droplet velocity parameters bT
and bz indicates the different dynamical behaviors of the sources in the transverse
and long directions. The parameter ∆aT increases with decreasing centrality. And,
the values of aT and az are almost independent of collision centrality. A detail
analysis on the relationships between the source parameters and the granular source
space-time evolution can be seen in Ref. [41].

Table 1: The geometry parameters (in fm unit) and velocity parameters of the
granular sources with uniform initial energy distribution in a droplet.

Centrality RT ∆RT Rz aT ∆aT az bT bz
RHIC, 0–5 % 5.8 0.7 3.9 0.469 0.066 0.593 0.76 0.13
RHIC, 10–20% 4.5 0.5 2.9 0.454 0.115 0.593 0.56 0.11
RHIC, 30–50% 2.5 0.3 0.5 0.437 0.156 0.593 0.37 0.06
LHC, 10–20% 6.0 0.9 5.5 0.431 0.092 0.592 0.35 0.13
LHC, 40–50% 2.5 0.4 1.8 0.407 0.131 0.590 0.23 0.03

Table 2: The geometry parameters (in fm unit) and velocity parameters of the
granular sources with Woods-Saxon initial energy distribution in a droplet.

Centrality RT ∆RT Rz aT ∆aT az bT bz
RHIC, 0–5 % 5.8 0.7 5.1 0.469 0.066 0.52 0.76 0.13
RHIC, 10–20% 4.5 0.5 4.0 0.457 0.122 0.52 0.56 0.11
RHIC, 30–50% 2.8 0.3 1.8 0.453 0.156 0.52 0.37 0.06
LHC, 10–20% 6.0 0.9 5.5 0.496 0.092 0.59 0.43 0.13
LHC, 40–50% 2.5 0.4 1.8 0.434 0.127 0.59 0.23 0.03

In Table 2, we present the parameters of the granular sources with Woods-Saxon
distribution of initial energy in a droplet, determined by the experimental data of
the momentum spectra, elliptic flow, and HBT radii. By Comparing the two set
parameters in Table 1 and Table 2, one can see that there are some differences
between the Rz and az values for the RHIC collisions. Also, for the LHC collisions,
the values of āT for for the granular sources with the Woods-Saxon distribution are
larger.
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4 Summary and Conclusions

We systemically investigate the pion transverse momentum spectrum, elliptic flow,
and HBT interferometry in the granular source model for the heavy ion collisions
at the RHIC highest energy and the LHC energy. The centrality dependence of the
observables at the two energies are examined. By comparing the granular source
results with the experimental data of the Au-Au collisions at √sNN = 200 GeV
at the RHIC and the Pb-Pb collisions at √sNN = 2.76 TeV at the LHC with
different collision centralities, we investigate the geometry and velocity parameters
in the granular source models with an uniform and Woods-Saxon initial energy
distributions in a droplet. The parameters as a function of collision centrality and
energy are examined. Our investigations indicate that the granular source model
can well reproduce the experimental data of pion transverse momentum spectra,
elliptic flow, and HBT radii in the Au-Au collisions at √sNN = 200 GeV with 0–
5%, 10–20%, and 30–50% centralities [20, 31, 32, 33], and in the Pb-Pb collisions
at √sNN = 2.76 TeV with 10–20% and 40–50% centralities [10, 11, 13]. The
experimental data of pion momentum spectra, elliptic flow, and HBT radii impose
very strict constraints on the parameters in the granular source model. They exhibit
certain regularities for collision centrality and energy.
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1H.Niewodniczański Institute of Nuclear Physics, Polish Academy

of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
2University of Rzeszów, Rejtana 16, 35-959 Rzeszów, Poland
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Abstract

The large and rapidly varying electric and magnetic fields induced by
the spectator systems moving at ultrarelativistic velocities induce a charge
splitting of directed flow, v1, of positive and negative pions in the final state
of the heavy ion collision. The same effect results in a very sizeable distortion
of charged pion spectra as well as ratios of charged pions (π+/π−) emitted at
high values of rapidity. Both phenomena are sensitive to the actual distance
between the pion emission site and the spectator system. This distance dE
appears to decrease with increasing rapidity of the pion, and comes below
∼1 fm for pions emitted close to beam rapidity. In this paper we discuss
how these findings can shed new light on the space-time evolution of pion
production as a function of rapidity, and on the longitudinal evolution of the
system created in heavy ion collisions.

172



Journal of Central European Green Innovation 4(4) pp 172-179 (2016)

1 Introduction

The presence of large and rapidly varying electric and magnetic fields in relativistic
heavy ion collisions results in charge-dependent effects, visible in a series of observ-
ables in the final state of the collision. These effects can be used as a new source of
information on the space-time evolution of the non-perturbative process of particle
production, and on the space-time properties of the system created in the heavy
ion collision. To give one example, in 2007 we demonstrated that the distortion
which the electromagnetic repulsion (attraction) of positive (negative) pions in-
duced on charged pion (π+/π−) ratios brought new information on the space-time
scenario of fast pion production [1]. In recent years, the general problematics of
electromagnetically-induced effects in ultrarelativistic heavy ion reactions was sub-
ject of an important theoretical and experimental interest [2, 3, 4, 5] as it was con-
nected to very interesting phenomena like the chiral magnetic effect (CME [6, 7]).

In the present paper we review our earlier studies of the electromagnetic dis-
tortion of charged pion spectra in the context of our more recent findings on the
influence of spectator-induced ~E and ~B fields on the azimuthal anisotropies of
charged pions. Special attention is put on tracing the utility of both observables for
studying the longitudinal evolution of the expanding matter created in the collision.
A phenomenological model analysis is presented, aimed at explaining the space-time
features of pion production which we deduced from the observed electromagnetic
phenomena.

2 Charged-dependent effects in pion spectra at
the SPS

The relatively moderate collision energy range available to the SPS makes corre-
sponding fixed-target experiments suitable for studying the electromagnetic influ-
ence of the spectator system on charged particle spectra in a large range of available
rapidity. Importantly, this includes the region of very low transverse momenta where
the corresponding effects are expected to be largest. A detailed double-differential
study of π+ and π− densities as a function of longitudinal and transverse pion mo-
mentum is presented in Fig. 1. The NA49 experimental data cover, in the longitudi-
nal direction expressed in terms of the c.m.s. Feynman variable xF = 2pL/

√
sNN ,

the whole region from “mid-rapidity” (xF = y = 0) up to xF = 0.4 which is
about one unit above beam rapidity at lowest transverse momenta. The smooth
exponential-like shape of the transverse momentum distribution gets visibly dis-
torted in the region of low pT , where a dramatic decrease of invariant π+ density
and an accumulation of π− density is apparent as indicated by the arrows. This
“deformation” is caused by the spectator system, which modifies the trajectories of
charged pions by means of its space- and time-dependent ~E and ~B fields.

The ratio of π+ over π− density, Fig. 2(a), appears particularly sensitive to the
spectator-induced electromagnetic field in the region of higher rapidity (xF > 0.1)
and lower transverse momenta. Here, a deep two-dimensional “valley” is apparent
with the π+/π− ratio approaching zero in the region y ≈ ybeam (xF = 0.15 =
mπ/mN at low pT ). Note that with the Pb nucleus composed of 39% protons
over 61% neutrons, this implies breaking of isospin symmetry which unequivocally
confirms the electromagnetic origin of the observed effect. Quantitatively, this is
confirmed in Fig. 2(b), where the observed distortion can be fairly well described
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Figure 1: Distibutions of invariant density d = E d3n
dp3 of positively and negatively

charged pions produced in peripheral Pb+Pb collisions at
√
sNN = 17.3 GeV.

The pion invariant density is drawn as a function of transverse momentum in
fixed bins of xF as marked from top to bottom. The subsequent distributions
are consecutively multiplied by 0.2. The arrows point at the regions where the
distortion induced by the spectator EM-field is most visible. From [8].

by means of a simple two-spectator model with the two spectators assumed as
Lorentz-contracted homegenously charged spheres, and isospin effects being taken
into account [9]. It is important to underline that the unique free parameter in the
model is the distance dE , in the longitudinal direction, between the pion emission
point and the center of the spectator system. The reasonable agreement between
data and model demonstrated in Figs 2(a),(b) is obtained for values of dE in the
range of 0.5 - 1 fm [9]; different values of dE lead to different detailed shapes of
the distortion of π+/π− ratios as described in [1].

3 Directed flow

In full analogy to charged pion ratios, the directed flow of charged pions emitted
close to beam rapidity is also strongly affected by spectator-induced EM effects.
This is shown in Fig. 2(c) where our prediction for a purely electromagnetic effect
on the directed flow v1 of positive pions is shown for three different values of the
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Figure 2: (a) Ratio of charged pions emitted in peripheral Pb+Pb collisions
at
√
sNN = 17.3 GeV, (b) model simulation of this ratio as described in the

text, (c) our Monte Carlo prediction for the (pure) electromagnetically-induced
directed flow of positive pions, compared to the data from the WA98 experi-
ment [10], (d) directed flow of charged pions in intermediate centrality Au+Au
collisions [11], (e), (f) electromagnetic component of π+ and π− directed flow,
extracted from STAR data [11] and compared to our simulation made assuming
dE ≈ 3 fm. From: [8] (panels a,b), [12] (panel c), [13] (panels d,e,f).

distance dE : 0, 0.5 and 1 fm. As it can be seen in the figure, our Monte Carlo
calculation shows that very large values of directed flow can be induced by the sole
effect of electromagnetic repulsion of positive pions by the spectator system. Our
prediction is compared to the measurements provided by the WA98 Collaboration
at the same energy, √sNN = 17.3 GeV [10]. This comparison indicates that a
very sizeable part of positive pion directed flow in the region close to beam/target
rapidity can in fact come from the electromagnetic origin. At the same time, the
WA98 experimental data apparently constrain the possible values of the distance dE ,
yielding the possible range of dE from 0 up to 1 fm. Thus consistently from both
observables (π+/π− ratios, Fig. 2(a) and directed flow, Fig. 2(c)), the longitudinal
distance between the actual pion emission site and the center of the spectator system
appears quite small, in the range below 1 fm. This small distance is to be viewed
with respect to the longitudinal extent of the Lorentz-contrated spectator system
which is itself of the order of about 1 fm at this collision energy.
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The situation changes significantly when passing to pions produced close to
central rather than beam rapidity. Here experimental data on intermediate centrality
Au+Au reactions exist from the STAR experiment at RHIC [11] at different collision
energies (from √sNN = 7.7 up to 200 GeV). The directed flow of positive and
negative pions at the lowest available energy is presented in Fig. 2(d). A charge
splitting is apparent between π+ and π−. As shown in Figs 2(e),(f), the latter
splitting can again be understood as a spectator-induced EM effect, provided that
a value of dE far larger than in the preceding case, dE ≈ 3 fm, is assumed.

4 Space-time picture of the collision

This apparent sensitivity of the electromagnetic distortion of final state charged pion
ratios and directed flow to the distance between the pion formation zone and the
spectator system provides, in the opinion of the authors, a completely new and very
welcome tool for studying the space-time evolution of charged particle production
in the soft sector of ultrarelativistic heavy ion collisions. Specifically, the elongation
of the distance dE with decreasing pion rapidity is the reflection of the longitudinal
evolution of the system created in the collision. Summing up the findings from the
precedent section, in our studies we obtained:

• dE ≤ 1 fm for pions moving at rapidities comparable to ybeam (from our
study based on NA49 [8] and WA98 [10] data);

• dE ≈ 3 fm for pions moving at central rapidities (−1 < y < 1, from our
study based on STAR data [11]).

While the mere fact that dE evolves with pion rapidity is simply the confirmation
of the expansion of the system in the longitudinal direction, the latter is, especially
at high pion rapidities, poorly known to hydrodynamical calculations due to the
presence of a sizeable baryochemical potential [14], and difficult to access exper-
imentally e.g. in LHC experiments (in contrast to SPS energies where the NA49
and NA61/SHINE experiments cover the whole region from y = 0 to y = ybeam
and above in the collision c.m.s. [15]).

In the present section we discuss this issue in the context of energy-momentum
conservation in the initial state of the collision, in a model proposed by A.S. The
spatial nuclear matter distribution in the volume of the two colliding nuclei is con-
sidered in a two-dimensional (x, y) projection perpendicular to the collision axis;
peripheral Pb+Pb collisions at top SPS energy are presented in Fig. 3(a). The re-
sulting “strips” of highly excited nuclear (or partonic) matter, Fig. 3(b), define the
kinematical properties of the longitudinal expansion of the system as a function of
collision geometry. These are shown in Figs 3(c) and (d) in the perpendicular (x, y)
plane. For the peripheral collision considered here, the overall energy available for
particle production (invariant mass of the “strips” as defined assuming local energy-
momentum conservation) has a well-defined “hot” peak at mid-distance between
the centers of the two nuclei, and gradually decreases when approaching each of
the two “cold” spectator systems. On the other hand, the longitudinal velocity β
of the “strips” depends strongly on their position in the (x, y) plane. A careful
comparison of Figs 3(c)-(d) shows that significantly excited volume elements of
the longitudinally expanding system can move at very large longitudinal velocities,
comparable to that of the spectator system. Assuming a given proper hadronization
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Figure 3: Model study of the kinematical characteristics of matter created in the
peripheral Pb+Pb collision at

√
sNN = 17.3 GeV. (a) Subdivision of the nuclear

matter distribution into longitudinal “strips”. (b) Kinematical characteristics
of the “strips” as a function of their position in the perpendicular plane; the
distance dE is indicated in the plot. (c) Invariant mass of the “strips” projected
in the perpendicular (x, y) plane, where x is the direction of the impact param-
eter vector. (d) Longitudinal velocity β of the “strips” as a function of their
position. The “hot” participant and “cold” spectator regions are indicated in
the plots.

time of the different volume elements, a natural picture emerges. Pions produced
at high rapidity (dominantly from “strips” moving at large values of the longitudinal
velocity β) will emerge at a small distance from the “cold” spectator systems; these
originating from “hot” central “strips”, at smaller values of y, will evidently show
up at larger values of the distance dE .

5 Conclusions

Altogether, we conclude that a non-negligible amount of experimental data on
charge-dependent effects in particle spectra and anisotropic flow exists, and much
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more can be obtained from existing fixed-target as well as collider experiments.
These data can be used to trace the influence of the electric and magnetic fields
in heavy ion collisions, which should be useful in future studies related to the chi-
ral magnetic effect, the electromagnetic properties of the quark-gluon plasma, and
others. Our own studies demonstrate the sensitivity of the EM-induced distortions
of charged particle spectra and directed flow to the space-time scenario of particle
production in heavy ion collisions, and allow us to trace the longitudinal evolution
of the expanding matter created in the course of the collision.
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Abstract

Energy dependence of space-time parameters of pion emission region at
freeze-out is studied for collisions of various ions and for all experimentally
available energies. The using of femtoscopic radii scaled on the averaged
radius of colliding ions is suggested. This approach allows the expansion of
the set of interaction types, in particular, on collisions of non-symmetrical
ion beams which can be studied within the framework of common treatment.
There is no sharp changing of femtoscopic parameter values with increasing
of initial energy. Analytic functions suggested for smooth approximations of
energy dependence of femtoscopic parameters demonstrate reasonable agree-
ment with most of experimental data at

√
sNN ≥ 5 GeV. Estimations of some

observables are obtained for energies of the LHC and FCC project.

1 Introduction

At present femtoscopic measurements in particular that based on Bose – Einstein
correlations are unique experimental method for the determination of sizes and
lifetimes of sources in high energy and nuclear physics. The study of nucleus-nucleus
(AA) collisions in wide energy domain by correlation femtoscopy seems important for

∗Manuscript contributed to the proceedings that could not be presented at WPCF 2014
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better understanding both the equation of state (EOS) of strongly interacting matter
and general dynamic features of soft processes. The discussion below is focused on
specific case of femtoscopy, namely, on correlations in pairs of identical charged pions
with small relative momenta – HBT-interferometry – in nucleus-nucleus collisions.
The general view for phenomenological parameterization of correlation function (CF)
for two identical particles is discussed in the [1, 2]. Below the experimental results
obtained for AA collisions within the standard 3d approach are taken into account
[2]. The set of main femtoscopic observables G1 ≡ {Gi1}4i=1 = {λ,Rs, Ro, Rl} is
under consideration as well as the set of some important additional observables
which can be calculated with help of HBT radii G2 ≡ {Gj2}3j=1 = {Ro/Rs, δ, V }.
Here δ = R2

o−R2
s , V = (2π)3/2R2

sRl is the volume of source at freeze-out. The set
of parameters G1 characterizes the correlation strength and source’s 4-dimensional
geometry at freeze-out stage completely. The most central collisions are usually
used for study the space-time characteristics of final-state matter, in particular,
for discussion of global energy dependence of femtoscopic observables. Therefore
scaled parameters Gi1, i = 2− 4, δ and G32 are calculated as follows [1, 2]:

Rni = Ri/RA, i = s,o,l; δn = δ/R2
A; V n = V/VA. (1)

Here RA = R0A
1/3, VA = 4πR3

A/3 is radius and volume of spherically-symmetric
nucleus, R0 = (1.25± 0.05) fm [3, 4]. The change RA → 〈RA〉 = 0.5(RA1 +RA2)
is made in the relation (1) in the case of non-symmetric nuclear collisions [1, 2].
In general case the scale factor in (1) should takes into account the centrality of
nucleus-nucleus collisions. The normalization procedure suggested in [1] allows the
consideration of all available data for nucleus-nucleus collisions [2]. As development
of previous analyses [1, 2] the proton-proton (pp) results at high energies [5, 6] are
also considered here with replacing RA → Rp in (1).

2 Energy dependence of space-time extent of
pion source

Table 1: Values of fit parameters for AA data with statistical errors

HBT Fit parameter

parameter a1 a2 a3 χ2/n.d.f.

λ 1.21± 0.09 −0.30± 0.04 0.38± 0.04 3656/29

0.717± 0.003 −0.051± 0.001 1.0 (fixed) 3786/23

Rns 0.656± 0.002 (6± 3)× 10−5 3.11± 0.19 195/25

0.599± 0.003 0.019± 0.001 1.0 (fixed) 280/26

Rno 0.10± 0.02 6.3± 1.7 0.068± 0.006 402/25

0.758± 0.004 0.008± 0.001 1.0 (fixed) 415/26

Rnl 0.022± 0.002 23± 3 0.258± 0.005 502/25

0.634± 0.004 0.043± 0.001 1.0 (fixed) 615/26

Detail study for (quasi)symmetric heavy ion collisions [1, 2] demonstrates that
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Figure 1: Energy dependence of λ parameter (a), scaled HBT-radii (b – d)
and ratio Ro/Rs (e) in various collisions. Experimental data are from [2, 5, 6].
Statistical errors are shown (for NA44 – total uncertainties). The solid lines
(a – d) correspond to the fits by function (2) and dashed lines – to the fits by
specific case of (2) at fixed a3 = 1.0. Smooth solid and dashed curves at (e)
correspond to the ratio Ro/Rs calculated from the fit results for Rns and Rno in
AA, dotted line is the level Ro/Rs = 1.

the fit function (ε ≡ sNN/s0, s0 = 1 GeV2)

f(
√
sNN ) = a1 [1 + a2(ln ε)a3 ] (2)

agrees reasonably with experimental dependence Gi1(
√
sNN ), i = 1 − 4 at any

collision energy for λ and at
√
sNN ≥ 5 GeV for HBT radii. Fig. 1 shows the en-

ergy dependence of λ (a), scaled HBT-radii (b – d) and Ro/Rs ratio (e) for both
the symmetric and non-symmetric collisions of various nuclei. Fits of experimen-
tal dependencies for AA interactions are made by (2) in the same energy domains
as well as for (quasi)symmetric heavy ion collisions. The numerical values of fit
parameters are presented in Table 1, fit curves are shown in Fig. 1 by solid lines
for (2) and by dashed lines for specific case of fit function at a3 = 1.0 with tak-
ing into account statistical errors. There is dramatic growth of χ2/n.d.f. values
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for fits of λ data (Fig. 1a) despite of qualitative agreement between smooth ap-
proximations and experimental λ values for range 10 .

√
sNN . 200 GeV. The

fit by (2) underestimates the λ value at the LHC energy
√
sNN = 2.76 TeV sig-

nificantly. The λ values for asymmetric nucleus-nucleus collisions at intermediate
energies

√
sNN . 20 GeV agree well with values of λ in symmetric heavy ion col-

lisions at close energies. On the other hand the λ for Cu+Cu collisions is smaller
systematically than λ in Au+Au collisions in energy range

√
sNN = 62− 200 GeV

(Fig. 1a). New experimental data are important for verification of the suggestion
of separate dependencies λ(

√
sNN ) for moderate and heavy ion collisions. Also the

development of some approach is required in order to account for type of colliding
beams in the case of λ parameter and improve quality of approximation. Smooth
curves for normalized HBT radii and ratio Ro/Rs are in reasonable agreement with
experimental dependencies in fitted domain of collision energies

√
sNN ≥ 5 GeV

(Figs. 1b – e). Dramatic improvement of the fit qualities for scaled HBT radii at
transition from the data sample with statistical errors to the data sample with total
errors is dominated mostly by the uncertainty in r0 leads to additional errors due
to scaling (1). The scaled HBT-radii in pp are larger significantly than those in
AA collisions at close energies. Because feature of Regge theory [7] the following
relation is suggested to take into account the expanding of proton with energy:
Rp = r0(1 + k

√
α′P ln ε), where r0 = (0.877 ± 0.005) fm is the proton’s charge

radius [8], parameter α′P ∝ ln ε because of diffraction cone shrinkage speeds up
with collision energy in elastic pp scattering [9]. The k is defined from the bound-
ary condition Rp → 1/mπ at ε→∞ with choice of appropriate asymptotic energy√
saNN . The detail study demonstrates that the increasing of

√
saNN from 6 PeV

[10] to 103 PeV influences weakly on Rni , i = s, o, l in pp collisions and calculations
are made for the first case. The normalized transverse radii agree in both the pp
and the AA collisions (Figs. 1b, c) at

√
sNN = 200 GeV with excess of Rns in pp

with respect to the AA in TeV-region. The Rnl in pp is larger than that for AA
in domain

√
sNN ≥ 200 GeV. It should be stressed that the additional study is

important, at least, for choice of Rp(ε).
The corresponding dependencies for δn and V n are demonstrated in Fig. 2 and

Fig. 3, respectively. As well as in [1, 2] results for π+π+ pairs are shown in Figs. 1 –
3 also because femtoscopy parameters from the set G1 depend on sign of electrical
charge of secondary pions weakly. The relation Ro < Rs is observed for ≈ 11%
of points in Fig. 2. Detail discussion for points with δ < 0 is in the [2]. The
dependence δn(

√
sNN ) is almost flat within large error bars in all energy domain

under consideration. Taking into account the STAR high-statistics results [11] only
one can see the indication on change of behavior of δn(

√
sNN ) inside the range of

collision energy
√
sNN = 11.5 − 19.6 GeV. This observation is in agreement with

features of behavior of emission duration (∆τ) dependence on
√
sNN discussed in

[2]. The estimation of energy range agrees well with results of several studies in
the framework of the phase-I of the beam energy scan (BES) program at RHIC
which indicate on the transition from dominance of quark-gluon degrees of freedom
to hadronic matter at

√
sNN . 19.6 GeV. But future precise measurements are

crucially important for extraction of more definite physics conclusions. Smooth
solid and dashed curves shown in Fig. 2 are calculated for δn from the fit results for
Rns and Rno (Table 1). The calculation based on the fit function (2) at free a3 agrees
reasonably with experimental points at

√
sNN ≤ 200 GeV but underestimates δn

in TeV-region significantly. The large errors in Fig. 3 for strongly asymmetric AA
collisions is dominated by large difference of radii of colliding moderate and heavy
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Figure 2: Dependence δn(
√
sNN ) in various collisions. Experimental data are

from [2, 5, 6]. Error bars are only statistical (for NA44 – total uncertainties).
Dotted line is the level δn = 0. Smooth curves are derived from (1) and the fit
results for Rns , Rno in AA. The solid line corresponds to the fits of normalized
HBT radii by function (2) and dashed line – to the fits by specific case Rni ∝ ln ε,
i = s, o.

nuclei and corresponding large uncertainty for 〈RA〉. Smooth solid and dashed
curves shown in Fig. 3 are calculated for V n from it’s definition (1) and the fit results
for Rns , Rnl (Table 1). The fit results for normalized HBT radii obtained with general
function (2) lead to very good agreement between smooth curve and experimental
data in TeV-region in contrast with the curve obtained from corresponding fit results
for (2) at a3 = 1.0. There is significant difference between pp and AA collisions
for δn in TeV-region (Fig. 2) and for V n at

√
sNN ≥ 200 GeV (Fig. 3).

Estimations for λ, Ro/Rs, and normalized femtoscopic parameters at the LHC
and the FCC energies are shown in Table 2 for fits of various AA collisions with
inclusion of statistical errors, the second line for each collision energy corresponds
to the using of the specific case of (2) at a3 = 1.0. All the smooth approximations
discussed above predict amplification of coherent pion emission with significant
decreasing of λ. Uncertainties are large for estimations obtained on the basis of
results of fits by function (2) at free a3. Thus values of femtoscopic observables in
Table 2 are equal within errors for general and specific case of (2) at

√
sNN = 5.52

TeV (LHC) and
√
sNN = 39.0 TeV (FCC).

The energy dependencies for sets Gm, m = 1, 2 of femtoscopic parameters with
taking into account the scaling relation (1) demonstrate the reasonable agreement
between values of parameters obtained for interactions of various ions (Figs. 1 – 3).
The observation confirms the suggestion [1] that normalized femtoscopic parameters
allow us to unite the study both the symmetric and the asymmetric AA collisions
within the framework of united approach. This qualitative suggestion is confirmed
indirectly by recent study of two-pion correlations in the collisions of the lightest
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Figure 3: Energy dependence of V n in various collisions. Experimental data are
from [2, 5, 6]. Error bars are only statistical (for NA44 – total uncertainties).
Smooth curves are derived from (1) and the fit results for Rns , Rnl in AA. The
solid line corresponds to the fits of normalized HBT radii by function (2) and
dashed line – to the fits by specific case Rni ∝ ln ε, i = s, l.

Table 2: Estimations for observables based on fit results

√
sNN , HBT parameter for AA

TeV λ Rns Rno Rnl
5.52 0.16± 0.19 0.9± 0.2 0.8± 0.3 1.06± 0.16

0.091± 0.004 0.792± 0.009 0.860± 0.010 1.099± 0.013

39.0 0.07± 0.21 1.2± 0.4 0.9± 0.3 1.11± 0.16

– 0.836± 0.011 0.883± 0.012 1.205± 0.015

Ro/Rs δn V n

5.52 0.9± 0.4 −0.2± 0.6 3.5± 1.6

1.086± 0.018 0.11± 0.02 2.59± 0.07

39.0 0.7± 0.3 −0.7± 1.1 6± 4

1.06± 0.02 0.08± 0.03 3.17± 0.09

nucleus (d) with heavy ion (Au) at RHIC. Estimations of space-time extent of the
pion emission source in d+Au collisions at top RHIC energy [12] in dependence
on kinematic observables show similar patterns with corresponding dependencies
in Au+Au collisions and indicate on similarity in expansion dynamics in collisions
of various systems (d+Au and Au+Au at RHIC, p+Pb and Pb+Pb at LHC). The
scaling results for some radii indicate that hydrodynamic-like collective expansion
is driven by final-state rescattering effects [12]. On the other hand the normalized
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femtoscopic parameters allow us to get the common kinematic dependencies only
without any additional information about possible general dynamic features in dif-
ferent collisions. Thus the hypothesis discussed above is qualitative only. The future
quantitative theoretical and phenomenological studies are essential for verification
of general features of soft stage dynamics for different collisions at high energies.

3 Summary

The main results of present study are the following.
Energy dependence is investigated for range of all experimentally available initial

energies and for estimations of the main femtoscopic parameters from set the G1
(λ and radii) derived in the framework of Gauss approach as well as for the set of
important additional observables G2 contains ratio of transverse radii, δ and HBT
volume. There is no dramatic change of femtoscopic parameter values in AA with
increasing of

√
sNN in domain of collision energies

√
sNN ≥ 5 GeV. The energy

dependence is almost flat for the δn in nucleus-nucleus collisions within large error
bars. The indication on possible curve knee at

√
sNN ∼ 10 − 20 GeV obtained

in the STAR high-statistics data agree with other results in the framework of the
phase-I of the BES program at RHIC. But additional precise measurements are
crucially important at various

√
sNN in order to confirm this feature in energy

dependence of additional femtoscopic parameters. The normalized some HBT radii
and source volume in pp are larger significantly than those in AA collisions especially
in TeV-region. The fit curves demonstrate qualitative agreement with experimental
AA data for λ at all available collision energies and for normalized HBT radii in
energy domain

√
sNN ≥ 5 GeV. Smooth curves calculated for energy dependence

of parameters from the set G2 agree reasonably with corresponding experimental
AA data in the most cases. Estimations of femtoscopic observables are obtained
on the basis of the fit results for energies of the LHC and the FCC project. For
multi-TeV energy domain the emission region of pions in nucleus-nucleus collisions
will be characterized by decreased correlation strength, linear sizes about 8.5− 9.5
fm in longitudinal direction and 7− 8 fm in transverse plane, volume of about 104

fm3.
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Abstract
We assume that the Pomeron is a sum of Regge multipoles, each corre-

sponding to a finite gluon ladder. From the fit to the data of pp− and pp−
scattering at high energy and all available momentum transfer we found that
taking into account the spin, three-term multipole Pomeron and Odderon
with different form-factors are substantial for good description of differential,
total cross section and ratio ρ in the whole high energy experimental domain.

1 Introduction

The Pomeron being an infinite gluon ladder [1]-[4] may appear as a finite sum of
gluon ladders corresponding to a finite sum of Regge multipoles with increasing
multiplicities [5]-[7]. The first term in ln s series contributes to the total cross-
section with a constant term and can be associated with a simple pole, the second
one (double pole) goes as ln s, the third one (triple pole) as ln2s, etc. All Pomeron
poles have unit intercept. Previously the multipole Pomeron and many-Pomerons
approaches were investigated on different applications [8]-[11] (see also review [12]).
Due to the recent experiments on elastic and inelastic proton-proton scattering by
the TOTEM Collaboration at the LHC [13], data in a wide range, from lowest
up to TeV energies, both for proton-proton and antiproton-proton scattering in a
∗Manuscript contributed to the proceedings that could not be presented at WPCF 2014
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wide span of transferred momenta are now available. The experiments at TeV
energies give a chance to verify different Pomeron and Odderon models because the
secondary Reggeon contributions at these energies are small. Note that none of the
existing models of elastic scattering was able to predict the value of the differential
cross section beyond the first cone, as clearly seen in Fig.4 of the TOTEM paper
[13, 14]. This problem is still remains actual and inspired some people to construct
the new and revitalize a well-known old fashioned models. Consequently for this
time it is necessary to revise our concept on exchange mechanism in this distant
region of energies [15]-[18]. A number of models have been refined and developed
[19]-[22]. In fact, several of used Pomeron models, as a rule, have intercept > 1
which requires the unitarisation [23], other ones have complicated structure and the
overall number of parameters was fairly high [24, 25].

Here we suggest the three-component Pomeron model inspired by the finite sum
of gluon ladders extended to the whole range of available momentum transfer of
high-energy pp− and pp− elastic scattering and performed a simultaneous fit to the
σtot, ρ and dσ/dt data. Our goal is to investigate the capabilities of Pomeron model
as a finite sum of gluon rungs (ln s power) equivalent to single pole + dipole +
tripole Pomeron with sufficiently account the spin influence and non-linear trajectory
for pp− and pp− scattering in first and second diffraction cone. Our strategy is two
fold: one to select a core set of experimental data, as well as models of reference,
most appropriately describing the details of this basic set. First we take the set [26],
and then - the paper [25].

This paper is organized as follows. In the next section, one introduces the main
formulas and features of the model. In Sec. 3, we perform the comparison with
experiment. In the last section, the conclusions are drawn up.

2 The model

The reduced form of nucleon-nucleon amplitude without double spin-flip accounting
is [27]:

A(s, t) = A00(s, t) +

√
−t

2mp
A01(s, t), (1)

where A00(s, t) is spin-nonflip component and A01(s, t) is spin-flip component of
scattering amplitude.

Our ansatz for the spin-nonflip scattering amplitude component A00(s, t) is:

A00(s, t) = P00(s, t) +Rf (s, t)± [Rω (s, t) +O (s, t)] (2)

for pp (upper symbol) and pp (lower symbol) scattering respectively. For the spin-
flip scattering amplitude component A01(s, t)

A01 = P01(s, t) +Rf (s, t)± [Rω (s, t) + godO (s, t)] . (3)

We suppose that the contribution of the subleading reggeons to the spin-flip ampli-
tude is the same as to the spin-nonflip amplitude and the contribution of Odderon
to the spin-flip amplitude differ from one to the spin-nonflip amplitude by the factor
god, where the Pomeron contribution we introduce in form:

P00 (s, t) = is

(
−i s
s0

)αP (t)−1 2∑
j=0

a0j lnj
(
−i s
s0

)
eϕ0j(t) (4)
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and

P01 (s, t) = is

(
−i s
s0

)αP (t)−1 2∑
j=0

g1j lnj
(
−i s
s0

)
eϕ1j(t). (5)

The Pomeron trajectory is:

αP (t) = 1 + α′P t+ α′′P
(√
tπ −

√
tπ − t

)
, (6)

where the lowest two-pion threshold tπ = 4m2
π. The residue functions are:

ϕ0j(t) = γ0j
(√
tπ −

√
tπ − t

)
, (7)

ϕ1j(t) = γ1j
(√
tπ −

√
tπ − t

)
. (8)

In (2),(3) the Rf (s, t), Rω(s, t) and O(s, t) contain the subleading reggeons as
well as the Odderon contributions to the scattering amplitude:

Rf (s, t) = gf

(
−i s
s0

)αf (t)

ebf t (9)

and

Rω (s, t) = igω

(
−i s
s0

)αω(t)

ebωt, (10)

where
αj (t) = 1 + α

′

jt, j = f, ω; s0 = 1 GeV 2. (11)

To describe the different behavior of proton-proton and antiproton-proton differen-
tial cross-section in region of dip-bump one needs to include the Odderon contribu-
tion, which we use in a simple form:

O (s, t) = s

(
−i s
s0

)αO(t)−1 2∑
j=0

gj lnj
(
−i s
s0

)
eφj(t). (12)

The Odderon trajectory is

αO(t) = 1 + α′Ot. (13)

The residue functions are:

φj(t) = δj

(√
t′π −

√
t′π − t

)
, (14)

t′π = 9m2
π.

3 Comparison with experiment

In order to determine the parameters that control the s-dependence of A (s, 0)
we applied a wide energy range 5GeV ≤

√
s ≤ 7000GeV and used the avail-

able data for total cross sections and ρ ( [26]). A total of 107 experimental
points were included for t = 0. For the differential cross sections we selected the
data at the energies

√
s = 19; 23; 31; 44; 53; 62; 7000GeV (for pp−scattering)(1633

experimental points) and
√
s=31;53;62;546;1800GeV (510 experimental points)

for pp− scattering [26]. The squared 4-momentum covers entire available range
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Table 1: Parameters, quality of the fit obtained in the whole interval in s and t.

Parameter Value Error

a00 8.449 0.121

a01 -0.855 0.0188

a02 0.06519 0.81.10−2

a10 -0.3690 0.0250

a11 6.134 0.0910

a12 -0.1938 0.00461

α′′P , GeV
−1 0.04638 0.523.10−2

γ00, GeV
−1 2.107 0.037

γ01, GeV
−1 0.5742 0.0562

γ02, GeV
−1 1.422 0.0633

γ10, GeV
−1 2.623 0.0515

γ11, GeV
−1 6.540 0.02655

γ12, GeV
−1 5.176 0.0354

g00 -0.4855 0.0188

g01 -0.4855 0.0188

g02 0.06519 0.81.10−3

α′O, GeV
−2 0.05197 0.117.10−2

δ0, GeV
−1 2.623 0.0515

δ1, GeV
−1 6.450 0.026

δ2, GeV
−1 5.176 0.035

god 553.6 47.7

af -10.75 0.75

αf 0.5395 0.0185

aω 10.17 0.44

αω 0.4182 0.0131

χ2/dof 1.56
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0.01(GeV )2< |t| <14(GeV )2. The grand total number of 2384 experimental points
were used in overall fit. In the calculations we use the following normalization for
the dimensionless amplitude:

σtot =
4π

s
ImA (s, t = 0) , (15)

dσ

dt
=

π

s2
[|A00(s, t)|2 − t

4mp
2 |A01(s, t)|2]. (16)

The resulting fits for σtot, ρ, dσ
dt are shown in Figs. 1. - 2. with the values of

the fitted parameters quoted in Table 1. From these figures we conclude that the
multipole Pomeron model corresponding to a sum of gluon ladders up to two rungs
complicated with Odderon contribution and spin counting fits the data well in a
wide energy and momentum transfer regions. In this paper, we have explored only
the simplest phenomenological tripole Pomeron. In fact, the scattering amplitude
is much more complicated than just a simple power series in ln s. On the one
hand, although we used just a simplified t-dependence in the model, reasonably
good results were obtained. Because the slopes of secondary reggeons do not
influence the fit sufficiently, we have fixed them at α′f = 0.84(GeV )−2 and α′ω =

0.93(GeV )−2, which correspond to the values of Chew-Frautschi plot, as well as its
slope parameters bf = 12.0(GeV )−2 and bω = 14.0(GeV )−2. Additionally we fixed
the Pomeron trajectory slope α′P = 0.4(GeV )−2. On the other hand, we included
the curvature of the Pomeron trajectory that cannot be negligible. The quality of
our fits χ2/dof=1.56 is comparable with that of the best fit of [25].

4 Summary

We have approved the tripole Pomeron model having each term corresponding to
a finite gluon ladder.

This corresponds to the finite sum of gluon ladders with up to two rungs or
alternatively up to the tripole Pomeron contribution. We have obtained very good
description of pp and pp hadron scattering data at intermediate and high energies
and all available momentum transfer. We conclude that the nonfactorisable form
of the Pomeron and Odderon amplitudes as well as the nonlinearity of its trajectory
and the residue function is strongly suggested by data at all available momentum
transfer. It should be noted that the addition of spin-flip component of scattering
amlitude decisively improves the result of the fit.
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Figure 1: (a) pp and pp total cross sections calculated from the model and fitted
to the data in range

√
s = 5 GeV–7 TeV. (b) Ratio of the real to imaginary

part for pp and pp scattering amplitude calculated from the same model. Upper
curve - presents the pp calculation, lower curve - present pp one.
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Figure 2: (a) Differential pp (a) and pp (b) cross sections calculated from the
model taking into account the spin and fitted to the data in the range −t = 0.1
— 15 GeV2.
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Abstract: 

Quark Wars is an all-new, adventure style game. We recommended playing it outdoors. 

Quark Wars is modeled upon the outdoor game called Hungarian Number War, with notable 

influence from Star Wars, the American epic space saga. The players form two opposing 

teams. Both teams elect their own leader. The team members and their leaders wear particle 

war bonnets on their foreheads. These headdresses consist of three or four cards indicating 

combinations of elementary particles. The two teams compete by identifying (reading out 

loudly) the elementary particle cards on the foreheads of their adversaries. Players are 

allowed to use the terrain to cover their particle identity on their foreheads and may try to 

hide, run or band together in a group to win. Quark Wars was tested at a Summer Camp of 

Berze Science Club in Hungary. Students loved playing Quark Wars, as this game resulted 

in lots of hilarity and action. In addition, Quark Wars also solidified particle terminology and 

made the concept of particle identification and discovery more tangible to secondary/middle 

school students. 
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1. Long time ago in a small village far, far away… 

It is a period of particle war. Rebel student groups, striking from their hidden base, 

have won their first victory against the evil particle empire. 

 

During the battle, student spies managed to steal secret plans to the Empire’s ultimate 

weapon, the Quark Star, an armored particle accelerator with enough power to destroy 

an entire Planet. 

 

Pursued by the Empire’s sinister agents, Princess Lepton races home, custodian of the 

stolen plans that can save her people and restore asymptotic freedom to their quarks 

and to the Early Universe…  

/Opening Crawl, with apologies to George Lucas [1]/ 

 

It was a roguish and hilarious day with a new game for the students in the 

Summer Camp of the Berze Secondary School in a small Hungarian village called 

Visznek. They had just learned about elementary particles and soon their survival 

depended on their ability to identify them. They were assigned to a difficult mission by 

their scientist patrons, namely to participate in the test of a new outdoor game called 

Quark Wars. This required that students develop not only some basic knowledge of 

elementary particles and focus their mind on some fundamental particle physics, but 

also tested their endurance, creativity, sneaking skills and fortitude. 

The students were already introduced to some of the basic concepts and 

terminology of elementary particle physics, thanks to their familiarity with certain type of 

Quark Matter Card Games [2]. In these games, elementary particles like quarks and 

leptons are represented by particle cards. Csaba Török, a 17-year-old Hungarian 

secondary school student conceived the idea of a deck of elementary particles, and he 

created ANTI, the first of the Quark Matter Card Games [3], on the New Year's Eve of 

2008/2009. Csaba was a member of the very same Berze Science Club, where the 

Quark Wars was first tested. Csaba had heard several outreach talks about particle 

physics in this Science Club before had the idea of representing quarks and leptons of 

the Standard Model on the faces of a deck of cards. His first game, ANTI was 

subsequently refined and developed to the so called Quark Matter Card Game [4] with 

the primary goal of entertainment and secondary goal as a science outreach tool. In this 

development, Csaba teamed with Judit Csörgő, another 17-year-old member of the 

Berze Science Club, who realized that these games could be taught even to pre-school  

5-years-olds. Tamás Csörgő, Judit’s father (and one of the co-authors of this article) also 

joined the team as a mentor and manager. He is a research physicist who works on 

experimental as well as theoretical high energy physics problems related to the RHIC 

accelerator at Brookhaven National Laboratory, USA and the LHC accelerator at CERN. 

Tamás also acts as the scientist patron of the Berze Science Club.  

The Quark Matter Card Game of J. Csörgő, Cs. Török and T. Csörgő [2] provides 

several opportunities to have fun with elementary particles and anti-particles, in order to 

model the Big Bang, the formation of the Early Universe in the first few microseconds 

after its creation, or to play Quark Matter to model and popularize the time evolution of 

heavy ion collisions at RHIC and at LHC [2], to memorize quarks [5] or to search for your 

own Higgs boson [6]. Each of these games can be started on the level of laypersons, in 

an entertaining and delightful manner, in a way that triggers a learning spiral as the 
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players become more and more enthusiastic and sophisticated participants. The games 

are designed to scale well with the knowledge level of the participants, as we shall 

demonstrate here as well on the new game called Quark Wars. 

 

2 Preparations and inventory 

In order to be able to play Quark Wars, the students were first of all reminded 

about some fundamental concepts of elementary particle physics, as realized in the form 

of the Quark Matter Card Game. They were reminded that in these games two main 

groups of particles are included: quarks and leptons. Quarks are represented with cards 

colored red, green or blue, indicating that they participate in the strong interactions. 

According to Quantum Chromo Dynamics, the theory of the strong interactions, quarks 

and their anti-particles, called anti-quarks, have certain symmetry properties similar to 

that of the optical colors. Leptons are charged or neutral particles who do not participate 

in the strong (or color) interactions, so leptons are represented by black and white cards 

in the Quark Matter Card Games.  

As each particle has an anti-particle, the question arises, how to represent 

(model) anti-particles on the faces of Quark Matter Cards. We emphasized that for 

leptons with electric charge, positive and negative signs indicate the electric charge of 

particle / anti-particle pairs, for example an electron is denoted by “ e- “, so its anti-particle, 

the positron is denoted by “ e+ “. Obviously, for the quarks with red, green, blue “color 

charges”, and the anti-quarks should be modeled by the corresponding anti-colors. 

But what are the anti-red, anti-green and anti-blue colors? In the model applied 

in the Quark Matter Card Games, anti-color is what makes a given color neutral i.e. 

white. This way, the anti-red is defined as a green/blue combination, while anti-green is 

blue/red and anti-blue is red/green. An important rule in the Quark Wars game is that 

quarks and anti-quarks can appear only in a color neutral or white combination of colors: 

a red, a green and a blue quarks may form a colorless, white particle called a baryon, a 

red and anti-red pair of quarks and anti-quarks (or a blue-anti-blue quark – anti-quark 

pair or a green-anti-green quark – anti-quark pair) forms a meson. The left panel of 

Figure 1 shows the students participating in this training section. The main idea of the 

game is indicated on the right panel of Figure 1, where one of their mentors, T. Novák 

is shown wearing a color neutral combination of quarks on his forehead as a kind of 

Particle War Bonnet. 

Simple tools that are available everywhere can be used to transform the Quark 

Matter Cards to Particle War Bonnets: a page of a plastic name card holder, elastic 

rubber bands and cards representing elementary particle will do the job. A valid 

combination of quarks and anti-quarks or a pair of leptons and anti-leptons are inserted 

in the same page of the plastic name card holder, the page is cut out and fixed to the 

forehead of the players as indicated on Figure 2.  
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Figure 1. Science Club students being introduced to Quark Wars at the Summer Camp (left 

panel). One of the authors before the screen, wearing Quark Matter Cards as a kind of Particle 

War Bonnet on his forehead to demonstrate the main idea of this game. 

 

         
 

Figure 2. Only a few things are needed to play Quark Wars: elastic rubber bands and a name 

card holder to keep the cards in position, and a deck of Quark Matter Card Game. The deck is 

included, for example in the Appendix of the booklet on Quark Matter Card game, shown in 

Hungarian here. This booklet is available and downloadable in English as well [2], suitable for 

printing, so that anybody with a color printer can prepare his or her own particle war bonnets for 

Quark Wars. The two competing teams are recommended to indicate their team, e.g., with the 

color code of the rubber band (here green or black) that is placed on their foreheads to keep the 

cards in place. 
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Figure 3. Two teams are formed, they have a brief (2-3 min) council on how they plan to win the 

game. Then the players put on their particle war bonnets and hide their team leaders so that 

members of the other team could not easily find and identify them. 

 

The players form two teams and receive their quark matter war bonnets. The two 

teams separate and each have a council: team members come together to consult and 

to make decisions, to develop their plans and strategies on how to play and win the 

game. Then players put on their Quark Matter Card Game War Bonnets, but in such a 

way that members of the opposing team could not spy on them as seen on Figure 3, 

and start the actual Quark Wars. 

 

3 Quark Wars – the goal and the course of the game 

The number of players is, in principle, arbitrary, but in practice, it is best if both 

teams have 5 members or more, limited by available number of children in a classroom 

or in a summer camp.  

The object of the game is to win, which can be either by identifying all players 

of the opposing team by leading out loudly the combination of elementary particles on 

their particle war bonnets, or, by finding and identifying (reading out loudly) the particle 

identity of the leader of the opposing team.  

Due to this mission, during the course of the game it is recommended that the 

team leaders wear special particle war bonnets that correspond to Nobel prize winning 

elementary particles such as the H0 Higgs boson [7,8] or the - baryon. When the 

fundamental theoretical predictions on the existence of these elementary particles were 

confirmed by experimental observations,  Nobel prizes in physics were awarded to Peter 

W. Higgs and Francois Englert in 2013 [9], and to Murray Gell-Mann in 1969 [10], 

respectively. So identifying either a H0 or an -  during the course of Quark Wars 

identifies one of the team leaders and abruptly ends the Quark Wars game.  

This goal also makes the game an interesting strategic game: when one of the 

teams has only a few members left, they can still try to break into the area of the enemy 

and to find a weakness in the defense of their opponents. Identifying the particle signs 

weared by the leader of the opposing team may result in winning the game, similarly 

how a small squadron of rebels may win the battle against a big army of imperial troops 

in the epic space opera Star Wars by attacking the Death Star on its weakest point. Due 

to this reason one of the team leaders can also be named informally as Luke Skywalker 

and the other as Darth Vader, however, both must wear their particle war bonnet during 

Quark Wars and can be identified on their particle name only. Identified players become 
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inactivated, they cannot continue their participation in particle hunting anymore, they 

become silent observers during the subsequent course of the game.  

Note that light-sabers and other toy weapons are not permitted in the Quark Wars 

style game, not only for safety reasons, but also because we followed the rules of the 

so called Hungarian Number Wars [11], a game that was familiar to the participants of 

the Summer Camp of the Berze Science Club in Hungary. In this kind of games, the 

players are not allowed to cover their war bonnets on their foreheads with their hands. 

It is also not allowed to “worship the Earth” by lying down and pressing foreheads to the 

ground: this usually leads to identification by a group from the opposing team, who force 

the Earth-worshipper to turn up and identify him or her, but this strategy is not only unfair 

but also makes the game less interesting. The participants are allowed to cover 

themselves by pressing their foreheads to objects on the terrain such as trees, columns, 

buildings, and they are allowed to band together in groups of 2-4 to try to win, as 

indicated in Figure 4.  

 

 
 

Figure 4. Players hiding their particle identities on their foreheads. One of the strategies is 

rushing: running forward while shaking their heads. Another, safer but slower strategy is to band 

in a group of 2, 3 or 4, pressing foreheads together. This method allows for a slower progress, 

but it also minimizes the possibility of being identified.  

Much of the fun of the Quark Wars comes from the strategies that the players 

apply to hide their particle identities on their foreheads. One of the possible good 

strategies is rushing (running forward and shaking head simultaneously) as indicated on 

Figure 4. Rushing is designed so that reading out the card combination be difficult for 

the opponents. This allows fast progress but it is risky and physically challenging, needs 

practice for a good performance. Another, safer strategy is to band in a group of 2, 3 or 

4, pressing foreheads together. This method allows for slow progress, and it minimizes 

the possibility of being identified. The drawback of banding is that it also makes it very 

difficult to identify anybody from among the opposing team, as the members of the band 

can hardly see from one another. The best seems to move so that the foreheads are 

covered with the objects on the terrain as much as possible, to move slowly if covered 

and to rush through the open areas to reach the terrain of the opponent team. 



201 

 
 

Journal of Central European Green Innovation 4(4) pp 195-204 (2016) 

 

While the battle is ongoing, our heroes, the leaders of the teams may be just 

hiding in a safe place, to minimize the risk that they are identified and the other members 

of the teams try to protect their hiding places, chosen to be difficult to guess or figure 

out. As an example, during a test Quark War game, one of the team leaders, with particle 

war bonnet indicating an - particle was hiding behind the pull-down screen of the 

instruction room, as shown in the left panel of Figure 5. The other team leader, with a 

war bonnet representing a Higgs boson, was hiding in the middle of a haystack as 

indicated on the right photo of Figure 5. Eventually, all the team members of the 

Emperor’s “Higgs boson” team were identified and hence removed from active 

participation by the Rebel team, the members of the team of - . Even in this period, it 

was quite a challenge for the surviving members of the Rebel Alliance or team - to find 

the hiding location of commander Darth Vader alias Higgs boson. Probably this was the 

first time in the history of particle physics outreach, that a symbolic Higgs boson was 

found and finally identified in a real hay-stack. 

 

        
Figure 5. One of the team leaders, wearing a particle war bonnet of  -, is hiding behind the pull-

down screen, while the other team leader, with particle war bonnet standing for a Higgs boson 

(H0) is hiding in a hay-stack. 

 

It is customary that each player keeps a note of his or her own particle identity at 

hand, so that they could easily cross-check if their identification attempts were 

successful or not.  

Valid combinations on the particle war bonnets include three quark combinations 

representing baryons (a triplet, combination of a red, a blue, and a green quark) anti-

baryons (a combination of three anti-quarks, with anti-red, anti-blue and anti-green 

colors) as well as four card combinations. These four cards consist of two valid pairs, 

each of the pairs is a lepton-antilepton pair or a meson consisting of a quark and an anti-

quark, where the color of the quark matches the anti-color of the corresponding anti-

quark. 

 The other rules of Quark Wars follow in general the rules of Hungarian Number 

War game, which seems to be well known only in Hungary. For a reasonable English 

language summary of the rules of this fun outdoor game see ref. [11]. 

 The Quark Wars game can be played on various knowledge levels, so it is 

a kind of well scalable particle physics outreach game. In this respect, Quark Wars is 
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similar to the Quark Matter [4], Memory of Quark Matter [5], or Find Your Own Higgs 

Boson [6] card games.  

On a layperson’s or beginner level,  the players can read out only the quark or 

lepton cards to identify their opponents, for example: red u, green u, blue d! Or red u, 

anti-red anti-u and an electron-positron pair! They should, however, remember the 

combinations that identify the team leaders. It is recommended that the war bonnets of 

the opponent teams be fixed with rubber bands of different colors, e.g. black rubbers for 

one of the teams and green rubbers for the other team, as indicated on Figure 2. 

On an intermediate level, the players should be instructed that the - baryon is 

a combination of a red s, green s and a blue s quark. The Higgs boson is identified 

through its leptonic decays, e.g., as two charged lepton-antilepton pairs. The possible 

Higgs decays that can be used for this purpose are given in Table 1 of [6], that we 

recapitulate here for completeness: 

 

 H0 decay mode Final state particles/cards 

H0 →  or Z0Z0 → e+e-e+e- 

→ e+e-+- 

→ +-+-


H0 → W+W- → e+ e e- ̅e 

→ e+ e - ̅ 

→ +  e- ̅e 

→ +  - ̅ 

Table 1. Possible Higgs decays as represented in the Quark Wars outreach game. On the 

beginner/layperson level, only one of this decays is used to identify one of the team leaders. After 

gaining more experience with the game, any of the above four particle card combinations can be 

used to indicate/symbolize one of the team leaders, marking the leader with a Higgs boson decay.  

On an advanced level, combinations like red u, green u, blue d are not sufficient 

and acceptable to identify particles consisting of quarks (and/or leptons). Instead, the 

players should know that a color-neutral (white) combination of uud quarks stands for a 

proton, udd stands for a neutron, (u,anti-d) stands for a positive pion etc. These 

intermediate and more advanced levels can be practiced only with a supervisor or 

referee, who has some basic knowledge of hadrons and other elementary particles, and 

who can step in to decide if the particle identification was correct or not. Appendix A 

(Naming the hadrons) of ref. [4] can be used to find the tables that describe the quark 

contents of various hadrons, as represented by the cards of Quark Matter Card Game. 

Tables in Appendix A of ref. [4] form a kind of interface from particle physics outreach to 

the more substantiated e.g. quantum mechanical description of the quark contents of 

hadrons. These tables are not necessary to play Quark Wars on a beginner or 

intermediate level, but are useful to play quark wars on an advanced level. Teachers 

and promoters of Quark Wars should keep in mind that students prefer first of all to play 

and have fun, so we recommend to start the game on a layperson’s level, with as many 

ordinary students as possible.   

The players and in particular their supervisors are also reminded to check any 

potential pitfalls and dangers on the terrain. We recommend to take the children 

outside to play. It is a wonderful way to spend the day [12]. If no safe outdoor terrain can 

be secured, this game may also be played or tested indoors, like in a gymnasium or a 

sports hall of a school. This Quark Wars game is apparently well suited also for a future 

adaptation as a computer game, but most of the fun of it seems to come from real time 
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interactions among real players, when not only the intellectual but also the physical 

abilities like endurance, creativity, sneaking skills and fortitude of the participants are 

tested and also trained during the course of Quark Wars. 

 

4 Summary 

A new particle physics outreach game called Quark Wars has been developed 

and tested successfully in Hungary. About two dozens of secondary/middle school 

students (both boys and girls) participated in this test. Quark Wars as a particle physics 

outreach game brought together ordinary people like secondary and middle school 

students with teachers and scientists to do extraordinary things, and in doing so, they 

became part of something greater than themselves. Quark Wars, this new particle 

physics outreach game, not only resulted in lots of hilarity, hiding, running and yelling 

outdoors, but participating students also learned a good deal about particle terminology 

and gained a first-hand experience on how difficult it might be to locate and identify a 

hiding Higgs boson, and how big a pleasure it is to find and identify it eventually.   
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Abstract 

The first 2x2x2 twisty cube was created as a demonstration tool by 

Ernő Rubik in 1974 to help his students understand the complexity of 

space and the movements in 3D. He fabricated a novel 3x3x3 

mechanism where the 26 cubies were turning, and twisting 

independently, without falling apart. The cube was dressed in 

sophisticated colors which made it a unique puzzle. Even without 

instruction is the aim of the game was self-explanatory. Its educational 

value in VSI (Visual-Spatial Intelligence), developing strategy, 

memorization and logistics, improve concentration and persistence in 

problem solving is high in every age group. A logical puzzle has 

outreach far beyond. Those aspects are briefly covered in this article. 

 

1  Introduction 
 

The role of experience in learning has been researched since long. Let us 

pick up education, mathematics and puzzle. The relations among those 3 

factors will or may determine the fate of a puzzle. The relations namely 

puzzle and education; mathematics and education; mathematics and 

puzzle; have been showing different behaviors on various puzzle objects. A 

well balanced mathematical and educational harmony of the puzzle is 

necessary, but not enough. The puzzle needs brain work and concentration, 

should give amusement, it should also engage the player and its 

attractiveness is preferable. In addition the puzzle’s usability as educational 

tool is substantial value. Whether a new puzzle will bring success or will fail 
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the answer has been occultly determined above relations. The difficult point 

is how to interpret the message of puzzle-education-mathematics triad for 

a given puzzle? 

 

Let us talk about the ordinary cube! Even a baby meets with the cube in 

early age and likes to play with it, without knowing that it is a solid with six 

congruent square faces, a regular hexahedron which has edges, faces, 

vertex, face diagonals and space diagonals, just no to go further except one 

more characteristic the symmetry, the beauty of cube. For a baby, for a 

young child the cube is fun, a challenging interesting shape. Two or more 

cubes are more amusing, it gives a rich feeling. Each cube can be 

personalized by dressing, can be used for construction, and can be moved, 

turned and thrown. As the toddlers are coming into kindergarten and school 

age they meet more cubes in various forms like a lump of sugar, a cake, 

cube cut food, a dice, a cube puzzle for kids, a furniture, a rock salt crystal, 

plus boxes, frames, ornaments and many cube shaped equipment and 

utensils. The cubes before everything else are good for toys and perfect for 

mind teasers. When children go to school and learning art, geometry and 

mathematics they may meet with variations of cube puzzles: soma, jigsaw 

cube, secret cubes, folding cubes and during the last four decades also the 

Rubik’s Cube, the originator of family of twisty puzzles. 

 

We can say in the kindergarten the cube is a toy, in elementary school the 

cube is more an object to study and its playfulness having been pushed into 

the background. Moreover in junior high schools the math of the cube 

receives priority. In this learning process familiarity is key factor for the 

teacher, and this notoriety greatly helps in transmitting the abstract 

knowledge of cube. This is the way how we did and they acquire the algebra 

and geometry of the cube, the Platonic object. The teaching comes with 

learning cube language as well i.e.; 6 cubed is 216, cube root of 27 is 3, the 

perfect cubes and so on, some day or other follows with more advanced 

descriptions e.g. octahedron is the dual polyhedron to the cube. However 

symmetry brings us to highest level, to isometries and group theories of the 

cube. But the main point is the better you know the more easily you learn. 

The teacher can also help the deeper understanding by offering choice 

between scientific approach and heuristic techniques. The steps upward in 

learning are student, teacher and science. 
 

2    History 
 

After having said that let us talk about Rubik’s Cube. It is well known that 

the first 2x2x2 twisty cube was created as a demonstration tool by Ernő 

Rubik in 1974 to help his students understand the complexity of space and 

the movements in 3D. By turns of individual, but interrelated cubes changed 

their positions and a magical scrambling occurred. A new object was born, 

but no strategy existed how to put back the little cubes into starting order 

using. Ernő was both emotionally and intellectually captured by it. There 

was a structural problem, because the elastic band to keep the cubes 

together produced a knot and was torn soon. It was the next challenge for 

Ernő to fabricate a mechanism to overcome that problem. His novel 

construction gave birth to 3x3x3 cube. Now the cube layers were turning 

smoothly. The 26 cubies were turning, and twisting independently, without 

falling apart. Its symmetry implies perfectness.[1] A genuine invention, that 
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was an object supposed to be impossible before. The patent for his Spatial 

Logical Toy was granted within a short time on 28th of October, 1976. The 

cube was dressed in sophisticated colors which turned it into unique puzzle. 

Even without instruction is the aim of the game was self-explanatory. 

 

The cube was ready, but how to put back the colors was unknown. Here 

was the next provoking challenge! Experimenting, perhaps better to say a 

discovery was necessary. Ernő had started the journey on unknown road 

and after had been into quite a few standoffs and dead ends he has arrived 

to a safe solution several weeks later. His strategy and his set of algorithms 

were necessary and enough to solve the cube from any scrambled position.  

 

Of course the potential of his cube had been sensible more and more and 

gave vigorous reason to get it manufactured as soon as possible. But the 

cube had been born in a small country existing under communist regime. 

We “enjoyed” all the drawbacks of state monopolized companies and 

foreign trade behind the Iron Curtain. However Politechnika, a toy-industrial 

cooperative after nine months consideration was brave enough to sign a 

contract with Ernő. Production started and 12,000 pieces Magic Cube 

(Bűvös kocka) were produced in 1977. The official trading companies were 

not much interested; according to their opinion it was unsolvable, unsalable, 

unusual piece of junk. The toyshops cautiously placed order for 5000 cubes 

and without big noise all were sold within short time.  

 

It happened like in the Aladdin fairy tail the lamp had rubbed inadvertently 

the Genie of the cube has been unleashed. Soon it was in the schools, also 

seized by teachers during lessons, and as present was given to scientists 

at conferences outside of Hungary. The Magic Cubes reached the world. 

The international commercial attempts often ended in vain, but gave a 

demanding challenge to do it! The scientists loved it and also faced such 

challenges: What kind of mathematics is hidden in it? Is there any similar 

function in physics, chemistry or nature? The support and enthusiasm from 

scientists was important, but it was just observed among buyers but hardly 

convinced them. Finding a potential business partner was a see-saw 

situation where one side changed frequently, but in 2 years Ideal Toys, USA 

went for it. The product as Rubik’s Cube reached its media boiling point at 

New York Toy Fair in 1980 and right away took the world by storm. 
 

3    Solution 
 

Those were the exiting days when everyone had to find out the solution by 

oneself. The solution by manual era arrived next which was followed by the 

current web tutorial era. Scientifically the first step was the notation of the 

cube developed by David Singmaster to denote the sequence of moves. 

The diffusion of the cube among scientists was quick and raised theoretical 

excitement. Mathematical models and computer programs were developed; 

analogies in physics and among atomic particles just to name a few were 

pointed out. The appearance of cube overlapped the peak period in group 

theory research. Soon Rubik’s Cube was selected as illustration of 

permutation groups. Almost simultaneously the society was shaken by 

wave of Rubik and cube stories, jokes, songs, cartoons, films, TV series 

and many more off sides. But definitely it also reached education institutes 

quite early. Nowadays on the web anyone can select from the plethora of 
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solutions online, surf the social impacts of the cube, wonder the effects on 

art, architecture, literature, fashion and competitions, follow the records 

connected to Rubik’s Cube and enjoy scientists’ talks about it. A huge 

collection is waiting for correct categorization and systematic processing.  

 

4    In Education 
 

Scientists who were dealing with Rubik’s Cube gave lectures and 

composed tasks with it for exercise. That was a timely initiative as most of 

the students were perplexed already by cube. At university level of 

education each explanation generated request to answer more new 

queries. It became a compulsory topic in group theory and abstract algebra 

curriculums. Search for the minimum necessary moves was on high before 

long. In 2010 utilizing idle time of Google’s servers was concluded that 

God’s Number is 20, but it was done by programmed brutal force but the 

proof is still missing. [2] 

 

Let us proceed to middle and elementary school. Teachers today attracted 

to the puzzle-solving lesson because it helps to learn mathematics and 

develops direction-following and memorization plus persistence. But there 

was a complete different standpoint at the beginning. The Hungarian 

National Institute of Pedagogy turned down Ernő’s initiative to use it in 

education in 1976 as improper teaching tool. After having the great 1980 

success more and more teacher set out to use with good results, but the 

sales of the cube dropped to negligible level at mid eighties and the 

speedcubing competitions give a little bust and kept it alive during the 

nineties. This also downward affected the cube’s role in education. Also the 

torrent of new twisty puzzles drove teacher’s intentions into a corner; latest 

ones might be more attractive than good old cube.  

 

By turn of the century speedcubing was gaining popularity all over the world 

due to new teenage generation with strong competition spirit supported by 

wide use of internet. Also it was a decisive factor that the World Cube 

Association had been established in 1999. WCA laid down standards and 

rules, governs competitions and keeps records for all puzzles labeled as 

Rubik. 

 

After celebrating the 30th birthday of Rubik’s Cube it became opportune to 

do something for education. During the past three decades teaching 

methods have developed and experiments in schools here and there have 

accumulated a lot of results. Furthermore we have seen new cube like 

puzzles, for example the void cube without center cubies on all three axes, 

or giant cubes with as many as 6, 7 or even 10 cubies across cube faces 

since 2000. Also the family of odd shapes twisty puzzles was grown by 

dodecahedron, bandaged cubes and so on. Many interesting puzzles, but 

they have received less and less attention on the market.  

Ernő always supported the introduction of the cube to education at all levels. 

The spatial awareness is still not strong enough in schools worldwide. Most 

of the spatial teaching tools to meet are of classical unmoving type. It makes 

a big difference seeing 3D demos versus taking a workable model into own 

hands. The latter one builds confidence and also helps underachieving 

students. His initiative and long wish was taken up by Seven Towns, the 

company behind the world success of the Rubik’s Cube. After several year 
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of preparation the project You CAN do the Rubik's Cube program was 

launched in 2010. This complex program is to help students across the U.S. 

and beyond realize their potential while emphasizing teamwork, "outside of 

the box" thinking, and creativity.[3] Now the Rubik’s Cube is in the STEAM 

(Science, Technology, Engineering, Art, Mathematics) project, which offers 

the teachers MATH methodology: M – Modify the lesson for understanding; 

A – Apply the lesson to repeated practice; T– re-Teach the lesson for 

mastery; H – Higher level learning for enrichment. The need for You CAN 

do the Rubik’s Cube project is justified by 31,000+ implemented packages 

so far.  

 

5    Summary 
 

The 40th birthday brought the internationally-acclaimed Beyond Rubik’s 

Cube exhibition at Liberty Science Center in New Jersey in 2014 and also 

we said Happy Returns of the Day to Ernő on his 70th birthday on 13th of 

July. The BRC exhibition will travel to several cities around the world 

(Cleveland and Edmonton, Canada in 2105) and hopefully after 5-7 years it 

will arrive to Budapest. Its interactive content will be monitored, changed 

and renewed as changes of time would request. We can just repeat Julius 

Ceasar’s famous phrase Alea iacta est, i.e. events have passed a point of 

no return. The Rubik’s Cube now has been living his own life. 

 

One can hardly close this ever developing story, because new 

developments have been coming since 1974. Instead of closing remark let 

me quote John von Neumann: 

 

“By and large it is uniformly true that in mathematics that there is a 

time lapse between a mathematical discovery and the moment it 

becomes useful; and that this lapse can be anything from 30 to 100 

years, in some cases even more; and that the whole system seems to 

function without any direction, without any reference to usefulness, 

and without any desire to do things which are useful.” [4] 
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Abstract

Quarks can be represented on the faces of the 3x3 Rubik’s cube with
the help of a symbolic representation of quarks and anti-quarks, that was
delevoped originally for a deck of elementary particle cards, called Quark
Matter Card Game. Cubing the cards leads to a model of the nearly per-
fect fluid of Quark Matter on Rubik’s cube, or Qbe, which can be utilized
to provide hands-on experience with the high entropy density, overall color
neutrality and net baryon free, nearly perfect fluid nature of Quark Matter.

1 Introduction

In 2011, Cs. Török, a 17 years old secondary school student in studying Gyöngyös,
Hungary invented a card game with elementary particles [1]. By 2014, this Quark
Matter Card Game became an invention, a patent and a product. Initially, four
different kind of games were described in the first edition of a the book “Quark
Matter Card Games - Elementary Particles, Playfully” playable with the same deck
of 66 cards, representing elementary particles from the Standard Model of particle
physics. By now about a dozen of various card games are invented, all based on
the same deck of Quark Matter Card Game. Some of these games are described
in the public domain, like the memory style quark matter card game [2] (where

∗Dedicated to the 10th anniversary of the discovery of the perfect fluid of quarks at RHIC as
well as to the 40th anniversary of the invention of Rubik’s Cube.
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pairs or triplets of particle cards are to be remembered) and its advanced version,
called ”Find your own Higgs boson” [3] where a Higgs boson is identified from its
leptonic decay modes, that requires to remember four cards in an advanced, memory
style game. In the so called Quark Matter Card Game, Figure 1, the players can
familiarize themselves not only with some of the elementary particles that are the
fundamental constituents of matter, but also with the properties of Quark Matter,
the recently discovered new phase of matter, that behaves not as a gas but as
a perfect fluid of quarks. Such a perfectly flowing Quark Matter filled our Early
Universe just a few microseconds after the Big Bang. In 2004, this old-new state of
matter was discovered in high energy heavy ion collisions at the RHIC accelerator at
BNL, located on Long Island near New York, NY, US. Subsequently, the properties
of Quark Matter were confirmed at larger colliding energies at the LHC accelerator,
located beneath the France-Switzerland border near Geneva, Switzerland.

Figure 1: English language edition of Quark Matter Card Gamethat describes
games with a deck of elementary particle cards, including a model the Early Universe
just a few microseconds after the Big Bang [1]. Pick up a deck of Quark Matter
Cards and you can play heavy ion collisions too, for a tiny fraction of the cost of
doing an actual experiment at the RHIC or LHC accelerators.
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Recently, an outdoor game called “Quark Wars” was also developed and tested,
that utilizes the deck of Quark Matter Cards. Quark Wars is modelled on the
so called “Hungarian number wars” outdoor game, with notable influence of the
American epic space saga “Star wars” [4].

In addition to being a contribution to the proceedings of the WPCF 2014 confer-
ence, this manuscript is also an extended and updated version of a handout booklet,
distributed by the Guests, Users and Visitors Center of Brookhaven National Labo-
ratory at the 2015 AGS and RHIC Users Meeting, that was dedicated to the 10th
anniversary of the publications of the so called RHIC White Papers, announcing the
discovery of the prefect fluid of quarks [5, 6, 7, 8].

2 Anniversaries

In 2014, we celebrated several anniversaries:

• 1944, 70 years before: Ernő Rubik was born in Budapest, Hungary [9].

• 1954, 60 years before: CERN, the European Laboratory for Particle and Nu-
clear Physics was founded [10].

• 1974, 40 years before: Mr. Rubik created the prototype of his cube [9].

• 2004, 10 years before: The perfect fluid of quarks was discovered in gold-gold
collisions at BNL’s RHIC accelerator [5, 6, 7, 8]

In the followings we present, how one can “dress up” or decorate a 3x3 Rubik’s
Cube with colored quarks and anti-quarks, using a symbolic notation of quarks and
anti-quarks, as developed for the Quark Matter Card Game. This manner, Rubik’s
Cube becomes Qbe, a model or a symbolic representation of Quark Matter on
Rubik’s 3x3 Cube, corresponding to a special Cube dedicated to the promotion or
popularization of the properties of the Perfect Fluid of Quarks.

The Perfect Fluid of Quarks or Quark Matter is the hottest known form of
matter ever made by humans, with temperatures reaching above 5 × 1012 Kelvin
in heavy ion collisions at CERN LHC [11]. Such a prefect fluid of quarks has been
detected in the debris of high energy heavy ion collisions at BNL’s RHIC accelerator
and the results were confirmed at larger initial colliding energies at CERN’s Large
Hadron Collider (LHC). The perfectness of Quark Matter corresponds to its flowing
properties: the natural, internal scale of dissipative motion called kinematic viscosity
of this fluid is found to have the lowest value from among the known, human-made
materials.

This conference contribution was first presented in 2014, at the 10th Workshop
on Particle Correlations and Femtoscopy. By now, quite some time has been passed
since 2014, but at that time it was natural to dedicate the Quark Matter Cube
(in short, Qbe) to the 10th anniversary of the Perfect Fluid of quarks created in
gold-gold collisions at BNL’s Relativistic Heavy Ion Collider. The artist’s view of
Qbe is presented on Figure 2 .
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Figure 2: Qbe, the Quark Matter Cube, representing the perfect fluid of quarks
that filled the our Universe just a few microsecond after the Big Bang. Image and
the corresponding animation of Qbe is the courtesy of Rubik Studio Ltd., [12].

3 Quark Matter on Rubik’s Cube - Playfully

Our current knowledge about the fundamental constituents of matter is summarized
in the so-called Standard Model of Particle Physics. The elementary particles of the
Standard Model can be arranged in the form of a 4x4 table, where the first 3 columns
represent the three generations or families of matter-like particles (fermions) and
the last column represents the interaction-mediating particles (bosons).

A playful representation of the most frequent matter-like particles was worked
out in the year of 2011, in the form of so called Quark Matter Card Games, as
illustrated on Figure 3. This representation is detailed in refs. [2, 3].

In 2012, as an extra bonus to this 4x4 table, the last missing piece, the so called
Higgs boson of the Standard Model was also discovered experimentally. A card
game that popularizes the discovery of the Higgs boson is detailed elsewhere [3].
Here we focus on the gamification and modelling of the properties of Quark Matter,
the perfect fluid of quarks discovered at RHIC and confirmed at LHC.

The theory of the strong interactions, Quantum Chromo Dynamics (QCD) has
some mathematical properties that are analogous to the properties of the optical
colors. Due to this mathematical analogy the quarks can be modelled with cards
that have optical colors: quark cards are colored to red, green and blue, the three
fundamental colors in the RGB color space. One of the exact laws of QCD is that
only those combinations of quarks are experimentally observable, that correspond
to a color neutral (white) combination of quarks. One should also emphasize that
Color in Quantum Chromo Dynamics is not to be confused with the visible, optical
colors, but it can be understood as an optical model or analogy that reflects well the
mathematical properties of the physical theory QCD and that analogy is used here
to model strongly interacting fundamental particles called quarks and anti-quarks.

For an introduction on the birth of the quark concept that lead the way to the
development of QCD as the theory of strong interactions as well as to the first ideas
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Figure 3: Elementary particles of the Standard Model – playfully, using the rep-
resentations in the Quark Matter Card Game. Anti-particle representations are also
included.

on the analogy of optical colors to model certain symmetry properties of the strong
interactions, we recommend two early articles by Zweig and Gell-Mann [13, 14].

Importantly, another exactly satisfied law of elementary particle physics states
that for each particle, a there exists a corresponding anti-particle, which is opposite
in each properties to the given particle. For example, electron is an elementary
particle with negative charge, so its antiparticle, the positron has a positive charge.
But what is the opposite color to the red color? In the Quark Matter Card Games,
we have chosen a combination of green and blue colors to model (symbolically
represent) the anti-red color, because the green and blue combination supplements
red to form a neutral, white color. Similarly, anti-green is defined as a combination
of blue and red, while anti-blue is a red-green combination. Three major groups
of color neutral or white particles can be formed: mesons or quark-antiquark color
white bound states, baryons (bound states of red, green and blue quarks) and anti-
baryons (bound states of anti-red, anti-green and anti-blue quarks), as indicated on
Figure 4.

With the help of the colored quarks and antiquarks, and the six faces of Rubik’s
cube, one create a customized version of Rubik’s cube in the following manner:
Three faces that join in a single corner of the cube are selected to have red, green
and blue colors. The diagonally opposite corner of the cube is selected to be the
place where the anti-colored faces meet. The three most abundantly produced
quarks (u, d and s) are also indicated on these little faces. The coloring scheme
for the cube is such that quarks with a given color are on opposite faces with anti-
quarks with the corresponding anti-color. For example the red quarks are opposite
to the green/blue anti-quarks. Thus the opposite faces of Qbe combine to a white
color, hence Qbe has an overall white color. This design, or the dressing up of
Rubik’s cube as Qbe or Quark Matter Cube is laid out on Figure 5.

Such a design can be well compared to the color scheme of the original Rubik’s
cube. This is illustrated on Figure 6. The Rubik design is dressing up opposite faces
with color and color + yellow color: the white face of Rubik’s cube is opposite to
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Figure 4: Mesons are colorless (white) combinations of a quark and an an-
tiquark, that is represented in the Quark Matter cards as a red, green or blue
quark card matched with an anti-red (green/blue), anti-green (blue/red) or anti-
blue (red/green) pair of cards. Baryons are represented by a red, a green and a
blue quark card, forming also a colorless (white) combination of three quarks. Anti-
baryons are also colorless, they can be formed from an anti-red, anti-green and
anti-blue Quark Matter card.

the yellow, red is opposite to orange and the blue face is opposite to the green face.
On Qbe, the three faces with the fundamental red, green and blue colored quarks
are placed opposite to the three faces with the fundamental anti-colors: anti-red,
anti-green and anti-blue. This color scheme of Qbe reflects faithfully the overall
color neutrality or whiteness of Quark Matter.

In the Early Universe, just a few microseconds after the Big Bang, Quark Matter
is created in a special way, namely the number of quarks and the number of anti-
quarks were almost exactly the same at that time. This is property of the Early
Universe is faithfully represented: on Qbe the number of quarks is exactly the same
as the number of antiquarks, as apparent from Figure 5. In the deck of cards of
the Quark Matter Card Game, the number of quarks is larger than the number of
anti-quarks, corresponding to the properties of Quark Matter created in high energy
heavy ion collisions at man-made accelerators.

The mathematical properties, namely the possible number of color configurations
on Rubik’s cube are compared to the properties of Qbe on Figure 7. We emphasize
that the position of the u, d and s quarks in a heavy ion collision is physically a
relevant quantity as the masses and other properties of these quarks vary. So we
suggest to distinguish the physical orientations of Qbe, which gives an extra 6x4
= 24 factor for its number of states. In addition, due to the u, d and s letters
written on the facelets to represent quarks, the face-center facelets are oriented so
the total number of possible configurations of Qbe, the Quark Matter cube is larger
than the number of states on Rubik’s cube. The logarithm of the number of states
corresponds to the entropy content of these cubes. The entropy divided by volume
defines their entropy density.

The entropy density of Qbe the perfect fluid of quarks on Rubik’s 3x3 cube can
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Figure 5: Layout of Qbe, the perfect Fluid of Quarks on Rubik’s 3x3 Cube.

be compared to the entropy density of quark matter created in heavy ion collisions
at RHIC and LHC accelerators. To have the same entropy density as Quark Matter,
Qbe should be scaled down too much, from 57 mm to 2x10−12 m, but instead of
scaling the cube down, we suggest use Qbe as a model of Quark Matter that fits

Figure 6: Comparison of the color scheme of Qbe with the color scheme of the
original Rubik’s 3x3 cube.
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suitably the size of our hands. The physical properties of Qbe the Quark Matter
Cube can thus be compared also to the physical properties of Quark Matter, as
summarized on Figure 8.

Figure 7: Comparison of mathematical properties of Qbe and Rubik’s Cube.

Figure 8: Comparison of physical properties of Qbe and Rubik’s Cube.

4 Discussion

The connection between the symmetry properties of quarks and Rubik’s cube with
twisted corner pieces has been noted by Golomb already in 1981 [15]. His article
determined the number of color configurations on Rubik’s cube as well. Marx and
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collaborators considered Rubik’s cube as a kind of world model, with conservation
laws and transformation rules and they noted how baryons and mesons might be
represented with Rubik’s cubes with twisted corner or edge cubelets [16]. Hofstadter
picked up the idea of Golomb and noted the importance of variations on the same
theme as a key element to innovation. His 1982 article made Rubik’s Cube with a
twisted or “quarked” corner piece to the cover page of Scientific American [17].
However, as far as we know, Quark Matter with colored quarks and anti-quarks was
not considered in the context of a Rubik’s cube before.

Although the mathematical and engineering aspects of the Rubik’s cube were
summarized already in 1987 by E. Rubik and collaborators [18], some of the math-
ematical aspects of the Rubik’s cube imposed deep and difficult problems. For
example, the minimum number of rotations that are needed to reach any given
configuration from a perfectly ordered Rubik’s cube (the so called God’s number)
was proven to be 20 by Rokicki only in 2014 [19]. As far as I know the God’s
number for Qbe or other generalized Rubik’s cubes with oriented face centers is not
yet determined.

The educational values of Rubik’s cube in visual-spatial intelligence, developing
strategy, improving memorization, concentration and persistence in problem solving
as well as the marketing values of Rubik’s cube in popular Science, Technology,
Engineering and Mathematics (STEM) were overviewed recently in ref. [20].

Let us mention, that Rubik’s cube was recently envisioned as a model for de-
scribing the change of the interiors of black holes while emitting a Hawking particle
and thus decreasing the size and corresponding the entropy of a black hole. This
processs was conjectured to be analogous with solving the Rubik’s cube [21]. This
analogy between an evaporating black hole to vacuum and solving the Rubik’s cube
from a large initial entropy / disorder to a color ordered, zero entropy state may
provide further inspiration for follow-up STEM gamification and outreach studies.

To illustrate that quite some time and wisdom might be needed to solve Qbe,
let us estimate how many rotations might be needed in every second, if we would
try to solve it just by random rotations. Our Universe is about 13.8 × 109 years
old and the number of states on Qbe is given in Figure 7 as approximately 2.1×
1024. As the lifetime of our Universe converts to about 4.35 × 1017 seconds,
one would need to rotate the Qbe a littlebit more than 4.8 million times in every
second, for the entire lifetime of our Universe, to be able to solve it just by random
rotations. Such a tremendous mindless effort can be contrasted to the various
records of solving Rubik’s cube using skillful means in speed cubing championships:
The current world record for single time on a 3×3×3 Rubik’s Cube was set by Feliks
Zemdegs of Australia in December 2016 with a time of 4.73 seconds at the POPS
Open 2016 competition in Melbourne, Australia [22].

Let us close this article by noting that what we discussed here was just a toy
or a toy model, that does not have to be taken too seriously. In this sense this
outreach article is quite similar to many studies in science. A model is just a model,
reflecting certain properties of the reality and is best understood with a certain
smiling playfulness, similar to the mysterious smile on the face of Mona Lisa. The
Road to Reality is often a difficult one but our journey may become much more
enjoyable, perspiacious and lightsome if we proceed with a touch of smiling wisdom,
as illustrated on Figure 9.

The Appendix of this contribution is organized as a handout booklet, to be
distributed with Qbes or Quark Matter Cubes.
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Figure 9: Figure of Albert Einstein, the smile of Mona Lisa and Qbe: Quark
Matter on Rubik’s 3x3 Cube, next to the Road to Reality: A Complete Guide to the
Laws of the Universe. Photo courtesy of prof. T. Kodama, Rio de Janeiro, Brazil.

Legal info and image rights

The “Quark Matter Card Game” and the corresponding deck and representation
of elementary particles on cards, commercial and design rights and copyrights are
reserved and rest with the Authors.

The RUBIK’S CUBE in its three dimensional form and any graphic or photo-
graphic representation of it, in any configuration, colored or uncolored, whether or
not it carries the RUBIK’S CUBE name or logo, is protected by intellectual property
laws throughout the world. Rubik’s Brand Ltd. owns all the international rights
in the RUBIK trademarks and in the overall image of the RUBIK’S CUBE. The
copyright belongs to Ernő Rubik, the originator of RUBIK’S CUBE who has given
Rubik’s Brand Ltd. full and exclusive authority to license and administer his rights,
and to pursue by whatever legal means necessary any infringement of such rights.
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Handout for Qbe: Quark Matter on Rubik’s Cube

Perfect Fluid Promotion: Qbe or Quark Matter on Rubik’s 3x3 Cube is not
only fun but also a promotional tool to introduce and illustrate certain unusual
properties of the perfect fluid of quarks. A perfect fluid can flow without internal
dissipation. So the perfect fluid of Quark Matter could be modelled faithfully by a
perfectly lubricated Rubik’s cube, suited perfectly for speed-solving competitions.

Number of players: Typically one person, but speed and memory cubing
competitions can be organized.

Object of the game: The goal is to solve a fully scrambled Qbe - Quark
Matter on Rubik’s 3x3 Cube by reaching its color-flavor-locked ground state. Flavor
locking means in this context that the letters representing d flavoured quarks on
the face-center facelets should point towards the corner of where the red, green and
blue faces meet and the letters d that stand for anti-d antiquarks on the face-center
facelets of the anti-colored faces should simultaneously be pointing to the opposite
corner of Qbe, where faces with anti-red, anti-green and anti-blue colors meet.

The course of the game: The players inspect the thoroughly scrambled Qbe,
then place it back to the desk in front of them. They may use any of the agreed
methods (both hands, or in extreme cases, single hand, both feet, blindfolded,
underwater and so on) to solve Qbe. By rotating the sides of Qbe, they compete
to reach the desired (color ordered or color-flavor locked) ground state of Qbe.

Qbe, the Quark Matter on Rubik’s 3x3 Cube is a three dimensional combination
puzzle that can be solved on beginner, intermediate or advanced levels:

1) On beginner level, players do not know the how to solve the standard Rubik’s
Cube. It is a challenging task to figure it out on your own, but it is worth to try.
Physicists or physics students are expected to be able to do the first layer on their
own and some may even be able to do the second one without too much effort.
Doing all the three layers on his own lasted several weeks even for Mr. Rubik himself,
but these days there are several public videos that show how to solve the cube, see
for example https://www.youtube.com/watch?v=rmnSpUgOvyI. This way the
players will be able to solve the colors of Qbe. However, the orientation of the
d-quarks on the center facelets on each face may still point to random directions.

2) On intermediate level, the goal is to reach the color-flavor locked ground
state. In this case, after the faces are color ordered, all the d quarks in the centers
should point to the corner where the red, green and blue colors meet, and all the
anti-d quarks should point to the opposite corners, where the faces with anti-red, the
anti-green and anti-blue colors meet. This means that the players have to change the
orientation of the center pieces on the faces of the cube without destroying the color
order. This is also an already solved problem, sometimes referred to as solving the
Super-Cube, custom-cube or picture-cube. Without significant cubing experience,
physicists are not expected to figure this out on their own. To fix the direction of
the centers, see e.g. https://www.youtube.com/watch?v=fk1eCZNCTB4 .

3) On an advanced level, the players already know how to solve Qbe. But they
can still improve the time they need to do so, they can try to do this blindfolded,
by one hand, or may use any other of the several mind-boggling methods that were
developed recently for the emerging arts of speed and memory cubing.

Recommended physics talking points are listed as follows:

1. Color: Quark Matter is a colorless state, but locally colors are free, decon-
fined, as most of the cubelets have a net color. Qbe is decorated by colored
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quarks and anti-colored anti-quarks to illustrate a state of matter called Quark
Matter or Perfect Fluid of Quarks. Quarks come in three different colors:
red, green and blue. Antiquarks have anti-colors called anti-red, anti-green
and anti-blue, represented by the combination of green/blue, blue/red and
red/green colors, following the model developed for the Quark Matter Card
Games [1, 2, 3, 3]. In the ground state, the red face of Qbe is opposite to the
anti-red, blue face is opposite to anti-blue, green is opposite to anti-green. In
a random state of Qbe, locally the colors are not compensating each other to
a color neutral, white or red-green-blue combination, however, adding all the
colors on Qbe results in an overall, globally white color, that models faithfully
the globally color white but locally colored property of the Quark Matter state.

2. Flavor: Quarks may have 6 different flavors, denoted as u, d, s, c, t and b.
On Qbe, only the first three flavors are utilized: u, d and s. These flavors
correspond to the flavors of the most abundantly produced quarks at RHIC
and LHC. Can you order the faces of Qbe by the flavor?

3. Baryon number: The net baryon number of any system of quarks is defined
as the number of quarks minus the number of anti-quarks, divided by 3. What
is the net baryon number of Qbe in its ground (ordered) state? Do rotations
(that mix the quarks and antiquarks of Qbe) modify its net baryon number?

4. Entropy density: Quark Matter has a huge entropy density, σ ≈ 7.5 ×
1045/m3. This can be compared to the huge number of physically different
states of Qbe. When the 24 possible orientation of a given cube in space
as well as all the possible orientation of the center pieces are also taken
into account, the possible number of states of Qbe becomes a huge number:
2,125,922,464,947,725,402,112,000 (≈ 2.12 × 1024), a bit larger than Avo-
gadro’s number, 6.02 × 1023. Derive the entropy density of Qbe, given that
an edge of Qbe is 57 mm.

5. Perfect Fluidity: A fluid is perfect if it has no internal dissipation. The
resistence of a fluid to internal friction/shearing motion is characterized by the
so called kinematic viscosity, denoted by η/σ. This is somewhat analogous
to the resistance of the faces of Rubik’s cube to rotation: in a perfect model
of a perfect fluid, a rotating outer third of the cube could keep on rotating
forever, without resistance. Due to dissipative forces, this rotation is coming
to an end shortly on a physical model like a Qbe. Use this analogy to estimate
the kinematic viscosity η/σ of Qbe, the Quark Matter on Rubik’s 3x3 Cube,
if the torque needed to rotate an outer third layer of Qbe is of the order of 0.1
Nm and σ is the entropy density of Qbe evaluated in item 4 above. How far
Qbe is from the conjectured quantum limit for a perfect fluid, η/σ = h̄/(4π)?
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