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1. INTRODUCTION  

Food consumption trends have evolved significantly over the recent years, particularly in the 

context of health consciousness, environmental awareness, and the impacts of the COVID-19 

pandemic. These trends can be particularly tracked in the consumption of fruits and fruit products, 

which have seen fluctuations in demand influenced by various socio-economic influences, 

consumer preferences and public health messages.  

One of the most notable trends in food consumption is the increasing demand for healthy and 

organic food options that is driven by a growing consumer consciousness regarding the perceived 

benefits. Research indicates that consumers are increasingly prioritizing organic fruits and 

vegetables, which are often associated with higher nutritional value and lower pesticide residues 

(Wang, Pham, and Dang 2020). This trend also appears in developing regions, where consumers 

are becoming more discerning about the quality of food, they consume. The COVID-19 pandemic 

has further accelerated this trend, as individuals have become more focused on maintaining their 

health through dietary choices (Boca 2021; Guiné et al. 2022; Śmiglak-Krajewska and 

Wojciechowska-Solis 2021).  

The impact of marketing on consumer behaviour is significant. The promotion of health benefits 

associated with fruit consumption has been a key strategy. Public health campaigns emphasize the 

importance of fruits in a balanced diet, which has contributed to increased awareness and demand 

(Goryńska-Goldmann 2019). Additionally, the rise of social media and digital marketing has 

allowed for targeted advertising, further shaping consumer preferences towards healthier food 

options, including fruits (Whitham et al. 2021). In terms of fruit products, there has been a notable 

increase in the consumption of processed fruit products, such as juices and dried fruits. These 

products are often marketed as convenient, appealing and healthy options. It is essential to consider 

the nutritional quality of these products, as some may contain added sweeteners, preservatives that 

can detract from their health benefits (Laguna et al. 2020; S. Li et al. 2021). As a result, consumers 

are becoming more vigilant about reading labels and understanding the ingredients in processed 

products, reflecting a broader trend towards informed consumption (Gopal 2023).  

The production and consumption of fruits, which are subject to various consumer trends, are 

influenced by numerous factors. Ensuring the quality expected by buyers and consumers poses a 

significant challenge. In discussing this, even without striving for exhaustive detail, we cannot 

ignore the social, health-related, and environmental crises affecting our world. These include, but 

are not limited to, the impacts of war, pandemics, and extreme climatic conditions. For fruits to 

reach store shelves in the form, degree of processing, and quality we seek, they have to go through 

a very complex journey, through the food chain as we know it. The first challenges arise right in 

the orchards, consider the mild winters, frosty springs, drought-stricken summers, and the 

multitude of pests. Then comes the critical question of when to begin harvesting. How long, where, 

and under what conditions should fruits be ripened and/or stored, so that the industry can process 

them in so many of ways. Here, do not forget to mention the transparent processing and distribution 

processes.  
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In fruit production and quality control practice, the commonly applied assessments are often based 

on empirical, and often destructive methods. By empirical, we refer to when producers determine 

the start of harvest based on traits such as how easily the fruit detaches from the stalk, how easily 

the fruit flesh cracks, or how sweet is the fruit after degustation (Kállay et al. 2007), which are 

inherently subjective. A more objective approach involves the instrumental measurement of fruit 

weight, colour, firmness, and sugar content. These are destructive techniques, each designed to 

assess a single characteristic at a time. However, on their own, they are insufficient for capturing 

the full spectrum of quality differences or alterations. Ensuring the authenticity and traceability of 

food products is almost unimaginable without the use of digital solutions throughout the 

production and logistic processes. Today, innovative rapid methods allow us to conduct non-

destructive and even contactless analyses directly on-site. During such analyses, hundreds or even 

thousands of data at a time can be collected, forming the “fingerprint” of a given sample. Based 

on these fingerprints, paired with reference characteristics and chemometric modelling, the non-

destructive qualification of previously unknown samples become possible.  

We increasingly rely on tuneable digital solutions that can be trained to address a wide range of 

questions, that is fundamentally driven by chemometric modelling, often translated into different 

digital agricultural strategies, like Digital Agricultural Strategy (DAS) and Digital Food Strategy 

(DÉS). In line with this trend, the objectives of this doctoral research were realised in cooperation 

with Agricolae Ltd., a company based in the Szatmár region (Hungary), renowned for its fruit 

production. The focus of the thesis is on the widespread application of spectroscopy-based 

techniques in fruit production and quality assessment (Cattaneo and Stellari 2019), specifically at 

certain critical points within the fruit supply chain. Within the framework of the collaboration, 

fruit species and varieties have been included that hold significant economic importance both 

within and beyond national borders. Additionally, determining their physiological state (e.g., 

ripeness, microbiological contamination) or detecting specific manipulations of products made 

from them that poses particular challenges.  

Near infrared (NIR) spectroscopy is one of the advanced correlative analytical methods that are 

widely used in routine laboratory or industrial monitoring systems, utilising the wavelength range 

of 780 to 2500 nm (Manley 2014). The proliferation of miniaturisation techniques and their 

application in image processing technologies, like hyperspectral imaging, has made it possible to 

study complex biological systems in an intact way. During our investigations, we addressed the 

question of the efficiency of NIR spectroscopy and hyperspectral imaging coupled with 

chemometric modelling for the determination of fruit ripeness and thus the determination of 

harvest time, the efficiency of detecting inadequate fruit storage and brown rot as well as food 

fortification of whole stone fruits or fruit juices.  
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2. OBJECTIVES  

The aim of the thesis was the application and development of state-of-the-art correlative analytical 

methods for non-destructive characterization of fruits and fruit products (namely fruit juices). In 

this doctoral research three main objectives were established, which, with the corresponding tasks, 

are as follows.  

I. Determining the applicability of NIR spectroscopy to determine the ripeness of various 

stone fruits. Achieving this aim was supported by the following tasks:  

- Spectral tracing of maturation and ripening processes with hand-held spectrometer,  

- Model development for the classification of fruits according to their ripeness levels,  

- Model development for the prediction of certain quality traits of fruits.  

II. Determining the applicability of NIR spectroscopy and hyperspectral image processing 

for the detection of brown rot caused by Monilinia on different stone fruits. Achieving 

this aim was supported by the following tasks:  

- Monitoring changes during refrigerated or room temperature storage of intact and 

damaged fruits contaminated with different concentrations of Monilinia conidium 

suspension,  

- Conducting investigations with hand-held NIR spectrometer and hyperspectral 

imaging,  

- Model development for pinpointing the effect of different storage conditions,  

- Model development for the detection of fruits contaminated with Monilinia in various 

ways and to various degrees,  

- Development of sorting models for the early detection of fruits suspected for brown 

rot.  

III. Determining the applicability of NIR spectroscopy for the detection of 

enrichment/manipulation of fruit juices with plant extracts. Achieving this aim was 

supported by the following tasks:  

- Spectral analyses of fruit juices enriched with plant extracts in various combination 

and concentration using hand-held and benchtop NIR spectrometers,  

- Model development for the classification according to the type of extract, and dosed 

concentration,  

- Model development for the prediction of added extract content.  

 

  



6 

 

3. LITERATURE OVERVIEW  

In this section, we have summarised the available literature on the topics under investigation, in 

alignment with the objectives of the thesis.   

3.1. The importance of stone fruit consumption from different perspectives  

3.1.1. Fruit production statistics in Hungary and in the world  

The Hungarian fruit production plays a significant role in the country’s agricultural landscape, that 

is characterised by wide range of fruit varieties. Comparing the production of major fruit species 

in Hungary, pomme fruits (i.e., apple, pear, quince, etc.) and stone fruits (i.e., apricot, peach, plum, 

cherries, etc.) are of utmost importance, with apple production being particularly noteworthy (KSH 

2017, 2024). In Hungary, there is a strong tradition of breeding and preserving the authenticity of 

the mentioned fruit species. Fruit cultivation trends can be observed not only by region but even 

by county, the outstanding significance of the Szatmár region, located in the easternmost part of 

Hungary, is particularly striking (Figure 1).  

 
Figure 1. Distribution of economically important fruit production in Hungary by counties in 2016 (KSH 

2017, 2024).  

Szatmár region is recognized as a favourable area for fruit production due to a combination of its 

geographical, climatic, and soil. This region, benefits from a temperate continental climate, which 

is conducive to the growth of a variety of fruit species in the region (Kondész 2005; Papp, Nyéki, 

and Soltész 2004). The climate features, warm summers and cold winters, provide a distinct 
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seasonal variation that is essential for the proper development of many fruit crops, including 

apples, cherries, and plums. Besides the production of this region, it is also famous for its special 

quality and Hungarikum products (Lovas Kiss 2014).  

After apple, sour cherry and plum are considered the most important fruits in Hungary. As in the 

doctoral research, various cherry and plum varieties were primarily involved, the focus will be 

more on these varieties in the following sections. The quantity of these fruits harvested each year 

fluctuates, averaging around 70 176 and 40 656 tonnes, respectively over the last 10 years. 

Comparing the average production of sour cherries and plums, the demand for sour cherries is 

nearly double that of plums (Figure 2).  

 
Figure 2. Harvested quantities of economically important fruits in Hungary between 2014 and 2023 (KSH 

2024).  

Interestingly, on a global scale, production indicators show a different trend. According to annual 

reports published by FAO, considering the period from 2014 to 2022, worldwide sweet cherry 

production has shown a slow but steady increase, with annual production exceeding 

2 million tonnes. Sour cherry production has grown from 1.3 to nearly 1.6 million tonnes, while 

the annual production for plums and sloes has consistently exceeded 12 million tonnes since 2018 

(FAO 2023a). Figure 3 illustrates the key production regions for sweet cherries, sour cherries and 

plums worldwide, based on data recorded and averaged between 2014 and 2022. In 2022, Turkey, 

Chile, Uzbekistan, and the United States were listed among the largest sweet cherry-producing 

countries. For sour cherries, the main producers included Russia, Poland, Ukraine, Turkey and 

Serbia. For plums and sloes, China's annual production was more than ten times that of Romania 

and Serbia, respectively (FAO 2023b).  
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Figure 3. Average production quantities of sweet cherries (a), sour cherries (b), plums and sloes (c) by 

country between 2014 and 2022 (FAO 2023b).  

3.1.2. The origin and improvement of stone fruits  

The genus Prunus includes a lot of economically important members such as peach, apricot, 

cherry, plum and almond (Das, Ahmed, and Singh 2011). The origins and genetic improvement of 

sweet and sour cherries, specifically Prunus avium (sweet cherry) and Prunus cerasus (sour 

cherry), are rooted in a complex interplay of evolutionary biology, hybridization, and agricultural 

practices.  

Sweet cherries have their origins primarily traced back to wild Prunus avium, which is native to 

regions between the Black and Caspian Seas (Sharpe et al. 2022a, 2022b). The domestication 

process of sweet cherries has involved selective breeding practices aimed at enhancing desirable 

traits. Genetic studies have shown that wild populations of P. avium serve as a significant genetic 

reservoir for breeding programs, providing traits that can be introduced into cultivated varieties 

(Guarino et al. 2009; Panda et al. 2003).  

The cultivated sour cherry is believed to have arisen from hybridization involving sweet cherries 

and ground cherries, specifically Prunus fruticosa (Brettin et al. 2000; Hauck et al. 2006). This 

hybridization has led to a rich genetic diversity within the sour cherry population, which is 

essential for its adaptation and cultivation across various climates. The origin mapping of sour 

cherries reveals that multiple wild Prunus species may have contributed to the genetic makeup of 

cultivated sour cherries. For instance, studies indicate that the maternal parent of sour cherries 
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could involve different populations of P. fruticosa or other Prunus species, suggesting a complex 

ancestry that merits further investigation (Bird et al. 2022).  

The origin and genetic improvement of plums, particularly focusing on Prunus domestica 

(European plum) and Prunus salicina (Japanese plum), reflect a rich history of domestication, 

hybridization, and modern breeding practices. The domestication of plums is believed to have 

occurred independently in several regions, including Southern Europe, Asia Minor and China, 

where distinct species such as P. domestica and P. salicina emerged as important fruit crops 

(Callahan 2008; Hussain et al. 2021). Studies have proven that plums are among the most 

polymorphic species within the Prunus genus that can be largely attributed to recurrent 

hybridization history. This explicitly characterises reflected in Japanese plums, which are 

interspecific hybrids involving P. salicina, P. simonii (apricot plum) and P. cerasifera (cherry 

plum) (Huang et al. 2021; Sottile et al. 2022).  

In recent years, advancements in genomic technologies have significantly enhanced the 

understanding of genetics. Whole-genome resequencing has provided insights into the genetic 

diversity of the studied fruit species, revealing numerous alleles associated with important 

agronomic and quality traits (Xiao et al. 2021). Mapping of the genetic diversity present in wild 

populations is crucial for ongoing breeding programs, particularly in the face of climate change, 

emerging pests and diseases. In addition to these, it also enables the identification of specific genes 

linked to desirable fruit characteristics, such as fruit size and flavour (Valderrama-Soto et al. 2021).  

The conservation of genetic resources is a critical aspect of cherry and plum improvement. Many 

traditional and local cultivars are being preserved in germplasm and in breeding collections. 

According to some sources, 135 sweet and 74 sour cherry cultivars have been reported since the 

mid-1990s. Europe's role in the cherry breeding programmes is outstanding, Germany, Czechia, 

Russia, Hungary, Estonia, France, Romania and Italy being among the most important countries 

(Kappel et al. 2012). In case of plums, the estimated number of cultivars are over 6 000 belonging 

to 19-40 species, depending on the taxonomist (Butac 2020; Topp et al. 2012).  

3.1.3. The composition of stone fruits  

Sweet cherries, sour cherries and plums are stone fruits in which the flesh is the most important 

part that surrounds a single shell (stone) of endocarp with the kernel inside. These fruits are 

characterized with rich nutritional composition and delightsome flavour. All these stone fruits 

offer a variety of macronutrients, micronutrients, and phytochemicals that contribute to their health 

benefits as well. Understanding the nutritional profile of these fruits is essential for appreciating 

their role in a balanced diet and their potential health-promoting properties.  

Table 1 shows a comparative summary about the composition of the fruits in focus according to 

various sources. These fruits are characterised by a relatively low-calorie content, that being the 

lowest for plums. A common characteristic is that water, exceeding 80%, is the major constituent 

of the fruits. Sweet cherries are primarily composed of carbohydrates, which constitute 

approximately 13-16% of their total weight, predominantly in the form of natural sugars such as 

fructose and glucose. Sour cherries contain slightly lower carbohydrate levels, typically around 
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10-14% (Kelley, Adkins, and Laugero 2018). Plums have a carbohydrate content that ranges from 

11-15%, with a similar sugar profile to cherries, including fructose and sorbitol, which contributes 

to their sweetness. Starch is present in very low amounts in the fruits, since its concentration 

decreases during maturation (Sinha 2012).  

All three fruits are low in protein, with sweet cherries containing about 0.6-1%, sour cherries 

slightly less, and plums around 0.5-1% (Igwe and Charlton 2016; Kole and Abbott 2012). 

However, the protein present includes essential amino acids, which are vital for various bodily 

functions (Kelley et al. 2018). The fat content in these fruits is negligible, generally less than 0.5%, 

making them suitable for low-fat diets.  

Table 1 also summarises the micronutrients present in cherries and plums. The main minerals of 

these fruits include potassium, magnesium, calcium and phosphorus, with potassium being 

particularly abundant, contributing to cardiovascular health by helping to regulate blood pressure 

(Khan et al. 2022). Additionally, minerals like iron, manganese, copper, zinc and selenium are also 

present in trace amounts (Serradilla et al. 2016). These fruits contain almost no sodium, which 

supports current dietary recommendations related to salt intake.  

These fruits are rich in vitamins as well, particularly in vitamin C, which is crucial for immune 

function and skin health. Sweet cherries typically contain about 7-10 mg of vitamin C per 

100 grams, while sour cherries can have slightly higher concentrations, ranging from 10-15 mg 

(Kelley et al. 2018). This vitamin plays a significant role in collagen synthesis and enhances the 

absorption of iron from plant-based foods. In addition to vitamin C, these stone fruits contain a 

variety of B vitamins, including B1 (thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), 

and B6 (pyridoxine) (Serradilla et al. 2016), which are essential for energy metabolism, and the 

proper functioning of the nervous system. These fruits, in general, contain little or no amount of 

vitamin E and D which can be related to low fat content.  

While discussing the composition of cherries and plums, one cannot neglect to mention their 

valuable antioxidant properties, as these fruits are highly regarded for their abundance of phenolic 

compounds and polyphenols. These secondary metabolites, produced in plant tissues through 

photosynthesis, play a crucial role in determining the quality of plant-derived foods. They 

significantly affect the fruits' colour, taste and flavour, also offering notable health benefits. 

Published literature suggested that sour cherries have higher concentrations of total phenolic 

compounds, while the sweet cherries contained more anthocyanins (Habib et al. 2017). Among the 

major phenolic compounds, these fruits contain anthocyanins (cyanidin-3-rutinoside, cyanidin-3-

O-glucoside, peonidin-3-O-rutinoside), hydroxycinnamates (3-caffeoylquinic acid, 3-p-

coumaroylquinic acid), flavanols (catechin, epicatechin) and flavonols (quercetin 3-O-glucoside, 

quercetin-3-O-rutinoside) (Lara et al. 2020; Neveu et al. 2010; Serradilla et al. 2016).  
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Table 1. Comparison of the approximate nutritional composition of raw sweet cherry, sour cherry and plum 

according to different nutritional databases.  
  Sweet cherry  Sour cherry  Plum  

Component  

Unit 
USDA 

(2019b) 

Frida Food 

Data (2024a) 

Bíró and 

Lindner 

(1995) 

USDA 

(2019a) 

Bíró and 

Lindner 

(1995) 

USDA 

(2019c) 

Frida Food 

Data (2024b) 

Bíró and 

Lindner 

(1995) 

Energy kcal 63 61 63 50 52 46 46 59.7 

Energy kJ 263 258 265 209 218 192 195 250 

Water  g 82.2 83.8 83.6  86.1 85.9  87.2 87.1 84.7  

Protein g 1.1 1.0 0.8 1.0 0.8 0.7 0.3 0.7 

Total lipid (fat) g 0.2 0.0 0.0 0.3 0.0 0.3 0.0 0.0 

Carbohydrate,  

by difference 
g 16.0 14.8 14.0 12.2 11.0 11.4 12.3 13.1 

Dietary fibre g 2.10 1.20  1.60  1.40 2.00  

Sucrose g 0.15 0.00  0.80  1.57 1.05  

Glucose g 6.59 6.17  4.18  5.07 3.65  

Fructose g 5.37 5.35  3.51  3.07 3.11  

Maltose g 0.12 0.00   0.00   0.08 0.00   

Minerals  USDA 

(2019b) 

Frida Food 

Data (2024a) 

EFSA 

(2021) 

USDA 

(2019a) 

EFSA 

(2021) 

USDA 

(2019c) 

Frida Food 

Data (2024b) 

EFSA 

(2021) 

Sodium mg 0 0  3  0 0.125  

Potassium mg 222.00 200.00 212.29 173.00 173.83 157.00 173.00 198.43 

Calcium mg 13.00 8.78 18.14 16.00 12.51 6.00 7.45 11.71 

Magnesium mg 11.00 8.12 9.97 9.00 8.00 7.00 7.08 8.67 

Iron mg 0.360 0.200 0.360 0.320 0.410 0.170 0.111 0.290 

Copper mg 0.060 0.072 0.070 0.104 0.080 0.057 0.051 0.070 

Zinc mg 0.070 0.055 0.080 0.100 0.100 0.100 0.100 0.090 

Manganese mg 0.070 0.062  0.112  0.052 0.058  

Selenium µg 0 0.333 0.240 0 0.550 0 0.175 0.100 

Phosphorus mg 21.00 20.30 20.97 15.00 18.23  16.00 14.40 18.71 

Vitamins  
USDA 

(2019b) 

Frida Food 

Data (2024a) 

EFSA 

(2021) 

USDA 

(2019a) 

EFSA 

(2021) 

USDA 

(2019c) 

Frida Food 

Data (2024b) 

EFSA 

(2021) 

Vimamin A RAE 3.00 4.28  64.00  17.00 29.50  

Retinol  µg 0 0  0  0 0  

Beta-carotene µg 38.0 25.7  770  190 177  

Vitamin D µg  0     0  

Vitamin E  

(α-TE*)  
mg 0.070 0.152 0.150 0.070 0.120 0.260 0.392 0.770 

Thiamin  

(Vitamin B1) 
mg 0.027 0.016 0.040 0.030 0.030 0.028 0 0.050 

Riboflavin  

(Vitamin B2) 
mg 0.033 0.021 0.040 0.040 0.040 0.026 0.015 0.060 

Niacin  

(Vitamin B3) 
mg 0.154 0.025 0.580** 0.400 0.460** 0.417 0.168 0.730** 

Pantothenic acid 

(Vitamin B5) 
mg 0.199 0.123  0.143  0.135 0.168  

Pyridoxine  

(Vitamin B6) 
mg 0.049 0.037 0.050 0.044 0.050 0.029 0.029 0.050 

Folate  

(Vitamin B9) 
µg 4.00 6.48  8.00  5.00 0  

Ascorbic acid  

(Vitamin C)  
mg 7.00 6.72  10.00  9.50 3.06  

Choline, total mg 6.10 6.10   6.10   1.90 1.90   

*   alpha-tocopherol equivalent  

** niacin equivalent  
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3.1.4. The health benefits of stone fruit consumption  

Both cherries and plums are low in calories and high in essential nutrients. They are rich in 

carbohydrates, primarily in the form of natural sugars, and provide dietary fibre that have a 

regulatory function by selecting the microflora present in the intestines (Cui et al. 2019). Sweet 

cherries typically contain about 13-16% carbohydrates, while sour cherries and plums have similar 

carbohydrate content, with plums also being a good source of sorbitol, a sugar alcohol that can aid 

in digestion (Alsolmei et al. 2019). The fibre content in these fruits contributes to satiety, helping 

to control appetite and manage weight (Stacewicz-Sapuntzakis 2013).  

The beneficial effects of stone fruit consumption can be enhanced by consuming it in dried form, 

this is of particular interest for plums, also known as prunes (Stacewicz-Sapuntzakis 2013). These 

fruits are known for their moderate laxative effects, which can help alleviate constipation and 

promote bowel movements, and support a healthy microbiome (Shamloufard, Kern, and 

Hooshmand 2017). Earlier studies attributed these effects of prunes on the digestion to the presence 

of phenolics (chlorogenic acid) and sorbitol, together with its high fibre content (Igwe and 

Charlton 2016; Stacewicz-Sapuntzakis 2013). The role of fibre in human health is mainly 

protective against disease, for example, of the gastrointestinal tract, circulation-related, and 

metabolic diseases (Padayachee et al. 2017).  

Stone fruits are an important source of an array of secondary metabolites that may reduce the risk 

of various diseases. Numerous epidemiological studies support the concept that regular 

consumption of foods and beverages rich in antioxidant flavonoids is associated with a decreased 

health risk. Such components have been shown to combat oxidative stress and reduce 

inflammation (Bakuradze et al. 2019; Fotirić Akšić et al. 2023). The antioxidant capacity of these 

fruits is linked to a lower risk of chronic diseases such as cardiovascular disease, diabetes, and 

certain cancers (El-Beltagi et al. 2019; Igwe and Charlton 2016). The anthocyanins in cherries 

have been associated with improved endothelial function and reduced blood pressure (Igwe et al. 

2017). Studies indicate that the regular consumption of cherries and plums can lead to significant 

improvements in lipid profiles, particularly in individuals with hypercholesterolemia (Walkowiak-

Tomczak, Regula, and Smidowicz 2018).  

Plums, particularly prunes, have been linked to improved cholesterol levels and reduced 

inflammation, contributing to overall heart health (Hong et al. 2021). The combination of fibre, 

antioxidants, and other phytochemicals in these fruits plays a crucial role in maintaining 

cardiovascular functions (Blando and Oomah 2019; Faienza et al. 2020; Kelley et al. 2018). Prunes 

also garnered attention for their bone health benefits. Researches have demonstrated that prune 

consumption can prevent and even reverse bone loss in postmenopausal women, who are 

particularly at risk for osteoporosis (Arjmandi et al. 2017). The polyphenolic compounds in prunes 

enhance bone formation and mineralization while inhibiting bone resorption (Graef et al. 2018). 

This dual action makes dried plums a valuable addition to the diet for maintaining bone density 

and overall skeletal health.  
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3.2. Processes during the development of stone fruits  

The maturation and ripening processes of sweet cherries, sour cherries and plums are complex 

physiological phenomena that involve a series of biochemical changes leading to the development 

of fruit quality attributes such as colour, flavour, texture and nutritional value. Each species 

exhibits unique characteristics during these stages, influenced by varietal, environmental, and 

physiological factors (Serradilla et al. 2016, 2017). This summary explores the main maturation 

and ripening processes, enzymatic and postharvest changes in the named fruits. Understanding and 

tracking these processes are crucial for optimising harvesting and postharvest practices, as well as 

for enhancing fruit quality, shelf life and support possible further processing.  

3.2.1. Stone fruit maturation  

Maturation refers to the developmental phase of cherries and plums when the fruit transitions from 

a hard, immature state to a soft, ripe condition (Li 2012). This phase is characterized by significant 

physiological changes, a biphasic growth pattern including rapid cell division, followed by a 

slower phase of cell expansion (Prinsi et al. 2016), which contribute to the overall size and shape 

of the fruit. The maturation of these stone fruits involves the accumulation of soluble solids, 

primarily sugars, organic acids, and phenolic compounds is a critical aspect of maturation, 

influencing the flavour profile and overall quality of the fruit. The latter is a key indicator of 

maturation, with the fruit becoming sweeter as it ripens (Mahmood et al. 2012; Serradilla et al. 

2010).  

The maturation of sweet cherries is marked by a rapid increase in fruit size and the accumulation 

of sugars, primarily glucose and fructose, which contribute to the fruit's sweetness. During this 

phase, the total soluble solids (TSS) content rises, while titratable acidity (TA) remains relatively 

stable (Di Matteo et al. 2017; Mulabagal et al. 2009). The maturation process typically spans 

approximately 50 days from pollination to full ripening (Li et al. 2015), with the fruit transitioning 

from a hard, green state to a softer, more palatable form (Serradilla et al. 2010). Another salient 

feature of cherry fruit maturation is the transition from an initial green colour to shades of red, 

violet or black, driven by the formation of anthocyanins and the breakdown of chlorophyl (Habib 

et al. 2017). The accumulation of anthocyanins, particularly cyanidin-3-O-rutinoside, imparts the 

characteristic red colour to ripe cherries (Mulabagal et al. 2009).  

Sour cherries undergo a similar maturation process, but the timing and specific biochemical 

pathways may differ due to the distinct characteristics of the fruit. Sour cherries are characterized 

by a higher acidity level and organic acid content, primarily malic acid, which provide their tart 

flavour (Serrano et al. 2005). The balance between sugars and acids is crucial for determining the 

overall taste profile of sour cherries, and this maturation index (MI) is often used to assess fruit 

quality (Wojdyło et al. 2014). The maturation period for sour cherries is generally shorter than that 

of sweet cherries, making them more sensitive to harvest timing.  

The maturation of plums is similar to cherries, demonstrate an increase in TSS and a decrease in 

acidity during maturation. The maturation process is influenced by environmental factors such as 

temperature and sunlight, which can affect the rate of growth and the accumulation of sugars and 
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acids (Kodagoda et al. 2021; Kuhn et al. 2020). The maturation of plums is also marked by changes 

in colour, with the fruit transitioning from green to yellow, red or purple, depending on the cultivar 

(Fazzari et al. 2008).  

3.2.2. Stone fruit ripening  

Ripening is the subsequent phase that follows maturation and is characterized by a series of 

biochemical, physiological and sensorial changes that enhance the fruit's palatability and 

nutritional value (Li 2012; Serradilla et al. 2017). During the ripening process, sweet cherries, sour 

cherries and plums exhibit a significant increase in pigment production, mainly anthocyanin, 

which is responsible for their characteristic colour. The biosynthesis of anthocyanins is regulated 

by various transcription factors, and their accumulation is closely linked to the ripening stage 

(Wang et al. 2023; Wei et al. 2015).  

Sweet cherries are classified as non-climacteric fruits, meaning their ripening is not driven by 

ethylene production (Chen et al. 2022; Tijero et al. 2016). Instead, ripening is primarily regulated 

by abscisic acid (ABA), which promotes softening and colour development (Kuhn et al. 2020). 

During ripening, the fruit undergoes significant softening due to the breakdown of cell wall 

components, primarily pectin, mediated by enzymes such as polygalacturonase. The accumulation 

of anthocyanins continues during ripening, enhancing the fruit's colour and antioxidant properties 

(Serrano et al. 2009).  

Sour cherries also exhibit a non-climacteric ripening process, with ethylene playing a minimal 

role. The ripening of sour cherries is characterized by a decrease in acidity and an increase in sugar 

content, leading to a more balanced flavour profile (Wojdyło et al. 2014). The accumulation of 

anthocyanins during ripening is crucial for developing the characteristic red colour of ripe sour 

cherries, and the flavour is influenced by the balance of sugars and organic acids (Viljevac et al. 

2012). The softening of the fruit is facilitated by enzymatic activity, similar to that observed in 

sweet cherries.  

Plums are classified as climacteric fruits, meaning their ripening is associated with a peak in 

ethylene production (Fang et al. 2016). Ethylene regulates various physiological processes during 

ripening (María-Jesús Rodrigo et al. 2012), including softening, colour change, and the production 

of volatile compounds that contribute to aroma and flavour (Álvarez-Herrera, Deaquiz, and Rozo-

Romero 2021; Li et al. 2019). The softening of plums is mediated by enzymes such as pectinase 

and cellulase, which break down cell wall components. The accumulation of anthocyanins during 

ripening contributes to the fruit's colour, and the production of esters and alcohols enhances the 

aroma. The ripening process in plums is also influenced by environmental factors, with 

temperature and humidity playing critical roles in determining fruit quality (Vargas et al. 2017).  

3.2.3. Enzymatic changes in stone fruits  

Enzymatic activity is a key element of the maturation and ripening processes in all three fruit 

species. Enzymatic reactions are influenced by genetic factors and environmental conditions, 

emphasizing the importance of cultivar selection and growing practices in determining fruit 

quality.  
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In sweet cherries, the softening process during ripening is associated with increased activity of 

enzymes such as polygalacturonase, β-galactosidase, and pectin methylesterase, that break down 

cell wall components and lead to fruit softening (Mahfoudhi and Hamdi 2015). These enzymatic 

changes are essential for achieving the desired texture and mouthfeel of ripe cherries. The activity 

of enzymes involved in cell wall degradation increases during ripening, leading to softening and 

changes in fruit texture.  

In sour cherries, similar enzymatic changes occur, with the breakdown of pectins and other cell 

wall components facilitating softening (Viljevac et al. 2012). The production of volatile organic 

compounds (VOCs) contributing to the characteristic aroma of ripe cherries, is also regulated by 

enzymatic reactions (Serradilla et al. 2010). The production of esters, alcohols, and aldehydes 

increases during ripening, enhancing the sensory attributes of the fruit (Serradilla et al. 2016; 

Villavicencio et al. 2021).  

In plums, the enzymatic activity associated with ripening is more pronounced due to their 

climacteric nature. Ethylene production triggers the expression of genes encoding enzymes 

involved in softening and flavour development (Fang et al. 2016). The activity of antioxidant 

enzymes in plums, including superoxide dismutase, catalase, and ascorbate peroxidase, play an 

important role in protecting the fruit from oxidative stress during ripening (Martínez-Esplá et al. 

2017). The activity of these enzymes can be influenced by preharvest treatments, like salicylates 

or melatonin, which have been shown to enhance the antioxidant capacity and storability of plums 

(Cortés-Montaña et al. 2023).  

3.2.4. Postharvest changes in stone fruits  

Postharvest handling of sweet cherries, sour cherries, and plums is critical for maintaining fruit 

quality and extending shelf life. In the days following harvest, fruits continue to ripen, although at 

a slower rate compared to on-tree ripening (Serrano et al. 2009), and phenolic content tends to 

increase and generally remains stable throughout the storage (Habib et al. 2017). Factors such as 

storage temperature, humidity and ethylene exposure significantly impact the postharvest ripening 

dynamics (Serradilla et al. 2017). For instance, treatments with plant hormones like salicylic acid 

can delay ripening and preserve fruit quality during storage (Mahfoudhi and Hamdi 2015; Valero 

et al. 2011).  

Sour cherries are primarily processed into juices, jams, and other products, and their postharvest 

handling focuses on preserving quality during processing (Horváth-Kerkai and Stéger-Máté 2012). 

The high respiration rate of sour cherries necessitates careful management of storage conditions 

to prevent spoilage (Milić et al. 2021). Researches have shown that the ripening processes can be 

influenced by preharvest treatments. The application of gibberellins or melatonin can enhance fruit 

quality attributes and antioxidant systems. These treatments can lead to improved colour 

development, increased sugar content, and enhanced flavour profiles, ultimately benefiting 

consumers (Carrión-Antolí et al. 2022; Michailidis et al. 2021).  

Plums stored at higher temperatures may experience accelerated ripening and increased 

susceptibility to spoilage (Wu et al. 2011). For this species, it has been proven that the use of 
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preharvest treatments, such as gibberellins and abscisic acid, also enhance fruit quality attributes 

and extend shelf life (Time et al. 2021).  

As a fruit moves beyond peak of ripeness, it undergoes a process of degradation and decay. This 

stage, known as senescence, is not merely a simple breakdown but represents the final phase of 

the fruit's life cycle. During senescence, a series of typically irreversible physiological and 

biochemical processes take place, leading to the deterioration of cells and ultimately the death of 

the fruit (Li 2012).  

3.3. Decay during pre- and postharvest of stone fruits  

The preharvest and postharvest decay processes in sweet cherries, sour cherries and plums are 

critical factors influencing the quality and marketability of these fruits. Understanding decay 

processes is essential for applying effective intervention, management practices to reduce losses 

and maintain fruit quality throughout the supply chain. Cherries and plums are highly perishable 

that ripen quickly after harvest, thus resulting in short postharvest life that is determined by fruit 

ripeness at harvest, and handling during transport and storage (Habib et al. 2017).  

There are differences among varieties but in general, non-climacteric cherries have a shelf life of 

7-14 days in cold storage, and plums have a shelf life of around 2-6 weeks, even when stored at 

0 °C (Miranda-Castro 2016). Therefore, efforts must be undertaken to minimize the losses in the 

postharvest stage and maximize the storage life of the fruit. An essential demand of the consumers 

is for products that are safe, meaning free of pathogens and chemical residues.  

The losses caused by postharvest diseases in fruits are inevitable as they can cause production loss 

of even up to 50% (Elik et al. 2019). Several pathogens such as fungi and bacteria attack orchards 

before and after harvest. These are mostly weak air-borne pathogens in the sense that they can only 

invade damaged individuals, and are typical for harvested and stored fruits. Environmental stress 

such as low temperature, heat, and oxygen shortage can cause physiological damage of the tissues 

that increases the sensitivity of stored fruit by forming locations vulnerable to the invasion of 

pathogens (Barkai-Golan 2001). Nowadays, brown rot caused by various Monilinia spp. is a major 

problem threatening the production of stone fruit crops such as cherries and plums worldwide 

(Aiello et al. 2019; Singh and Sharma 2018).  

3.3.1. Description of brown rot  

Brown rot, primarily caused by the fungal pathogens Monilinia fructicola, Monilinia laxa, and 

Monilinia fructigena, is a significant disease affecting sweet cherries, sour cherries and plums. 

This disease poses a major threat to fruit production, leading to substantial economic losses during 

both preharvest and postharvest stages and can result in losses of up to 80% under favorable 

environmental conditions for the fungus.  

Latent infection can occur when Monilinia spp. causes the infection of young fruit in the orchard, 

but develop symptoms only after fruit ripening (Barkai-Golan 2001). Even when the fungal spores 

reach the specific host, they are capable to cause the disease only under appropriate conditions for 

germination. The disease cycle begins with the germination of conidia, which can penetrate fruit 
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through natural openings or wounds. Once established, the fungus produces abundant spores, 

facilitating further spread (Garcia-Benitez et al. 2016). Figure 4. illustrates the schematic life cycle 

of brown rot caused by Monilinia spp. using peaches as an example (Oliveira Lino et al. 2016).  

The pathogen can infect blossoms, fruit, and twigs, with significant damage occurring during 

storage and transport (Aiello et al. 2019). The optimum temperature for growth of most fungi 

attacking fruits in storage is about 20-25 °C, though some species prefer lower or, more often 

higher temperatures. The effect of temperature is interrelated with that of the relative humidity 

(Yahaya and Mardiyya 2019). High relative humidity needed for the protection of fruits from 

dehydration and weight loss may promote the growth of pathogens during fruit storage (Barkai-

Golan 2001).  

 
Figure 4. Life cycle of Monilinia spp. (source: Plant Pathology. Copyright 2005. Elsevier Ltd.) (Oliveira 

Lino et al. 2016).  

Monilinia species are notorious for causing brown rot, which manifests as soft, brown lesions on 

fruit, leading to decay both pre- and post-harvest (Astacio et al. 2023; Oliveira Lino et al. 2016). 

The infection contributes to the penetration and development of other pathogens till the fruit is 

completely consumed. However, these processes can be delayed and inhibited by the phenolic 

compound of the fruits (Oliveira Lino et al. 2016).  
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To minimize postharvest losses, it is crucial to sort any suspected or infected fruits from the batch 

to preserve the product quality expected by consumers. This approach helps prevent further fungal 

contamination and limits the processing of spoiled produce, ultimately contributing to increased 

agricultural profits. In connection with this, Petróczy (2009) has extensively studied the latest and 

environmentally friendly possibilities for the control of various Monilinia species.  

3.3.2. Monilinia species that pose the greatest threat to stone fruits  

Monilinia fructigena  

M. fructigena is a major concern for pomme fruit, particularly apple and pear production, but also 

affect stone fruits (Gell et al. 2008). It was already widespread in Europe in the 1800s, and its 

morphology and biology were known in details. It has also been reported in other regions, 

including parts of Asia and North America (Hrustić, Mihajlović, and Tanović 2020). It is a 

quarantine pathogen in Canada, United States, Australia and New Zealand (De Miccolis Angelini 

et al. 2022). This pathogen can also infect blossoms and twigs, leading to blossom blight and twig 

cankers, which can significantly impact overall fruit yield (Van Leeuwen, Holb, and Jeger 2002). 

M. fructigena is unable to secrete cell wall degrading enzymes, thus can spread through contact 

after contamination via mechanical injury.  

Monilinia laxa  

M. laxa is one of the most dangerous fruit tree pathogens. It primarily damages flowers and shoots, 

causing wilting and drying, while also inducing cankers on woody parts as a result of the infection. 

It also causes substantial damage to stone fruits through fruit rot (Batra 1991). The pathogen is 

found throughout Europe, with the exception of the northernmost regions. M. laxa is known to be 

able to secrete cell wall-degrading enzymes to infect primarily stone fruits. The fungus causes 

significant crop loss, and the infected fruit can pose a serious threat as it may serve as a source of 

further contamination. Research shows that M. laxa can germinate at temperatures up to 30°C, 

with optimal growth occurring between 20-25°C (Bernat et al. 2017).  

Monilinia fructicola  

M. fructicola is the most prevalent species associated with brown rot in stone fruits, including 

sweet cherries, sour cherries and plums. It can infect fruit at any developmental stage, but 

susceptibility increases dramatically as the fruit matures (Martínez-García et al. 2023; Villarino et 

al. 2012). M. fructicola is primarily found in North America, South America, New Zealand and 

Australia, with its presence increasingly noted in Europe due to the importation of infected fruits 

(Fan et al. 2010; Ivić et al. 2014; Pereira et al. 2019). The pathogen has been identified in various 

countries. For Hungary, the pathogen was introduced through infected Italian and Spanish peaches 

and was later identified in domestic plantations in 2006 (Petróczy and Palkovics 2005, 2006). 

Research indicates that this pathogen can germinate at temperatures up to 35 °C, making it resilient 

to various climatic conditions (Bernat et al. 2017). Additionally, it demonstrates varying sensitivity 

to extreme growth conditions, with some isolates exhibiting greater resistance compared to others 

(Hrustić et al. 2020).  
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3.4. Challenges in the production of fruit-based products  

Stone fruits, like cherries and plums, are seasonal fruits. To preserve their valuable nutritional 

value over the long term, preservation methods are essential. Due to the highly diverse techno-

functional properties of stone fruits, a wide variety of products can be made, including pulps, 

juices, concentrates, canned goods, sauces, dried, or even frozen fruits (Stéger-Máté 2012). The 

following section details the technological process of juice production, quality standards and their 

possible manipulation particularly relevant to this research work.  

3.4.1. Production of fruit beverages  

The primary raw materials for fruit beverages in international trade include citruses, pomme fruits, 

stone fruits, grapes, various berries, etc. As fruit juice consumption increases, the production of 

raw materials and the actual consumption of juice have become increasingly separated, both 

geographically and temporally. This has led to a shift toward using fruit pulps and concentrates, 

which are easier to store and transport (Horváth-Kerkai and Stéger-Máté 2012).  

Fruits intended for industrial processing must meet several requirements, such as being resistant 

to fruit diseases and mechanical harvesting, ripen uniformly to produce large yields. From a 

technological point of view, traits like soluble solid content (SSC), acidity, and pigment 

concentration are crucial. After harvesting, the fruits delivered to the plant undergo quantitative 

receipt, visual inspection, and objective quality assessment. These results provide essential 

information for planning the processing steps (e.g., the intensity of preparatory operations and the 

level of concentration required). The production of filtered juices and other fruit beverages, which 

is the focus of this research is summarised in Figure 5.  

Preparatory operations  

The fruits arriving at the processing facility are tipped into a flotation flume, from where they are 

transported to the initial stages of the preparation process. Washing, as the primary cleaning 

operation, aims to improve the physical, chemical, and microbiological cleanliness of the raw 

material. With proper efficiency, it can reduce the microbial count by 3-5 orders of magnitude 

(Barta and Körmendy 2008). Meanwhile, the cleaned raw material undergoes sorting, during 

which foreign plant materials, non-plant parts, and fruits with quality defects (i.e., inappropriate 

colour, damage, infection) are removed. Optical sorters (colour graders) are the most commonly 

used for this step. Certain fruits, such as sweet cherries, sour cherries and berries, arrive with stems 

for processing, and the chlorophyll content of the stem necessitates the de-stemming step 

particularly important for preserving the colour and flavour of the product (Barta and Körmendy 

2007).  

Juice extraction  

There are several preparatory operations before the actual juice extraction. Cracking, crushing and 

smashing fruits are generally applied operations to increase the surface area and initiate the release 

of cell fluids. The intensity of this process depends on the specific juice extraction method used 

afterward. This step can potentially damage valuable compounds or trigger enzymatic reactions 

that result in the formation of undesirable substances.  



20 

 

To mitigate the lysing effects, the crushed fruits are immediately subjected to further treatments 

such as heat, enzymatic processes, freezing, vibration, or ultrasound electroplasmolytic and ionic 

irradiation. The aim of the mentioned treatment is to increase juice yield, reduce undesirable 

physical, biochemical changes, and also to enhance the formation of better colour, aroma, flavour 

properties.  

In the further processing of cracked fruits, heat treatment, enzymatic treatment or a combination 

of these are perhaps the most commonly used preparatory operations. Enzymatic treatment is used 

to break down the components that give the fruit its structure, in particular its pectins and cellulose. 

The pectin-degrading enzymes (e.g., pectin esterase, pectin lyase, polygalacturonase) rapidly 

reduces the viscosity of the fruit mash; however, the fruit raw materials contain varying types and 

amounts of pectins depending on the species and variety. It essential to select enzyme preparations 

with these in mind, as the depolymerization allows for more efficient extraction of juice from the 

fruit pulp.  

 
Figure 5. Flow chart of fruit beverages production (adapted from Barta and Körmendy (2007, 2008); 

Horváth-Kerkai and Stéger-Máté (2012)).  

After the mash treatment, juice extraction typically follows, usually carried out by pressing. The 

objective of this process is to separate the solid parts (i.e., fruit tissues) from the liquid to obtain 

the juice. The most important parameter during pressing is the liquid yield, which refers to the 
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percentage of juice extracted compared to the initial raw material. Juice yield largely depends on 

the type of pressing equipment used, as well as the quality and preparation of the raw material. 

The leftover by-product at the end of the process is known as pomace or marc.  

Juice clarification  

Extracted fruit juice typically appear cloudy due to the presence of insoluble plant particles like 

fibres, cellulose, hemicellulose, protopectin, starch and lipids, as well as colloidal macromolecules 

such as pectins, soluble starch fractions, proteins, certain polyphenols, and their oxidized or 

condensed forms. Depending on the desired final product, these components need to be partially 

or fully removed to prevent turbidity and sedimentation, thereby enhancing the juice's sensory 

qualities. Juice clarification can be achieved using physicochemical, mechanical techniques, or a 

combination of both approaches.  

The first step in juice clarification involves eliminating protective colloids, as they can obstruct 

sedimentation and impact concentration stability, potentially leading to turbidity during storage. 

Enzymatic treatment is also vital for degrading pectin, ensuring the production of high-quality 

concentrates. For optimal results, it is crucial to completely break down pectin, as well as starch, 

hemicellulose and araban. The development of multifunctional enzymatic agents customized to 

suit specific fruit species, varieties and ripening stages, enhancing the overall quality of the juice 

products is of manufacturers’ interest.  

Physicochemical clarification is used after the decomposition of colloidal components and are 

essential for removing turbidity-causing substances from fruit juices. This method entails adding 

clarification agents that promote the precipitation of insoluble particles and macromolecules, 

which can then be separated using mechanical processes. This usually involves the addition of 

substances with charge and/or surface activity to the juice to be further clarified, in varying 

concentrations. Such substances include bentonite, silica sol, activated carbon or even gelatine.  

Physicochemical clarification is typically followed by mechanical purification to eliminate 

suspended fibres and precipitation, usually performed in centrifuges or filters. The filtration 

process can be carried out by conventional filtration methods or by membrane filtration (e.g., 

ultrafiltration). Ultrafiltration offers the significant benefit of using membranes with carefully 

selected pore sizes that can selectively retain larger molecules (proteins, starch, pectin fragments), 

whilst smaller molecules, including dissolved sugars, acids and aromatic compounds, are allowed 

to pass through along with the solvent. This selective process enhances the quality and 

concentration of fruit juice by effectively separating undesirable components while preserving 

essential flavours and nutrients.  

Further processing of the juice  

Clarified, filtered or cloudy juices are now ready for preservation for later use. If the processing 

of the raw fruit does not immediately lead to beverage production, the juices are concentrated into 

semi-finished products. These products are later completed, sometimes at different production 

plants. The objective of juice concentration is to enhance the dry matter content while reducing 

water content, which helps to prolong shelf life and improves transportation and storage efficiency. 
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This process should be carried out with minimal loss of nutritionally important components and 

minimal impact on sensory attributes. Common methods for concentrating juice include 

evaporation, freeze concentration and membrane procedures like reverse osmosis. The extent of 

concentration is described by the ratio of the outlet concentration to the inlet concentration, known 

as the concentration ratio.  

From all those mentioned above, we would underline evaporation as it is perhaps the most widely 

used concentration method. Due to the heat sensitivity of valuable juice components, it is important 

to utilize short-duration, low-temperature condensation techniques. To achieve a lower boiling 

point, this process is conducted under vacuum conditions with multiple effect evaporator systems, 

The process itself significantly impacts the product's compositional, thermal and rheological 

properties. Typically, evaporator systems are integrated with aroma recovery units, that are 

connected to the initial stages of evaporation to condense the most volatile aroma compounds. The 

condensed aromas are often reintroduced into the concentrate to enhance its aroma and flavour.  

The resultant concentrates, with a soluble solid content of around 62-65%, are semi-finished 

product, normally stored in bag-in-drum or bag-in-box packaging until further use (Horváth-

Kerkai and Stéger-Máté 2012; Pátkai 2012). The fruit concentrates can be used to make various 

fruit drinks such as juices, nectars and syrups. They are also highly sought-after ingredients in the 

bakery, confectionery and dairy industries, serving as natural sources of colour and sweetness 

(Pátkai 2012). The production of fruit juices relevant to the present research starts with the dilution 

of concentrate to normal juice concentration (10-20% brix) whilst heating the juice. In aseptic 

technology, this is followed by flavour correction and homogenisation. The process is completed 

by heat treatment, followed by filling and sealing.  

3.4.2. Regulations and directives on fruit juices and similar products  

Regulations of the European Community  

In order to protect consumer interests, various regulations establish criteria related to the handling, 

processing and distribution of fruits and fruit products. As a member of the European Economic 

Community, Hungary is obliged to obliged to adapt its provisions. Regulation (EC) No 178/2002 

of the European Parliament and of the Council describes the concept and principles of food law, 

risk analysis, and food safety requirements. According to the regulation, “the traceability of food, 

and any other substance intended to be, or expected to be, incorporated into a food or feed shall be 

established at all stages of production, processing, and distribution” (EC 2002). Commission 

Implementing Regulation (EU) No 543/2011 summarises the detailed rules applicable to the fruit 

and processed fruit sectors (EU 2011a).  

The European Commission's Directive 2001/112/EC provides guidance on fruit juices and certain 

similar products intended for human consumption. The directive aims to specify requirements 

regarding the composition, reserved names, manufacturing characteristics, and labelling of fruit 

juices. It applies to fruit juice, fruit juice made from concentrate, concentrated fruit juice, 

dehydrated fruit juice powder and fruit nectar products (EC 2001). If the product is made from a 

single type of fruit, the name of that fruit must be used in place of the word “fruit”. For products 
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made from two or more types of fruit, except for the specific exception mentioned, the product 

name should be supplemented with a list of the fruits used, in descending order of the amount of 

fruit juice or puree used. However, for products made from three or more types of fruit, the names 

of the fruits can be replaced by the term “several fruits” or a similar expression, or by indicating 

the number of fruits used (EU 2015).  

The directive specifies that in terms of permitted ingredients, fruit juice products must have the 

aroma, pulp, and cells reintroduced if they were removed during processing. In the case of fruit 

juice made from concentrate, materials extracted from the same type of fruit or even from other 

fruits of the same type may be reintroduced. The enzymes, flavourings and additives that can be 

used in the production of the product, as well as their concentration, are defined in regulations No 

1332/2008 (EC 2008a), No 1334/2008 (EC 2008c), and No1333/2008 (EC 2008b) of the European 

Parliament and Council, respectively. According to the tables of permitted additives by food 

category in Commission Regulation (EU) No 1129/2011, the presence of food colour is not 

permitted in fresh and processed fruit products by virtue of the carry over principle (EU 2011b). 

The use of so-called “novel foods” in various food products is regulated by Regulation (EU) No 

2015/2283 of the European Parliament and of the Council (FAO and WHO n.d.), and their 

specifications are provided in Commission Implementing Regulation (EU) No 2018/1023 (EU 

2018).  

Strict regulations regarding labelling are found in the directive, which are complemented by 

Regulation (EU) No 1169/2011 of the European Parliament and of the Council. The regulation 

details provisions on labelling, particularly concerning the accurate display of ingredients and the 

indication of allergens (EU 2011c).  

Codex Alimentarius  

The Codex Alimentarius Commission was established in 1963 as part of the food standardization 

program initiated by two United Nations specialized agencies: the Food and Agriculture 

Organization (FAO) and the World Health Organization (WHO). The purpose of the work carried 

out by the Codex Alimentarius organization is to develop internationally adopted food standards, 

guidelines and related documents (FAO and WHO n.d.).  

According to Codex Alimentarius standard 247-2005, fruit juice is defined as a non-fermented, 

but fermentable liquid obtained from the edible part of healthy, properly ripened, and fresh fruit. 

The juice can also be extracted from fruit that has been kept in a healthy condition using 

appropriate post-harvest treatments, in line with the relevant regulations of the Codex Alimentarius 

Commission. The juice may appear cloudy or clear and can include recovered aromas and volatile 

flavour components extracted through appropriate physical methods, and these must come from 

the same type of fruit (FAO and WHO 2005).  

The standard allows the addition of fruit pulp and cells obtained by suitable physical methods from 

the same fruit. The characteristic colour, aroma and taste of the juice or nectar must resemble that 

of the fruit from which it is made, and any residual water from processing must be minimal. Juice 

can only be obtained from a single fruit type, while mixed fruit juice is created by blending juices 
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or juices with purees from different fruit types. The standard distinguishes two methods of juice 

extraction, direct mechanical extraction, and reconstitution from concentrate using potable water. 

Technological aids such as clarifying agents, filtration aids, flocculating agents and enzyme 

preparations may be used, provided they stay within specified maximum limits. Fruit juices and 

nectars may undergo testing for authenticity, composition, and quality (FAO and WHO 2005).  

The requirements specifically applicable in Hungary are defined by the Committee of Codex 

Alimentarius Hungaricus (MÉ) in alignment with above mentioned EU regulations. Specific 

provisions on fruit juices and certain similar products (i.e., fruit purées and nectars) intended for 

human consumption are laid down in Commission Regulation No 1-3-2001/112 (Magyar 

Élelmiszerkönyv Bizottság 2009). The MÉ directive No 2-601 provides guidance on the 

production of fruit products preserved by heat-treated, such as syrups, jams and fruit preserves, 

along with specific quality criteria. The latter refers to the fruit content, soluble solids (% brix), 

acidity (% m/m), and in certain cases, sand content (% m/m) (Magyar Élelmiszerkönyv Bizottság 

2013). The guidelines regarding certain processed fruit products marked with distinctive quality 

label is specified in MÉ directive No 2-101. The directive establishes minimum requirements for 

fruit content, allowable sweeteners and additives for special quality jams and fruit syrups. It 

outlines specific standards that must be met to ensure the product's quality and authenticity 

(Magyar Élelmiszerkönyv Bizottság 2010).  

3.4.3. The phenomena of food fraud  

For fruits to reach our tables in the desired processed form and quality, they must undergo a 

complex journey. The well-known interlaced food supply chain is burdened with numerous hardly 

predictable problems and risks. This path includes stages such as harvesting, transportation, 

processing, packaging and distribution, each of which may introduce challenges that can impact 

the quality and safety of the final product. Nothing demonstrates the vulnerability of the food 

supply chain more clearly than its response to societal crises that test the resilience of the food 

chain, revealing the limitations in logistics, production, and distribution networks.  

The issues or challenges that may occur in the food chain are well illustrated by the protection risk 

matrix. As highlighted in Table 2, a distinction can be made between intentional and unintentional 

acts, and according to whether the motive is economic gain or even environmental threat (Spink 

2014; Spink and Moyer 2011). In the previous sub-chapters, certain aspects of food quality and 

safety, in particular of fruit, have been discussed in detail. Unfortunately, however, with the 

introduction of fruits into the food chain, the potential for food fraud should be also discussed.  

Food fraud is a deliberate act with the almost sole purpose of economic gain that also includes 

economically motivated adulteration (EMA). As defined by the US Food and Drug Administration 

(FDA) EMA is the “fraudulent, intentional substitution or addition of a substance in a product for 

the purpose of increasing the apparent value of the product or reducing the cost of its production” 

(FDA 2009). As colourful as the food chain is, the quality and extent of fraud can vary. At any 

stage in the chain, there are many opportunities for fraud, including deception, substitution and 

counterfeiting (BRC, FDF, and SSA 2016).  
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Table 2. The food protection risk matrix (Spink and Moyer 2011).  

Food quality  Food fraud *  
Motivation  

Economic gain  

Food safety  Food defense  
Harm  

Public health, economic, or terror  

Unintentional  Intentional   

Action   

* Includes the subcategory of economically motivated adulteration and food counterfeiting  

Ever since mankind started producing food, food fraud has gone together with the production. 

Food adulteration hazards can be riskier than “traditional” food safety hazards because the 

contaminants are unknown and unconventional. Counterfeiters are not interested and/or do not 

have sufficient knowledge, expertise or resources to determine the extent to which product 

manipulation poses to consumers. Accordingly, a difference can be made between direct risk (e.g., 

toxic or allergenic contaminants), indirect risk in the case of long-term exposure (e.g., chronic 

diseases) and technical risk due to for example misleading product documentation. in addition, the 

concentration of beneficial compounds in food also reduces.  

Spink and colleagues have carried out several investigations relating to scientific and media reports 

on food adulteration cases. Their observations show that the most frequent incidents since 1980 

have been reported for olive oil, milk, honey, saffron, fruit juice (e.g., orange, apple) and coffee in 

the scholarly records; fish and seafood, honey, olive oil, spices (including chilli, black pepper, 

paprika, saffron, turmeric, etc.), milk, etc., in other records (Everstine, Spink, and Kennedy 2013; 

Moore, Spink, and Lipp 2012). In general, the following intentional fraudulent activities may occur 

in food production (Csapó, Albert, and Csapóné Kiss 2016):  

- repackaging,  

- misleading use of a protected designation of origin (PDO), protected geographical indication 

(PGI) or the adulteration of such product,  

- traditionally produced “organic” product,  

- selling imported products as domestic or local,  

- incorrect and/or misleading indication of origin,  

- use of unauthorised ingredients and/or manufacturing practices,  

- use of raw materials of apparently poor quality or deteriorating quality,  

- reuse of expired products in the manufacturing,  

- marketing of product not meeting legal quality standards.  

In addition to those mentioned above, specifically in relation to fresh fruits, there may be 

accelerated ripening (e.g., with Ca-carbide, oxytocin), pesticide (e.g., Cu-sulphate, chlorpyrifos, 

etc.) and metal contamination (e.g., Pb-arsenate). In the case of fruit products, dilution with water, 

pulp wash, or the addition of lower quality juices may occur. Besides, flavour enhancement (e.g., 

with sweeteners, acidity regulators), consistency improvement (e.g., with starch hydrolysates) and 

colour correction with natural or artificial colourants may be used to produce products with more 
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saleable organoleptic properties for consumers (Csapó et al. 2016; Dasenaki and Thomaidis 2019; 

Johnson 2014).  

There are many reports in the literature of studies that aimed to determine and present the actual 

composition of foods as accurately as possible. This is particularly interesting in the quality 

assurance of products whose producer declares the presence of specific component(s) with 

beneficial effects at a certain concentration. There are several reasons why an ingredient containing 

beneficial compounds may be administered. Fruit processing, especially heat treatment, has a 

detectable effect on sensory and internal quality attributes (Toydemir et al. 2013). To compensate 

for this, manufacturers have the possibility to “feed back” the lost components, which are typically 

vitamins and flavourings (FAO and WHO 2005).  

In addition to this, we would like to highlight another direction, fortification, when a product poor 

in certain components is supplemented and/or enriched with ingredients that are rich in the lacking 

component. The quality and quantity of such materials that can be admitted are normally defined 

in legislations. The natural fortification of fruit juices relevant for the present research can be 

achieved by the addition e.g., probiotic bacterial cultures (Naseem et al. 2023), super fruit juices, 

concentrates (Hasan et al. 2014), or even plant extracts (Furulyás et al. 2024; Ivanišová et al. 2015). 

The quantity of these must be indicated on the product packaging (EU 2011c).  

3.5. Techniques used in the qualification of fresh fruits and their products  

There are many different approaches in determining the quality of fruit for fresh consumption and 

processing, because of their compositional and structural diversity. In addition, the analytical 

methods can be quite specific to the fruit as well. In fruit production, processing, and product 

quality assessment, one can encounter empirical, targeted and non-targeted controlling methods.  

3.5.1. Generally used indicators in fruit quality assurance  

Classically, especially in orchards, the time of harvesting is typically determined and planned 

following empirical investigation. This may be done, for example, by comparing ripening fruit to 

different colour scales or by the force required to remove fruit from the stalk (Chełpiński, 

Ochmian, and Forczmański 2019; Kállay et al. 2007). Empirical methods can compromise the 

reproducibility of studies, leading to subjective decision-making. This may be mitigated by the use 

of small or large laboratory-based approaches and assays. For both fresh and processed fruit 

products, sweetness (SSC), acidity (TA, pH), colour and texture are among the most important 

measures of value (Li 2012). If these properties are mapped for fruit products not only in general 

terms, but also using compound-specific profiling, a much more accurate analytical image of the 

condition of the subject can be obtained.  

The characteristic sugar, acid and polyphenol profiles of the fruit can be used to infer the progress 

of ripeness. This is also true of certain amino acids and esters (e.g., ethyl butanol, β, γ-butylene 

glycol), increased amounts of which indicate over-ripening and the initiation of spoilage processes. 

The amino acid and volatile profiles are an excellent way to detect dilution of fruit products, either 

with water, protein hydrolysates or by mixing in other fruit. Fruit products can be characterised 

not only by their characteristic components but also by their specific proportions. Thus, differences 
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in, for example, the ratio of L- and D-organic acids, total nitrogen-amino-nitrogen, free, L- and D-

amino acids or isotopes can be revealing (Csapó et al. 2016; Johnson 2014).  

The most commonly used methods allow targeted determination and quantification due to their 

reliability and sensitivity. Various DNA-based techniques, such as polymerase chain reaction 

(PCR), real-time PCR, etc., have proved to be effective for varietal and origin identification, 

similarly, stable isotope analysis with isotope ratio mass spectrometry (IRMS) or site-specific 

natural isotope fractionation-nuclear magnetic resonance (SNIF-NMR), and elemental analysis 

with inductively coupled plasma-mass spectrometry (ICP-MS). Separation techniques such as 

capillary electrophoresis, gas or liquid chromatography combined with MS can be applied to 

determine with high accuracy the organic acid, sugar, amino acid, and anthocyanin profiles along 

with their concentrations in the fruit products (Dasenaki and Thomaidis 2019; Kamiloglu 2019).  

These analyses are characterised by the fact that they typically require sample preparation 

involving the destruction of the sample, that be time and financially expensive to obtain the also 

finite number of analytical results. In addition, the application of these analytical methods requires 

almost complete knowledge of the component(s) to be determined in the test samples. For this 

reason, unexpected quality differences may not be detected. The introduction and use of non-

destructive, non-targeted correlative approaches as opposed to targeted determination is justified.  

3.5.2. Recent trends in fruit quality assessment  

Presentation of non-targeted NIR spectroscopy and hyperspectral imaging  

The development of methods determining the conformity of foodstuffs, i.e., their quality and 

safety, is a key task for the scientific community, quality assurance and industry. Over the last 10-

15 years or so, the development of non-targeted, also called “fingerprinting” methodologies based 

on the evaluation of broad analytical profiles, in place of the targeted ones, has become very much 

in the focus (Creydt and Fischer 2020). Analyses based on data captured using such approach 

allow patterns in the data to be rapidly mapped, supporting effective decision-making and 

intervention where needed in the food chain (Walsh, McGlone, and Han 2020). A very wide range 

of methods can be classified as non-targeted, the most important of which include various “-omics” 

disciplines (e.g., genomics, metabolomics, proteomics-based, etc.), chromatographic, 

spectrometric, spectroscopic and multisensorial techniques techniques (Aouadi et al. 2020; 

Esslinger, Riedl, and Fauhl-Hassek 2014). Together, results from targeted and non-targeted 

analyses can contribute to the formation of huge databases, whose multivariate statistical analysis 

provides the basis for trainable artificial intelligent solutions. Numerous scholarly articles and 

reviews available regarding how the mentioned analytical techniques performed in the quality 

assessment of fruit products, therefore, in the following, the methods that form an inseparable part 

of the doctoral research work presented are detailed.  

Near infrared (NIR) spectroscopy belongs to vibrational spectroscopic techniques, and associated 

with Frederick William Herschel, who discovered the invisible absorption spectrum in the 1800s 

(Manley, Downey, and Baeten 2008). The agricultural implementation of the NIR technique was 

initiated in the 1950s by Karl Norris, an American engineer and researcher, through the 
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determination of grain moisture and protein content (Norris 1964, 1992; Williams and Norris 

1987). The first promoter of the methodology in Hungary and its world-renowned pioneer was 

Professor Károly Kaffka (Salgó 2014). Besides agriculture, many other industries have discovered 

the benefits of its application, like the pharmaceutical, petrol, textile, and cosmetic industry 

(Manley 2014).  

NIR spectroscopy fundamentally relies on illuminating the sample under study with light of 

wavelengths ranging from 780 to 2500 nm, which produces a response signal, alias spectrum, 

dependent on the material quality of the sample. When a sample, especially food, is illuminated 

with NIR light, the inter-atomic bonds of the molecular functional groups containing carbon, 

nitrogen, oxygen, and hydrogen are excited to such an extent that they result in broad and 

overlapping absorbance bands in the spectrum (Qu et al. 2015). By measuring absorbance, one can 

infer the approximate composition of the sample in the determined wavelength range without 

knowing the specific components. NIR instruments exist in various constructions, measurement 

arrangements, sizes. Some features of the commercially available NIR spectroscopic instruments 

are summarised in Table 3 (Manley et al. 2008):  

Table 3. Features of commercially available NIR spectrometers  

Instrument size:  Illumination:  Sample presentation:  Type of detector:  

- benchtop, - discrete, - diffuse reflectance, - single channel,  

- portable, - full spectrum.  - transmittance,  

diffuse transmittance,  

- multichannel.  

- hand-held.  - transflectance,   

  - interactance.  

The advantage of the NIR technique is that one can obtain comprehensive information about the 

examined sample in an intact manner without causing any damage. As a result of the extensive 

miniaturization of NIR instruments, investigations that had not been heard or thought before are 

now possible. Let's consider here online integrable devices or field studies even under extreme 

conditions (Beć, Grabska, and Huck 2022). The disadvantage of this approach is that it can only 

obtain mean spectral information from a relatively small investigated area at a time. However, 

combined with the vision system, not only non-destructive but also contactless measurements can 

be achieved. For the presented research, one of the important representatives is hyperspectral 

image processing.  

According to Park and Lu (2015), the fundamental techniques for hyperspectral image processing 

are rooted in the optics, the digital signal processing dealing with one-dimensional time- and 

frequency-domain signals and the digital image processing dealing with multidimensional space- 

and space-time-domain signals such as images and videos. Hyperspectral imaging (HSI) is more 

than “conventional” spectroscopy in the sense that images contain spectral data by pixel, allowing 

for the simultaneous acquisition of localizable spatial and spectral information in a contactless 
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way. A HSI system typically records several hundreds of discrete wavelength data points at each 

image pixel.  

The generated data is three-dimensional and combines information from x-y spatial and λ spectral 

coordinates (Manley 2014). Fundamentally, there are four approaches to recording the so-called 

hypercubes, and Figure 6 summarises how the different scanning systems build them up. Spectral 

scanning (also known as “staring” HSI) captures the data in a single wavelength at a time. The two 

primary spatial scanning methods are whiskbroom and pushbroom scanning. In the former case, 

system records the spectrum at a single point, while the latter records the spectral information in a 

complete line. Perhaps one of the most compact solution for hyperspectral imaging is snapshot (or 

single shot) HSI, that records spatial and spectral features in a single exposure (Wu and Sun 2013).  

 
Figure 6. Schematic diagrams of hyperspectral data cube acquisition: Spectral scanning (a); Point scanning 

or wiskbroom imaging (b); Line scanning or pushbroom imaging (c); Snapshot imaging (d). Adapted from: 

(Wu et al. 2022).  

Due to the recording specificities of the mentioned scanning approaches, each method presents 

different challenges. In case of spectral, point and line scanning, the records have to be combined 

afterwards. These methods are generally time-consuming and sensitive to positioning; therefore, 

their stable installation is essential. Nevertheless, the continuous scanning in one direction during 

line scanning, makes it particularly suitable in conveyor belt systems commonly used in the food 

industry. In terms of time efficiency, the performance of snapshot imaging is outstanding, making 

it an attractive choice for field studies when the hypercube needs to captured real-time, even at 
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video frame rates, crucial for fast decision making (Jung et al. 2019; Jung, Michels, and Rainer 

2018). However, the technology is new enough that it presents limited spectral and spectral 

resolution (Femenias et al. 2022; Wu and Sun 2013).  

Similar to those listed for NIR spectrometers, HSI systems are also available in different 

measurement designs. According to the position of the detector, the three main measurement 

arrangements are as reflectance, transmittance and interactance (Table 3). One of the beginning 

steps in hyperspectral image processing is to delimitate spatial locations to be analysed. This 

process typically starts with image segmentation with a thresholding operation on a spectral image 

band. The accurate determination of regions of interest (ROIs) in HSI is similar to correct sampling 

(Park and Lu 2015). Subsequently, HSI enables the visualisation of NIR light absorbing 

component distribution in heterogenous samples.  

The spectra obtained through spectroscopy and hyperspectral imaging must first be subjected to 

various pre-processing steps in order to eliminate unwanted effects. Based on the preliminary 

inspection of the data, outliers can be removed, and the applicable spectrum pre-treatment methods 

can be defined. As extensively summarised and reviewed by (Geladi, Grahn, and Manley 2010; 

Zaukuu et al. 2022), supervised and unsupervised quality-based classifications and quantitative 

predictions can take place subsequently. Examples of the most commonly used spectral pre-

processing and chemometric tools are listed in the following.  

Pre-processing of the spectral data:  

- smoothing,  

- multiplicative scatter correction (msc),  

- extended multiplicative scatter correction (emsc),  

- normalisation,  

- detrending (deTr),  

- standard normal variate (snv), 

- derivatives.  

Qualitative analysis of the spectral data:  

- principal component analysis (PCA),  

- hierarchical cluster analysis (HCA),  

- discriminant analysis (linear, quadratic, factorial),  

- partial least squares discriminant analysis (PLS-DA),  

- soft independent modelling of class analogies (SIMCA),  

- support vector machine (SVM),  

- artificial neural networks (ANNs),  

- k-nearest neighbours (k-NN).  

Quantitative analysis of the spectral data:  

- multiple linear regression (MLR),  

- principal component regression,  

- partial least squares regression (PLSR).  
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Recent application of NIR spectroscopy and hyperspectral imaging in fruit quality 

assessment  

NIR spectrum-based chemometric modelling is widely used in fruit quality assessment for various 

purposes (Cattaneo and Stellari 2019; Shah et al. 2020). Relating to stone fruits in focused of the 

present work, Li et al. (2018) examined the relationship between ripeness, SSC, and pH based on 

HSI images of 550 cherries in the 874-1734 nm region. The authors could classify the fruits 

according to ripeness with over 96% accuracy and estimated the two quality traits with coefficients 

of determination (R2) above 0.8 using genetic algorithm-combined MLR. Escribano et al. (2017) 

associated DMC and SSC with the NIR spectra of cherries. The R2 ranged between 0.67 to 0.73 

for DMC, and 0.73 to 0.89 for SSC, respectively by variety. When evaluating fruit firmness beside 

SSC with HSI, Pullanagari and Li (2021) could predict the former attribute with an R2 of 0.60 and 

RMSE of 0.38 N. Fodor et al. (2023) also conducted studies on the ripeness of plums and the 

predictability of certain internal characteristics. The classification models distinguished between 

mature and immature fruits with 100% accuracy in all cases. The DMC, SSC and TA regression 

models predicted with an RMSE of less than 0.7% m/m. In a series of experiments conducted on 

marian plums, Posom et al. (2020) concluded that the used wavelength range has a significant 

impact on the accuracy of the SSC, pH and TA models compared to the integration time.  

When it comes to fruits intended for fresh consumption, it is important that their storage ensures 

the preservation of their quality. In fruits, qualitative changes can also be well monitored using 

NIR spectral patterns. Szabo et al. (2023) investigated the applicability of NIR spectroscopy to 

detect the effect of various storage conditions (packed as control or modified atmosphere; stored 

at 3 or 5 °C) on sour cherries of different varieties and perceived ripeness. SIMCA modelling 

discriminated samples with apparent error rates between 0 and 0.5 during prediction regardless of 

fruit maturity. Li et al. (2017) applied the NIR technique to predict firmness, flesh colour properties 

(L*, a*, b*), SSC, TA and pH in “Friar” plums. Based on their results, the flesh colour proved to 

be an important feature in post-ripening during low-temperature storage. Guo et al. (2022) 

employed various classification models (e.g., LDA, SVM, PLS, general LM) to determine storage 

time also for plums stored in cold environment.  

In case of stored fruits, unfortunately, unwanted decay processes due to damage or microbial 

contamination must be taken into account in many cases. Screening out crops that are going bad 

is also important for food safety. NIR spectroscopy and hyperspectral image processing have been 

shown to be suitable for the detection of unwanted processes and components, the scheme of which 

is illustrated in Figure 7 using kernels as an example. Shao et al. (2019) combined Vis-NIR 

reflection spectroscopy and least square-support vector machine (LS-SVM) to sort intact, slightly, 

and severely damaged cherries with 93% classification accuracy. Zhao et al. (2016) could 

distinguish plums with browning flesh with 100% accuracy when combined NIR spectroscopy 

with back propagation-ANN. Castillo-Girones et al. (2024) evaluated the feasibility of spectral 

imaging and convolutional neural network for subsurface bruise detection in plums and achnieved 

almost 100% accuracy when classifying the bruised fruits with the highest impact energy of 0.50 J. 
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Using modelling based on hyperspectral data, Li et al. (2021) could classify bruising peaches with 

up to 100% accuracy at 12, 24, 36 and 48 hours after mechanical impact.  

There is relatively limited source material available on the control of fungal infection in stone fruit. 

Therefore, Sun, Xiao, et al. (2018) developed a 360° rotating hyperspectral imaging system to 

detect Rhizopus stolonifera infection of different degrees on peaches. The detection accuracies of 

sound, slight-decayed, moderate-decayed and severe-decayed samples were 95, 66.29, 100 and 

100%, respectively, when three single-band images were evaluated (709, 807, 874 nm). Sun, Wei, 

et al. (2018) also conducted experiments on peaches infected with Botrytis cinerea, R. stolonifera 

and Colletotrichum acutatum. The authors reported 82.5, 92.5 and 100% classification accuracies 

for slightly-decayed, moderately-decayed and severely-decayed samples, respectively, when 

combined hyperspectral image processing and deep belief network (DBN). NIR spectral detection 

of brown rot was first addressed by Liu et al. (2020), also for peaches. With HSI and PCA, the 

authors could completely distinguish samples according to the degree of infection (acceptable, 

moldy, highly moldy), and achieved R2 of 0.84 and RMSE of 0.78 when predicting fungal colony 

counts. Vitalis et al. (2021a, 2021b) examined the effects of ambient and refrigerated storage on 

NIR spectral properties of plums infected with M. fructigena mycelium in different ways. Based 

on their results, the authors could indisputably detect samples that did not yet show visible signs 

of infection.  

 

Figure 7. Hyperspectral imaging for the classification of individual cereal kernels according to fungal and 

mycotoxins contamination (graphical abstract by Femenias et al. (2022)).  

For fruit products, NIR spectroscopy has a very important role in determining and controlling 

authenticity and quality, which also has a large literature. Relating to fresh fruit product control, 

Siedliska et al. (2017) applied various HSI-based algorithms to detect sour cherry pits and/or 

fragments in transmittance measurement arrangement.  
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The majority of frauds affecting fruit juices can be associated with apple, orange, and pomegranate 

juices, the latter being considered superfood due to its very valuable nutritional composition. 

Aykas and Rodriguez-Saona (2024) assessed fruit juices purchased from US stores in their 

research. The authors involved 28 single and 40 blended juices in their study, and simultaneously 

estimated their SSC, sucrose, glucose, fructose, total sugars, TA, citric and ascorbic acid content 

with high correlation (Rcv
2 > 0.93). Aykac, Cavdaroglu, and Ozen (2023) have conducted research 

regarding the dilution of pomegranate juices when binary and ternary blends were prepared with 

5-10% doses of sour cherry and black carrot juices. After pre-processing the spectra, PLS-DA and 

OPLS-DA always resulted in 100% calibration and 97% validation accuracies. Cassani et al. 

(2018) developed Fourier transform (FT) mid infrared-based PLS models for the simultaneous 

prediction of simple sugars and exogenously added fructooligosaccharides in strawberry juices 

preserved with non-thermal treatment (geraniol or vanillin+ultrasound) up to 14 days. The authors 

obtained predictive models with R2 higher than 0.97. Vitalis et al. (2023) have preliminary results 

regarding the probiotic enrichment of fruit juice blends, demonstrating that the simple and mixed 

bacterial cultures could be well distinguished, as well as the fermentation time and acidity could 

be predicted with high accuracy.  

The literature reviewed on changes during cherry and plum ripening, storage, and on the 

qualification of processed fruit products reports a wide range of analytical approaches that can be 

applied to determine the physiological state (e.g., ripeness, decay), quality (e.g., physical, 

chemical, biological traits) and authenticity of fruits and fruit products. Chemometric modelling 

results based on NIR- and hyperspectral analyses, which are the focus of this thesis, report a 

particularly high accuracy in predicting fruit ripeness through their certain physical and chemical 

quality characteristics (e.g., firmness, SSC, TA, etc.). Similarly, studies on storage monitoring and 

juice composition in general. Nevertheless, it was found that there is little literature discussing the 

impact of maturity stage and the location of spectrum acquisition on the accuracy of the modelling. 

There is almost no available literature on the spectral monitoring of sour cherry and plum 

postharvest worsen by Monilinia contamination. There are also relatively few literature sources 

available regarding the control of fruit juice enrichment with plant derivatives. Overall, these 

substantiated the formulated research objectives.  
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4. MATERIALS AND METHODS  

This chapter details the materials and methods employed throughout the series of experiments 

involved in the thesis.  

4.1. Materials  

4.1.1. Fruit samples analysed during the ripeness assessment studies  

The non-destructive determination of ripeness, and thus the optimal harvest time of various stone 

fruits was carried out by analysing fruit samples from Szabolcs-Szatmár-Bereg county. During the 

summer months of 2021, seasonal sweet cherries, sour cherries and plums were examined. 

According to the ripening period of the fruits, the harvesting took place in June, July and August. 

Harvesting was done in two distinct phases, one week apart per fruit species. After each harvest, 

the fruits were promptly transported to the to the Institute of Food Science and Technology (IFST), 

Hungarian University of Agriculture and Life Sciences (MATE).  

The incoming batches exhibited significant variability; their ripeness ranged from unsuitable for 

consumption to fully ripe. After sample arrival, the stem removal and sorting of the fruit was 

started as soon as possible to avoid any undesirable perishing processes. The preliminary 

classification of the fruits according to their presumed ripeness was based on the overall visible 

colour shade differences, varying from the very green to deep red or purple. The sample sets into 

which a relatively large number of fruits were initially sorted were further divided into subsets.  

Table 4 summarises the total number of pre-classified sample sets per fruit variety obtained with 

the assistance of the experts of the Department of Food Chemistry and Analysis (Institute of Food 

Science and Technology, MATE). To facilitate the interpretation of research outcomes, the pre-

classified sample sets were then grouped into larger ripeness clusters. This was necessary 

subsequently, because there were pre-classified sample groups with overlapping ripeness levels 

but harvested at different dates. The possible uses of the defined ripeness levels based on experts’ 

opinion are shown Table 5.  

Table 4. The quantity of fruits pre-classified prior ripeness assessment by variety.  

Fruit  Variety  Abbreviation  Pre-classified groups  Sample size of NIRS 

Sweet cherries  Bigarreau Burlat BB  26 130 

 Valery Chkalov VC  21 105 

Sour cherries  Kántorjánosi KJ  20 100 

 Újfehértói UF  21 105 

Plums  Elena EL  20 100 

 Stanley ST  20 100 

Table 19 summarises how many actual pre-classified sample sets cover the ripeness levels 

established between the L1 (immature) and L6 (very ripe) categories. When determining the 

boundaries between the maturity levels, the experts aimed for an equal distribution.for each fruit 

specie. The shading used in the table shows the colour by which clusters were marked during the 
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data analysis. From the pre-selected sample sets, 5 fruits were started to be analysed using non-

destructive analytical methods (see Table 4), and the rest were analysed using destructive 

analytical methods.  

Table 5. The ripeness levels and usability of the fruits analysed.  

Ripeness level  Ripeness stage  Utilisation 

L1 fully unripe  no use  

L2 slight colouration  no use  

L3 intensive maturation  production of preserves  

L4 ripe  production pf fresh/ frozen/ juice/ concentrate/ jam  

L5 fully ripe production pf fresh/ frozen/ juice/ concentrate/ jam  

L6 very ripe/ overripe variable use  

4.1.2. Fruit samples analysed during the Monilinia detection studies  

Fruit sampling  

For the non-destructive study of the processes involved in brown rot of stone fruits, different sour 

cherry and plum varieties were included in the research. The harvest and examination of the fruit 

varieties were conducted at different times. The experiments on “Érdi bőtermő” (EB) and 

“Újfehértói” (UF) sour cherries, as well as “Topend” (TD) plums, were conducted in 2021. The 

experiments on “Topend plus” (TP) plums were carried out in 2022. The pre-selected experimental 

fruits were uniform in ripeness, colour, and free from any visible damage for each variety.  

Process of Monilinia isolation  

Isolation of Monilinia species causing brown rot was performed from the surface of various fruits 

(e.g., sour cherry, plum). After several attempts, it was possible to successfully isolate and 

propagate M. fructigena on culture media. The fruits intended for conidium production were 

disinfected with ethanol solution (70% V/V), wounded using a sterile lancet needle, and agar discs 

overgrown with mycelium from a pure pathogen culture were placed into the wounds. To produce 

conidia, sour cherries were inoculated for the sour cherry experiment in 2021, plums for the plum 

experiment in 2021, and apples for the plum experiment in 2022. This step was necessary because 

Monilinia species do not produce conidia on culture media. The inoculated fruits were stored in a 

Fitotron growth chamber on 21°C with a 12-hour light cycle. After approximately seven days, 

conidia formed on the surface of the inoculated fruits were collected using sterile wooden sticks 

moistened with sterile water, then transferred into 2 mL Eppendorf tubes containing sterile water 

(Figure 8).  

The conidial suspensions were adjusted to a concentration of approximately 10⁵ conidium/ mL 

using a Bürker counting chamber. This was followed by tenfold, hundredfold, and thousandfold 

serial dilutions with sterile water. These suspensions were subsequently used to inoculate the sour 

cherry and plum samples involved in the latter studies. The approximate concentrations of the 

conidial suspensions used in each experiment are shown in (Table 7). The isolation of the fungi 
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and the preparation of conidial suspensions were conducted under the supervision of experts from 

the Institute of Plant Protection (MATE), in accordance with Horváthné Petróczy (2009).  

 
Figure 8. Preparation steps for M. fructigena conidial suspension: propagation of fungal isolates (a); 

conidium formation on the surface of fruits (b); collection of fungal conidia (c).  

Infection of the fruit samples  

Before starting the sample actual preparation, the stems of the sour cherries and plums were 

removed and their surface was gently cleaned with precision wipes soaked in ethanol solution 

(70% V/V). This step was necessary because in these series of experiments, we focused solely on 

the detectability of Monilinia and aimed to minimize any potential spoilage processes caused by 

unwanted other microbes.  

After cleaning, a 5 mm incision was made with the tip of a disinfected knife on the surface of a 

portion of the fruits into which 20 μL of undiluted (~102 conidium/ μL) or diluted M. fructigena 

conidial suspension was pipetted (Table 7). These fruits constituted the “Injuryinf” samples. For 

another portion of the fruits, 20 μL of the suspensions was applied without making any incisions, 

constituting the “Intactinf” samples. The remaining fruits were not inoculated, serving as the 

“Intactcon” and “Injurycon” samples, the latter was prepared only for Topend plus plums.  

The prepared fruits were subjected to seven days of refrigerated (around 5 °C) or room temperature 

(above 20 °C) storage under controlled conditions. In the case of room temperature storage, the 

storage environment was adjusted to the room temperature typical at the time of fruit preparation. 

The average temperature and relative humidity values recorded during storage are included in 

Table 6.  

Table 6. Temperature and relative humidity recorded during the storage of stone fruits (average ± 2 σ).  

Fruit variety Refrigerated storage Room temperature storage 

  Temperature Humidity Temperature Humidity 

Sour cherries Érdi bőtermő 4.34 ± 1.99 °C  62.64 ± 12.94% 25.94 ± 1.66 °C 81.04 ± 10.09% 

 Újfehértói 5.64 ± 1.89 °C  59.32 ± 9.33% 25.83 ± 0.15 °C 84.85 ± 4.64% 

Plums  Topend 5.97 ± 2.89 °C 52.36 ± 22.43% 22.26 ± 0.86°C 75.92 ± 16.58% 

 Topend plus 5.41 ± 1.54 °C 73.46 ± 18.46% 22.64 ± 1.01 °C 83.87 ± 13.38% 
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The decaying processes were investigated using two distinct non-destructive analytical techniques, 

NIR spectroscopy and hyperspectral imaging, for which two identically prepared sample sets were 

established. For each sample group, five replicates were prepared, resulting in the following 

sample sizes:  

• Sour cherry varieties:  

Érdi bőtermő (EB)  

((Intactcon + 4 Injuryinf + 4 Intactinf) × 2 storage conditions) × 5 replicates =  

90 sour cherry samples  

Újfehértói (UF)  

((Intactcon + 4 Injuryinf + 4 Intactinf) × 2 storage conditions) × 5 replicates =  

90 sour cherry samples  

• Plum varieties:  

Topend (TD)  

((Intactcon + 3 Injuryinf + 3 Intactinf) × 2 storage conditions) × 5 replicates =  

70 plum samples  

Topend plus (TP)  

((Intactcon + Injurycon + 3 Injuryinf + 3 Intactinf) × 2 storage conditions) × 5 replicates = 

80 plum samples  

Table 7. Sample groups for investigating the detectability of M. fructigena on stone fruits  

Fruit Variety Suspension concentration Injured Intact 

  (conidium/ μL) ~ 5 °C ~ 20 °C ~ 5 °C ~ 20 °C 

Sour  

Érdi 

bőtermő  

EB  

~ 0  ― ― 5 5 

cherry ~ 0,15  5 5 5 5 

 ~ 1,5  5 5 5 5 

 ~ 15  5 5 5 5 

 ~ 150  5 5 5 5 

 

Újfehértói  

UF  

~ 0  ― ― 5 5 

 ~ 0,17  5 5 5 5 

 ~ 1,7  5 5 5 5 

 ~ 17   5 5 5 5 

 ~ 170  5 5 5 5 

Plum 

Topend  

TD  

~ 0  ― ― 5 5 

 ~ 1,05  5 5 5 5 

 ~ 10,5  5 5 5 5 

 
~ 105  5 5 5 5 

Topend 

plus  

TP  

~ 0  5 5 5 5 

 ~ 2,31  5 5 5 5 

 ~ 23,1  5 5 5 5 

 ~ 231  5 5 5 5 

― – no sample preparation  
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4.1.3. Samples analysed during the fruit juice enrichment studies  

Preparation of fruit juice mixtures  

For these experiments, juices prepared from sour cherry and plum concentrates were analysed to 

minimise the risk of unwanted and unknown product manipulation in our samples. Based on the 

initial concentration of fruit juice concentrates (approx. 65% brix), pure stock juices were prepared 

of about 20% brix in SSC by dilution with distilled water. Cranberry (CBE), grape seed (GSE) or 

pomegranate extracts (PGE) were added to the juices at six concentration levels so that their total 

concentration ranged between 0.5 and 2.5 g/100 mL. These formed the simple blends, which were 

then mixed in equal proportions by concentration level to produce binary and ternary juice blends. 

In these cases, the aim was also to ensure that the total extract content of the resulting juice blends 

remained between 0.5 and 2.5 g/100 mL (Table 20). For easier understanding, the blending 

procedure has been partly illustrated in Figure 9.  

During the preparation of the fruit juice blends, three parallel juice samples were prepared per 

sample group. For the pure sour cherry and plum juices five replicate samples were prepared. 

These samples represented the 0 g/100 mL concentration level. The sample sizes for each fruit 

juice were as follows (Eq. 1, 2):  

(5 pure juices) + (3 extracts × 6 conc. level × 3 replicates) + (3 binary mixtures × 6 conc. level × 3 

replicates) + (1 tertiary mixtures × 6 conc. level × 3 replicates) = 131 blends of sour cherry juice  
(1) 

(5 pure juices) + (3 extracts × 6 conc. level × 3 replicates) + (3 binary mixtures × 6 conc. level × 3 

replicates) + (1 tertiary mixtures × 6 conc. level × 3 replicates) = 131 blends of plum juice  
(2) 

Heat treatment of the fruit juice blends  

The prepared fruit juice samples were pipetted into 15 mL autoclavable centrifuge tubes, closed 

and subjected to heat treatment. For this, a drying chamber was preheated to 85 °C (MMM 

Medcenter Einrichtungen GmbH, Planegg, Germany). A “blank” 15 mL centrifuge tube, 

containing stock juice equilibrated to the same temperature as the experimental samples (e.g., room 

temperature), was prepared; this liquid was not used in subsequent analyses. A hole was drilled in 

the centre of a centrifuge tube cap, large enough to accommodate a Pt100 thermometer (Fluke 

Corporation, Everett, Washington, USA). The cap was then attached to the thermometer, ensuring 

that the tip of the thermometer was centred within the tube. The sample tubes, along with the blank 

sample tube, were placed into a holder and positioned within the drying chamber, with the 

thermometer display remaining outside for temperature monitoring. Once the thermometer 

indicated 85 °C - reflecting the temperature at the cold point of the blank tube - the samples were 

held for 60 seconds at constant temperature. Subsequently, the samples were removed from the 

chamber, allowed to cool to room temperature, and were refrigerated until non-destructive 

analytical methods.  
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Figure 9. Excerpt from the blending scheme of fruit juices containing different concentrations of various 

plant extracts.  

4.2. Applied methods  

This subsection summarises the reference methods used in the ripeness assessment studies as well 

as the non-destructive correlative analytical methods and chemometric modelling used in the 

determination of fruit ripeness, detection of Monilinia and fruit juice enrichment.  

4.2.1. Reference methods applied in the fruit ripeness assessment studies  

The reference methods used in the examination of stone fruit of different ripeness were performed 

separately for each pre-classified sample sets (see Table 19). An example of a selected sample set 

is shown in Figure 10 to illustrate how the measuring processes followed each other, and the 

sample amounts required. The colour measurement was done by fruit, analytical measurement was 

done by pre-classified sample group at the Department of Food Chemistry and Analysis (MATE 

IFST).  
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Determination of colour characteristics of stone fruits  

The colour characteristics of stone fruits of varying ripeness were determined using a ColorLite 

sph850 spectrophotometer (ColorLite GmbH, Germany). Following calibration, the instrument was 

used to measure the colour attributes, such as lightness (L*), green-red (a*), and blue-yellow (b*), 

on both the immature and mature sides of the fruits. All five parallel samples of the pre-classified 

sample groups were measured respectively in a randomised measurement order. Three consecutive 

measurements were taken for each colour attribute. The averages of these measurements were used 

in the subsequent data analysis.  

 
Figure 10. Destructive and non-destructive analytical analyses performed separately for pre-classified 

sample groups per fruit variety, presented on a case example.  

Determination of dry matter content of stone fruits  

To determine the dry matter content (DMC) of stone fruits of varying ripeness, the flesh of the 

fruits was chopped by pre-classified sample sets. Approximately 10 g of chopped fruits were 

measured in and gently dried at 70 °C in an air-conditioned airing cupboard (Memmert, 

Schwabach, Germany) to constant weight. Due to the high sugar content of the samples, gentle 

drying was necessary to avoid damaging them. The dry matter content was calculated as the ratio 

of the dry weight to the initial weight (Schuck, Dolivet, and Jeantet 2012). Three measurements 

were conducted for each sample group, respectively, and the averages of these were used for 

subsequent data analysis.  

Determination of total acidity of stone fruits  

To determine the total acidity (TA) of stone fruits of varying ripeness, the previously chopped 

fruits were pureed with a kitchen stick blender (Philips, Amsterdam, Netherlands). Approximately 
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10 g of fruit puree was measured in and the acid concent was determined by potentiometric 

titration with 0.1 mol/ dm³ sodium hydroxide solution (pH 8.2) in the presence of phenolphthalein 

indicator. During the measurement, a Hanna HI2209 benchtop pH meter was utilised (Hanna 

Instruments, Smithfield, USA). The total acidity was calculated and expressed as mg/ g (fresh 

weight) malic acid (Tyl and Sadler 2017). Three measurements were conducted for each pre-

classified sample group, respectively, and the averages of these were used in the subsequent data 

analysis.  

Determination of total soluble solid content of stone fruits  

To determine the total soluble solid content (SSC) of stone fruits of varying ripeness, the 

previously blended fruits were measured in a tube of 50 mL, centrifuged at 6000 rpm for 20 min 

(Micro 22R Hettich, Germany), and a few drops of the supernatant juice were measured with a 

digital refractometer (Pocket PAL-1, ATAGO, Tokyo, Japan). Following calibration with distilled 

water, the device provided results of fruit juice soluble solid content expressed in % brix 

(Chockchaisawasdee et al. 2016). Three measurements were conducted for each pre-classified 

sample group, respectively, and the averages of these was used in the subsequent data analysis.  

Determination total anthocyanin content of stone fruits  

To determine total anthocyanin content (TAC) of stone fruits of different ripeness, the previously 

prepared supernatant juice was measured in and analysed using the pH differential method (Lao 

and Giusti 2016; Lee et al. 2005, 2016), as described in the studies by Fodor et al. (2022, 2023). 

These measurements required the use of a pH meter (Hanna Instruments, Smithfield, USA) and 

UV-Vis spectrophotometer (Thermo Electronic UV-Vis 2.02, Thermo Fisher Scientific, Waltham, 

MA, USA). The results were expressed in cyanidin-3-glucoside equivalent in mg/ L. Three 

measurements were performed for each pre-classified sample group, and the averages of these 

measurements was used in the subsequent data analysis.  

4.2.2. Near infrared spectroscopy for the fruit quality assessment studies  

Application of hand-held NIR spectrometer for the determination of stone fruit ripeness  

To non-destructively model the harvest maturity of various stone fruits, near-infrared (NIR) 

spectroscopy was applied. The investigations were conducted with a hand-held reflection-based 

NIR spectrometer (NIR-S-G1, InnoSpectra Co., Hsinchu, Taiwan). The device enables contact 

measurement with internal illumination in a total of 256 spectral bands in the 900-1700 nm 

wavelength range using the Hadamard method. For the fruits, spectra were recorded on both the 

immature and mature sides of the five parallel samples of the pre-classified sample sets. At each 

measurement position, three consecutive spectrum recording was performed. The fruits were 

scanned in a randomised measurement order.  

In the presentation of the results obtained from the chemometric modelling, the sun-yellow (▬) 

colour indicates the models that were based on the whole dataset for each variety, respectively. In 

green (▬) and index “g” is used after the abbreviation of the variety to indicate the model results 

based on the spectra recorded on the immature side of the fruit. Modelling results based on spectra 
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recorded on the mature side of the fruit are indicated in burgundy (▬) in the case of cherries or in 

navy blue (▬) in the case of plums, and index “r” is used after the abbreviation of the variety.  

Application of hand-held NIR spectrometer for the detection of Monilinia on stone fruits  

The hand-held NIR instrument and setup used for the non-destructive analysis of sour cherries and 

plums infected with M. fructigena and stored under different conditions were consistent with the 

configuration described above. On sour cherries, spectra were recorded along the horizontal axis 

of the fruits; on plums, they were captured along the vertical axis, with three measurement points 

per fruit, as indicated in Figure 11a. The second measurement point was always the point of 

inoculation on the fruit. At each measurement position, three consecutive spectrum recording was 

performed. After each measurement position, the contact surface of the device was disinfected 

with alcohol-soaked precision wipes to prevent cross-contamination. Spectral data collection was 

performed daily throughout the seven-day long storage. The fruits were scanned in a randomised 

measurement order.  

 
Figure 11. Spectral measurement locations for detecting M. fructigena on stone fruits: measurement points 

for hand-held NIR spectrometer (a); spectral acquisition points during hyperspectral image processing (b).  

Application of hand-held NIR spectrometer for the control of enriched fruit juices  

For the examination of plant extract-enriched fruit juice blends, a hand-held MicroNIR 

spectrometer (Viavi, Scottsdale, USA) was employed in transflectance measurement arrangement. 

The device enables contact measurement with internal illumination in a total of 125 spectral bands 

in the 900-1700 nm wavelength range. The spectra of the juices were recorded in a cylindrical 

glass cuvette with a reflective surface that provided a layer thickness of 0.5 mm. To compensate 

the initially large number of fruit juice blends, the pure fruit juices were scanned multiple times. 

Specifically, the five replicate samples of sour cherry and plum juice were each scanned three 

times in total. Three consecutive spectra were recorded during each sample loading. Between each 

sample measurement, the cuvette was thoroughly cleaned with distilled water and ethanol 

(70% V/V), then dried and rinsed with the upcoming juice sample to prevent cross-contamination. 
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The juices were scanned in a randomized measurement order. These measurements were 

conducted at the Institute of Analytical Chemistry and Radiochemistry (University of Innsbruck, 

Austria).  

Application of benchtop NIR spectrometer for the control of enriched fruit juices  

The spectral properties of the fruit juices were also examined in a transmission measurement 

arrangement. A modular Fourier transform spectrometer was utilized for this purpose (NIRFlex 

N-500, Büchi Labortechnik AG, Flawil, Switzerland), acquiring data in a total of 1178 spectral 

bands within the wavelength range of 1000-1890 nm. Similarly, as detailed above, the samples 

were analysed in a randomized order with three consecutive scanning using a glass cuvette with a 

path length of 1 mm. The cuvette was cleaned as described above with additional drying with 

compressed purified air to remove as much of the excess cleaning moisture from the cuvette as 

possible. The cuvette was also rinsed with the upcoming juice sample. These measurements were 

conducted at the Institute of Analytical Chemistry and Radiochemistry (University of Innsbruck, 

Austria).  

4.2.3. Hyperspectral imaging for the detection of Monilinia contamination on stone fruits  

For the non-destructive and contactless analysis of sour cherries and plums infected with M. 

fructigena and stored under various conditions, a desktop Headwall Photonics XEVA-1648 

XC134 hyperspectral imaging (HSI) system was utilised (Specim spectrograph, Xenics InGaAs 

14-bit sensor, 256 × 320 px spectral and spatial resolution). This system allowed the NIR spectral 

and spatial characterization of fruits at the same time. The instrument operated in a push-broom 

configuration, capturing a total of 155 spectral bands in the 900-1700 nm wavelength range, with 

a spectral resolution of 5 nm and a spatial resolution of 0.475 mm per pixel. The measuring system 

was operated using the department-developed Argus software (Firtha 2011). Randomised HSI was 

performed daily on the plum samples and on six days in total for the sour cherry samples during 

their seven-day long storage.  

To compensate spectral inconsistencies, on every measurement day, the system's spectral and 

spatial calibration preceded the measurements. Under full illumination of lamps (~79 mm linear 

tungsten halogen bulbs, 150 W) positioned on two sides in 45° angle with the moving platform, a 

white teflon (PTFE) standard (NCS 0300) was used for the light reference scanning. The 

measurement of the dark surface was done by scanning after completely covering optics 

preventing any external light from entering the system. The data matrix measured at this time was 

considered homogeneous and stable over time based on previous experiences. After correctly 

setting the measurement arrangement, illumination, optical aperture, and AD parameters, saving 

dark and light reference images could eliminate inhomogeneity and increase the signal level 

(Firtha, 2008), also enabling the calculation of relative reflectance from the raw data.  

The segmentation of fruit-related pixels from the data recorded in a hypercube with the HSI system 

was performed using a department-developed HyperGrab hyperspectral image processing 

software (GillaySoft, Budapest, Hungary). The software allowed to extract the average absorbance 

values from nine surface areas per measurement at a time as illustrated in Figure 11b. Examples 
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of the defined region of interests (ROI) during the segmentation are provided in Figure 60 and Figure 

61.  

4.3. Evaluation of the research results  

The organization, evaluation, and illustration of the data were performed using Miscrosoft Excel 

365 (Microsoft Corporation, Redmond, Washington, USA), Origin Pro 2018 (OriginLab Corp. 

Northampton, MA, USA), R-project (version 3.6.3) and the “aquap2” package (Pollner and 

Kovacs 2016). This section summarises the methods used to evaluate the study results.  

4.3.1. Evaluation of results obtained with reference measurements  

Reference measurements are only available on the samples analysed during the ripeness 

determination studies. The colour (L*, a*, b*) and compositional characteristics (i.e., DMC, SSC, 

TA, TAC) obtained from the pre-classified sample sets were averaged according to ripeness 

clusters shown in Table 5 and Table 19. These average values are discussed in chapter RESULTS 

AND DISCUSSION.  

4.3.2. Evaluation of results obtained using correlative analytical methods  

Pre-processing of the spectral data  

The spectra obtained through NIR spectroscopy and hyperspectral image processing were first 

truncated to the wavelength ranges intended for evaluation, followed by the removal of outliers 

and subsequent multivariate statistical analyses. In experiments where the efficiency of different 

instruments was compared (e.g., benchtop and hand-held NIR devices), the evaluations were 

performed within the same wavelength ranges. The number of spectra used as a basis for 

chemometric modelling in the three different studies and the considered wavelength ranges are 

summarised in Table 8. In neither case were the spectra averaged.  

Table 8. Spectrum counts and wavelength ranges used during chemometric modelling.  

Study Variety Hand-held device(s) Benchtop device(s) *  Wavelength range 

Ripeness assessment      

Sweet cherries  BB  780 spectra  –  950 – 1650 nm  

 VC  627 spectra  –  950 – 1650 nm  

Sour cherries  KJ  597 spectra  –  950 – 1650 nm  

 UF  621 spectra  –  950 – 1650 nm  

Plums  EL  600 spectra  –  950 – 1650 nm  

 ST  597 spectra  –  950 – 1650 nm  

Monilinia detecion      

Sour cherries  EB  4421 spectra  3579 spectra  1000 – 1650 nm  

 UF  5022 spectra  3224 spectra  1000 – 1650 nm  

Plums  TD  3872 spectra  3084 spectra  1000 – 1650 nm  

 TP  4294 spectra  3462 spectra  1000 – 1650 nm  

Fruit juice control      

Sour cherry juices  –  423 spectra  421 spectra  1000 – 1650 nm  

Plum juices  –  423 spectra  422 spectra  1000 – 1650 nm  

* By benchtop device is meant here the hyperspectral imaging system in Monilinia detection studies or the FT-

NIR spectrometer in fruit juice analysis.  
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For noise reduction in the spectra, Savitzky-Golay smoothing (second-order polynomial) was 

applied (Savitzky and Golay 1951), along with other spectral pre-processing methods (e.g., scatter 

correction, detrending, derivatives) to optimise statistical modelling. The combinations of spectral 

pre-processing methods and their application purposes are summarised in Table 21 and Table 22. 

Table 9. summarises all the variables according to which it was possible to filter the data or build 

classification models.  

Principal component analysis of the spectral data  

Principal component analysis (PCA) was applied to compress the highly correlated NIR spectral 

data into variables (principal components, PCs) that no longer correlate with each other. 

Additionally, this method allowed for the identification of outliers by detecting data points that 

fell outside the 95% confidence interval. This function of the PCA was only used for the evaluation 

of experimental results aimed at monitoring storage and detectability of Monilinia-caused decay 

on stone fruits.  

PCA modelling was also used as a preliminary pattern exploration on smoothed (Savitzky-Golay 

smoothing with 2nd order polynomial, 21 data points; “sgol-2-21-0”) and multiplicative scatter-

corrected (msc) data. Furthermore, the results revealed how individual wavelengths correlate with 

the PCs, which were illustrated on loading plots. PCA models were built on the whole dataset by 

fruit variety, respectively, to recognise patterns in fruit ripeness, in Monilinia-infected fruit 

handling and storage, or in total added extract content in enriched fruit juices.  

Soft independent modelling of class analogies  

Soft independent modelling of class analogies (SIMCA) was only used to evaluate the 

experimental results of Monilinia detection studies. The method was applied alongside the PCA 

results, except that modelling was performed on data recorded at the beginning (day 1), middle 

(day 4) and end of storage (day 7), also after smoothing and msc pre-treatments. This supervised 

classification method helped to better understand the similarities and differences between the 

sample groups which for these evaluations were the different treatments (mode of inoculation and 

storage condition together).  

SIMCA models the multivariate space formed by a given sample group and calculates whether a 

given observation belongs to a specific group based on the interclass distances and the importance 

of variables (i.e., wavelengths). This approach also gives the discriminating power of the variables, 

significantly contributing to group differentiation and thereby facilitating the identification of 

absorbance bands associated with spectral differences (Wold and Sjostrom 1977).  

Linear discriminant analysis of the spectral data  

Linear discriminant analysis (LDA) was performed as a supervised classification method to 

discriminate and classify samples according to various classification variables (see Table 9). In 

our specific application, principal component scores served as the input values for the LDA 

models. The optimal number of principal components (NrPCs) used in the modelling process was 

determined by an R-based algorithm that collected and compared the LDA model calibration and 

validation accuracies up to a predefined 20 NrPCs, using three-fold cross-validation. The NrPCs 
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that yielded the smallest difference between model calibration and validation accuracy, as well as 

the highest validation accuracy, was selected for the actual modelling. The PCA-LDA models were 

built on data filtered to certain data sets, pre-processed then further optimised for NrPCs. The 

models were tested using leave-one-sample replicate-out (LOSO) validation.  

The classification results (%) obtained during the construction and testing of the models are 

summarised in so-called confusion tables. The optimal spectral pre-treatment(s) and NrPCs for the 

PCA-LDA modelling of a given dataset are displayed at the bottom of the summary tables, 

specifically following * symbols. In addition, this method also assisted in identifying absorbance 

bands which contributed greatly to the differentiation between sample groups.  

In the ripeness studies, models classifying by ripeness levels were first built by fruit variety, and 

then separately on the data obtained on the more mature and immature sides of the fruits. This was 

performed to explore the influence of the location of spectrum acquisition on classification 

accuracy. Model construction was done by omitting data of one parallel sample from the five 

available per pre-classified sample sets at a time. During testing, the data of the previously omitted 

samples were projected into the constructed PCA-LDA model. Model building and testing were 

completed cyclically until all data for each sample were included at least once in the modelling. 

Table 9. Summary of variables used to filter or model the data  

Study Classification variables Levels of classification 

Ripeness assessment:  Fruit variety: BB – VC; KJ – UF; EL – ST  

 Ripeness level: L1 ‣‣‣ L6  

 Measurement side: immature – mature   

Monilinia detection:  Fruit variety: EB – UF; TD – TP  

 Suspension concentration: ~ 0.1, 1, 10, 100 conidia/ μL 

 Storage condition:  5 °C; 24 °C  

 
Mode of conidial 

inoculation: 
Intactcon – Inactinf – Injurycon – Injuryinf 

 Treatment groups: 

5 °C Intactcon; 5 °C Intactinf; 5 °C Injurycon;  

5 °C Injuryinf;  

~ 20 °C Intactcon; ~ 20 °C Intactinf; ~ 

20 °C Injurycon; ~ 20 °C Injuryinf  

 
Appearance time of visible 

infection signs  
- 6 days ‣‣‣ + 6 days 

Fruit juice control: Fruit juice: sour cherry; plum  

 Type of extract:  

Juice;  

Juice + CBE; Juice + GSE; Juice + PGE;  

Juice + CBE + GSE; Juice + GSE + PGE;  

Juice + PGE + CBE;  

Juice + CBE + GSE + PGE 

 Type of juice blend:  pure juice; simple; binary; ternary  

 Added extract concentration:  0.0, 0.5, 0.7, 1.0, 1.4, 1.9, 2.5 g/ 100 mL  

In the experiments related to Monilinia detectability, classification models were built by treatment 

group based on spectral pre-processing- and NrPC-optimised data recorded the day after sample 
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inoculation to determine the detectability of the initial conidial contamination on the fruit surface. 

For this modelling, the classification was done for conidium contamination levels of about 0.1, 1, 

10, 100 conidia/ μL. In addition, the spectral trend of samples that were found to undergo 

Monilinia-induced spoilage during storage was also modelled. This only concerned fruits that were 

infected through injury and stored at room temperature (“~ 20 °C Injuryinf”). After specifically 

determining on which storage day the fruits exhibited visible signs of Monilinia infection (marked 

as “0 day”), data covering ± 2-day interval relative to data for “day 0” were included in this 

modelling. In both modelling cases, the model building was done by omitting data of one sample 

from the five parallelly prepared per sample group at a time. During testing, the data of the 

previously omitted samples were projected into the constructed PCA-LDA model. Model building 

and testing were completed cyclically until all data for each sample were included at least once in 

the modelling. 

PCA-LDA was also applied for the qualitative classification of fruit juice blends enriched with 

plant extracts in various concentration. Models were built to detect the type of extracts 

administered in simple, binary, or ternary combinations, as well as to group them based on the 

total added extract concentration. In these cases, the model building and testing involved the cyclic 

omission of one of the three samples prepared in parallel and their projection into the constructed 

model.  

Partial least squares regression on the spectral data  

Partial least squares regression (PLSR) was applied to predict quantitative compositional attributes 

based on the spectral data. PLSR models were developed individually for each fruit variety using 

filtered, spectral pre-processing- and latent variable- (NrLV) optimised data. Model validation was 

conducted through leave-one-sample replicate-out (LOSO) validation, ensuring robust assessment 

of predictive performance. The accuracy and reliability of the models were quantified by the 

coefficient of determination (R²) and the root mean square error (RMSE). The model fitting 

accuracies obtained during the model building (C) and testing (CV) by predicted attribute are 

arranged in summarising tables. The optimal spectral pre-treatment(s) and NrLVs for the PLSR 

modelling of a given dataset are included in the corresponding columns of the summary tables. In 

addition, the regression vectors were also obtained as partial results, which provide information 

on the degree to which each variable is correlated with the actually predicted parameter.  

In the ripeness studies, PLSR models were employed to non-destructively predict certain quality 

traits (colour, DMC, SSC, TA, TAC) of fruits of different ripeness. The models were first built by 

fruit variety, and then on the data obtained on the more mature and immature sides of the fruits, 

respectively, to explore its influence on the prediction accuracy. Model construction was done by 

omitting data of one parallel sample from the five available per pre-classified sample sets at a time. 

During testing, the data of the previously omitted samples was projected into the constructed PLSR 

model. Model training and testing were completed cyclically until all data for each sample were 

included at least once in the modelling.  
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PLSR modelling was also applied to predict the added extract concentration in fruit juices enriched 

to varying degrees. The models were first built using juice samples by fruit species, and then 

filtered according to simple, binary, and ternary blends when estimating CBE, GSE, PGE, and 

total extract content. As described in detail above, model building and testing involved the cyclic 

omission of data corresponding one of the three samples prepared in parallel and their projection 

into the constructed model.  

Identification of frequently occurring absorption bands in chemometric modelling  

For each of the different chemometric modelling approaches, the extent to which each wavelength 

supports the performance of the current modelling approach was determined. The wavelengths 

relevant to each modelling approach were identified based on the peaks in the PCA loadings, 

SIMCA and LDA discriminating powers and PLSR regression vectors. By fruit species and 

analytical method, the frequency with which each variable (i.e., wavelength) occurs in the 

modelling was summarised together, using spectral windows of approximately 10 nm. The 

resulting absorbance bands with their corresponding incidence values were plotted on line 

diagrams.  
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5. RESULTS AND DISCUSSION  

This chapter summarises the main results and findings obtained during the assessment of stone 

fruit ripeness, detectability of Monilinia contamination, and prediction of fruit juice enrichment 

with plant extracts. The summary presents the best classification and prediction results.  

5.1. Determination of the stone fruit ripeness with NIR spectroscopy  

This subsection presents a summary for each fruit type regarding the effectiveness of a hand-held 

NIR spectrometer in predicting the ripeness and certain quality attributes of stone fruits.  

5.1.1. Determination of sweet cherry ripeness  

For the sweet cherries harvested at various stages of ripeness, a total of 26 and 21 pre-classified 

sample sets were analysed, respectively. The colours of the sweet cherries ranged from a 

completely immature green to close to overripe deep red. The pre-classified fruit samples were 

graded into six ripeness clusters. Table 10 presents the averages of the measured physical and 

compositional properties for each ripeness level across the pre-classified samples.  

Table 10. Quality characteristics of sweet cherry varieties of different ripeness (average values). 

 L* a*  b* Dry matter  Total acidity  Soluble solids 
Anthocyanin 

content 

    % m/m mg/ g  % brix mg/ L 

BB_L1 48.72 9.71 16.83 17.19 6.41 9.20 0.00 

BB_L2 37.13 24.30 12.99 16.26 5.73 9.91 0.00 

BB_L3 28.98 24.62 10.73 19.77 5.81 11.26 0.61 

BB_L4 24.76 22.22 10.09 22.62 5.53 12.18 2.31 

BB_L5 18.26 13.22 4.98 26.84 7.44 16.09 45.38 

BB_L6 16.06 6.92 2.85 32.45 7.41 17.49 79.31 

VC_L1 51.60 8.43 13.70 18.67 7.74 9.23 0.00 

VC_L2 44.28 19.70 11.61 18.93 7.34 10.49 2.15 

VC_L3 31.61 27.65 11.88 19.43 6,56 11.73 2.47 

VC_L4 25.57 24.39 10.12 20.62 6.27 12.98 8.19 

VC_L5 18.50 11.07 4.67 28.58 6.95 15.43 72.45 

VC_L6 16.13 6.40 2.70 27.05 7.79 18.64 131.01 

As Table 10 shows, the L* values indicating fruit lightness, tended to decrease as ripening 

progressed, signifying a darkening of the fruits’ skin colour. Similarly, the a* values representing 

the green-red hue, also showed a decreasing trend across most ripeness levels. The relatively low 

a* values observed for the two varieties at lower ripeness levels (L1, L2) are due to that the colour 

coordinates included in the table represent the average of the values recorded on the immature and 

mature sides of the fruits. At these ripeness levels, solar radiation on skin colour development 

resulted in more pronounced differences on the immature and more mature measurement sides of 

the fruits. The b* values indicating the blue-yellow hue, decreased with advancing ripeness as 
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well. Trends in colour coordinate values have been reported in other researches as well. Chełpiński, 

Ochmian and Forczmański (2019) found that “Burlat” cherries achieve their optimum harvesting 

ripeness when L* is within 30.0 to 20.0, a* is within 30.0 to 0.0, and b* is within 10.0 to 0.0.  

Among the compositional traits, the dry matter, soluble solids, and total anthocyanin content 

consistently increased as ripening progressed. In the case of the VC cherries, the anthocyanin 

content was nearly double compared to the BB variety. As for the acidity, a decline was observed 

from the L1 to L3 or L4 ripeness stages, followed by an increase at higher ripeness levels. The 

DMC of the ripe fruits was slightly higher than usually reported in the literature, while the SSC 

and TA were almost the same (Serradilla et al. 2016). According to some sources, the TAC may 

vary between 2 and 300 mg/ 100 g depending on variety and season, overlapping with our results 

(Valero and Serrano 2010).  

Figure 62 presents the raw spectra recorded on the mature and immature sides of the sweet cherries. 

Due to the inhomogeneity of the samples and spectral scatter, clear separation based on ripeness 

levels is not immediately apparent. However, following the application of smoothing (sgol-2-21-

0) and the 2nd derivative (sgol-2-17-2) pre-processing, the significance of the wavelength range 

around 1100, 1300 and 1400 nm becomes evident, indicating its importance for distinguishing 

between ripeness levels.  

After smoothing and msc correction on the spectra recorded on both the mature and immature 

sides of the sweet cherries, PCA was performed (Figure 12). This analysis aimed to assess the 

reliability of the ripeness levels we identified, using an unsupervised method to determine how 

well these levels corresponded to the actual variations in the dataset. For the BB and VC cherries, 

the first four principal components (PCs) explained about 99% of the variance in the data.  

Based on the PCA score plots (Figure 12a), for the BB variety, the greatest separation of ripeness 

levels is observed along the second and third PCs. In contrast, for the VC variety, the separation 

appears most clearly in the combination of the first and third PCs. In the PCA modelling based on 

ripeness, specific wavelengths (i.e., loadings) that contributed the most were identified for each 

principal component. Based on the two PCA loadings highlighted per variety, the relevant 

wavelengths that best describe separation according to ripeness are the following:  

• Bigarreau Burlat (BB) sweet cherries  

PC 1 loading:  1062.9, 1173.5, 1356.3, 1435.8, 1545.1 nm; 

PC 3 loading: 1078.9, 1265.2, 1393.0, 1454.2, 1530.6 nm; 

  

• Valery Chkalov (VC) sweet cherries  

PC 2 loading: 1072.8, 1212.7, 1363.0, 1442.3 nm; 

PC 3 loading: 1265.2, 1393.0, 1454.2, 1535.8 nm. 
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Figure 12. Preliminary PCA on the NIR spectra of sweet cherries when colouring was based on fruit 

ripeness (sgol-2-21-0; msc): PCA score plots of sweet cherries of different ripeness (a); PCA loading plot 

of BB cherries (b); PCA loading plot of VC cherries (c).  

For sweet cherries harvested at different ripeness levels, classification models by variety were 

developed based on whole dataset collected on both mature and immature, as well as on the data 

respectively by measuring sides. This approach aimed to enable a more accurate classification. 

The results obtained after the optimised spectral pre-processing are illustrated in Figure 13. In both 

sweet cherry varieties, the different ripeness levels were distinctly separated along a semi-circular 

path. For the VC variety, the data points representing green ripe fruits clustered more sharply. The 

first two discriminant variables (LD) depicted in the figures accounted for 85.68% of the variance 

in the BB variety and 93.61% in the VC variety, respectively.  
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Figure 13. PCA-LDA on NIR spectra of sweet cherries when classification was based on fruit ripeness: 

PCA-LDA score plot on BBr (a); LDA discriminating power plot on BBr (b); PCA-LDA score plot on VCr 

(c); LDA discriminating power plot on VCr cherries (d).  

The classification results of the PCA-LDA models by variety are summarised in Table 23 and 

Table 24, detailing the model building and validation accuracies. When comparing the 

classification results of sweet cherries, models based on data from the more mature side generally 

performed better. The average correct classification rates during model validation were between 

42.5 - 55.5% for the BB variety, and between 48.8 - 78.0% for the VC variety. Misclassification 

typically occurred at adjacent ripeness levels. In addition to this, wavelengths that played a 

significant role in discrimination among ripeness levels were identified based on their 

discriminating power. These modelling results based on the spectra recorded from the mature side 

of the sweet cherries are presented in Figure 13b and Figure 13d, and the corresponding 

wavelengths are the following:  

• BBr: 1062.9, 1133.8, 1183.0, 1249.0, 1335.0, 1365.3, 1396.3, 1432.5, 1477.8, 1527.4,  

1576.1, 1615.6 nm;  

  

• VCr: 1139.9, 1312.3, 1356.3, 1387.5, 1415.0, 1486.3, 1545.1 nm.  
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Similar to our series of experiments, Fodor (2022) investigated the grading of sweet and sour 

cherries together by maturity. Using the maturity index (MI) of the fruits, calculated as the ratio 

of SSC and TA values, QDA discriminated cherries with 98.4% accuracy.  

The PLSR models for predicting various quality characteristics of sweet cherries were constructed 

separately based on spectra collected from both mature and immature, as well as from both sides 

of the cherries, respectively. This was done following optimised spectral pre-processing. The 

accuracies obtained during model calibration and validation are summarised in Table 25 and Table 

26. The accuracy of predicting various physical and compositional characteristics was highly 

dependent on the cherry variety and the location of the spectral measurements. For sweet cherries, 

the best predictions were achieved for those characteristics that either increased or decreased 

monotonically as ripening progressed. For both sweet cherry varieties, the most accurate models 

were obtained during the prediction of average L*, dry matter, soluble solid, and anthocyanin 

content.  

Figure 14 shows the best model fits found for the BB variety. The DMC prediction accuracy was 

with a maximal R2 of 0.88 - 0.83 and RMSE of 2.07 - 2.50% m/m. The prediction of SSC was 

achieved with an R2 of 0.89 - 0.86 and RMSE of 1.09 - 1.23% brix. The prediction of TAC was 

achieved with an R2 of 0.86 - 0.83 and RMSE of 12.14 - 13.51 mg/ L during calibration and 

validation, respectively. The regression vectors showcasing the wavelengths that played a crucial 

role in the fittings of the selected models are the following:  

• DMC (BBg):  985.3, 1028.1, 1107.1, 1147.1, 1177.1, 1193.7, 1236.1, 1274.5, 1312.3, 1344.0,  

1365.3, 1396.3, 1415.0, 1432.5, 1454.2, 1519.1, 1535.8, 1564.8, 1585.3, 1601.5,  

1626.7 nm; 

• SSC (BBr):  1003.0, 1116.9, 1166.3, 1236.1, 1274.5, 1322.5, 1353.0, 1387.5, 1420.5, 1459.5,  

1489.5, 1530.6, 1582.2, 1590.4, 1598.5 nm; 

• TAC (BBr):  1010.5, 1062.9, 1076.5, 1126.6, 1173.5, 1225.6, 1274.5, 1331.6, 1365.3, 1393.0,  

1408.5, 1430.3, 1466.0, 1489.5, 1519.1, 1548.3, 1593.4, 1621.7 nm. 

Figure 15 shows the best model fits found for the VC variety. The SSC prediction accuracy was a 

maximal R2 of 0.95 - 0.93 and RMSE of 0.69 - 0.79% brix. The prediction of TAC was achieved 

with an R2 of 0.91 - 0.87 and RMSE of 16.20 - 19.86 mg/ L. The prediction of average L* was 

achieved with an R2 of 0.83 - 0.78 and RMSE of 4.76 - 5.44 during calibration and validation, 

respectively. The regression vectors showcasing the wavelengths that played a crucial role in the 

fittings of the selected models are the following:  

• SSC (VCg): 982.8, 1045.5, 1103.5, 1150.7, 1212.7, 1267.5, 1337.2, 1372.0, 1405.2, 1442.3,  

1477.8, 1548.3, 1612.6 nm;  

• TAC (VCg): 1016.8, 1062.9, 1116.9, 1169.9, 1229.1, 1281.4, 1331.6, 1368.6, 1393.0, 1427.1,  

1450.9, 1486.3, 1519.1, 1559.6, 1587.3 nm; 

• L* average. 

(VCr): 

1020.6 1147.1 1193.7, 1236.1, 1271.0, 1347.4, 1399.7, 1430.3, 1457.4, 1504.3,  

1519.1, 1574.0, 1618.7, 1626.7, 1635.7 nm 
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Figure 14. PLSR prediction results of certain quality traits of BB sweet cherries of different ripeness: Y-

fit of DMC prediction on BBg(a); regression vectors of DMC prediction on BBg (b); Y-fit of SSC prediction 

on BBr (c); regression vectors of SSC prediction on BBr (d); Y-fit of average TAC prediction on BBr (e); 

regression vectors of average TAC prediction on BBr (f).  
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Figure 15. PLSR prediction results of certain quality traits of VC sweet cherries of different ripeness: Y-

fit of SSC prediction on VCg (a); regression vectors of SSC prediction on VCg (b); Y-fit of TAC prediction 

on VCg (c); regression vectors of TAC prediction on VCg (d); Y-fit of average L* prediction on VCr (e); 

regression vectors of average L* prediction on VCr (f).  
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Prominent wavelengths obtained as a result of the PCA, PCA-LDA and PLSR models built on 

NIR spectral data of sweet cherries of different ripeness were summarised. Taking into account 

the most contributing wavelengths of the two studied varieties together, Figure 16 presents the 

absorption bands of successful chemometric modelling with their approximate frequency values.  

 
Figure 16. Absorbance bands frequently observed in chemometric modelling results of sweet cherry 

ripening with hand-held NIR spectrometer.  

The ripening of cherries and the non-destructive determination of certain physical and organoleptic 

properties of cherries have been the subject of a number of studies reported in the literature. 

Escribano et al. (2017) combined the NIR spectral data (729-975 nm) with DMC and SSC of 

“Chelan” and “Bing” cherries. The authors reported prediction of DMC with R2 between 0.67 - 

0.73 and SSC between 0.73 - 0.89, respectively by variety. Toivonen, Batista, and Lannard (2017) 

developed DMC predicting models based on the spectral data of “Lapins” cherries obtained in the 

858-1008 nm wavelength range with a portable Vis/NIR spectrometer. The predictive efficiency 

of the developed model was validated on three other cherry cultivars (Staccato, Sentennial, 

Sovereign) when Rp2 were 0.96, 0.94, and 0.99, and RMSEp values were 0.51, 0.74, and 0.56% 

m/m, respectively. Li et al. (2018) used the hyperspectral data (874-1734 nm) of 550 “Hongdeng” 

cherries to determine the relationship between ripeness, SSC and pH. The authors could classify 

the fruits according to ripeness with over 96% accuracy with LDA and estimated SSC and pH with 

R2 above 0.82 and RMSEp of 1.21% brix and 0.06, respectively, when genetic algorithm (GA) 

variable selection method was applied prior MLR. Wang et al. (2018) developed a cloud-based 

qualification system called “SeeFruits” that also involves a hand-held NIR spectrometer (DLP 

NIRscan Nano) to predict fruit cherry ripeness and SSC. The authors compared the performance 

of the developed system with hyperspectral imaging and found satisfying results during support 

vector classification (0.89) and PLSR prediction (Rp2 = 0.83; RMSEP = 1.52% brix).  
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5.1.2. Determination of sour cherry ripeness  

For the sour cherries harvested at various stages of ripeness, a total of 20 and 21 pre-classified 

sample sets were analysed, respectively. The colours of the cherries ranged from a light pink to a 

ripe deep red. The pre-classified fruit samples were graded into four ripeness clusters. Table 11 

presents the averages of the measured physical and compositional properties for each ripeness 

level across the pre-classified samples.  

Table 11. Quality characteristics of sour cherry varieties of different ripeness (average values).  

 L*  a*  b*  Dry matter  Total acidity  Soluble solids  
Anthocyanin 

content  

    % m/m mg/ g  % brix  mg/ L 

KJ_L2 32.58 21.55 15.04 23.36 27.81 13.47 24.34 

KJ_L3 23.80 21.34 10.26 24.59 22.98 12.82 57.24 

KJ_L4 20.19 13.49 5.78 25.71 22.64 14.93 118.52 

KJ_L5 18.32 5.73 3.00 29.69 21.40 16.40 141.05 

UF_L2 33.62 21.01 16.49 25.34 22.02 10.98 12.28 

UF_L3 22.67 20.39 9.26 22.89 24.07 12.78 67.75 

UF_L4 19.60 12.64 5.59 23.21 23.31 14.92 140.79 

UF_L5 19.01 6.42 2.66 24.59 22.97 16.59 149.55 

As Table 11 shows, the L* values indicating lightness tended to decrease as ripening progressed, 

signifying a darkening of the fruits skin colour. Similarly, a* (green-red hue) and b* (blue-yellow 

hue) values also decreased with advancing ripeness. Among the compositional traits, the soluble 

solids and anthocyanin content consistently increased as ripening progressed. In the various 

ripening stages, the KJ variety exhibited a consistent trend of increasing dry matter and decreasing 

acidity, whereas the UF variety showed ambiguity at the L2 ripeness stage. These trends are very 

similar to those detailed for sweet cherries, with the difference that for sour cherries, acidity 

decreases overall as ripening progresses. When investigating Hungarian sour cherry cultivars, 

Desiderio et al. (2023) found consistent tendencies, especially regarding fruit skin colouration.  

Figure 17 presents the raw spectra recorded on the mature and immature sides of sour cherries. 

Despite spectral scatter, clear separation based on ripeness levels is visible. It can be seen that the 

absorption of the fruit increases as the ripening progresses. With the application of smoothing and 

the 2nd derivative pre-processing, the significance of the wavelength range around 1100, 1300 and 

1400 nm is also observable, indicating its importance for distinguishing between ripeness levels.  

After smoothing and msc treatments on the spectra recorded from both the mature and immature 

sides of the sour cherries, PCA was performed (Figure 63). This analysis aimed to assess the 

reliability of the ripeness levels defined, using an unsupervised method to determine how well 

these levels corresponded to the actual variations in the dataset. In both varieties, it was 

characteristic that the different ripening stages became distinguishable along the first three 

principal components. For the two varieties, the first five principal components (PCs) explained 

about 99% of the variance in the data.  
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Based on the PCA score plots (Figure 63a), for the KJ variety, the greatest separation of ripeness 

levels is observed along the first and third PCs. In contrast, for the UF variety, the separation 

appears most clearly in the combination of the first and second PCs. In the PCA modelling based 

on ripeness, specific wavelengths that contributed the most were identified for each principal 

component. Based on the two PCA loadings highlighted per variety, the relevant wavelengths that 

best describe separation according to ripeness are the following:  

• Kántorjánosi (KJ) sour cherries  

PC 1 loading:  1065.4, 1210.3, 1347.4, 1435.8 nm; 

PC 3 loading: 1028.1, 1163.9, 1265.2, 1387.5, 1466.0 nm; 
  

• Újfehértói (UF) sour cherries  

PC 1 loading: 1062.9, 1203.2, 1359.7, 1442.3 nm; 

PC 2 loading: 1055.5, 1199.7, 1319.1, 1439.0, 1561.7 nm.  

 
Figure 17. NIR spectra of sour cherries of different ripeness: raw spectra of KJ cherries (a); raw spectra of 

UF cherries (b); 2nd derivative spectra of KJ cherries (c); 2nd derivative spectra of UF cherries (d).  

For sour cherries harvested at different ripeness levels, classification models were also developed 

separately based on spectra collected from both mature and immature, as well as from both sides 

of the cherries, respectively. The results obtained after the optimised spectral pre-processing are 

illustrated in Figure 18. In both sour cherry varieties, the different ripeness levels were very well 

separated along LD 1. Interestingly, for both varieties, a slight separation along LD2 was observed 
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for the L4 ripeness level. The first two LDs depicted in the figures accounted for the 97.13 and 

90.13% of the variance in the KJ and UF variety, respectively.  

 
Figure 18. PCA-LDA on NIR spectra of sour cherries when classification was based on fruit ripeness: 

PCA-LDA score plot on KJ (a); LDA discriminating power plot on KJ (b); PCA-LDA score plot on UFg 

(c); LDA discriminating power plot on UFg (d).  

The classification results of the PCA-LDA models by variety are summarised in Table 27 and 

Table 28, detailing the model calibration and validation accuracies. The classification accuracies 

for sour cherries varied according to measurement location by variety. The average correct 

classifications during model validation were between 76.8 - 82.4% for the KJ variety, and between 

78.30 - 80.9% for the UF variety. Misclassification typically occurred at adjacent ripeness levels. 

In addition to this, wavelengths that played a significant role in discrimination among sample 

groups were identified based on their discriminating power. These modelling results based on the 

data of KJ and UFg are presented in Figure 18b and Figure 18d, and the corresponding wavelengths 

are the following:  

• KJ: 982.8, 1024.3, 1086.3, 1126.6, 1169.9, 1223.2, 1265.2, 1331.6, 1372.0, 1403.0,  

1432.5, 1462.8, 1498.0, 1535.8, 1582.2, 1598.5 nm; 
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• UFg: 985.3, 1016.8, 1078.9, 1126.6, 1169.9, 1249.0, 1315.7, 1359.7, 1387.5, 1418.3,  

1447.7, 1484.2, 1524.3, 1561.7, 1593.4, 1621.7 nm. 

The PLSR models for predicting various quality characteristics of sour cherries were also 

constructed separately based on spectra collected from both mature and immature, as well as from 

both sides of the cherries, respectively. The accuracies obtained during model calibration and 

validation are summarised in Table 29 and Table 30. The accuracy of predicting various physical 

and compositional characteristics was dependent on the sour cherry variety and the location of the 

spectral measurements. For sour cherries, the best predictions were found for characteristics that 

either clearly increased or decreased with ripening. For both sour cherry varieties, the most 

accurate models were obtained for predicting average L*, b*, dry matter or soluble solid, and 

anthocyanin content.  

Figure 19 shows the best model fits found for the KJ variety. The DMC prediction accuracy was 

a maximal R2 of 0.79 - 0.72 and RMSE of 1.47 - 1.67% m/m. The prediction of TAC was achieved 

with an R2 of 0.91 - 0.87 and RMSE of 15.14 - 18.03 mg/ L. The prediction of average b* was 

achieved with an R2 of 0.93 - 0.91 and RMSE of 1.26 - 1.51 during calibration and validation, 

respectively. The regression vectors showcasing the wavelengths that played a crucial role in the 

fittings of the selected models are the following:  

• DMC (KJr): 1006.8, 1020.6, 1041.8, 1139.9, 1210.3, 1308.9, 1353.0, 1384.2, 1430.3, 1498.0,  

1564.8 nm; 

• TAC (KJg): 1016.8, 1069.1, 1139.9, 1177.1, 1249.0, 1296.3, 1353.0, 1393.0, 1420.5, 1454.2,  

1481.0, 1495.8, 1542.0, 1593.4 nm; 

• b* average 

(KJg): 

985.3, 1014.3, 1072.8, 1139.9, 1190.2, 1281.4, 1347.4, 1384.2, 1418.3, 1454.2,  

1495.8, 1535.8, 1585.3 nm. 

Figure 20 shows the best model fits found for the UF variety. The prediction of SSC was achieved 

with a maximal R2 of 0.87 - 0.83 and RMSE of 0.98 - 1.10% brix. The prediction of TAC was 

achieved with an R2 of 0.89 - 0.87 and RMSE of 18.67 - 20.98 mg/ L. The prediction of average 

b* was achieved with an R2 of 0.91 - 0.89 and RMSE of 1.54 - 1.78 during calibration and 

validation. The regression vectors showcasing the wavelengths that played a crucial role in the 

fittings of the selected models are the following:  

• SSC (UFr): 982.8, 1031.8, 1082.6, 1130.2, 1169.9, 1210.3, 1308.9, 1331.6, 1353.0, 1380.9,  

1408.5, 1432.5, 1486.3, 1519.1, 1559.6, 1582.2, 1607.6 nm; 

• TAC (UFg): 985.3, 1076.5, 1139.9, 1199.7, 1287.1, 1347.4, 1408.5, 1439.0, 1450.9, 1498.0,  

1582.2, 1635.7 nm; 

• b* average 

(UFg): 

1014.3, 1069.1, 1130.2, 1196.1, 1274.5, 1340.6, 1380.9, 1418.3, 1459.5, 1489.5,  

1533.7, 1607.6, 1615.6 nm. 
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Figure 19. PLSR prediction results of certain quality traits of KJ sour cherries of different ripeness: Y-fit 

of DMC prediction on KJr (a); regression vectors of DMC prediction on KJr (b); Y-fit of TAC prediction 

on KJg (c); regression vectors of TAC prediction on KJg (d); Y-fit of average b* prediction on KJg (e); 

regression vectors of average b* prediction on KJg (f).  
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Figure 20. PLSR prediction results of certain quality traits of UF sour cherries of different ripeness: Y-fit 

of SSC prediction on UFr (a); regression vectors of SSC prediction on UFr (b); Y-fit of TAC prediction on 

UFg (c); regression vectors of TAC prediction on UFg (d); Y-fit of average b* prediction on UFg (e); 

regression vectors of average b* prediction on UFg (f).  
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Prominent wavelengths obtained as a result of the PCA, PCA-LDA and PLSR models built on 

NIR spectral data of sour cherries of different ripeness were summarised. Taking into account the 

most contributing wavelengths of the two studied varieties together, Figure 21 presents the 

absorption bands of successful chemometric modelling with their approximate frequency values.  

 

Figure 21. Absorbance bands frequently observed in chemometric modelling results of sour cherry ripening 

with hand-held NIR spectrometer.  

In contrast to cherries, there is a relatively limited literature available on non-destructive NIR 

spectroscopic assessment of intact sour cherries. Analysing sweet cherries (“Bigarreau Burlat”, 

“Valery Chkalov”) and sour cherries (“Kántorjánosi”, “Újfehértói”) together, Fodor (2022) could 

predict DMC with Rcv2 of 0.95 and RMSEcv of 1.25% m/m, SSC with Rcv2 of 0.91 and RMSEcv 

of 0.97% brix, TA with Rcv2 of 0.97 and RMSEcv of 0.14% m/m, and TAC with Rcv2 of 0.89 and 

RMSEcv of 17.5 mg/ 100 g during seven-fold cross-validation.  
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5.1.3. Determination of plum ripeness  

For the plums harvested at different stages of ripeness, a total of 20 and 20 pre-classified sample 

sets were analysed. The colour of the plums ranged from unripe green to a dark purple. The pre-

classified fruit samples were put into five and four ripeness clusters, respectively by variety. The 

sample populations were characterized by a significant presence of unripe fruits and displayed 

considerable heterogeneity. Table 12 presents the averages of the measured physical and 

compositional properties for each ripeness level across the pre-classified samples.  

Table 12. Quality characteristics of plum varieties of different ripeness (average values).  

 L*  a*  b*  Dry matter  Total acidity  Soluble solids 
Anthocyanin 

content 

    % m/m mg/ g  % brix mg/ L 

EL_L1 40.47 -6.82 22.25 18.70 16.66 9.19 0.00 

EL_L2 38.27 -1.49 16.96 21.44 15.72 9.43 0.00 

EL_L3 27.94 2.92 10.50 20.31 10.56 12.35 0.61 

EL_L4 23.21 6.15 6.62 19.09 9.65 12.73 0.95 

EL_L5 19.43 4.42 2.12 20.16 8.39 13.39 4.23 

ST_L1 38.94 -3.16 19.15 16.95 14.36 8.19 0.00 

ST_L2 36.49 0.07 15.40 18.87 13.89 8.43 0.00 

ST_L3 25.01 6.09 5.59 18.37 10.14 11.47 0.00 

ST_L4 24.28 5.92 4.77 18.64 10.11 11.03 3.94 

Table 12 shows that the L* values tended to decrease as ripening progressed, signifying a 

darkening of the fruits’ skin colour. Similarly, the b* values (blue-yellow hue), decreased with 

advancing ripeness as well, while the a* generally exhibited higher values in the more mature 

sample groups. The combination of these two coordinates suggests the accumulation of purplish 

components in the fruit skin. Among the compositional traits, the soluble solids, anthocyanin, and 

acidity of the plums developed as expected, with the latter decreasing as ripening progressed. 

However, no clear trend could be established based on the data of dry matter content, and this 

variability can be attributed to the inhomogeneity of the samples. The relatively low TAC values 

may be due to the fact that at the time of plum harvesting, the skin of the fruit contained higher 

concentrations of anthocyanins and the flesh of the fruit less, and therefore the anthocyanin 

concentration of the supernatant juice obtained from blending and centrifuging these samples may 

have been negligible. Usenik et al. (2008, 2009) reported similar findings for L* and b* values, as 

well as for SSC, malic acid and TAC of plums of different cultivars and ripeness.  

Figure 64 presents the raw spectra recorded on the mature and immature sides of plums. Despite 

spectral scatter, separation based on ripeness levels is visible. It can be seen that the absorption of 

the fruits increases as the ripening process progresses. With smoothing and 2nd derivative pre-

treatment, the significance of the wavelengths around 1100, 1300 and 1400 nm is also evident in 

these samples.  
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After smoothing and msc treatments on the spectra recorded from both the mature and immature 

sides of the plums, PCA was performed (Figure 22). This analysis aimed to assess the reliability 

of the ripeness levels we identified, using an unsupervised method. In both varieties, it was 

characteristic that the different ripening stages were distinguishable along the first three principal 

components. For the EL plums, the first five, for the ST plums, the first seven PCs accounted about 

for the 99% of the variance in the data.  

 
Figure 22. Preliminary PCA on the NIR spectra of plums when colouring was based on fruit ripeness (sgol-

2-21-0, msc): PCA score plots of plums of different ripeness (a); PCA loading plot of EL plums (b); PCA 

loading plot of ST plums (c).  

Based on the PCA score plots (Figure 22a), for the EL variety, the greatest separation of ripeness 

levels is observed along the first and third PCs. For the UF variety, the separation appears most 

clearly in the combination of the first and second PCs. In the PCA modelling based on ripeness, 

specific wavelengths that contributed the most were identified. The highlighted two PCA loadings 

per variety, the relevant wavelengths that best describe separation according to ripeness are the 

following:  
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• Elena (EL) plums  

PC 1 loading:  1055.5, 1229.1, 1359.7, 1439.0 nm; 

PC 3 loading: 1076.5, 1160.3, 1271.0, 1390.8, 1459.5, 1548.3 nm; 

  

• Stanely (ST) plums  

PC 1 loading: 1034.3, 1113.2, 1363.0, 1439.0 nm; 

PC 2 loading: 1062.9, 1177.1, 1384.2, 1501.1 nm. 

For plums harvested at different ripeness levels, classification models were also developed 

separately based on spectra collected from both mature and immature, as well as from both sides 

of the plums, respectively. The results obtained after the optimised spectral pre-processing are 

illustrated in Figure 23. For both varieties, the very unripe fruits and those showing slight 

coloration distinctly separated along LD 1, while within these clusters, the points representing 

riper fruits grouped along LD 2. The first two LDs shown in the figures accounted for the 92.34 

and 99.38% of the variance in the EL and ST variety, respectively.  

 
Figure 23. PCA-LDA on NIR spectra of plums when classification was based on fruit ripeness: PCA-LDA 

score plot on ELg (a); LDA discriminating power plot on ELg (b); PCA-LDA score plot on STr (c); LDA 

discriminating power plot on STr (d).  
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The classification results of the PCA-LDA models by plum variety are summarised in Table 31 

and Table 32, detailing the model calibration and validation accuracies. The classification 

accuracies for plums varied as well according to measurement location and variety. The average 

correct classifications during model validation were between 60.1 - 70.7% for the EL variety, and 

between 58.7 - 68.0% for the ST variety. Misclassification typically occurred at adjacent ripeness 

levels. There was no misclassification between the two previously observed large ripeness clusters. 

In addition to this, wavelengths that played a significant role in discrimination among sample 

groups were identified based on their discriminating power. These modelling results based on the 

data of ELg and STr are presented in Figure 23b and Figure 23d, and the corresponding 

wavelengths are the following:  

• ELg: 1107.1, 1150.7, 1396.3, 1430.3, 1486.3, 1507.5, 1567.9 nm; 

  

• STr: 1000.5, 1076.5, 1120.5, 1163.9, 1210.3, 1254.8, 1306.6, 1403.0, 1430.3, 1457.4,  

1486.3, 1522.2, 1607.6 nm. 

Similarly, to our studies, Fodor et al. (2023) also investigated the applicability of the NIR 

technique for EL and ST plums to classify fruits classified as immature and ripe based on their 

SSC, TA and maturity index. The classification models they used (e.g., LDA, MDA, QDA) 

distinguished between the two sample groups with an accuracy of 100% in all cases. A sharp 

separation of plums by ripeness was also observed in our results, even though we applied a 

different approach for the preliminary assessment of fruit ripeness.  

The PLSR models for predicting various quality characteristics of plums were also constructed 

separately based on spectra collected from both mature and immature, as well as from both sides 

of the cherries, respectively. The accuracies obtained during model calibration and validation is 

summarised in Table 33 and Table 34. The accuracy of predicting various physical and 

compositional characteristics was dependent on the plum variety and the location of the spectral 

measurements. For plums as well, the best predictions were found for characteristics that either 

clearly increased or decreased with ripening. For both plum varieties, the most accurate models 

were obtained for predicting colour properties, soluble solids an acidity.  

Figure 24 shows the best model fits found for the EL variety. The prediction of SSC was achieved 

with a maximal R2 of 0.97 - 0.95 and RMSE of 0.32 - 0.41% brix The prediction of TA was 

achieved with an R2 of 0.97 - 0.95 and RMSE of 0.58 - 0.74 mg/ g. The prediction of average b* 

was achieved with an R2 of 0.92 - 0.88 and RMSE of 2.40 - 2.84 during calibration and validation, 

respectively. The regression vectors showcasing the wavelengths that played a crucial role in the 

fittings of the selected models are the following:  

• SSC (ELg): 1006.8, 1020.6, 1041.8, 1139.9, 1210.3, 1308.9, 1353.0, 1384.2, 1430.3, 1498.0,  

1564.8 nm; 

• TA (ELg): 1016.8, 1069.1, 1139.9, 1177.1, 1249.0, 1296.3, 1353.0, 1393.0, 1420.5, 1454.2,  

1481.0, 1495.8, 1542.0, 1593.4 nm;  
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• b* average 

(ELr): 

985.3, 1014.3, 1072.8, 1139.9, 1190.2, 1281.4, 1347.4, 1384.2, 1418.3, 1454.2,  

1495.8, 1535.8, 1585.3 nm.  

Figure 25 shows the best model fits found for the ST variety. The prediction of SSC was achieved 

with a maximal R2 of 0.93 - 0.86 and RMSE of 0.40 - 0.55% brix The prediction of TA was 

achieved with an R2 of 0.94 - 0.90 and RMSE of 0.52 - 0.66 mg/ g. The prediction of average L* 

was achieved with an R2 of 0.86 - 0.82 and RMSE of 2.75 - 3.12 during calibration and validation, 

respectively. The regression vectors showcasing the wavelengths that played a crucial role in the 

fittings of the selected models are the following:  

• SSC (STg): 982.8, 1031.8, 1082.6, 1130.2, 1169.9, 1210.3, 1308.9, 1331.6, 1353.0, 1380.9,  

1408.5, 1432.5, 1486.3, 1519.1, 1559.6, 1582.2, 1607.6 nm;  

• TA (STr): 985.3, 1076.5, 1139.9, 1199.7, 1287.1, 1347.4, 1408.5, 1439.0, 1450.9, 1498.0,  

1582.2, 1635.7 nm;  

• L* average 

(ST): 

1014.3, 1069.1, 1130.2, 1196.1, 1274.5, 1340.6, 1380.9, 1418.3, 1459.5, 1489.5,  

1533.7, 1607.6, 1615.6 nm.  

Fodor et al. (2023) have also determined the accuracy with which DMC, SSC and TA could be 

predicted in “Elena” and “Stanley” plums after applying different combined spectral pre-

treatments. The authors could predict DMC with an Rcv2 of 0.86 and RMSEcv of 0.66% m/m, 

SSC with an Rcv2 of 0.95 and RMSEcv of 0.72% brix, and TA with an Rcv2 of 0.95 and RMSEcv 

of 0.07 mg/g. Louw and Theron (2010) also used an FT-NIR reflectance spectroscopy (800–

2700 nm) to assess the predictability of weight, firmness, SSC, TA and MI in “Pioneer”, “Laetitia”, 

“Angeleno” and multi-cultivar plums harvested throughout 7 weeks of ripening period over two 

seasons (2007, 2008). Regarding the intrinsic quality traits, the authors reported varying validation 

accuracies for SSC (R2 = 0.82–0.96; RMSEp = 0.45–0.61% brix), TA (R2 = 0.61 - 0.83; 

RMSEp = 0.11 - 0.19% m/m), and MI (R2 = 0.72 - 0.89; RMSEp = 0.61 - 1.59). It was also found 

that despite the multi-cultivar models outperformed the single-cultivar models on R2 values, they 

had higher prediction errors. The models are nevertheless robust in terms of seasonality and sample 

collection period. Costa and de Lima (2013) investigated the effectiveness of the NIR spectroscopy 

when predicting SSC and pH in European and Japanese plums. After combined spectral pre-

treatments, including smoothing and msc as well as various variable selection methods, the authors 

found the best model fit for SSC when variable selection was not used (Rp2 = 0.95; 

RMSEp = 0.45% brix), while for pH when GA was applied prior PLSR (Rp2 = 0.90; 

RMSEp = 0.07).  
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Figure 24. PLSR prediction results for certain quality traits of EL plums of different ripeness: Y-fit of SSC 

prediction (a); regression vectors of SSC prediction (b); Y-fit of acidity prediction (c); regression vectors 

of acidity prediction (d); Y-fit of average L* prediction (e); regression vectors of average L* prediction (f).  
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Figure 25. PLSR prediction results for certain quality traits of ST plums of different ripeness: Y-fit of SSC 

prediction (a); regression vectors of SSC prediction (b); Y-fit of acidity prediction (c); regression vectors 

of acidity prediction (d); Y-fit of average L* prediction (e); regression vectors of average L* prediction (f).  
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Prominent wavelengths obtained as a result of the PCA, PCA-LDA and PLSR models built on 

NIR spectral data of plums of different ripeness were summarised. Taking into account the most 

contributing wavelengths of the two studied varieties together, Figure 26 presents the absorption 

bands of successful chemometric modelling with their approximate frequency values.  

 

Figure 26. Absorbance bands frequently observed in chemometric modelling results of plum ripening with 

hand-held NIR spectrometer.  
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5.2. Detection of Monilinia contamination on stone fruits based on spectral characteristics  

This subsection summarises the effectiveness of using a hand-held NIR device and hyperspectral 

image processing to distinguish between differently infected and stored sour cherries and plums. 

The findings also demonstrated the potential for early detection of spoilage caused by Monilinia. 

The results in this topic are discussed in two separate chapters because, although the fruit samples 

were prepared in the same way for both instruments, the analyses were conducted on different sets 

of samples.  

5.2.1. Detection results with a hand-held NIR spectrometer  

Investigation results on sour cherries  

Figure 65 illustrates the spectra obtained with a hand-held NIR spectrometer for cherries that were 

prepared and stored under different conditions. For the EB variety, the spectra showed significant 

overlap, indicating minimal differentiation based on storage conditions. In contrast, for the UF 

variety, a trend was observed: the higher the storage temperature and the more injured the sample, 

the lower the absorbances as storage progressed.  

The smoothing and msc correction performed on the NIR spectral data, followed by PCA analysis, 

confirmed the significant impact of storage conditions on the light absorption properties of the 

samples (Figure 27). For the two varieties, the first six components explained the 99% of the total 

variance in the data. Based on the PCA score plots (Figure 27a), for the EB variety, the greatest 

separation of treatment groups is observed along the first and third PCs. For the UF variety, the 

separation appears most clearly in the combination of the second and third PCs. The PCA loadings 

for the highlighted two PCs per variety (Figure 27b, c), the relevant wavelengths that best describe 

separation according to fruit handling are the following:   

• Érdő bőtermő (EB) sour cherries  

PC 1 loading:  1069.1, 1190.2, 1372.0, 1450.9 nm; 

PC 3 loading: 1062.9, 1245.5, 1393.0, 1466.0, 1548.3 nm; 
  

• Újfehértói (UF) sour cherries 

PC 2 loading: 1065.4, 1163.9, 1390.8 nm; 

PC 3 loading: 1051.7, 1238.5, 1290.6, 1396.3, 1459.5 nm. 

The data, which had already been pre-processed with smoothing and msc correction for PCA, was 

subjected to SIMCA to determine the statistical significance of differences between infection 

methods and storage conditions for the two cherry varieties. Models were created for data filtered 

to the initial, middle, and final days of storage to analyse changes over time. Figure 28 and Figure 

66 illustrate the distances between sample groups at specific storage days, showing the evolution 

of separations across time. For the EB variety, SIMCA models generally indicated increasing 

differences between groups as storage progressed (Figure 28a, c, e). Interestingly, the opposite 

trend was observed for the UF variety, where distinctions between sample groups tended to 

diminish over time (Figure 66a, c, e). On the one hand, this could imply that the storage conditions 

may have a different impact on the spectral characteristics of each variety, potentially due to 



73 

 

differences in their response to the infection methods or their inherent fruit properties. On the other 

hand, it is also possible that, over time, spectral data of a certain variety may be so scattered that 

they result in relatively large overlaps of calculated data points in multidimensional space.  

 
Figure 27. Preliminary PCA on the NIR spectra of sour cherries when colouring was based on fruit 

treatment (sgol-2-21-0, msc): PCA score plots of cherries treated in different ways (a); PCA loading plot 

of EB cherries (b); PCA loading plot of UF cherries (c).  

The impact of storage temperature is evident, whereas the method of sample preparation is less so. 

Overall, no significant interclass distances were observed for any of the sample sets. This indicates 

that while storage temperature plays a crucial role in the storage of the cherries, the mode of 

preparation methods employed did not lead to detectable differences in the data analysed. During 

the SIMCA, prominent wavelengths contributing to the discriminations were also identified based 

on the discriminating power plots and are the following, by variety (Figure 28b, d, f, and Figure 

66b, d, f):  
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• EB sour cherries: 

Day 1: 1082.6, 1147.1, 1238.5, 1340.6, 1380.9, 1427.1, 1474.6, 1548.3, 1635.7 nm; 

Day 4: 1090.0, 1156.7, 1258.3, 1294.0, 1390.8, 1420.5, 1477.8, 1579.1, 1587.3,  

1637.7 nm; 

Day 7: 1034.3, 1139.9, 1232.6, 1423.8, 1486.3, 1559.6, 1632.7 nm; 
  

• UF sour cherries: 

Day 1: 1078.9, 1143.5, 1249.0, 1340.6, 1423.8, 1469.2, 1538.9, 1626.7 nm; 

Day 4: 1045.5, 1143.5, 1252.5, 1378.6, 1420.5, 1471.3, 1559.6, 1629.7 nm; 

Day 7: 1034.3, 1103.5, 1236.1, 1303.2, 1384.2, 1427.1, 1459.5, 1522.2, 1590.4.  

 
Figure 28. SIMCA on NIR spectra of EB cherries when discrimination was based on fruit treatment on 

certain storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1st day of storage (a); SIMCA 

discrimination power plot on the 1st day of storage (b); SIMCA interclass distances on the 4th day of storage 

(c); SIMCA discrimination power plot on the 4th day of storage (d); SIMCA interclass distances on the 7th 

day of storage (e); SIMCA discrimination power plot on the 7th day of storage (f).  
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As a supervised classification, spectral pre-treatment and NrPC-optimised LDA modelling was 

used to determine the accuracy with which the initial Monilinia conidium concentration can be 

determined based on the NIR spectra of sour cherries. For this classification, spectra recorded the 

day after inoculation were utilized. These spectra were further filtered based on sample preparation 

and storage conditions. This step was necessary because storage of the fruit under controlled 

environmental conditions started immediately after inoculation and we endeavoured to reduce the 

impact of environmental factors during the modelling.  

In the case of sour cherries, the classification was for a total of four different levels of conidial 

contamination. Table 35 and Table 36 summarise the classification performance regarding the 

initial conidial contamination of EB and UF cherries, respectively, and show quite a large 

variability in the classification accuracies. For the samples stored under refrigerated conditions, 

the average correct classification rates were between 63.1 - 85.1% during calibration and between 

30.5 - 42.0% during validation. For the samples stored at room temperature, the average correct 

classification rates during calibration were between 58.2 - 75.4%, while during validation, they 

ranged from 23.5 to 31.5%. Overall, the classification of samples stored in the refrigerator was 

slightly more accurate. The classification results are supported by the PCA-LDA score plots shown 

in Figure 29, Figure 30 and Figure 67. In the form of LDA discriminanting power plots, the 

wavelengths that contributed in some way to the classification were also obtained.  

 
Figure 29. PCA-LDA on NIR spectra of UF cherries when classification was based on initial conidial 

contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of 

“5 °C Injury” samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power 

plot of “5 °C Intact” samples (d).  
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Figure 30. PCA-LDA on NIR spectra of UF cherries when classification was based on initial conidial 

contamination: PCA-LDA score plot of “25 °C Injury” samples (e); LDA discriminating power plot of 

“25 °C Injury” samples (f); PCA-LDA score plot of “25 °C Intact” samples (g); LDA discriminating power 

plot of “25 °C Intact” samples (h).  

Due to the reproductive characteristics of the M. fructigena species involved in the experiments, 

only the samples infected through injury and stored at room temperature exhibited fungal activity. 

Table 13 shows, the specific fruits (i.e., parallelly prepared samples) that demonstrated the signs 

of Monilinia-caused decaying by sample group. This variation may be attributed to the structural 

and compositional inhomogeneity of the cherries. It was observed for each variety, that a higher 

initial concentration of conidia in the samples resulted in a greater likelihood and earlier 

manifestation of brown rot.  

Table 13. Date of appearance of visible signs of infection in sour cherries analysed by the hand-held NIR 

device, inoculated with conidial suspension in various concentrations through injury and stored at 25 °C.  

Variety 
Initial conidium 

concentration 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

EB ~ 0.15 con./ μL ‒ ‒ ‒ ‒ ‒ 

 ~ 1.5 con./ μL day 7 ‒ ‒ ‒ ‒ 

 ~ 15 con./ μL day 4 day 6 ‒ day 6 ‒ 

 ~ 150 con./ μL day 4 day 4 ‒ day 4 day 4 

UF ~ 0.17 con./ μL ‒ ‒ ‒ ‒ ‒ 

 ~ 1.7 con./ μL ‒ ‒ ‒ ‒ day 3 

 ~ 17 con./ μL day 3 day 2 day 4 day 2 day 2 

 ~ 170 con./ μL day 2 day 3 day 3 day 3 day 2 

 ‒ There were no clear signs of Monilinia activity in these samples  



77 

 

It was considered important to examine the spectral trend of samples showing signs of brown rot 

on different days of storage. For this, optimised PCA-LDA modelling was employed using only 

the spectra of those samples that exhibited signs of decay during the 7-day long storage. Prior 

modelling, we sample specifically filtered the data corresponding to the day of appearance of the 

rot (marked as “day 0”) ± 2-day interval and used this information to develop the classification 

models. A day-wise separation is illustrated in Figure 31 showing a semi-circular separation trend 

for the EB variety. Figure 31b and Figure 31d illustrate the discriminating power, the wavelengths 

that significantly contributed to highlight the mentioned trend.  

• EB sour cherries  

1048.0, 1130.2, 1229.1, 1290.6, 1322.5, 1359.7, 1390.8, 1415.0, 1466.0, 1498.0,  

1553.4, 1590.4, 1618.7 nm;  
 

• UF sour cherries 

1072.8, 1147.1, 1199.7, 1258.3, 1350.7, 1384.2, 1418.3, 1450.9, 1495.8, 1556.5,  

1601.5 nm.  

 

Figure 31. PCA-LDA on NIR spectra of sour cherries showing monilial activity when classification was 

based on the day of appearance of visible infection signs ± 2 days: PCA-LDA score plot of EB cherries (a); 

LDA discriminating power plot of EB cherries (b); PCA-LDA score plot of UF cherries (c); LDA 

discriminating power plot of UF cherries (d).  
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Table 37 summarises the average correct classification rates during model building and validation 

for the EB variety (77.2, 48.2%), and the UF variety (49.1, 31.7%), respectively. The results 

indicate that more accurate outcomes were characteristic of the EB variety. A higher degree of 

misclassification predominantly occurred between the data of adjacent days.  

Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on 

the NIR spectral data of sour cherries infected with Monilinia conidia and stored under various 

conditions were summarised. Taking into account the most contributing wavelengths of the two 

studied varieties together, Figure 32 presents the absorption bands of successful chemometric 

modelling with their approximate frequency values.  

 

Figure 32. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection 

on sour cherries with a hand-held NIR spectrometer.  

Research on the inappropriate management of cherries was conducted by Shao et al. (2019) who 

combined Vis-NIR reflection spectroscopy and least square-support vector machine (LS-SVM). 

The authors reported classification accuracy of 93% when discriminating intact, slightly, and 

severely damaged cherries. Szabo et al. (2023) investigated the applicability of NIR spectroscopy 

to detect the effect of various storage conditions (packed as control or modified atmosphere; stored 

at 3 or 5 °C) on sour cherries. With SIMCA, the authors distinguised samples with apparent error 

rates between 0 and 0.5 during prediction regardless of fruit maturity.  
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Investigation results on plums  

Figure 68 illustrates the spectra obtained with a hand-held NIR spectrometer for plums that were 

prepared and stored under different conditions. The spectra of TD and TP plums demonstrated 

significant overlap and scatter, indicating minimal differentiation based on storage conditions. The 

smoothing and msc correction performed on the NIR spectral data, followed by PCA analysis, 

confirmed the impact of storage conditions on the absorption properties of the samples (Figure 

33). For the TD variety, the first five components, for the TP variety, the first four components 

explained the 99% of the total variance in the data.  

 
Figure 33. Preliminary PCA on the NIR spectra of plums when colouring was based on fruit treatment 

(sgol-2-21-0, msc): PCA score plots of plums treated in different ways (a); PCA loading plot of TD plums 

(b); PCA loading plot of TP plums (c). 

In the case of the TD variety, the PCA score plots indicate quite sparse results. In contrast, a more 

pronounced trend emerges for the TP variety, particularly along the third PC. This difference 

suggests that the TP variety exhibits more distinct patterns in the obtained spectral data, potentially 

making it easier to classify based on its spectral characteristics (Figure 33a). The PCA loadings 
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for the highlighted two PCs per variety (Figure 33b, c), the relevant wavelengths that best describe 

separation according to fruit handling are the following:  

• Topend (TD) plums  

PC 1 loading:  1055.5, 1363.0, 1447.7 nm; 

PC 3 loading: 1130.2, 1274.5, 1393.0, 1454.2, 1535.8 nm; 
  

• Topoend plus (TP) plums  

PC 2 loading: 1052.9, 1221.1, 1301.1, 1424.9 nm; 

PC 3 loading: 1125.4, 1275.8, 1395.3, 1470.2 nm. 

The data, which had been pre-processed with smoothing and msc correction for PCA, was 

subjected to SIMCA to determine the statistical significance of differences between infection 

methods and storage conditions for the two plum varieties. Models were created for data filtered 

to the initial, middle, and final days of storage to analyse changes over time. Figure 34 and Figure 

69 illustrate the distances between sample groups at specific storage days, showing the evolution 

of separations across time.  

For the TD variety, SIMCA models based on recorded NIR spectra showed slight increasing 

differences between groups from day 1 to day 4, then moderation by day 7. (Figure 69a, c, e). 

Interestingly, in the case of the TP variety, the highest interclass distances were observed on the 

day 1. These interclass distances markedly decreased by the day 4, followed by a slight increase 

on day 7 (Figure 34a, c, e). These patterns suggest an initial clear separation in characteristics, 

which then diminished, possibly due to similar progression in the fruit's condition over time. The 

slight resurgence on day 7 might indicate changes in spoilage factors that led to renewed 

differentiation among the groups. The reduction in the distances between sample groups can mean 

that the spectra were significantly dispersed, meaning that the calculated data points overlap and 

thus less distant from each other in multidimensional space.  

Unlike the spectra recorded for the sour cherries infected in different ways, the different storage 

conditions had a less pronounced effect on the plum sample set. This suggests that the plums 

physical characteristics were not as sensitive to temperature variation during storage. Overall, no 

significant interclass distances were observed for any of the evaluated datasets. During the SIMCA 

modelling, prominent wavelengths were also identified. These plots highlight the specific 

wavelengths contributing to the discrimination were also identified based on the discriminating 

power plots. The absorption bands showing the peaks are nearly coincident (Figure 34b, d, f, and 

Figure 69b, d, f):  

• TD plums 

Day 1: 1062.9, 1173.5, 1274.5, 1384.2, 1427.1, 1481.0, 1535.8, 1635.7 nm; 

Day 4: 1045.5, 1126.6, 1212.7, 1277.9, 1368.6, 1405.2, 1469.2, 1585.3 nm; 

Day 7: 1045.5, 1122.9, 1166.3, 1238.5, 1277.9, 1363.0, 1405.2, 1447.7, 1474.6, 1522.2,  

1610.6 nm 
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• TP plums  

Day 1: 1049.2, 1144.8, 1234.0, 1270.0, 1327.2, 1379.8, 1452.0, 1514.6, 1585.8, 1631.0 nm 

Day 4: 1021.7, 1108.4, 1125.4, 1250.3, 1388.7, 1473.4, 1496.8, 1511.5, 1585.8,  

1596.9 nm; 

Day 7: 1021.7, 1042.9, 1074.0, 1121.8, 1288.5, 1395.3, 1461.6, 1488.3, 1566.4, 1577.7,  

1600.0, 1628.0 nm 

 
Figure 34. SIMCA on NIR spectra of TP plums when discrimination was based on fruit treatment on certain 

storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1st day of storage (a); SIMCA 

discrimination power plot on the 1st day of storage (b); SIMCA interclass distances on the 4th day of storage 

(c); SIMCA discrimination power plot on the 4th day of storage (d); SIMCA interclass distances on the 7th 

day of storage (e); SIMCA discrimination power plot on the 7th day of storage (f).  

As a supervised classification, optimised PCA-LDA modelling was used to determine the accuracy 

with which the initial Monilinia conidium concentration could be determined from the NIR spectra 

of plums. For this purpose, spectra recorded the day after inoculation were utilized. These spectra 
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were further filtered according to sample preparation and storage conditions to reduce the impact 

of environmental factors during the modelling process as the fruit under controlled environmental 

conditions started immediately after inoculation.  

In the case of plums, the classification was for a total of three different levels of conidial 

contamination. Table 38 and Table 39 summarise the classification performance regarding the 

initial conidial contamination of TD and TP plums, respectively. For the samples stored under 

refrigerated conditions, the average correct classification rates were between 74.2 - 92.9% during 

calibration and between 34.0 - 50.4% during validation. For the samples stored at room 

temperature, the average correct classification rates during calibration were between 77.8 - 89.4%, 

while during validation, they ranged from 39.2 to 51.6%. Overall, the classification of samples 

stored at room temperature was slightly more accurate.  

The classification results are supported by the PCA-LDA score plots shown in Figure 35, Figure 

36 and Figure 70. In the form of LDA discriminating power plots, the wavelengths that contributed 

in some way to the classification were also obtained and included in the figures.  

 
Figure 35. PCA-LDA on NIR spectra of TP plums when classification was based on initial conidial 

contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of 

“5 °C Injury” samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power 

plot of “5 °C Intact” samples (d).  



83 

 

 
Figure 36. PCA-LDA on NIR spectra of TP plums when classification was based on initial conidial 

contamination: PCA-LDA score plot of “22 °C Injury” samples (e); LDA discriminating power plot of 

“22 °C Injury” samples (f); PCA-LDA score plot of “22 °C Intact” samples (g); LDA discriminating power 

plot of “22 °C Intact” samples (h).  

It was also observed for plums that Monilinia activity was visible in samples that were inoculated 

via injury and stored at room temperature. The fungal proliferation was inhomogeneous, even in 

samples that were prepared the same way. This variability is fruit specifically summarised in Table 

14. This variation can also be attributed to the structural and compositional inhomogeneity of the 

plums. Unlike the sour cherries, several plum samples showed signs of rotting even with relatively 

low initial conidium contamination. This difference can be partly attributed to the lower acidity of 

plums compared to sour cherries, and thus have more favourable conditions for fungal growth. 

The acidity in fruits often acts as a natural inhibitor to fungal proliferation.  

Table 14. Date of appearance of visible signs of infection in plums analysed by a hand-held NIR device, 

inoculated with conidial suspension in different concentrations through injury and stored at 22 °C.  

Variety 
Initial conidium 

concentration 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

TD  ~ 1.05 con./ μL ‒ day 5  day 3  day 5  day 5  

 ~ 10.5 con./ μL ‒ day 3  day 4  day 3  day 7  

 ~ 105 con./ μL day 3  day 3  ‒ day 4  day 3  

TP  ~ 2.31 con./ μL day 8  day 7  ‒ ‒ day 5  

 ~ 23.1 con./ μL day 4  day 3  day 6  day 4  day 7  

 ~ 231 con./ μL ‒ day 3  day 3  day 6  day 3  

 ‒ There were no clear signs of Monilinia activity in these samples 
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For plums, we also considered it important to examine the spectral trend of samples showing signs 

of brown rot on different days of storage. For this, optimised PCA-LDA modelling was employed 

using only the spectra of those samples that exhibited signs of decay during the 7-day long storage. 

Prior modelling, we sample specifically filtered the data corresponding to the day of appearance 

of the rot (marked as “day 0”) ± 2-day interval and used this information to develop the 

classification models. The day-wise separation is illustrated in Figure 37 revealing a semi-circular 

separation trend for the TD variety. Figure 37b and Figure 37d show the discriminating power, the 

wavelengths that significantly contributed to classify the mentioned trend.  

• TD plums  

1072.8, 1107.1, 1133.8, 1160.3, 1242.0, 1312.3, 1353.0, 1399.7, 1423.8, 1469.2, 1492.7,  

1515.9, 1545.1, 1576.1, 1604.6, 1629.7 nm;  
 

• TP plums  

1066.5, 1114.5, 1155.6, 1250.3, 1279.3, 1311.3, 1371.0, 1392.0, 1424.9, 1458.4, 1545.9,  

1600.0, 1635.9 nm.  

 
Figure 37. PCA-LDA on NIR spectra of plums showing monilial activity when classification was based 

on the day of appearance of visible infection signs ± 2 days: PCA-LDA plot of TD plums (a); LDA 

discriminating power plot of TD plums (b); PCA-LDA plot of TP plums (c); LDA discriminating power 

plot of TP plums (d).  
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Table 40 summarises the average correct classification rates during model building and validation 

for the TD (61.0, 49.6%) and TP variety (38.9, 25.3%), respectively. The overlap of the calculated 

data points, especially for the TP variety, is also reflected in the classification results. A high 

degree of misclassification mostly occurred between adjacent days for the TD variety.  

Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on 

the NIR spectral data of plums infected with Monilinia conidia and stored under various 

environmental conditions were summarised. Taking into account the most contributing 

wavelengths of the two studied varieties together, Figure 38 presents the absorption bands of 

successful chemometric modelling with their approximate frequency values.  

 
Figure 38. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection 

on plums with hand-held NIR spectrometer.  

Li et al. (2017) conducted research specifically related to the storage of plums with NIR technique 

to predict certain quality traits (e.g., firmness, flesh colour, SSC, TA, pH) in “Friar” plums. Their 

results showed that the flesh colour is be an important feature in post-ripening during low-

temperature storage. Guo et al. (2022) employed various classification models (e.g., LDA, SVM, 

PLS, general LM) to determine storage time also for plums stored in cold environment, and 

achieved accuracy above 0.9 with LDA. Zhao et al. (2016) combined NIR spectroscopy with back 

propagation-ANN and could discriminate plums with browning flesh with 100% accuracy. Vitalis 

et al. (2021a, 2021b) also examined the effects of ambient and refrigerated storage on NIR spectral 

properties of plums infected with M. fructigena mycelium in different ways. The authors could 

indisputably detect samples that did not yet show visible signs of infection with PCA-LDA.  
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5.2.2. Detection results with a hyperspectral imaging  

Investigation results on sour cherries  

Figure 71 illustrates the spectra acquired with a benchtop hyperspectral imaging system from sour 

cherries prepared and stored under different conditions. In both varieties, overlapping, at the same 

time consistent trend emerges in the average spectra obtained on specific surfaces of the fruits. 

The raw and second derivative spectra potently demonstrate how deviations from optimal storage 

conditions manifest in the spectral properties.  

The smoothing and msc correction performed on the HSI spectral data, followed by PCA analysis, 

confirmed the significant impact of storage conditions on the absorption properties of the samples 

(Figure 39). For the EB variety, the first three, for the UF variety, the first four PCs explained the 

99% of the total variance in the data.  

 
Figure 39. Preliminary PCA on the HSI spectra of sour cherries when colouring was based on fruit 

treatment (sgol-2-21-0, msc): PCA score plots of cherries treated in different ways (a); PCA loading plot 

of EB cherries (b); PCA loading plot of UF cherries (c).  
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Based on the PCA score plots (Figure 39a), for the EB variety, the greatest separation of treatment 

groups is observed along the first and third PCs, while for the UF variety, it was more evident 

along the second and third PCs. The PCA loadings for the highlighted two PCs per variety (Figure 

39b, c), the relevant wavelengths that best describe separation according to fruit handling are the 

following:  

• Érdő bőtermő (EB) sour cherries  

PC 1 loading:  1069.8, 1180.9, 1345.0, 1446.4 nm;  

PC 3 loading: 1137.4, 1229.2, 1383.7 nm;  
  

• Újfehértói (UF) sour cherries  

PC 2 loading: 1065.0, 1156.7, 1287.1, 1369.2, 1446.4 nm;  

PC 3 loading: 1142.3, 1248.5, 1383.7, 1465.7 nm.  

The data pre-treated for PCA was also subjected to SIMCA to determine the statistical significance 

of differences between infection methods and storage conditions for the two cherry varieties. 

Models were created for data filtered to the initial, intermediate, and final days of storage to 

analyse changes over time. Figure 40 and Figure 72 illustrate how the interclass distances evolved 

on specific storage days.  

The SIMCA models based on HSI spectra of the EB variety showed nearly uniform differences 

around the middle of storage, however, the impact of the different storage conditions became more 

pronounced close to the end of storage (Figure 40a, c, e). The UF variety exhibited the same trend, 

though the interclass distances were smaller, indicating less pronounced differences between the 

groups (Figure 72a, c, e).  

These results support those obtained during PCA, and that the samples analysed with HSI showed 

similar trends during controlled storage, however, no significant interclass distances were 

observed for any of the sample sets. It was confirmed that storage temperature plays a crucial role 

in the storage of the cherries, the mode of preparation methods employed did not lead to detectable 

differences During the SIMCA modelling, prominent wavelengths were also identified. These 

plots highlight the specific wavelengths that significantly contribute to the discrimination of the 

sample groups. The SIMCA discriminanting power plots illustrate this in Figure 40b, d, f for the 

EB variety, and Figure 72b, d, f for the UF variety, respectively.  

• EB sour cherries  

Day 1: 1040.9, 1132.6, 1243.6, 1369.2, 1403.0, 1456.1, 1543.0, 1610.6 nm;  

Day 4: 1050.5, 1094.0, 1161.6, 1248.5, 1330.6, 1393.3, 1441.6, 1557.5, 1615.4 nm;  

Day 7: 1031.2, 1094.0, 1147.1, 1238.8, 1369.2, 1441.6, 1586.4 nm;  
 

• UF sour cherries  

Day 1: 1045.7, 1132.6, 1238.8, 1253.3, 1354.7, 1388.5, 1446.4, 1523.7, 1615.4 nm;  

Day 3: 1036.0, 1132.6, 1224.3, 1238.8, 1330.6, 1378.8, 1431.9, 1465.7, 1586.4, 1620.2 nm;  

Day 7: 1031.2, 1127.8, 1234.0, 1374.0, 1446.4, 1518.8, 1591.3 nm.  
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Figure 40. SIMCA on the HSI spectra of EB cherries when discrimination was based on fruit treatment on 

certain storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1st day of storage (a); SIMCA 

discrimination power plot on the 1st day of storage (b); SIMCA interclass distances on the 4th day of storage 

(c); SIMCA discrimination power plot on the 4th day of storage (d); SIMCA interclass distances on the 7th 

day of storage (e); SIMCA discrimination power plot on the 7th day of storage (f).  

Optimised PCA-LDA modelling was used as supervised classification to determine the accuracy 

with which the initial Monilinia conidium concentration can be determined from the HSI spectra 

of sour cherries. For this classification, spectra recorded the day after inoculation were utilized. 

The spectra were further filtered according to mode of infection and storage conditions to reduce 

the impact of environmental factors during the modelling.  

In the case of sour cherries, the classification was for a total of four different levels of conidial 

contamination. Table 41 and Table 42 summarise the classification performance regarding the 

initial conidial contamination of EB and UF cherries, respectively. For the samples stored under 

refrigerated conditions, the average correct classification rates were between 85.5 - 98.0% during 

calibration and between 33.1 - 53.3% during validation. For the samples stored at room 
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temperature, the average correct classification rates during calibration were between 61.6 - 89.1%, 

during validation, they ranged from 32.5 - 46.3%. The classification accuracy of the HSI was better 

than that of the data recorded with the hand-held NIR instrument.  

The classification results are supported by the PCA-LDA score plots shown in Figure 41, Figure 

42 and Figure 73. In the discriminant space bounded by LD 1 and LD 2, the data points (i.e., 

scores) representing the concentration levels of each suspension were less overlapped in contrast 

to the data recorded with the hand-held NIR device. In the form of LDA discriminanting power 

plots, the wavelengths that contributed in some way to the classification were also obtained.  

 
Figure 41. PCA-LDA on the HSI spectra of UF cherries when classification was based on initial conidial 

contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of 

“5 °C Injury” samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power 

plot of “5 °C Intact” samples (d).  

In case of sour cherries analysed with HSI, it was also typical that Monilinia activity was visible 

in the samples that were inoculated via injury and stored at room temperature. It was also true for 

the cherry samples prepared for HSI measurements that fungal proliferation was also 

inhomogeneous, even for samples prepared in the same way, as shown in Table 15. Similar to the 

sour cherries examined with the hand-held NIR spectrometer, the EB samples exhibited more 

moderated Monilinia activity even for relatively high initial conidium concentration. This could 

be attributed to the less favourable physicochemical properties of this variety, which may not have 

supported the spread of the fungus. Such properties may include a more bounded tissue structure, 

higher acidity, or the presence of compounds with antioxidant properties in the fruits.  
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Figure 42. PCA-LDA on the HSI spectra of UF cherries when classification was based on initial conidial 

contamination: PCA-LDA score plot of “25 °C Injury” samples (e); LDA discriminating power plot of 

“25 °C Injury” samples (f); PCA-LDA score plot of “25 °C Intact” samples (g); LDA discriminating power 

plot of “25 °C Intact” samples (h).  

It was considered essential to investigate the effectiveness of HSI in tracking the spectral variation 

of fruits in decay, quasi-independently of the day of storage when visible signs of infection 

appeared on the fruits. Optimised PCA-LDA was employed on specific data corresponding to 

samples that exhibited signs of decay during the 7-day long storage and the day of appearance of 

the rot (marked as “day 0”) ± 2-day interval.  

Table 15. Date of appearance of visible signs of Monilinia infection in sour cherries analysed by HSI, 

inoculated with conidial suspension of different concentrations through injury and stored at 25 °C.  

Variety 
Initial conidium 

concentration 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

EB ~ 0.15 con./ μL ‒ ‒ ‒ ‒ ‒ 

 ~ 1.5 con./ μL ‒ ‒ ‒ ‒ ‒ 

 ~ 15 con./ μL day 4  ‒ day 4 ‒ ‒ 

 ~ 150 con./ μL day 2  day 4 day 3 day 3 day 6 

UF ~ 0.17 con./ μL ‒ ‒ ‒ ‒ ‒ 

 ~ 1.7 con./ μL ‒ ‒ ‒ ‒ ‒ 

 ~ 17 con./ μL day 5  day 5  day 5  day 5  day 5  

 ~ 170 con./ μL day 5  day 2 day 2 day 3 day 5  

 ‒ There were no clear signs of Monilinia activity in these samples 
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Table 43 summarises the classification accuracies during model building and validation for the EB 

variety (72.6, 25.9%) and for the UF variety (86.5, 57.4%), respectively. More accurate outcomes 

were characteristic of the UF variety, while there was significant misclassification to adjacent days 

for the EB samples. In the PCA-LDA score plots shown in Figure 43, a reversed V-shaped 

separation trend appears across the different days. The “0 day” data points, representing the 

samples that began showing signs of decay, are prominently noticeable in this separation. The 

dominant wavelengths of these specific analyses are shown in Figure 43b and Figure 43d, and 

listed below:  

• EB sour cherries  

1065.0, 1108.5, 1147.1, 1166.4, 1267.8, 1301.6, 1349.9, 1374.0, 1412.6, 1441.6, 1470.6,  

1543.0 1576.8 nm;  
 

• UF sour cherries  

1060.2, 1113.3, 1132.6, 1147.1, 1166.4, 1263.0, 1296.8, 1330.6, 1359.5, 1378.8, 1407.8,  

1431.9, 1480.2, 1538.2, 1596.1nm.  

 
Figure 43. PCA-LDA on the HSI spectra of sour cherries showing monilial activity when classification 

was based on the day of appearance of visible infection signs ± 2 days: PCA-LDA score plot of EB cherries 

(a); LDA discriminating power plot of EB cherries (b); PCA-LDA score plot of UF cherries (c); LDA 

discriminating power plot of UF cherries (d).  
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Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on 

the hyperspectral data of sour cherries infected with Monilinia conidia and stored under various 

environmental conditions were summarised. Taking into account the most contributing 

wavelengths of the two studied varieties together, Figure 44 presents the absorption bands of 

successful chemometric modelling with their approximate frequency values.  

 
Figure 44. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection 

on sour cherries with hyperspectral imaging.  

There are relatively few examples in the literature of hyperspectral analysis of deterioration of 

intact cherries, however, also stone fruit peach is significant. Sun, Wei, et al. (2018) conducted 

experiments on peaches infected with Botrytis cinerea, R. stolonifera and Colletotrichum 

acutatum. The authors reported 82.5, 92.5 and 100% classification accuracies for slightly-decayed, 

moderately-decayed and severely-decayed samples, respectively, when combined hyperspectral 

image processing and deep belief network (DBN). To our knowledge, the first spectral Monilinia 

detection was performed by Liu et al. (2020), who could completely distinguish peaches with HIS-

based PCA according to the degree of infection (acceptable, moldy, highly moldy), and achieved 

R2 of 0.84 and RMSE of 0.78 when predicting fungal colony counts.  
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Investigation results on plums  

Figure 45 illustrates the spectra acquired with a benchtop hyperspectral imaging system from 

plums prepared and stored under different conditions. In both varieties, overlapping, at the same 

time consistent trend emerges in the average spectra obtained on specific spatial areas of the fruits. 

The raw and second derivative spectra demonstrate indubitably how deviations from optimal 

storage conditions manifest in the spectral properties.  

 
Figure 45. HSI spectra of plums treated in different ways: raw spectra of TD plums (a); raw spectra of TP 

plums (b); 2nd derivative spectra of TD plums (c); 2nd derivative spectra of TP plums (d).  

Smoothing and msc correction performed on the HSI spectral data of plums, followed by PCA 

confirmed the impact of storage conditions on the absorption characteristics of the samples. For 

the two plum varieties, the first three PCs explained the 99% of the total variance in the data. Based 

on the PCA score plots (Figure 74a), it can be observed how sharply the spectral differences along 

the third PC are outlined, especially for the TP variety. Respectively for the TD and TP variety, 

the main PCA loadings that best describe separation according to fruit handling are the following 

(Figure 74b, c):  

• Topend (TD) plums  

PC 2 loading:  1069.8, 1151.9, 1263.0, 1364.3, 1446.4 nm; 

PC 3 loading: 1122.9, 1238.8, 1374.0, 1465.7 nm; 
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• Topend plus (TP) plums 

PC 2 loading: 1079.5, 1142.3, 1267.8, 1369.2, 1456.1 nm; 

PC 3 loading: 1132.6, 1243.6, 1383.7 nm. 

The pre-treated data for PCA was subjected to SIMCA to determine the statistical significance of 

differences between infection methods and storage conditions for the two plum varieties. Models 

were created for data filtered to the initial, intermediate, and final days of storage to evaluate 

changes over time. Figure 46 and Figure 75 illustrate how the interclass distances evolved on 

specific storage days.  

 
Figure 46. SIMCA on the HSI spectra of TD plums when discrimination was based on fruit treatment on 

certain storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1st day of storage (a); SIMCA 

discrimination power plot on the 1st day of storage (b); SIMCA interclass distances on the 4th day of storage 

(c); SIMCA discrimination power plot on the 4th day of storage (d); SIMCA interclass distances on the 7th 

day of storage (e); SIMCA discrimination power plot on the 7th day of storage (f).  
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According to the SIMCA based on HSI spectra of the TD variety, bigger interclass distances were 

characteristic on the first day of storage, which almost levelled out by the middle of the storage 

period, and then showed overall smaller, but staggered distances by the end of storage (Figure 46a, 

c, e). In case of the TP variety, the different storage conditions were more evident in the interclass 

distances. By the middle of the storage period, the distances demonstrated salient differences 

(Figure 75a, c, e). Samples of the TD variety appeared to be less affected by storage under different 

conditions compared to TP samples, and this also supports the findings of PCA.  

Overall, no significant interclass distances were observed for any of the sample sets indicating that 

while storage temperature can play a crucial role in the storage of the plums, the mode of 

preparation did not lead to significant differences During the SIMCA modelling, prominent 

wavelengths were also identified. The SIMCA discriminating power plots highlight the specific 

wavelengths that significantly contribute to the discrimination of the sample groups, respectively 

(Figure 46b, d, f and Figure 75b, d, f):  

• TD plums 

Day 1: 1040.9, 1103.6, 1176.1, 1267.8, 1330.6, 1378.8, 1441.6, 1572.0, 1629.9 nm;  

Day 4: 1045.7, 1151.9, 1229.2, 1349.9, 1412.6, 1480.2, 1523.7, 1620.2 nm;  

Day 7: 1026.4, 1094.0, 1166.4, 1243.6, 1291.9, 1364.3, 1398.1, 1465.7, 1533.3, 1591.3 nm;  
  

• TP plums  

Day 2: 1050.5, 1084.3, 1166.4, 1214.7, 1253.3, 1417.5, 1494.7, 1576.8, 1639.6 nm;  

Day 4: 1026.4, 1089.1, 1166.4, 1214.7, 1253.3, 1316.1, 1340.2, 1427.1, 1489.9, 1562.3 nm;  

Day 7: 1036.0, 1103.6, 1151.9, 1229.2, 1374.0, 1412.6, 1480.2, 1586.4 nm.  

Optimised PCA-LDA modelling was used to determine the accuracy with which the initial 

Monilinia conidium concentration can be determined from the HSI spectra of plums. For this 

classification, spectra recorded the day after inoculation were utilized. The spectra were further 

filtered according to mode of infection and storage conditions to reduce the impact of 

environmental factors during the modelling.  

In the case of plums, the classification was for a total of three different levels of conidial 

contamination. Table 44 and Table 45 summarise the classification performance regarding the 

initial conidial contamination of TD and TP plums, respectively. For the samples stored under 

refrigerated conditions, the average correct classification rates were between 83.8 - 96.9% during 

calibration and between 50.0 - 69.5% during validation. For the samples stored at room 

temperature, the average correct classification rates during calibration were between 81.6 - 100%, 

while during validation, they ranged from 42.8 to 75.2%. It was also true for plums that the 

classification accuracy of the HSI was better than that of the data recorded with the hand-held NIR 

instrument. These results are supported by the PCA-LDA score plots presented in Figure 47 and 

Figure 76. In the discriminant space bounded by LD 1 and LD 2, the data points (i.e., scores) 

representing the concentration levels of each suspension separated well, in some cases almost 

completely. In the form of LDA discriminating power plots, the most contributing wavelengths 

were also determined.  
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Figure 47. PCA-LDA on the HSI spectra of TD plums when classification was based on initial conidial 

contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of 

“5 °C Injury” samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power 

plot of “5 °C Intact” samples (d); PCA-LDA score plot of “22 °C Injury” samples (e); LDA discriminating 

power plot of “22 °C Injury” samples (f); PCA-LDA score plot of “22 °C Intact” samples (g); LDA 

discriminating power plot of “22 °C Intact” samples (h).  
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In case of plums analysed with HSI, it was also typical that Monilinia activity was visible in the 

samples that were inoculated via injury and stored at room temperature. It was also true for the 

plum samples prepared for HSI measurements that fungal proliferation was inhomogeneous, even 

for samples prepared in the same way, as shown in Table 16. Similar to the samples analysed with 

the hand-held instrument, plum samples showed signs of the infection even at relatively low initial 

conidium concentrations. This is due to the more favourable characteristics for Monilinia 

reproduction in the fruits.  

Table 16. Date of appearance of visible signs of Monilinia infection in plums analysed by HSI, inoculated 

with conidial suspensions of different concentrations through injury and stored at 22 °C.  

Variety 
Initial conidium 

concentration 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

TD  ~ 1.05 con./ μL ‒ day 4 day 3  day 5  day 5  

 ~ 10.5 con./ μL day 5  day 3  day 3  day 3  ‒ 

 ~ 105 con./ μL ‒ day 4  day 5  day 2 ‒ 

TP  ~ 2.31 con./ μL day 4 ‒ day 5  day 6 day 7  

 ~ 23.1 con./ μL day 4  day 4  day 6  day 3  day 3  

 ~ 231 con./ μL day 4 day 4 day 2 day 3  day 4 

 ‒ There were no clear signs of Monilinia activity in these samples  

It was considered essential to investigate the effectiveness of HSI in tracking the spectral variation 

of plums in decay, quasi-independently of the day of storage when visible signs of infection 

appeared on the fruits. Optimised PCA-LDA was employed on specific data corresponding to 

samples that exhibited signs of decay during the 7-day long storage and the day of appearance of 

the rot (marked as “day 0”) ± 2-day interval. Table 46 summarises the classification accuracies 

during model building and validation for the TD (65.3, 46.5%) and TP variety (57.3, 33.5%), 

respectively. The results indicate more accurate outcomes for the TD variety, while for the TP, 

there was significant misclassification not only to adjacent days. In the PCA-LDA score plots of 

the two varieties (Figure 48a, c), almost identical V-shaped separation trend appears in the 

discriminant space displayed. The dominant wavelengths for this specific modelling are the 

following (Figure 48b, d):  

• TD plums  

1060.2, 1113.3, 1132.6, 1147.1, 1171.2, 1234.0, 1296.8, 1320.9, 1349.9, 1383.7, 1403.0,  

1431.9, 1470.6, 1494.7, 1523.7, 1557.5, 1596.1 nm;  
 

• TP plums  

1065.0, 1113.3, 1147.1, 1267.8, 1282.3, 1316.1, 1378.8, 1417.5, 1436.8, 1475.4, 1514.0,  

1547.8, 1586.4 nm.  

Prominent wavelengths obtained as a result of the PCA, SIMCA and PCA-LDA models built on 

the hyperspectral data of plums infected with Monilinia and stored under various environmental 

conditions were summarised. Taking into account the most contributing wavelengths of the two 

studied varieties, Figure 50 presents the absorption bands of successful chemometric modelling 

with their approximate frequency values.  
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Figure 48. PCA-LDA on the HSI spectra of plums showing monilial activity when classification was based 

on the day of appearance of visible infection signs ± 2 days: PCA-LDA score plot of TD plums (a); LDA 

discriminating power plot of TD plums (b); PCA-LDA score plot of TP plums (c); LDA discriminating 

power plot of TP plums (d).  

 
Figure 49. Absorbance bands frequently observed in chemometric modelling results of Monilinia detection 

on plums with hyperspectral imaging.   
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5.3. Determination of fruit juice enrichment with NIR spectroscopy  

This subsection summarises the accuracy achieved in detecting and predicting plant extracts added 

to fruit juices in various combinations and concentrations using hand-held and benchtop NIR 

spectroscopic devices. The modelling results based on spectra recorded with the different 

instruments are presented in comparison, as the same samples were analysed with both devices.  

5.3.1. Detection results on sour cherry juices  

Figure 77 presents the raw spectra obtained using the two instruments after the enrichment of sour 

cherry juices with various concentrations of plant extracts. The two instruments operate based on 

fundamentally different measurement setups. The hand-held device captures transflectance, while 

the benchtop instrument records transmission spectra. The spectra obtained with the benchtop 

instrument exhibited higher variability in the data. Besides, when applying second derivative pre-

treatment, two peaks emerge between 1400-1500 nm, unlike the data recorded with the hand-held 

device (Figure 77c, d). PCA performed after smoothing and msc correction also confirms the 

differences between the instruments, and thus in the spectral data (Figure 50).  

 
Figure 50. PCA on the NIR spectra of sour cherry juices when colouring was based on total extract content: 

PCA score plots on the data recorded with the hand-held NIR device (sgol-2-21-0, msc) (a); PCA score 

plots on the data recorded with the benchtop NIR device (sgol-2-43-0, msc) (b); PCA loading plot on the 

data recorded with the hand-held NIR device (c); PCA loading plot on the data recorded with the benchtop 

NIR device (d).  
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Based on the PCA score plots, separation trend according to the total extract content was more 

apparent along different PCs for the two instruments, respectively. For the hand-held device, this 

was observed mainly along the second and third PCs. In contrast, with the benchtop instrument, 

the separation based on extract content was already evident along the first and second PCs (Figure 

50a, b). These are supported by that for the hand-held device, the first three, whereas for the 

benchtop device data, the first two PCs explained the 99% of the total variance in the data. Based 

on the two PCA loadings highlighted by NIR instrument, the relevant wavelengths that best 

describe separation according to total extract concentration are the following (Figure 50c, d):  

• Hand-held NIR instrument  

PC 2 loading:  1155.9, 1409.8, 1515.1 nm;  

PC 3 loading: 1292.2, 1403.6, 1471.8, 1570.9 nm;  
  

• Benchtop NIR instrument  

PC 1 loading: 1368.4, 1445.9 nm;  

PC 2 loading: 1155.3, 1414.8, 1490.8 nm.  

Optimised PCA-LDA modelling was employed as a supervised classification method to determine 

the effectiveness of distinguishing between sour cherry juice samples containing simple, binary, 

or ternary combinations of plant extracts. The modelling involved all extract concertation levels; 

and the results obtained after the optimised spectral pre-processing are illustrated in Figure 51.  

The PCA-LDA score plots displayed reveal a logical overlap among the juice blends. Particularly 

in the modelling based on data of the benchtop NIR instrument, it is evident that as the complexity 

of the blends increases, the data points representing these samples show a greater degree of 

superimposition of points corresponding to samples of partially similar compositions. In this 

highlighted example, the simple blends are arranged in a triangular shape within the space defined 

by LD 1 and LD 2. The vertices of the triangle represent the individual simple blends, while the 

binary blends are positioned between these vertices. At the centre, the ternary blends are located, 

potently illustrating how the complexity of the mixtures affects their positioning in the 

discriminant space (Figure 51c). 

Table 17 summarises the classification results regarding sour cherry juices and their blends. The 

classification accuracies for the hand-held device data were 66.65 and 42.45%, while for the 

benchtop spectrometer data 71.67 and 56.33% during model building and validation, respectively. 

It was observed for the calibration sample sets that misclassification occurred primarily with 

samples containing extracts in binary or ternary blends. In addition, wavelengths that played a 

significant role in discrimination among juice blends were also identified based on their 

discriminating power plots (Figure 51b, d):  

• Hand-held NIR device: 1106.3, 1131.1, 1279.8, 1329.3, 1354.1, 1385.1, 1409.8, 1434.6,  

1453.2, 1478.0, 1509.0v1533.7, 1558.5, 1583.3 nm;  

• Benchtop NIR device: 1257.5, 1352.1, 1382.0, 1405.3, 1427.8, 1447.6, 1471.5, 1497.9,  

1542.3 nm.  



101 

 

 
Figure 51. PCA-LDA on the NIR spectra of sour cherry juices when classification was based on the type 

of dosed plant extract: PCA-LDA score plot on the data recorded with the hand-held NIR device (a); LDA 

discriminating power plot on the data recorded with the hand-held NIR device (b); PCA-LDA score plot 

on the data recorded with the benchtop NIR device (c); LDA discriminating power plot on the data recorded 

with the benchtop NIR device (d).  

It was considered important to investigate the accuracy with which the extract content of all the 

added extracts could be distinguished in sour cherry juices, quasi independently regardless of the 

composition of blends involved. For this purpose, optimised PCA-LDA modelling was also 

applied.  

Table 47 summarises the classification results regarding sour cherry juices and their blends. The 

classification accuracies for the hand-held device data were 71.73 and 49.62%, while for the 

benchtop spectrometer data 76.02 and 58.29% during model building and validation, respectively. 

Misclassification was typically to adjacent lower or higher concentration levels.  
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Table 17. PCA-LDA on the spectra of sour cherry juices recorded different NIR instruments when classification was based on the type of plant extract added.  

  Juice blends  Juice + CBE + GSE + PGE +(CBE+GSE) +(GSE+PGE) +(PGE+CBE) +(CBE+GSE+PGE) Classification accuracy 

MicroNIR Calibration Juice 93.89 5.56 0.93 6.02 5.56 1.39 7.41 0.93 66.65% 

hand-held   Juice+CBE 2.78 79.63 1.39 0.00 3.70 0.00 2.78 12.96  

device  Juice+GSE 0.00 0.00 58.33 0.00 13.43 6.02 0.93 3.70  

*  Juice+PGE 0.00 0.00 2.78 69.91 0.00 4.63 16.67 1.39  

  Juice+(CBE+GSE) 0.00 0.00 13.43 0.00 62.04 6.48 0.00 6.94  

  Juice+(GSE+PGE) 0.00 0.00 5.09 1.39 5.56 62.50 6.48 8.80  

  Juice+(PGE+CBE)  3.33 9.72 16.20 22.69 0.93 5.09 52.31 10.65  

  Juice+(CBE+GSE+PGE) 0.00 5.09 1.85 0.00 8.80 13.89 13.43 54.63  

 Validation Juice 71.11 11.11 3.70 16.67 11.11 5.56 18.52 0.00 42.45% 
  Juice+CBE 11.11 55.56 5.56 0.00 7.41 1.85 12.96 24.07  

  Juice+GSE 0.00 1.85 42.59 0.00 20.37 16.67 0.00 5.56  

  Juice+PGE 0.00 0.00 11.11 62.96 0.00 7.41 27.78 5.56  

  Juice+(CBE+GSE) 0.00 7.41 14.81 0.00 31.48 9.26 0.00 7.41  

  Juice+(GSE+PGE) 0.00 5.56 7.41 5.56 12.96 27.78 11.11 14.81  

  Juice+(PGE+CBE)  11.11 9.26 5.56 11.11 0.00 14.81 18.52 12.96  

  Juice+(CBE+GSE+PGE) 6.67 9.26 9.26 3.70 16.67 16.67 11.11 29.63  

NIRflex Calibration Juice 96.11 17.13 3.30 1.39 4.63 3.24 11.79 4.63 71.67% 

benchtop   Juice+CBE 0.00 75.46 0.00 0.00 0.00 0.00 0.47 1.85  

device  Juice+GSE 0.00 0.00 60.85 0.00 12.50 0.00 0.00 0.00  

**   Juice+PGE 0.00 0.00 1.89 70.37 0.00 5.09 11.79 0.00  

  Juice+(CBE+GSE) 0.00 0.00 16.51 0.00 72.22 0.93 0.00 9.72  

  Juice+(GSE+PGE) 0.00 0.00 0.94 4.63 0.00 78.24 3.30 18.06  

  Juice+(PGE+CBE)  3.89 1.85 12.74 22.69 0.46 2.31 60.85 6.48  

  Juice+(CBE+GSE+PGE) 0.00 5.56 3.77 0.93 10.19 10.19 11.79 59.26  

 Validation Juice 93.33 24.07 9.43 7.41 11.11 5.56 24.53 14.81 56.33% 

  Juice+CBE 2.22 66.67 0.00 0.00 3.70 0.00 5.66 9.26  

  Juice+GSE 0.00 0.00 62.26 0.00 12.96 0.00 0.00 1.85  

  Juice+PGE 0.00 0.00 3.77 66.67 0.00 12.96 9.43 0.00  

  Juice+(CBE+GSE) 0.00 0.00 7.55 0.00 50.00 0.00 0.00 11.11  

  Juice+(GSE+PGE) 0.00 0.00 3.77 11.11 14.81 57.41 18.87 24.07  

  Juice+(PGE+CBE)  4.44 5.56 3.77 14.81 0.00 9.26 32.08 16.67  

  Juice+(CBE+GSE+PGE) 0.00 3.70 9.43 0.00 7.41 14.81 9.43 22.22  

* sgol-2-17-0, sgol-2-17-1; Nr = 423; NrPCs = 17 

** sgol-2-27-0, sgol-2-43-1; Nr = 421; NrPCs = 10 
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The findings are supported by the PCA-LDA score plots shown in Figure 78. In the illustrated 

discriminant space, increasing levels of extract concentration exhibited distinct clustering trends 

along LD 1. This indicates a clear separation based on extract concentration, suggesting that the 

model effectively captures variations in the spectral data associated with different concentrations. 

In addition, wavelengths that played a significant role in discrimination among juice blends were 

also identified based on their discriminating power plots (Figure 78b, d):  

• Hand-held NIR device: 1323.1, 1347.9, 1378.9, 1409.8, 1440.8, 1471.8, 1502.8, 1533.7,  

1558.5, 1589.5 nm;  

• Benchtop NIR device: 1134.8, 1153.7, 1317.2, 1347.0, 1372.1, 1388.1, 1406.1, 1422.1,  

1447.6, 1462.8, 1477.5, 1491.6, 1508.8, 1529.1, 1549.9 nm.  

PLSR modelling was conducted to predict the concentrations of various extracts added to sour 

cherry juices. The models were developed using the whole dataset by instrument, then filtered for 

simple, binary, and ternary blends. In each instance, the models were optimised to suit the specific 

dataset. The prediction accuracies obtained during model calibration and validation of the different 

sample sets are summarised in Table 48 and Table 49. The best modelling results by each extract 

were achieved when constructing models for specific sample groups.  

In the case of the hand-held NIR device, the prediction of CBE was made with Rcv2 between 0.46 

– 0.93; RMSEcv between 0.07 – 0.42 g/ 100 mL. The prediction of GSE was made with Rcv2 

between 0.65 – 0.93; RMSEcv between 0.07 – 0.34 g/ 100 g/mL. The prediction of PGE was made 

with Rcv2 between 0.66 – 0.93; RMSEcv between 0.07 – 0.31 g/ 100 mL. The prediction of total 

extract content was made with Rcv2 between 0.66 – 0.93; RMSEcv between 0.22 – 0.49 g/ 100 mL. 

Figure 52 illustrates the regression vectors obtained for simple fruit juice blends, respectively by 

extract, with the most prominent wavelengths listed below:  

• CBE: 1063.0, 1100.1, 1149.7, 1193.0, 1248.8, 1329.3, 1354.1, 1391.3, 1422.2, 1453.2,  

1490.4, 1515.1, 1570.9 nm;  

• GSE: 1149.7, 1360.3, 1428.4, 1484.2, 1552.3 nm;  

• PGE: 1112.5, 1137.3, 1347.9, 1422.2, 1471.8, 1546.1 nm.  

In the case of the benchtop NIR instrument, the prediction of CBE was made with Rcv2 between 

0.86 – 0.98; RMSEcv between 0.04 – 0.21 g/ 100 mL. The prediction of GSE was made with Rcv2 

between 0.90 – 0.98; RMSEcv between 0.04 – 0.23 g/ 100 g/mL. The prediction of PGE was made 

with Rcv2 between 0.86 – 0.98; RMSEcv between 0.04 – 0.16 g/ 100 mL. The prediction of total 

extract content was made with Rcv2 between 0.86 – 0.98; RMSEcv between 0.12 – 0.32 g/ 100 mL. 

Figure 53 illustrates the regression vectors obtained for simple fruit juice blends, respectively by 

extract, with the most prominent wavelengths listed below:  

• CBE: 1374.4, 1460.3 nm;  

• GSE: 1123.1, 1129.2, 1340.5, 1362.4, 1398.2, 1431.8, 1495.2, 1570.4 nm;  

• PGE: 1086.5, 1128.2, 1276.2, 1341.2, 1362.4, 1397.4, 1422.9, 1451.8, 1474.9, 1501.5,  

1540.4, 1600.5 nm.  
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Figure 52. PLSR prediction of plant extract content of simple sour cherry juice blends scanned with the 

hand-held NIR instrument: Y-fit of CBE prediction (a); regression vectors of CBE prediction (b); Y-fit of 

GSE prediction (c); regression vectors of GSE prediction (d); Y-fit of PGE prediction (e); regression vectors 

of PGE prediction (f).  
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Figure 53. PLSR prediction of plant extract content of simple sour cherry juice blends scanned with the 

benchtop NIR instrument: Y-fit of CBE prediction (a); regression vectors of CBE prediction (b); Y-fit of 

GSE prediction (c); regression vectors of GSE prediction (d); Y-fit of PGE prediction (e); regression vectors 

of PGE prediction (f).  
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Based on the relevant wavelengths determined as partial results of the PCA, PCA-LDA and PLSR 

models, the absorption bands for sour cherry juice blends that contribute most to successful 

chemometric modelling were summarised. The obtained wavelength-frequency results are 

presented as absorption bands in Figure 54. The plots by instrument provide evidence of coincident 

absorption bands.  

 
Figure 54. Absorbance bands frequently observed in chemometric modelling results of sour cherry juice 

enrichment with plant extracts: findings on the hand-held NIR spectrometer data (a); findings on the 

benchtop NIR spectrometer data (b) 
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5.3.2. Detection results on plum juices  

Figure 79 presents the raw spectra obtained using the two instruments after the enrichment of plum 

juices with various concentrations of plant extracts. The spectra showed similar behaviour to what 

was observed for the sour cherry juices: as the concentration of the extracts increased, the 

absorbance of the blends also increased. The spectra obtained with the benchtop instrument 

exhibited higher variability. The application of second derivative pre-treatment also resulted in the 

occurrence of two negative peaks in the 1400-1500 nm wavelength range (Figure 79c, d).  

PCA performed on the smoothed and msc-treated data also revealed differences inherent in the 

spectra, consistent with the findings for the sour cherry juice samples. The PCA score plots show 

that in the case of hand-held device data, a separation based on concentration is observed along 

the first and third PCs, while for the benchtop device data, this is more pronounced along the first 

and second PCs (Figure 55a, b). These are supported by that for the hand-held device, the first 

three, whereas for the benchtop device data, the first two PCs explained the 99% of the total 

variance in the data.  

 
Figure 55. PCA on the NIR spectra of plum juices when colouring was based on total extract content: PCA 

score plots on the data recorded with a hand-held device (sgol-2-21-0, msc) (a); PCA score plots on the 

data recorded with a benchtop device (sgol-2-43-0, msc) (b); PCA loading plot on the data recorded with a 

hand-held device (c); PCA loading plot on the data recorded with a benchtop device (d).  
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Based on the two PCA loadings highlighted by NIR instrument, the relevant wavelengths that best 

describe separation according to total extract concentration are the following (Figure 55c, d):  

• Hand-held NIR instrument  

PC 1 loading:  1149.7 1409.8 1521.3 nm;  

PC 3 loading: 1162.1 1304.5 1416.0 1484.2 1583.3 nm;  
  

• Benchtop NIR instrument  

PC 1 loading: 1367.6 1444.3 nm;  

PC 2 loading: 1155.8 1413.2 1489.9 nm.  

Optimised PCA-LDA modelling was employed as a supervised classification method to determine 

the effectiveness of distinguishing between plum juice samples containing simple, binary, or 

ternary combinations of plant extracts. The modelling involved all extract concertation levels; and 

the results obtained after the optimised spectral pre-processing are illustrated in Figure 80.  

The PCA-LDA score plots display less logical overlap among the juice blends in comparison to 

sour cherry juices. In the modelling based on data of the benchtop NIR instrument, it is more 

pronounced that as the complexity of the blends increases, the data points representing these 

samples show a greater degree of superimposition of points corresponding to samples of partially 

similar compositions. It was also true for the plum juices that the simple blends arranged in a 

triangular shape within the space defined by LD 1 and LD 2. The vertices of the triangle represent 

the individual simple blends, while the binary and ternary blends positioned overlapping between 

these vertices. According to the PCA-score plots (Figure 80a, c), the pure plum juices were clearly 

distinguishable from the juice blends suggesting that the spectral characteristics are significantly 

different from those of the juices enriched with extracts.  

Table 50 summarise the classification results regarding plum juices and their blends. The 

classification accuracies for the hand-held device data were 53.11 and 27.04%, while for the 

benchtop spectrometer data 55.08 and 34.04% during model building and validation, respectively. 

For the plum juice sample set, there was a higher degree of misclassification concerning sample 

groups that did not necessarily overlap in terms of added extracts. In addition, wavelengths that 

played a significant role in discrimination among juice blends were also identified based on their 

discriminating power plots (Figure 80b, d):  

• Hand-held NIR device: 1075.3, 1093.9, 1217.8, 1329.3, 1409.8, 1440.8, 1471.8, 1490.4,  

1509.0, 1539.9, 1570.9, 1595.7 nm;  

• Benchtop NIR device: 1243.2, 1271.6, 1329.1, 1371.4, 1391.2, 1406.1, 1423.7, 1438.4,  

1451.0, 1464.6, 1479.3, 1500.6, 1540.4, 1569.4, 1616.0 nm.  

It was considered important to investigate the accuracy with which the extract content of all the 

added extracts could be distinguished in plum juices, quasi independently regardless of the 

composition of blends involved. For this purpose, optimised PCA-LDA modelling was also 

applied.  
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Table 18 summarises the classification results regarding plum juices and their blends. The 

classification accuracies for the hand-held device data were 58.07 and 41.45%, while for the 

benchtop spectrometer data 66.96 and 46.29% during model building and validation, respectively. 

Misclassification was typically to adjacent lower or higher concentration levels. Misclassification 

was more pronounced to adjacent lower or higher concentration levels. 

The results are supported by the PCA-LDA score plots shown in Figure 56. It was also observed 

in these analyses that the data points representing pure fruit juice samples were distinctly separated 

from the blended samples. In both instruments, the individual extract concentration levels showed 

a clear clustering trend along LD 2 (Figure 56a, c). The most contributing wavelengths were 

determined based on the LDA discriminating power plots (Figure 56b, d) and listed below:  

• Hand-held NIR device: 1131.1, 1205.4, 1286.0, 1385.1, 1465.6, 1539.9, 1583.3 nm;  

• Benchtop NIR device: 1042.1, 1122.1, 1148.9, 1157.9, 1203.1, 1248.1, 1292.7, 1341.2,  

1360.9, 1384.3, 1391.2, 1411.6, 1427.8, 1443.4, 1458.6, 1475.8,  

1493.4, 1527.2, 1556.7 nm.  

 
Figure 56. PCA-LDA on the NIR spectra of plum juices when classification was based on the dosed plant 

extract content: PCA-LDA score plot on the data recorded with a hand-held device (a); LDA discriminating 

power plot on the data recorded with a hand-held device (b); PCA-LDA score plot on the data recorded 

with a benchtop device (c); LDA discriminating power plot on the data recorded with a benchtop device 

(d).  
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Table 18. PCA-LDA on the spectra of plum juices recorded different NIR instruments when classification was based on total extract content.  

  Total extract content 0.0 g/100 mL 0.5 g/100 mL 0.7 g/100 mL 1.0 g/100 mL 1.4 g/100 mL 1.9 g/100 mL 2.5 g/100 mL Classification accuracy 

MicroNIR Calibration 0.0 g/100 mL 78.33 0.00 0.00 0.00 0.00 1.19 1.59 58.07% 

hand-held   0.5 g/100 mL 17.78 65.87 30.16 13.49 10.71 2.78 3.17  

device  0.7 g/100 mL 3.89 12.70 37.30 18.25 13.10 4.37 1.98  

*  1.0 g/100 mL 0.00 15.87 14.68 52.38 11.51 10.71 7.54  
  1.4 g/100 mL 0.00 4.37 12.30 10.32 46.03 8.33 4.76  
  1.9 g/100 mL 0.00 1.19 1.98 5.56 8.33 58.73 13.10  
  2.5 g/100 mL 0.00 0.00 3.57 0.00 10.32 13.89 67.86   
 Validation 0.0 g/100 mL 60.00 0.00 0.00 0.00 0.00 0.00 1.59 41.45% 
  0.5 g/100 mL 37.78 52.38 28.57 33.33 14.29 6.35 6.35  
  0.7 g/100 mL 2.22 19.05 34.92 14.29 19.05 12.70 0.00  
  1.0 g/100 mL 0.00 20.63 9.52 28.57 11.11 4.76 7.94  
  1.4 g/100 mL 0.00 3.17 14.29 9.52 31.75 14.29 12.70  
  1.9 g/100 mL 0.00 0.00 1.59 7.94 19.05 36.51 25.40  

  2.5 g/100 mL 0.00 4.76 11.11 6.35 4.76 25.40 46.03  

NIRflex Calibration 0.0 g/100 mL 74.44 0.83 0.00 0.00 1.19 0.00 0.76 66.96% 

benctop   0.5 g/100 mL 18.33 62.08 28.57 10.32 1.59 0.40 0.38  

device  0.7 g/100 mL 7.22 22.92 52.38 13.49 0.79 0.00 6.82  

**  1.0 g/100 mL 0.00 12.50 19.05 56.75 10.71 2.82 2.65  

  1.4 g/100 mL 0.00 1.25 0.00 15.87 74.21 8.87 1.52  

  1.9 g/100 mL 0.00 0.00 0.00 3.17 9.52 74.60 13.64  

  2.5 g/100 mL 0.00 0.42 0.00 0.40 1.98 13.31 74.24   

 Validation 0.0 g/100 mL 71.11 1.67 0.00 0.00 1.59 0.00 4.55 46.29% 

  0.5 g/100 mL 22.22 60.00 57.14 26.98 4.76 4.84 7.58  

  0.7 g/100 mL 6.67 28.33 28.57 25.40 4.76 0.00 0.00  

  1.0 g/100 mL 0.00 8.33 12.70 22.22 14.29 0.00 1.52  

  1.4 g/100 mL 0.00 0.00 1.59 23.81 60.32 8.06 4.55  

  1.9 g/100 mL 0.00 1.67 0.00 1.59 11.11 50.00 50.00  

  2.5 g/100 mL 0.00 0.00 0.00 0.00 3.17 37.10 31.82   

* sgol-2-17-0, sgol-2-13-1; Nr = 423; NrPCs = 12  

** sgol-2-43-0; Nr = 422; NrPCs = 20  
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PLSR modelling was conducted to predict the concentrations of various extracts added to plum 

juices. The models were developed using the whole dataset by instrument, then filtered for simple, 

binary, and ternary blends. In each instance, the models were optimised to suit the specific dataset. 

The prediction accuracies obtained during model calibration and validation of the different sample 

sets are summarised in Table 51 and Table 52. Comparing the prediction results of the two 

instruments, the indicators describing the accuracy of the model fits varied considerably.  

In the case of the hand-held NIR device, the prediction of CBE was made with Rcv2 between 0.53 

– 0.84; RMSEcv between 0.13 – 0.59 g/ 100 mL. The prediction of GSE was made with Rcv2 

between 0.42 – 0.93; RMSEcv between 0.12 – 0.43 g/ 100 g/mL. The prediction of PGE was made 

with Rcv2 between 0.47 – 0.93; RMSEcv between 0.12 – 0.62 g/ 100 mL. The prediction of total 

extract content was made with Rcv2 between 0.77 – 0.93; RMSEcv between 0.23 – 0.40 g/ 100 mL. 

Figure 57 illustrates the regression vectors obtained for simple fruit juice blends, respectively by 

extract, with the most prominent wavelengths listed below:  

• CBE: 1100.1, 1131.1, 1168.3, 1199.2, 1236.4, 1366.5, 1484.2, 1558.5 nm;  

• GSE: 1131.1, 1199.2, 1286.0, 1378.9, 1478.0, 1533.7 nm;  

• PGE: 1075.3, 1155.9, 1211.6, 1292.2, 1391.3, 1484.2, 1552.3 nm.  

In the case of the benchtop NIR instrument, the prediction of CBE was made with Rcv2 between 

0.61 – 0.98; RMSEcv between 0.04 – 0.54 g/ 100 mL. The prediction of GSE was made with Rcv2 

between 0.59 – 0.98; RMSEcv between 0.04 – 0.37 g/ 100 g/mL. The prediction of PGE was made 

with Rcv2 between 0.71 – 0.98; RMSEcv between 0.04 – 0.32 g/ 100 mL. The prediction of total 

extract content was made with Rcv2 between 0.87 – 0.98; RMSEcv between 0.13 – 0.28 g/ 100 mL. 

Figure 58 illustrates the regression vectors obtained for simple fruit juice blends, respectively by 

extract, with the most prominent wavelengths listed below:  

• CBE: 1136.4, 1167.7, 1188.2, 1315.1, 1362.4, 1399.8, 1426.1, 1450.1, 1481.9, 1563.5 nm;  

• GSE: 1128.7, 1218.3, 1310.3, 1392.0, 1419.6, 1448.4, 1474.1, 1502.4, 1570.4 nm;  

• PGE: 1115.6, 1132.2, 1150.0, 1292.0, 1314.4, 1381.2, 1401.3, 1418.8, 1435.1, 1468.0,  

1486.3, 1509.7, 1564.5 nm.  

Based on the relevant wavelengths determined as partial results of the PCA, PCA-LDA and PLSR 

models, the absorption bands for plum juice blends that contribute most to successful chemometric 

modelling were summarised. The obtained wavelength-frequency results are presented as 

absorption bands in Figure 59. The plots by instrument provide evidence of coincident absorption 

bands.  
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Figure 57. PLSR prediction of plant extract content of simple plum juice blends scanned with the hand-

held NIR instrument: Y-fit of CBE prediction (a); regression vectors of CBE prediction (b); Y-fit of GSE 

prediction (c); regression vectors of GSE prediction (d); Y-fit of PGE prediction (e); regression vectors of 

PGE prediction (f).  
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Figure 58. PLSR prediction of plant extract content of simple plum juice blends scanned with the benchtop 

NIR instrument: Y-fit of CBE prediction (a); regression vectors of CBE prediction (b); Y-fit of GSE 

prediction (c); regression vectors of GSE prediction (d); Y-fit of PGE prediction (e); regression vectors of 

PGE prediction (f).  
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Figure 59. Absorbance bands frequently observed in chemometric modelling results of plum juice 

enrichment with plant extracts: findings on the hand-held NIR spectrometer data (a); findings on the 

benchtop NIR spectrometer data (b).  

There is relatively little available literature on the detectability of value enhancement and 

fortification of fruit juices. With the general profiling of fruit juices, more and more researchers 

are using NIR spectroscopy because of the advantages it offers. Aykac, Cavdaroglu, and Ozen 

(2023) worked on detecting the manipulation of pomegranate juice, a superfood. The authors 

reported 100% calibration and 97% validation accuracies for PLS-DA and OPLS-DA, 

respectively, when detecting 5-10% dilution in binary and ternary blends of sour cherry and black 

carrot juices. Vitalis et al. (2023) reported classification and prediction results on the probiotic 

enrichment of apple-sour cherry-plum fruit juice blend, demonstrating that simple and mixed 

bacterial cultures could be well differentiated, moreover fermentation time and acidity could be 

predicted accurately.   
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6. CONCLUSIONS AND RECOMMENDATIONS  

As part of the doctoral research, multivariate statistical modelling was conducted based on NIR 

spectroscopy and hyperspectral imaging with the aim of mapping the key to effective application 

of the technique in the case of stone fruits and their products.  

Sweet cherries, sour cherries and plums intended for the non-destructive assessment of fruits’ 

physiological ripeness were harvested in a very inhomogeneous state according to ripeness. This 

allowed a wide spectrum of maturation to be studied, but also resulted in high variability in the 

outcomes. The former statement was mainly true for cherries. Sorting fruit by visually perceived 

ripeness (pre-classified samples) was often a challenge during the preparation of the 

measurements, as the available fruit stock did not have an equal quantitative distribution of fruit 

at different ripeness levels, therefore the number of fruits tested was also unequal in the larger 

ripeness clusters. To record the spectral characteristics of the fruits, a hand-held NIR device was 

employed, which is an easy-to-use tool for field studies in fruit production practice. The spectra 

were recorded on the more mature and immature sides of the fruits to test the effect of scanning 

location on the accuracy of prediction models.  

For qualitative modelling, i.e., classification according to ripeness, spectral pre-treatment and 

NrPC-optimised LDA was used. To predict some of the fruits’ value-measuring properties, 

spectral pre-treatment and NrLV-optimised PLS regression was employed. The results show that 

the accuracy of the prediction models was influenced by whether they are based on complete or 

partial datasets. However, for the latter case, if they were built on the data of more mature or the 

immature side can be dependent or sensitive to the variety of fruit and component under estimation.  

Different varieties of sour cherries and plums were included in the experiments to detect Monilinia 

causing brown rot on fruits’ surface. The spectra were obtained at three measurement points with 

the hand-held NIR device, and from nine surface areas with hyperspectral image processing. The 

latter's line scanning (push-broom) operation allowed fruit to be inspected without contact, as if 

they were moving on a conveyor belt. Separate sample sets were prepared for the two different 

instrumental analyses because the illuminating light of the HSI system used was very intense. Of 

the fruit infected with M. fructigena conidia in different ways and to different extents, only wound-

infected samples stored above 20 °C showed signs of rotting and conidia formation. Within these 

sample sets, contrary to expectations, the “response” to infection of fruit that had been similarly 

inoculated and stored was different. Some fruits showed “meaningful” signs earlier, others later, 

if at all. In the recorded spectra, the increased amount of conidia on the surface of the fruit and the 

“dripping” of the wounds was disturbing. To reduce the effect of noise, various spectral pre-

treatment techniques have been employed prior to qualitative modelling, otherwise the 

differentiation would have been based on light scattering only.  

In general, there was a considerable, but not significant, divergence in the SIMCA models when 

the different modes of inoculation and storage were evaluated together on certain days of storage. 

The PCA-LDA models for classification according to initial conidia concentration based on 

spectra recorded on the first day of storage, showed varying classification accuracy, but it was 
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generally true that HSI gave more accurate models. Interestingly, for samples of EB, UF and TP 

varieties, the classification of the same sample sets by instrument was the most accurate. The 

highest average correct classification according to the appearance time of visible signs of 

Monilinia infection was based on hand-held NIR spectra for EB and TD samples, and HSI spectra 

for UF and TP samples.  

The examination of fruit juices enriched with various extracts was conducted in transflexion and 

transmission arrangements using a hand-held NIR and a benchtop FT NIR spectrometer. The same 

samples were examined with both instruments. The characteristic of the prepared fruit juices was 

that the dosed extract did not always completely dissolve and the powdery particles tended to settle 

in the sample containers. After homogenization, when loading the sample solutions, we aimed to 

analyse a solution free of interfering components. During the qualitative and quantitative analysis 

of spectral data, spectral pre-processing, NrPC- or NrLV-optimised PCA-LDA and PLSR 

modelling were applied, respectively. Overall, it was found that chemometric modelling based on 

data recorded by the benchtop instrument resulted in more accurate classification and extract 

concentration prediction. This can be attributed, on the one hand, to the instrument's resolution, 

and on the other hand, to the measurement setup, highlighting that the transmission measurement 

approach is better suited for measuring transparent liquids like the juices we had. Comparing the 

modelling results of the examined fruit juices, it was found that sour cherry juices exhibited better 

model fitting. This is suspected to be due to some unidentified sample preparation anomaly in the 

case of plum juice samples.  

Chemometric modelling results based on spectra recorded with HSI and NIR instruments show 

relatively high variability, especially during classifications. The primary reason for this is the 

naturally high variability of the fruits, despite the sample replicates. Our research, based partly on 

the development of measurement techniques and partly on statistical methods, is of great 

importance as it is based on the investigation of economically important fruits, for which there is 

very limited source material available, both in literature and in practice, for the non-destructive 

examination. Small-scale handheld NIR instruments can be used for on-site inspections, while line 

scan recording of HSI can support continuous production processes. In addition, prominent 

absorption bands obtained from chemometric modelling can contribute to the development of 

target instruments. 

Based on the above summary, we have the following suggestions for the extension of studies:  

- Preparation of fruit studies for larger sample sets,  

- Involvement of untested factors in the modelling (e.g., different origin, season, etc.),  

- Pre-sorting of fruits not only on the basis of their visual characteristics,  

- Very precise setting of fruit storage and measurement conditions,  

- Implementation of variable wavelength selection methods prior chemometrics,  

- Involvement of other chemometric methods in data analysis (e.g., PLS-DA, SVM, k-NN),  

- Calibration transfer between precision benchtop and hand-held instruments,  

- Model testing with completely independent sample sets.   
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7. NEW SCIENTIFIC FINDINGS  

In the new scientific results, the handheld near infrared (NIR) spectrometer used in fruit ripeness 

studies refers to NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan). In the Monilinia detection studies, the 

hand-held NIR instrument refers to NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan, and the 

hyperspectral imaging system refers to Headwall XEVA-1648 XC134. In the fruit juice studies, hand-

held NIR device refers to MicroNIR (Viavi, Scottsdale, USA), and benchtop spectrometer refers to 

NIRFlex N-500 (Büchi Labortechnik AG, Flawil, Switzerland). Classification modelling refers to 

principal component analysis-based linear discriminant analysis (PCA-LDA), and predictive 

modelling refers to partial least squares regression (PLSR).  

New scientific findings on the determination of stone fruit ripeness with hand-held NIR 

spectrometer (950-1650 nm)   

1. The efficiency with which a hand-held NIR spectrometer could classify stone fruits according to 

ripeness has been determined.  

- For sweet cherries, the classification models performed with up to 91.7 and 78.0% accuracy 

during model building and validation, respectively.  

- For sour cherries, the classification models performed with up to 87.8 and 82.4% accuracy during 

model building and validation, respectively,  

- For plums, the classification models performed with up to 82.1 and 70.7% accuracy during 

model building and validation, respectively.  

2. The efficiency with which a hand-held NIR spectrometer could predict dry matter content of stone 

fruits of different ripeness has been determined.  

- For sweet cherries, the modelling and validation was performed with a maximal Rc2 of 0.88 and 

RMSEc of 2.07% m/m, Rcv2 of 0.83 and RMSEcv of 2.50% m/m, respectively.  

- For sour cherries, the modelling and validation was performed with a maximal Rc2 of 0.79 and 

RMSEc of 1.47% m/m, Rcv2 of 0.72 and RMSEcv of 1.67% m/m, respectively.  

- For plums, the modelling and validation was performed with a maximal Rc2 of 0.45 and RMSEc 

of 1.02% m/m, Rcv2 of 0.35 and RMSEcv of 1.11% m/m, respectively.  

3. The efficiency with which a hand-held NIR spectrometer could predict soluble solid content of 

stone fruits of different ripeness has been determined.  

- For sweet cherries, modelling and validation was performed with a maximal Rc2 of 0.95 and 

RMSEc of 0.69% brix, Rcv2 of 0.93 and RMSEcv of 0.79% brix, respectively.  

- For sour cherries, modelling and validation was performed with a maximal Rc2 of 0.87 and 

RMSEc of 0.98% brix, Rcv2 of 0.83 and RMSEcv of 1.10% brix, respectively.  

- For plums, modelling and validation was performed with a maximal Rc2 of 0.97 and RMSEc of 

0.32% brix, Rcv2 of 0.95 and RMSEcv of 0.41% brix, respectively.  

New scientific finding on the spectral detectability of Monilinia contamination in stone fruits 

with a hand-held NIR spectrometer or hyperspectral imaging (1000-1650 nm)   

4. For the first time in the scientific literature, the performance of a hand-held NIR spectrometer for 

the detection of Monilinia fructigena on the surface stone fruits (with or without injury, stored at 

refrigerated or room temperature) has been determined based on spectral data recorded on the first 

day of storage after inoculation. Classification models were developed separately by storage 

condition to discriminate:  
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- sour cherries of four conidial contamination levels (in tenfold dilutions: ~ 100-10-1-

0.1 conidium/μL), when classification accuracies for “Érdi bőtermő” sour cherries were 

between 63.1-77.6% and 23.5-34.1%, for “Újfehértói” cherries were between 58.2-85.1% and 

24.6-42.0% during model building and validation, respectively.  

- plums of three conidial contamination levels (in tenfold dilutions: ~ 100-10-1 conidium/μL), 

when classification accuracies for “Topend” plums were between 74.2-84.2% and 34.0-50.4%, 

for “Topend plus” plums were between 78.9-92.9% and 35.1-51.6% during model building and 

validation, respectively.  

5. For the first time in the scientific literature, the performance of a hyperspectral imaging for the 

detection of Monilinia fructigena on the surface stone fruits (with or without injury, stored at 

refrigerated or room temperature) has been determined based on spectral data recorded on the first 

day of storage after inoculation. Classification models were developed separately by storage 

condition to discriminate:  

- sour cherries of four conidial contamination levels (in tenfold dilutions: ~ 100-10-1-

0.1 conidium/μL), when classification accuracies for “Érdi bőtermő” sour cherries were 

between 61.6-85.6% and 33.1-45.0%, for “Újfehértói” cherries were between 83.4-98.0% and 

32.5-53.3% during model building and validation, respectively.  

- plums of three conidial contamination levels (in tenfold dilutions: ~ 100-10-1 conidium/μL), 

when classification accuracies for “Topend” plums were between 81.6-97.1% and 42.8-75.2%, 

for “Topend plus” plums were between 78.9-87.1-100% and 50.0-79.3% during model building 

and validation, respectively.  

New scientific findings on the predictability of fruit juice enrichment with NIR spectroscopy 

(1000-1650 nm)  

6. The performance of a hand-held NIR spectrometer for the prediction of fruit juice enrichment with 

plant extracts has been determined.  

- In simple sour cherry juice blends, cranberry extract was predicted with an Rcv2 of 0.92 and 

RMSEcv of 0.25 g/100 mL, grape seed extract content with an Rcv2 of 0.90 and RMSEcv of 

0.27 g/100 mL, and pomegranate extract with an Rcv2 of 0.87 and RMSEcv of 0.31 g/100 mL.  

- In simple plum juice blends, cranberry extract was predicted with an Rcv2 of 0.53 and RMSEcv 

of 0.59 g/100 mL, grape seed extract content with an Rcv2 of 0.76 and RMSEcv of 0.42 g/100 

mL, and pomegranate extract with an Rcv2 of 0.47 and RMSEcv of 0.62 g/100 mL.  

7. The performance of a benchtop NIR spectrometer for the prediction of fruit juice enrichment with 

plant extracts has been determined.  

- In simple sour cherry juice blends, cranberry extract was predicted with an Rcv2 of 0.97 and 

RMSEcv of 0.13 g/100 mL, grape seed extract content with an Rcv2 of 0.92 and RMSEcv of 

0.23 g/100 mL, and pomegranate extract with an Rcv2 of 0.97 and RMSEcv of 0.15 g/100 mL.  

- In simple plum juice blends, cranberry extract was predicted with an Rcv2 of 0.61 and RMSEcv 

of 0.54g/100 mL, grape seed extract content with an Rcv2 of 0.90 and RMSEcv of 0.27 g/100 

mL, and pomegranate extract with an Rcv2 of 0.98 and RMSEcv of 0.18 g/100 mL.  
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8. SUMMARY  

Fruits, especially those species with highly valuable nutritional composition, have a major role to 

play in reforming human diets and shaping dietary trends. The very valuable nutritional properties 

of the sweet cherry, sour cherry and plum varieties involved in the present research justify the 

preservation of quality out of season, but this requires them to undergo very complex agricultural 

and food industrial processes. During fruit ripening, postharvest monitoring as well as in food 

processing and control, there is a trend towards the use of non-targeted analytical methods to obtain 

a comprehensive analytical image of the subject, preferably in a non-destructive and even non-

contact manner. In collaboration with Agricolae Ltd., our research objectives included the novel 

application of digital fingerprinting approaches to assess their applicability for the prediction of 

certain qualitative and quantitative indicators of ripening fruit, monitoring of fruit decay during 

storage, and authentication of fruit juices enriched with various fruit-derived extracts.  

To meet these objectives, we examined the near infrared light absorption patterns of our samples. 

The knowledge and application of spectral methods are well-known, but despite their successful 

application in e.g., cereal qualitative reception, it has been less widespread in fruit production and 

classification practice. When exploring the related literature, it was found that a significant portion 

of the published studies report very accurate classification and prediction modelling results in 

certain cases, but there is less discussion of the impact of, for example, spectral acquisition on 

modelling results. Interestingly, limited literature is available on the spectral detectability of 

Monilinia contamination and resulting decay, a major threat to sour cherry and plum production. 

The same is true for authenticity assessment of enriched of fruit juices.  

During the fruit ripeness examinations, the non-destructive analyses of pre-classified stone fruits 

was conducted using a hand-held NIR device. The advantage of such instruments is that spectra 

can be recorded in a controlled manner due to internal illumination and contact measurement. 

Qualitative and quantitative chemometric modelling revealed that it varied by fruit variety, 

whether the models based on the more mature, immature, or the entire dataset performed better. 

To clearly determine the positive or negative impact of the location of spectrum scanning, it is 

necessary to extend the studies.  

During the determination of Monilinia detectability on stone fruits, hand-held NIR and benchtop 

hyperspectral instruments were employed. Based on the results, the differences in storage 

conditions had a significant impact on the samples, while the mode of sample inoculation (with or 

without injury) had a less pronounced effect. The PCA-LDA results according to initial conidial 

contamination showed highly variable classification accuracies, but it was generally established 

that higher average correct classification was achieved using HSI. Based on the classification 

according to the appearance time of visible infection signs, this could not be stated so clearly. 

Interestingly, despite the fact that the available HSI system recorded the data in a reflectance 

measurement setup with external illumination, it allowed a more accurate classification of the 

samples tested. This verified for us that with average spectra obtained from several surface areas, 

a more complete analytical image of the samples emerges despite measurements more exposed to 

environmental influences (e.g., temperature, dust, etc.). To reduce the high variability observed 

during measurements and data evaluations, a larger initial sample size and instrumental sorting of 

the fruits would be necessary prior sample preparation.  
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Fruit juices enriched with different combinations and degrees of plant extracts were examined 

using two instruments with different measurement setups, a transflectance hand-held and a 

transmittance benchtop NIR device. The classification and predictition models reflect that the 

latter instrument, due to its high resolution and measurement arrangement, is more effectively 

applicable for analysing liquid samples similar to fruit juices. During the examination of fruit juice 

blends, a slight sedimentation of powder-like extract particles was observed. To mitigate this 

potential negative effect, it may be justified to remove the undissolved particles, for example, 

through filtration. To gain a deeper understanding of the impact of different instrument 

constructions (i.e., transmittance, transflectance) on prediction accuracy, it would be worthwhile 

to extend the investigations by comparing results obtained from identical measurement setups. In 

addition to these, it would be beneficial to implement a calibration transfer from precision 

instrumented data to hand-held data.  

The method development presented in the dissertation is based partly on methodological and partly 

on statistical evaluation, demonstrates the easy applicability of the NIR technique for conducting 

laboratory and even on-site examinations. The applied chemometric approaches can be multi-used, 

as they can be relatively easily and quickly adapted for the analysis of new similar datasets or for 

refining existing models. Our long-term ambition is to create and continuously develop databases 

along with chemometric models that allow quantitative and qualitative mapping not “only” a 

portion of harvested fruits, but also orchards or even regions. In our opinion, this doctoral research 

will provide a good basis for determining the optimal harvest time of fruit, for effective 

intervention in case of emerging fruit diseases, for optimising processing procedures, and 

monitoring the composition of fruit products.  
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10.2. Supplementary materials  

10.2.1. Annexes for the materials and methods used  

 
Figure 60. Hyperspectral images of intact “Érdi bőtermő” sour cherry samples stored under refrigerated conditions 

on the first day of storage (example).  
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Figure 61. Hyperspectral images of intact “Topend” plum samples stored under refrigerated conditions on the first 

day of storage (example)  
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Table 19. Pre-classified stone fruit varieties, their presumed ripeness clusters and the indicating colours.  

Sweet cherry varieties  

Bigarreau Burlat  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

L1 L2  L3  L4 L5 L6  

                          

Valerij Cskalov  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21      

L1 L2 L3 L4 L5 L6      
                          

                          

Sour cherry varieties  

Kántorjánosi  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20       

L2 L3 L4 L5       

                          

Újfehértói  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21      

L2 L3 L4 L5      
                          

                          

Plum varieties  

Elena  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20       

L1 L2 L3 L4 L5       

                          

Stanley  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20       

L1 L2 L3 L4       
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Table 20. Plant extracts and their concentrations added to fruit juices in varying concentration.  

  CBE concentration  GSE concentration PGE concentration Total extract concentration 

  (g/ 100 mL) (g/ 100 mL) (g/ 100 mL) (g/ 100 mL) 

Pure juices 0.00 0.00 0.00 0.00 

Simple blends 0.50 0.00 0.00 0.50 

 0.70 0.00 0.00 0.70 

 1.00 0.00 0.00 1.00 

 1.40 0.00 0.00 1.40 

 1.90 0.00 0.00 1.90 

 2.50 0.00 0.00 2.50 

 0.00 0.50 0.00 0.50 

 0.00 0.70 0.00 0.70 

 0.00 1.00 0.00 1.00 

 0.00 1.40 0.00 1.40 

 0.00 1.90 0.00 1.90 

 0.00 2.50 0.00 2.50 

 0.00 0.00 0.50 0.50 

 0.00 0.00 0.70 0.70 

 0.00 0.00 1.00 1.00 

 0.00 0.00 1.40 1.40 

 0.00 0.00 1.90 1.90 

 0.00 0.00 2.50 2.50 

Binary blends  0.25 0.25 0.00 0.50 

 0.35 0.35 0.00 0.70 

 0.50 0.50 0.00 1.00 

 0.70 0.70 0.00 1.40 

 0.95 0.95 0.00 1.90 

 1.25 1.25 0.00 2.50 

 0.00 0.25 0.25 0.50 

 0.00 0.35 0.35 0.70 

 0.00 0.50 0.50 1.00 

 0.00 0.70 0.70 1.40 

 0.00 0.95 0.95 1.90 

 0.00 1.25 1.25 2.50 

 0.25 0.00 0.25 0.50 

 0.35 0.00 0.35 0.70 

 0.50 0.00 0.50 1.00 

 0.70 0.00 0.70 1.40 

 0.95 0.00 0.95 1.90 

 1.25 0.00 1.25 2.50 

Ternary blends 0.17 0.17 0.17 0.50 

 0.23 0.23 0.23 0.70 

 0.33 0.33 0.33 1.00 

 0.47 0.47 0.47 1.40 

 0.63 0.63 0.63 1.90 

 0.83 0.83 0.83 2.50 
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Table 21. Applied spectral pre-treatments during the evaluation of data obtained with hyperspectral imaging, hand-held and benchtop spectrometers (I). 

Use  Pre-treatment Polynomial Data frame Derivation Abbreviation Basic purposes of application  

 1 Savitzky-Golay smoothing  2nd order 13 points ▬ sgol-2-13-0 Reduction of spectral noise  

  Savitzky-Golay smoothing  2nd order 17 points ▬ sgol-2-17-0 Reduction of spectral noise  

  Savitzky-Golay smoothing  2nd order 21 points  ▬ sgol-2-21-0 Reduction of spectral noise  

  detrending  2nd order ▬ ▬ deTr Elimination of polynomial trends 

  multiplicative scatter correction  2nd order ▬ ▬ msc Reduction of baseline shift  

  derivatives  2nd order 13 points  1st der sgol-2-13-1 Elimination of constant offset  

  derivatives  2nd order 17 points  1st der sgol-2-17-1 Elimination of constant offset  

  derivatives  2nd order 21 points  1st der sgol-2-21-1 Elimination of constant offset  

  derivatives  2nd order 13 points  2nd der sgol-2-13-2 Elimination of constant and linear offsets 

  derivatives  2nd order 17 points  2nd der sgol-2-17-2 Elimination of constant and linear offsets 

  derivatives  2nd order 21 points  2nd der sgol-2-21-2 Elimination of constant and linear offsets 

 2 smoothing and detrending  2nd order 21 points ▬ 
sgol-2-21-0, 

deTr 

Reduction of spectral noise;  

Elimination of polynomial trends 

 3 
smoothing and  

multiplicative scatter correction  
2nd order 21 points ▬ 

sgol-2-21-0, 

msc 

Reduction of spectral noise;  

Reduction of baseline shift 

 4 smoothing and derivation  2nd order 
13 points;  

13 points 
1st der 

sgol-2-13-0, 

sgol-2-13-1 

Reduction of spectral noise;  

Elimination of constant offset 

 5 smoothing and derivation  2nd order 
17 points;  

13 points 
1st der 

sgol-2-17-0, 

sgol-2-13-1 

Reduction of spectral noise;  

Elimination of constant offset 

 6 smoothing and derivation  2nd order 
21 points;  

13 points 
1st der 

sgol-2-21-0, 

sgol-2-13-1 

Reduction of spectral noise;  

Elimination of constant offset 

 7 smoothing and derivation  2nd order 
13 points;  

13 points 
2nd der 

sgol-2-13-0, 

sgol-2-13-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

 8 smoothing and derivation  2nd order 
17 points;  

13 points 
2nd der 

sgol-2-17-0, 

sgol-2-13-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

 9 smoothing and derivation  2nd order 
21 points;  

13 points 
2nd der 

sgol-2-21-0, 

sgol-2-13-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 
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Table 22. Applied spectral pre-treatments during the evaluation of data obtained with hyperspectral imaging, hand-held and benchtop spectrometers (II). 

Use  Pre-treatment Polynomial Data frame Derivation Abbreviation Basic purposes of application  

 10 smoothing and derivation  2nd order 
13 points;  

17 points 
1st der 

sgol-2-13-0, 

sgol-2-17-1 

Reduction of spectral noise;  

Elimination of constant offset 

 11 smoothing and derivation  2nd order 
17 points;  

17 points 
1st der 

sgol-2-17-0, 

sgol-2-17-1 

Reduction of spectral noise;  

Elimination of constant offset 

 12 smoothing and derivation  2nd order 
21 points;  

17 points 
1st der 

sgol-2-21-0, 

sgol-2-17-1 

Reduction of spectral noise;  

Elimination of constant offset 

 13 smoothing and derivation  2nd order 
13 points;  

17 points 
2nd der 

sgol-2-13-0, 

sgol-2-17-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

 14 smoothing and derivation  2nd order 
17 points;  

17 points 
2nd der 

sgol-2-17-0, 

sgol-2-17-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

 15 smoothing and derivation  2nd order 
21 points;  

17 points 
2nd der 

sgol-2-21-0, 

sgol-2-17-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

 16 smoothing and derivation  2nd order 
13 points;  

21 points 
1st der 

sgol-2-13-0, 

sgol-2-21-1 

Reduction of spectral noise;  

Elimination of constant offset 

 17 smoothing and derivation  2nd order 
17 points;  

21 points 
1st der 

sgol-2-17-0, 

sgol-2-21-1 

Reduction of spectral noise;  

Elimination of constant offset 

 18 smoothing and derivation  2nd order 
21 points;  

21 points 
1st der 

sgol-2-21-0, 

sgol-2-21-1 

Reduction of spectral noise;  

Elimination of constant offset 

 19 smoothing and derivation  2nd order 
13 points;  

21 points 
2nd der 

sgol-2-13-0, 

sgol-2-21-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

 20 smoothing and derivation  2nd order 
17 points;  

21 points 
2nd der 

sgol-2-17-0, 

sgol-2-21-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

 21 smoothing and derivation  2nd order 
21 points;  

21 points 
2nd der 

sgol-2-21-0, 

sgol-2-21-2 

Reduction of spectral noise;  

Elimination of constant and linear offset 

   data frame for the smoothing of spectra recorded with the benchtop NIR spectrometer: 43 points  

   data frame for the 1st or 2nd derivation of spectra recorded with the benchtop NIR spectrometer: 27 points 

   data frame for the 1st or 2nd derivation of spectra recorded with the benchtop NIR spectrometer: 35 points 

   data frame for the 1st or 2nd derivation of spectra recorded with the benchtop NIR spectrometer: 43 points  
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10.2.2. Annexes to the fruit ripeness assessment results  

 
Figure 62. NIR spectra of sweet cherries of different ripeness: raw spectra of BB cherries (a); raw spectra of VC 

cherries (b); 2nd derivative spectra of BB cherries (c); 2nd derivative spectra of VC cherries (d).  

 
Figure 63. Preliminary PCA on the NIR spectra of sour cherries when colouring was based on fruit ripeness (sgol-2-

21-0, msc): PCA score plots of cherries of different ripeness (a); PCA loading plot of KJ cherries (b); PCA loading 

plot of UF cherries (c).   
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Figure 64. NIR spectra of plums of different ripeness: raw spectra of EL plums (a); raw spectra of ST plums (b); 2nd 

derivative spectra of EL plums (c); 2nd derivative spectra of ST plums (d).  
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Table 23. PCA-LDA classification accuracies on the NIR spectra of BB cherries when classification was 

based on fruit ripeness.  

BB    BB_L1 BB_L2 BB_L3 BB_L4 BB_L5 BB_L6 
Classification 

accuracy 

Both Calibration BB_L1 62.8 20.6 4.0 2.5 0.0 0.0 66.6% 

sides  BB_L2 27.2 64.4 9.4 5.0 0.3 0.0  

*  BB_L3 9.2 12.8 71.5 29.4 2.0 0.0  

  BB_L4 0.0 0.8 12.1 50.6 7.1 2.9  

  BB_L5 0.8 1.4 3.1 8.6 81.9 28.8  

  BB_L6 0.0 0.0 0.0 3.9 8.6 68.3   
 Validation BB_L1 44.4 25.6 5.0 3.3 0.0 0.0 55.5% 
  BB_L2 43.3 52.2 11.7 3.3 0.4 0.0  

  BB_L3 12.2 20.0 59.2 36.7 3.0 0.0  

  BB_L4 0.0 0.0 19.2 42.2 7.8 2.5  

  BB_L5 0.0 2.2 5.0 14.4 78.2 40.8  

  BB_L6 0.0 0.0 0.0 0.0 10.7 56.7  

Green  Calibration BB_L1 91.1 0.0 0.0 0.0 0.0 0.0 94.1% 

side  BB_L2 6.7 91.1 3.3 2.2 0.0 0.0  

**  BB_L3 2.2 8.9 93.3 4.4 1.5 0.0  

  BB_L4 0.0 0.0 3.3 93.3 0.7 0.0  

  BB_L5 0.0 0.0 0.0 0.0 95.6 0.0  

  BB_L6 0.0 0.0 0.0 0.0 2.2 100.0   
 Validation BB_L1 32.2 14.4 10.4 8.9 0.6 1.7 42.5% 
  BB_L2 46.7 47.2 37.1 18.9 5.6 1.7  

  BB_L3 16.7 30.0 31.3 40.0 4.8 2.9  

  BB_L4 4.4 2.8 13.8 22.2 6.1 5.0  

  BB_L5 0.0 3.9 6.3 7.2 68.5 35.0  

  BB_L6 0.0 1.7 1.3 2.8 14.4 53.8  

Ripe  Calibration BB_L1 73.9 9.4 6.3 0.0 0.0 0.0 74.3% 

side  BB_L2 14.4 77.8 5.4 2.2 2.4 0.0  

***  BB_L3 11.1 8.3 78.3 27.2 2.8 0.0  

  BB_L4 0.0 3.3 5.4 58.3 6.9 0.0  

  BB_L5 0.6 1.1 4.6 12.2 80.0 22.5  

  BB_L6 0.0 0.0 0.0 0.0 8.0 77.5   
 Validation BB_L1 57.8 20.0 10.0 2.2 0.0 0.0 54.4% 
  BB_L2 24.4 57.8 15.0 6.7 4.4 0.0  

  BB_L3 13.3 13.3 50.0 48.9 3.0 1.7  

  BB_L4 4.4 6.7 20.0 24.4 10.4 0.0  

  BB_L5 0.0 2.2 5.0 17.8 71.1 33.3  

  BB_L6 0.0 0.0 0.0 0.0 11.1 65.0  

* sgol-2-21-0; Nr = 780; NrPC = 16  

** sgol-2-17-0, sgol-2-13-1; Nr = 390, NrPC = 16  

*** sgol-2-21-0; Nr = 390; NrPC = 17  
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Table 24. PCA-LDA classification accuracies on the NIR spectra of VC sweet cherries when classification 

was based on fruit ripeness.  

VC   VC_L1 VC_L2 VC_L3 VC_L4 VC_L5 VC_L6 
Classification 

accuracy 

Both Calibration VC_L1 93.3 1.1 0.0 0.0 0.0 0.0 83.3% 

sides   VC_L2 6.7 81.4 6.0 0.0 0.0 0.0  

*  VC_L3 0.0 16.7 88.3 34.6 1.5 0.0  

  VC_L4 0.0 0.6 5.6 60.0 3.2 0.0  

  VC_L5 0.0 0.3 0.0 5.4 90.8 14.0  

   VC_L6 0.0 0.0 0.0 0.0 4.4 86.1   
 Validation VC_L1 90.0 2.2 0.0 0.0 0.0 0.0 74.5% 
  VC_L2 10.0 74.4 7.5 0.0 0.0 0.0  

  VC_L3 0.0 21.1 82.5 50.0 1.7 0.0  

  VC_L4 0.0 1.1 10.0 36.7 6.1 0.0  

  VC_L5 0.0 1.1 0.0 13.3 81.1 17.7  

  VC_L6 0.0 0.0 0.0 0.0 11.1 82.3  

Green  Calibration VC_L1 100.0 0.0 0.0 0.0 0.0 0.0 98.3% 

side  VC_L2 0.0 100.0 3.3 0.0 0.0 0.0  

**  VC_L3 0.0 0.0 96.7 6.7 0.0 0.0  

  VC_L4 0.0 0.0 0.0 93.3 0.0 0.0  

  VC_L5 0.0 0.0 0.0 0.0 100.0 0.0  

   VC_L6 0.0 0.0 0.0 0.0 0.0 100.0   
 Validation VC_L1 63.3 9.4 1.3 0.8 0.0 1.0 48.8% 
  VC_L2 35.0 51.1 23.8 9.2 0.6 0.0  

  VC_L3 1.7 27.8 46.3 51.7 9.2 3.8  

  VC_L4 0.0 11.7 16.3 16.7 10.3 11.8  

  VC_L5 0.0 0.0 12.1 20.8 64.2 32.3  

  VC_L6 0.0 0.0 0.4 0.8 15.8 51.0  

Ripe Calibration VC_L1 100.0 0.0 0.0 0.0 0.0 0.0 91.7% 

side  VC_L2 0.0 87.2 2.1 0.0 0.0 0.0  

***  VC_L3 0.0 12.8 97.9 14.2 1.1 0.0  

  VC_L4 0.0 0.0 0.0 83.3 0.8 0.0  

  VC_L5 0.0 0.0 0.0 2.5 93.3 11.3  

   VC_L6 0.0 0.0 0.0 0.0 4.7 88.7   
 Validation VC_L1 100.0 0.0 0.0 0.0 0.0 0.0 78.0% 
  VC_L2 0.0 73.3 5.0 0.0 0.0 0.0  

  VC_L3 0.0 26.7 90.0 43.3 4.4 0.0  

  VC_L4 0.0 0.0 5.0 53.3 2.2 0.0  

  VC_L5 0.0 0.0 0.0 3.3 76.7 25.3  

  VC_L6 0.0 0.0 0.0 0.0 16.7 74.7  

* sgol-2-21-0, sgol-2-17-2; Nr = 312; NrPC = 16 

** sgol-2-21-0, sgol-2-21-1; Nr = 315; NrPC = 19 

*** sgol-2-21-0; Nr = 621; NrPC = 19 
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Table 25. PLSR prediction results of certain quality traits of BB sweet cherries of different ripeness.  

BB Quality trait Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

Both L* sgol-2-21-0 537 15 0.76 5.42 0.72 5.87 

sides a* sgol-2-21-0; msc 538 5 0.23 8.74 0.16 9.15 

 b* sgol-2-21-0 552 12 0.69 2.90 0.64 3.12 

 
DMC (% m/m)  

sgol-2-13-0; 

sgol-2-17-1 
650 19 0.85 2.35 0.82 2.55 

 
SSC (% brix)  

sgol-2-13-0; 

sgol-2-21-1 
647 12 0.86 1.20 0.84 1.31 

 TA (mg/ g)  sgol-2-21-0 651 20 0.72 0.48 0.65 0.54 

 
TAC (mg/ L)  

sgol-2-21-0; 

sgol-2-17-1 
651 6 0.79 14.81 0.78 15.28 

 average L* sgol-2-21-0 712 15 0.75 5.41 0.71 5.83 

 
average a* 

sgol-2-21-0; 

sgol-2-21-1 
673 29 0.44 6.29 0.22 7.47 

 
average b* 

sgol-2-13-0; 

sgol-2-13-1 
713 10 0.72 2.52 0.68 2.71 

Green 
L* 

sgol-2-17-0; 

sgol-2-17-1 
260 26 0.84 4.80 0.73 6.23 

side 
a* 

sgol-2-21-0; 

sgol-2-13-1 
264 25 0.49 5.54 0.21 6.92 

 b* sgol-2-21-0 268 12 0.69 2.98 0.57 3.51 

 
DMC (% m/m)  

sgol-2-13-0; 

sgol-2-17-1 
319 18 0.88 2.07 0.83 2.50 

 
SSC (% brix)  

sgol-2-13-0; 

sgol-2-21-1 
336 13 0.88 1.13 0.83 1.31 

 
TA (mg/ g)  

sgol-2-13-0; 

sgol-2-13-1 
307 20 0.76 0.44 0.65 0.53 

 
TAC (mg/ L)  

sgol-2-21-0; 

sgol-2-21-1 
323 5 0.75 16.10 0.73 16.81 

 
average L* 

sgol-2-13-0; 

sgol-2-17-1 
260 30 0.85 4.23 0.71 5.79 

 
average a* 

sgol-2-21-0; 

sgol-2-13-1 
260 25 0.54 5.65 0.21 7.39 

 
average b* 

sgol-2-21-0; 

sgol-2-13-2 
266 7 0.76 2.33 0.70 2.60 

Ripe L* sgol-2-21-0 266 12 0.75 5.00 0.69 5.60 

side a* sgol-2-21-0 266 10 0.34 9.62 0.19 10.60 

 b* sgol-2-21-0 270 15 0.74 2.38 0.64 2.80 

 
DMC (% m/m)  

sgol-2-13-0; 

sgol-2-17-1 
303 7 0.83 2.55 0.80 2.74 

 SSC (% brix)  sgol-2-21-0; msc 316 10 0.89 1.09 0.86 1.23 

 TA (mg/ g)  sgol-2-21-0 322 10 0.68 0.50 0.62 0.54 

 TAC (mg/ L)  sgol-2-21-0; msc 306 12 0.86 12.14 0.83 13.51 

 average L* sgol-2-21-0 262 14 0.79 4.91 0.71 5.78 

 
average a* 

sgol-2-17-0; 

sgol-2-17-1 
260 15 0.46 6.11 0.27 7.13 

 
average b* 

sgol-2-13-0; 

sgol-2-13-1 
267 9 0.74 2.42 0.67 2.75 
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Table 26. PLSR prediction results of certain quality traits of VC sweet cherries of different ripeness.  

VC Quality trait Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

Both L* 
sgol-2-21-0, 

sgol-2-21-1 
425 30 0.86 4.50 0.79 5.41 

sides a* 
sgol-2-13-0, 

sgol-2-21-1 
428 22 0.60 6.05 0.50 6.80 

 b* sgol-2-21-0 442 14 0.73 2.39 0.68 2.59 

 DMC (% m/m) 
sgol-2-13-0, 

sgol-2-13-1 
527 18 0.72 2.63 0.63 2.99 

 SSC (% brix) sgol-2-21-0 497 21 0.95 0.70 0.92 0.82 

 TA (mg/ g) 
sgol-2-13-0, 

sgol-2-13-1 
486 18 0.47 0.67 0.37 0.72 

 TAC (mg/ L) sgol-2-21-0, msc 507 14 0.85 20.93 0.83 22.64 

 average L* 
sgol-2-21-0, 

sgol-2-21-1 
552 30 0.86 4.32 0.81 5.09 

 average a* 
sgol-2-17-0, 

sgol-2-13-1 
548 30 0.70 4.81 0.61 5.45 

 average b* sgol-2-21-0 563 15 0.84 1.72 0.80 1.90 

Green L* 
sgol-2-17-0, 

sgol-2-17-2 
208 14 0.89 4.27 0.83 5.32 

side a* sgol-2-21-0 210 13 0.58 5.65 0.45 6.50 

 b* 
sgol-2-21-0, 

sgol-2-21-2 
216 5 0.76 2.21 0.73 2.37 

 DMC (% m/m) 
sgol-2-13-0, 

sgol-2-13-2 
244 5 0.68 2.71 0.60 3.05 

 SSC (% brix) 
sgol-2-21-0, 

sgol-2-17-1 
239 10 0.95 0.69 0.93 0.79 

 TA (mg/ g) sgol-2-21-0 252 11 0.42 0.65 0.12 0.80 

 TAC (mg/ L) sgol-2-21-0 253 15 0.91 16.20 0.87 19.86 

 average L* 
sgol-2-13-0, 

sgol-2-17-2 
211 17 0.89 3.79 0.83 4.77 

 average a* sgol-2-21-0 208 13 0.69 4.83 0.58 5.61 

 average b* 
sgol-2-13-0, 

sgol-2-13-1 
214 9 0.85 1.69 0.79 1.98 

Ripe L* 
sgol-2-21-0, 

sgol-2-13-2 
210 10 0.83 4.40 0.74 5.36 

side a* 
sgol-2-21-0, 

sgol-2-21-1 
215 21 0.79 4.72 0.68 5.80 

 b* 
sgol-2-13-0, 

sgol-2-17-1 
217 10 0.69 2.55 0.59 2.95 

 DMC (% m/m) 
sgol-2-21-0, 

sgol-2-21-1 
254 10 0.78 2.34 0.72 2.62 

 SSC (% brix) 
sgol-2-17-0, 

sgol-2-13-2 
228 19 0.96 0.60 0.92 0.89 

 TA (mg/ g) sgol-2-21-0 249 17 0.55 0.63 0.34 0.76 

 TAC (mg/ L) 
sgol-2-13-0, 

sgol-2-13-2 
244 16 0.88 18.88 0.78 26.22 

 average L* 
sgol-2-17-0, 

sgol-2-17-2 
214 8 0.83 4.76 0.78 5.44 

 average a* 
sgol-2-17-0, 

sgol-2-21-1 
210 16 0.71 4.63 0.58 5.62 

 average b* 
sgol-2-21-0, 

sgol-2-21-1 
214 15 0.86 1.63 0.76 2.10 
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Table 27. PCA-LDA classification accuracies on the NIR spectra of KJ sour cherries when classification 

was based on fruit ripeness.  

KJ    KJ_L2 KJ_L3 KJ_L4 KJ_L5 Classification accuracy 

Both Calibration KJ_L2 96.9 2.2 0.0 0.0 87.8% 

sides  KJ_L3 3.1 93.8 16.9 0.1  

*  KJ_L4 0.0 4.0 62.7 2.3  

   KJ_L5 0.0 0.0 20.4 97.6   
 Validation KJ_L2 95.0 5.3 0.0 0.0 82.4% 
  KJ_L3 5.0 86.0 21.7 1.9  

  KJ_L4 0.0 8.7 55.8 5.3  

  KJ_L5 0.0 0.0 22.5 92.8   

Green  Calibration KJ_L2 99.2 3.0 0.0 0.0 89.6% 

side  KJ_L3 0.8 92.7 15.0 0.0  

**  KJ_L4 0.0 4.3 67.1 0.7  

   KJ_L5 0.0 0.0 17.9 99.3   
 Validation KJ_L2 93.3 6.7 0.0 0.0 76.8% 
  KJ_L3 6.7 80.0 28.3 1.0  

  KJ_L4 0.0 13.3 41.7 6.7  

  KJ_L5 0.0 0.0 30.0 92.4   

Ripe Calibration KJ_L2 98.3 1.3 0.0 0.0 93.1% 

side  KJ_L3 1.7 93.3 6.7 0.0  

***  KJ_L4 0.0 5.3 80.8 0.0  

  KJ_L5 0.0 0.0 12.5 100.0   
 Validation KJ_L2 95.0 2.7 0.0 0.0 80.7% 
  KJ_L3 5.0 84.0 21.7 0.0  

  KJ_L4 0.0 13.3 51.7 7.8  

  KJ_L5 0.0 0.0 26.7 92.2   

* sgol-2-21-0; Nr = 597; NrPC = 20 

** sgol-2-21-0; Nr = 300; NrPC = 20 

*** sgol-2-21-0; Nr = 297; NrPC = 19 
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Table 28. PCA-LDA classification accuracies on the NIR spectra of UF sour cherries when classification 

was based on fruit ripeness.  

UF    UF_L2 UF_L3 UF_L4 UF_L5 Classification accuracy 

Both Calibration UF_L2 90.8 1.9 0.0 0.0 87.0% 

sides  UF_L3 9.2 88.6 11.0 0.0  

*  UF_L4 0.0 8.5 76.3 7.7  

  UF_L5 0.0 1.0 12.7 92.3   
 Validation UF_L2 85.0 5.0 0.0 0.0 78.3% 
  UF_L3 15.0 82.8 19.2 1.5  

  UF_L4 0.0 11.1 59.2 12.4  

  UF_L5 0.0 1.1 21.7 86.1   

Green  Calibration UF_L2 93.8 0.0 0.0 0.0 91.6% 

side  UF_L3 6.3 93.6 7.9 0.0  

**  UF_L4 0.0 6.4 82.1 3.2  

   UF_L5 0.0 0.0 10.0 96.8   
 Validation UF_L2 81.7 3.3 0.0 0.0 80.9% 
  UF_L3 18.3 83.3 16.7 0.0  

  UF_L4 0.0 13.3 68.3 9.8  

  UF_L5 0.0 0.0 15.0 90.2   

Ripe Calibration UF_L2 91.7 2.2 0.0 0.0 86.6% 

side  UF_L3 5.0 87.2 16.7 1.8  

***  UF_L4 3.3 9.2 81.3 11.9  

  UF_L5 0.0 1.4 2.1 86.4   
 Validation UF_L2 90.0 4.4 0.0 0.0 78.4% 
  UF_L3 6.7 81.1 28.3 4.0  

  UF_L4 3.3 10.0 61.7 15.2  

  UF_L5 0.0 4.4 10.0 80.8   

* sgol-2-21-0; Nr = 621; NrPC = 19 

** sgol-2-21-0; Nr = 312; NrPC = 20 

*** sgol-2-21-0, sgol-2-17-2; Nr = 309; NrPC = 11 

 

 

 

  



150 

 

Table 29. PLSR prediction results for certain quality traits of KJ sour cherries of different ripeness. 

KJ Quality trait Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

Both L* sgol-2-21-0 410 18 0.81 2.59 0.74 3.03 

sides a* sgol-2-21-0 416 6 0.73 4.42 0.72 4.52 

 b* sgol-2-21-0 437 8 0.90 1.62 0.88 1.73 

 
DMC (% m/m)  

sgol-2-21-0;  

sgol-2-17-1 
493 7 0.69 1.77 0.64 1.89 

 SSC (% brix)  sgol-2-21-0; msc 499 12 0.50 1.34 0.44 1.42 

 
TA (mg/ g)  

sgol-2-21-0;  

sgol-2-21-1 
510 12 0.57 2.08 0.52 2.22 

 TAC (mg/ L)  sgol-2-21-0 483 18 0.89 16.57 0.86 18.77 

 average L* sgol-2-21-0 555 16 0.83 2.30 0.78 2.60 

 average a* sgol-2-21-0 587 7 0.80 3.41 0.78 3.59 

 average b* sgol-2-21-0 557 12 0.91 1.50 0.88 1.68 

Green L* sgol-2-21-0 206 11 0.83 2.60 0.75 3.18 

side a* sgol-2-21-0 202 5 0.58 4.85 0.56 4.98 

 b* sgol-2-21-0 204 12 0.93 1.42 0.90 1.69 

 DMC (% m/m)  sgol-2-21-0 247 9 0.68 1.78 0.56 2.10 

 SSC (% brix)  sgol-2-21-0; msc 229 10 0.51 1.36 0.42 1.47 

 TA (mg/ g)  sgol-2-21-0 242 12 0.67 1.79 0.54 2.09 

 TAC (mg/ L)  sgol-2-21-0 244 14 0.91 15.14 0.87 18.03 

 average L* sgol-2-21-0 200 17 0.89 1.88 0.81 2.44 

 average a* sgol-2-21-0 200 7 0.82 3.24 0.80 3.42 

 average b* sgol-2-21-0 204 12 0.93 1.26 0.91 1.51 

Ripe L* sgol-2-21-0 200 14 0.86 1.92 0.80 2.31 

side a* sgol-2-21-0 208 5 0.92 2.59 0.91 2.77 

 b* sgol-2-21-0 202 5 0.90 1.50 0.89 1.57 

 DMC (% m/m)  sgol-2-21-0 232 9 0.79 1.47 0.72 1.67 

 SSC (% brix)  sgol-2-21-0; deTr 256 5 0.59 1.23 0.55 1.28 

 TA (mg/ g)  sgol-2-21-0 237 9 0.62 1.91 0.55 2.09 

 TAC (mg/ L)  sgol-2-21-0 233 14 0.88 17.22 0.79 22.57 

 average L* sgol-2-21-0 198 13 0.87 2.01 0.82 2.42 

 average a* sgol-2-21-0 198 7 0.82 3.24 0.78 3.58 

 average b* sgol-2-21-0 204 13 0.93 1.28 0.89 1.62 
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Table 30. PLSR prediction results of certain quality traits of UF sour cherries of different ripeness.  

UF Quality trait Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

Both L* sgol-2-21-0 444 14 0.81 2.70 0.77 2.93 

sides a* sgol-2-21-0 429 6 0.57 5.14 0.55 5.26 

 b* sgol-2-21-0 439 20 0.89 1.78 0.84 2.18 

 DMC (% m/m) sgol-2-21-0 502 15 0.58 1.51 0.50 1.65 

 SSC (% brix) sgol-2-21-0 531 15 0.85 1.02 0.82 1.13 

 TA (mg/ g) 
sgol-2-13-0,  

sgol-2-13-2 
523 9 0.48 1.45 0.39 1.57 

 TAC (mg/ L) sgol-2-21-0 540 16 0.86 21.59 0.83 23.75 

 average L* sgol-2-21-0 564 24 0.85 2.31 0.79 2.74 

 average a* sgol-2-21-0 547 27 0.80 3.12 0.69 3.90 

 average b* sgol-2-21-0 573 17 0.90 1.69 0.87 1.94 

Green L* sgol-2-21-0 215 16 0.88 2.52 0.76 3.53 

side a* sgol-2-21-0 212 6 0.48 5.12 0.40 5.50 

 b* sgol-2-21-0 214 13 0.90 1.93 0.86 2.29 

 DMC (% m/m) sgol-2-21-0 260 9 0.47 1.72 0.29 1.99 

 SSC (% brix) sgol-2-21-0 271 18 0.88 0.91 0.81 1.15 

 TA (mg/ g) 
sgol-2-21-0,  

sgol-2-13-2 
264 9 0.49 1.43 0.35 1.60 

 TAC (mg/ L) sgol-2-21-0 242 10 0.89 18.67 0.87 20.98 

 average L* sgol-2-21-0 209 16 0.88 2.03 0.78 2.76 

 average a* sgol-2-21-0 211 6 0.71 3.79 0.67 4.09 

 average b* sgol-2-21-0 210 11 0.91 1.54 0.89 1.78 

Ripe L* sgol-2-21-0 216 10 0.79 2.25 0.73 2.52 

side a* sgol-2-21-0 210 15 0.88 2.95 0.81 3.71 

 b* sgol-2-21-0 218 15 0.91 1.42 0.86 1.77 

 Dry matter sgol-2-21-0 254 16 0.70 1.37 0.56 1.65 

 Soluble solids 
sgol-2-21-0,  

sgol-2-13-2 
249 9 0.87 0.98 0.83 1.10 

 Total acidity sgol-2-21-0, deTr 245 7 0.53 1.41 0.43 1.56 

 Anthocyanin content sgol-2-21-0 248 9 0.82 24.22 0.79 26.57 

 average L* sgol-2-21-0 208 12 0.83 2.44 0.74 3.01 

 average a* sgol-2-21-0 208 10 0.71 3.77 0.61 4.41 

 average b* sgol-2-21-0 208 20 0.91 1.59 0.82 2.25 
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Table 31. PCA-LDA classification accuracies on the NIR spectra of EL plums when classification was 

based on fruit ripeness.  

EL      EL_L1 EL_L2 EL_L3 EL_L4 EL_L5 
Classification 

accuracy 

Both Calibration EL_L1 98.3 20.0 0.0 0.0 0.0 76.8% 

sides  EL_L2 1.7 80.0 0.0 0.0 0.0  

*  EL_L3 0.0 0.0 74.2 29.4 16.4  

  EL_L4 0.0 0.0 18.1 63.9 15.8  

   EL_L5 0.0 0.0 7.7 6.7 67.8   
 Validation EL_L1 97.0 33.3 0.0 0.0 0.0 66.5% 
  EL_L2 3.0 66.7 0.0 0.0 0.0  

  EL_L3 0.0 0.0 53.3 37.8 23.3  

  EL_L4 0.0 0.0 32.5 55.6 16.7  

    EL_L5 0.0 0.0 14.2 6.7 60.0   

Green  Calibration EL_L1 99.1 21.7 0.0 0.0 0.0 82.1% 

side  EL_L2 0.2 78.3 0.0 0.0 0.0  

**  EL_L3 0.7 0.0 79.6 28.9 8.3  

  EL_L4 0.0 0.0 15.0 71.1 9.4  

   EL_L5 0.0 0.0 5.4 0.0 82.2   
 Validation EL_L1 99.3 46.7 0.0 0.0 0.0 70.7% 
  EL_L2 0.7 53.3 0.0 0.0 0.0  

  EL_L3 0.0 0.0 63.3 31.1 20.0  

  EL_L4 0.0 0.0 23.3 68.9 11.1  

    EL_L5 0.0 0.0 13.3 0.0 68.9   

Ripe Calibration EL_L1 97.78 16.67 0 0 0 79.75% 

side  EL_L2 2.2 83.3 0.0 0.0 0.0  

***  EL_L3 0.0 0.0 75.4 11.7 17.8  

  EL_L4 0.0 0.0 13.8 78.9 18.9  

   EL_L5 0.0 0.0 10.8 9.4 63.3   
 Validation EL_L1 96.3 53.3 0.0 0.0 0.0 60.1% 
  EL_L2 3.7 46.7 0.0 0.0 0.0  

  EL_L3 0.0 0.0 46.7 26.7 33.3  

  EL_L4 0.0 0.0 31.7 60.0 15.6  

    EL_L5 0.0 0.0 21.7 13.3 51.1   

* sgol-2-21-0; Nr = 297; NrPC = 19 

** sgol-2-13-0, sgol-2-17-1; Nr = 600; NrPC = 15 

*** sgol-2-21-0, sgol-2-21-1; Nr = 300; NrPC = 12 
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Table 32. PCA-LDA classification accuracies on the NIR spectra of ST plums when classification was 

based on fruit ripeness.  

ST    ST_L1 ST_L2 ST_L3 ST_L4 Classification accuracy 

Both Calibration ST_L1 81.0 46.5 0.0 0.0 71.1% 

sides  ST_L2 19.0 53.5 0.0 0.0  

*  ST_L3 0.0 0.0 52.5 2.4  

  ST_L4 0.0 0.0 47.5 97.6   
 Validation ST_L1 80.0 61.7 0.0 0.0 59.5% 
  ST_L2 19.4 38.3 0.0 0.0  

  ST_L3 0.0 0.0 23.3 3.8  

  ST_L4 0.6 0.0 76.7 96.3   

Green  Calibration ST_L1 85.6 25.0 0.0 0.0 88.2% 

side  ST_L2 14.4 75.0 0.0 0.0  

**  ST_L3 0.0 0.0 95.0 2.8  

  ST_L4 0.0 0.0 5.0 97.2   
 Validation ST_L1 73.3 48.3 0.0 0.0 58.7% 
  ST_L2 26.7 51.7 0.0 0.0  

  ST_L3 0.0 0.0 20.0 10.4  

  ST_L4 0.0 0.0 80.0 89.6   

Ripe Calibration ST_L1 86.1 15.4 0.0 0.0 85.4% 

side  ST_L2 13.9 84.6 0.0 0.0  

***  ST_L3 0.0 0.0 71.7 0.6  

  ST_L4 0.0 0.0 28.3 99.4   
 Validation ST_L1 76.7 30.0 0.0 0.0 68.0% 
  ST_L2 23.3 70.0 0.0 0.0  

  ST_L3 0.0 0.0 26.7 1.5  

  ST_L4 0.0 0.0 73.3 98.5   

* sgol-2-21-0, deTr; Nr = 597; NrPC = 13 

** sgol-2-21-0, msc; Nr = 300; NrPC = 20 

*** sgol-2-21-0, deTr; Nr = 297; NrPC = 13 
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Table 33. PLSR prediction results of certain quality traits of EL plums of different ripeness.  

EL Quality trait Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

Both L* sgol-2-21-0 412 18 0.83 4.10 0.76 4.82 

sides a* 
sgol-2-21-0, 

sgol-2-17-2 
432 13 0.79 2.90 0.74 3.27 

 b* 
sgol-2-17-0, 

sgol-2-13-1 
410 16 0.82 3.94 0.75 4.60 

 DMC (% m/m) 
sgol-2-21-0, 

sgol-2-21-2 
510 6 0.24 1.11 0.16 1.17 

 SSC (% brix) 
sgol-2-13-0, 

sgol-2-13-2 
492 12 0.96 0.35 0.95 0.40 

 TA (mg/ g) sgol-2-21-0 508 15 0.96 0.66 0.96 0.74 

 TAC (mg/ L) sgol-2-21-0 496 3 0.77 1.04 0.76 1.06 

 average L* sgol-2-21-0 545 18 0.91 2.67 0.87 3.17 

 average a* 
sgol-2-13-0, 

sgol-2-13-2 
525 9 0.89 1.94 0.86 2.17 

 average b* sgol-2-21-0 527 12 0.89 2.76 0.85 3.14 

Green L* sgol-2-21-0 200 9 0.80 3.79 0.74 4.29 

side a* 
sgol-2-21-0, 

sgol-2-17-1 
210 20 0.89 2.10 0.83 2.62 

 b* sgol-2-21-0 202 8 0.80 3.53 0.76 3.88 

 DMC (% m/m) sgol-2-21-0, deTr 264 7 0.45 1.02 0.35 1.11 

 SSC (% brix) 
sgol-2-17-0, 

sgol-2-17-2 
238 12 0.97 0.32 0.95 0.41 

 TA (mg/ g) 
sgol-2-17-0, 

sgol-2-13-1 
243 13 0.97 0.58 0.95 0.74 

 TAC (mg/ L) 
sgol-2-21-0, 

sgol-2-21-1 
236 6 0.82 0.90 0.75 1.04 

 average L* sgol-2-21-0 206 12 0.91 2.62 0.88 3.10 

 average a* 
sgol-2-17-0, 

sgol-2-13-2 
208 7 0.88 1.98 0.85 2.28 

 average b* 
sgol-2-17-0, 

sgol-2-13-1 
200 29 0.93 2.22 0.86 3.07 

Ripe L* 
sgol-2-13-0, 

sgol-2-13-2 
204 8 0.92 2.92 0.86 3.87 

side a* 
sgol-2-13-0, 

sgol-2-21-2 
211 6 0.76 2.99 0.70 3.36 

 b* 
sgol-2-13-0, 

sgol-2-21-1 
205 13 0.91 2.81 0.87 3.44 

 Dry matter 
sgol-2-21-0, 

sgol-2-21-2 
239 6 0.30 1.08 0.12 1.22 

 Soluble solids 
sgol-2-13-0, 

sgol-2-13-2 
251 12 0.97 0.34 0.93 0.49 

 Total acidity sgol-2-21-0 234 15 0.98 0.50 0.97 0.62 

 Anthocyanin content sgol-2-21-0, msc 256 6 0.76 1.01 0.71 1.12 

 average L* sgol-2-21-0 206 11 0.91 2.65 0.85 3.38 

 average a* 
sgol-2-17-0, 

sgol-2-17-2 
208 12 0.91 1.72 0.85 2.27 

 average b* 
sgol-2-21-0, 

sgol-2-21-1 
200 13 0.92 2.40 0.88 2.84 

  



155 

 

Table 34. PLSR prediction results of certain quality traits of ST plums of different ripeness.  

ST Quality trait Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

Both L*  
sgol-2-17-0,  

sgol-2-17-2 
403 30 0.82 3.70 0.71 4.65 

sides a* 
sgol-2-13-0,  

sgol-2-21-2 
424 21 0.62 3.78 0.50 4.37 

 b* 
sgol-2-17-0,  

sgol-2-13-1 
420 11 0.73 4.54 0.67 5.07 

 DMC (% m/m)  sgol-2-21-0 515 4 0.23 0.99 0.18 1.02 

 SSC (% brix)  
sgol-2-17-0,  

sgol-2-21-2 
476 18 0.91 0.44 0.88 0.51 

 TA (mg/ g)  
sgol-2-21-0,  

sgol-2-13-2 
492 19 0.93 0.59 0.90 0.69 

 average L* sgol-2-21-0 556 15 0.86 2.75 0.82 3.12 

 average a* 
sgol-2-13-0,  

sgol-2-21-1 
528 30 0.80 2.09 0.73 2.40 

 average b* 
sgol-2-13-0,  

sgol-2-13-2 
542 7 0.80 3.16 0.76 3.45 

Green L* 
sgol-2-21-0,  

sgol-2-21-2 
201 27 0.92 2.24 0.81 3.42 

side a* 
sgol-2-17-0,  

sgol-2-13-2 
209 7 0.95 1.52 0.92 1.94 

 b* 
sgol-2-21-0,  

sgol-2-17-2 
201 9 0.84 3.06 0.76 3.82 

 DMC (% m/m)  sgol-2-21-0 247 3 0.20 1.01 0.13 1.06 

 SSC (% brix)  sgol-2-21-0 240 16 0.93 0.40 0.86 0.55 

 TA (mg/ g)  sgol-2-21-0 245 17 0.92 0.61 0.85 0.84 

 TAC (mg/ L)  
sgol-2-17-0,  

sgol-2-17-2 
253 4 0.29 4.42 0.18 4.75 

 average L* 
sgol-2-13-0,  

sgol-2-13-2 
201 7 0.87 2.67 0.78 3.46 

 average a* sgol-2-21-0, deTr 204 19 0.82 1.94 0.67 2.61 

 average b* 
sgol-2-13-0,  

sgol-2-13-2 
200 6 0.81 3.09 0.72 3.71 

Ripe L* 
sgol-2-17-0,  

sgol-2-17-2 
201 6 0.72 4.04 0.65 4.58 

side a* 
sgol-2-13-0,  

sgol-2-13-2 
207 4 0.28 3.69 0.17 3.98 

 b* 
sgol-2-13-0,  

sgol-2-13-1 
203 8 0.72 3.99 0.65 4.51 

 DMC (% m/m)  sgol-2-21-0 222 3 0.36 0.86 0.28 0.91 

 SSC (% brix)  
sgol-2-17-0, 

 sgol-2-21-2 
233 7 0.90 0.46 0.88 0.52 

 TA (mg/ g)  
sgol-2-21-0,  

sgol-2-13-1 
231 18 0.94 0.52 0.90 0.66 

 TAC (mg/ L)  sgol-2-21-0 228 2 0.26 4.95 0.22 5.06 

 average L* 
sgol-2-21-0,  

sgol-2-13-2 
199 7 0.86 2.71 0.81 3.20 

 average a* 
sgol-2-13-0,  

sgol-2-21-2 
205 10 0.80 2.02 0.73 2.35 

 average b* 
sgol-2-17-0,  

sgol-2-13-2 
198 7 0.83 2.87 0.79 3.22 
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10.2.3. Annexes to the Monilinia detection results  

 
Figure 65. NIR spectra of sour cherries treated in different ways: raw spectra of EB cherries (a); raw spectra of UF 

cherries (b); 2nd derivative spectra of EB cherries (c); 2nd derivative spectra of UF cherries (d).  

 
Figure 66. SIMCA on the NIR spectra of UF cherries when discrimination was based on fruit treatment on certain 

storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1st day of storage (a); SIMCA discrimination 

power plot on the 1st day of storage (b); SIMCA interclass distances on the 3rd day of storage (c); SIMCA 

discrimination power plot on the 3rd day of storage (d); SIMCA interclass distances on the 7th day of storage (e); 

SIMCA discrimination power plot on the 7th day of storage (f).   
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Figure 67. PCA-LDA on the NIR spectra of EB cherries when classification was based on initial conidial 

contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of “5 °C Injury” 

samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power plot of “5 °C Intact” 

samples (d); PCA-LDA score plot of “25 °C Injury” samples (e); LDA discriminating power plot of “25 °C Injury” 

samples (f); PCA-LDA score plot of “25 °C Intact” samples (g); LDA discriminating power plot of “25 °C Intact” 

samples (h).   
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Figure 68. NIR spectra of plums treated in different ways: raw spectra of TD plums (a); raw spectra of TP plums (b); 

2nd derivative spectra of TD plums (c); 2nd derivative spectra of TP plums (d).  

 
Figure 69. SIMCA on NIR spectra of TD plums when discrimination was based on fruit treatment on certain storage 

days (sgol-2-21-0, msc): SIMCA interclass distances on the 1st day of storage (a); SIMCA discrimination power plot 

on the 1st day of storage (b); SIMCA interclass distances on the 4th day of storage (c); SIMCA discrimination power 

plot on the 4th day of storage (d); SIMCA interclass distances on the 7th day of storage (e); SIMCA discrimination 

power plot on the 7th day of storage (f).   
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Figure 70. PCA-LDA on the NIR spectra of TD plums when classification was based on initial conidial 

contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of “5 °C Injury” 

samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power plot of “5 °C Intact” 

samples (d); PCA-LDA score plot of “22 °C Injury” samples (e); LDA discriminating power plot of “22 °C Injury” 

samples (f); PCA-LDA score plot of “22 °C Intact” samples (g); LDA discriminating power plot of “22 °C Intact” 

samples (h).  
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Figure 71. HSI spectra of sour cherries treated in different ways: raw spectra of EB cherries (a); raw spectra of UF 

cherries (b); 2nd derivative spectra of EB cherries (c); 2nd derivative spectra of UF cherries (d).  

 
Figure 72. SIMCA on the HSI spectra of UF cherries when discrimination was based on fruit treatment on certain 

storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 1st day of storage (a); SIMCA discrimination 

power plot on the 1st day of storage (b); SIMCA interclass distances on the 3rd day of storage (c); SIMCA 

discrimination power plot on the 3rd day of storage (d); SIMCA interclass distances on the 7th day of storage (e); 

SIMCA discrimination power plot on the 7th day of storage (f).  
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Figure 73. PCA-LDA on the HSI spectra of EB cherries when classification was based on initial conidial 

contamination: PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of “5 °C Injury” 

samples (b); PCA-LDA score plot of “5 °C Intact” samples (c); LDA discriminating power plot of “5 °C Intact” 

samples (d); PCA-LDA score plot of “25 °C Injury” samples (e); LDA discriminating power plot of “25 °C Injury” 

samples (f); PCA-LDA score plot of “25 °C Intact” samples (g); LDA discriminating power plot of “25 °C Intact” 

samples (h).   
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Figure 74. PCA on the HSI spectra of plums when colouring was based on fruit treatment (sgol-2-21-0, msc): PCA 

score plots of plums treated in different ways (a); PCA loading plot of TD plums (b); PCA loading plot of TP plums 

(c).  

 
Figure 75. SIMCA on the HSI spectra of TP plums when discrimination was based on fruit treatment on certain 

storage days (sgol-2-21-0, msc): SIMCA interclass distances on the 2nd day of storage (a); SIMCA discrimination 

power plot on the 2nd day of storage (b); SIMCA interclass distances on the 4th day of storage (c); SIMCA 

discrimination power plot on the 4th day of storage (d); SIMCA interclass distances on the 7th day of storage (e); 

SIMCA discrimination power plot on the 7th day of storage (f).  
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Figure 76. PCA-LDA on the HSI spectra of TP plums when classification was based on initial conidial contamination: 

PCA-LDA score plot of “5 °C Injury” samples (a); LDA discriminating power plot of “5 °C Injury” samples (b); PCA-

LDA score plot of “5 °C Intact” samples (c); LDA discriminating power plot of “5 °C Intact” samples (d); PCA-LDA 

score plot of “22 °C Injury” samples (e); LDA discriminating power plot of “22 °C Injury” samples (f); PCA-LDA 

score plot of “22 °C Intact” samples (g); LDA discriminating power plot of “22 °C Intact” samples (h).   
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Table 35. PCA-LDA classification accuracies on the NIR spectra of EB sour cherries when classification 

was based on initial conidial contamination. 

EB  Initial 

conidium conc. 
0.15 con./μL 1.5 con./μL 15 con./μL 150 con./μL 

Classification 

accuracies 

5 °C Calibration 0.15 con./μL 65.8 9.4 7.7 13.4 63.1% 

Injury  1.5 con./μL 3.3 65.6 28.2 13.4  

*  15 con./μL 13.2 17.8 54.5 6.7  

  150 con./μL 17.8 7.2 9.6 66.5  

 Validation 0.15 con./μL 36.8 11.1 10.3 19.5 34.1% 
  1.5 con./μL 13.2 37.8 48.7 24.4  

  15 con./μL 15.8 26.7 20.5 14.6  

  150 con./μL 34.2 24.4 20.5 41.5  

5 °C Calibration 0.15 con./μL 84.3 12.2 6.3 0.6 77.6% 

Intact  1.5 con./μL 5.8 65.9 11.9 4.6  

**  15 con./μL 6.4 9.2 77.5 11.9  

  150 con./μL 3.5 12.8 4.4 83.0  

 Validation 0.15 con./μL 37.2 39.0 12.5 9.1 30.5% 
  1.5 con./μL 18.6 7.3 25.0 20.5  

  15 con./μL 27.9 14.6 27.5 20.5  

  150 con./μL 16.3 39.0 35.0 50.0  

25 °C Calibration 0.15 con./μL 77.8 11.9 15.6 6.8 72.6% 

Injury  1.5 con./μL 8.9 67.9 11.1 5.3  

***  15 con./μL 10.0 11.9 66.7 9.9  

  150 con./μL 3.3 8.3 6.7 78.0  

 Validation 0.15 con./μL 31.1 31.0 40.0 12.1 23.5% 
  1.5 con./μL 26.7 21.4 22.2 27.3  

  15 con./μL 24.4 28.6 11.1 30.3  

  150 con./μL 17.8 19.1 26.7 30.3  

25 °C Calibration 0.15 con./μL 76.7 8.9 17.1 3.6 75.4% 

Intact  1.5 con./μL 6.1 72.8 6.7 8.9  

****  15 con./μL 15.0 11.7 67.7 3.0  

  150 con./μL 2.2 6.7 8.5 84.5  

 Validation 0.15 con./μL 37.8 35.6 31.7 23.8 31.0% 
  1.5 con./μL 24.4 31.1 36.6 19.1  

  15 con./μL 15.6 17.8 12.2 14.3  

  150 con./μL 22.2 15.6 19.5 42.9  

* sgol-2-13-0, sgol-2-13-2; Nr = 163; NrPCs = 12 

** sgol-2-17-0, sgol-2-21-1; Nr = 168; NrPCs = 20 

*** sgol-2-21-0, msc; Nr = 165; NrPCs = 19 

**** sgol-2-13-0, sgol-2-21-1; Nr = 173; NrPCs = 19 
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Table 36. PCA-LDA classification accuracies on the NIR spectra of UF sour cherries when classification 

was based on initial conidial contamination.  

UF  Initial 

conidium conc. 
0.17 con./μL 1.7 con./μL 17 con./μL 170 con./μL 

Classification 

accuracies 

5 °C Calibration 0.17 con./μL 93.0 0.0 0.6 0.0 85.1% 

Injury  1.7 con./μL 2.0 72.2 3.0 13.7  

*  17 con./μL 4.0 10.0 91.1 2.4  
  170 con./μL 1.0 17.8 5.4 83.9  

 Validation 0.17 con./μL 56.0 6.7 4.8 4.8 40.9% 
  1.7 con./μL 20.0 24.4 19.1 40.5  
  17 con./μL 20.0 31.1 50.0 21.4  
  170 con./μL 4.0 37.8 26.2 33.3  

5 °C Calibration 0.17 con./μL 72.0 5.1 7.1 17.3 70.6% 

Intact  1.7 con./μL 13.1 71.2 8.9 5.8  

**  17 con./μL 4.2 11.5 72.0 9.6  
  170 con./μL 10.7 12.2 11.9 67.3  

 Validation 0.17 con./μL 45.2 10.3 16.7 30.8 42.0% 
  1.7 con./μL 26.2 51.3 21.4 7.7  
  17 con./μL 7.1 28.2 38.1 28.2  
  170 con./μL 21.4 10.3 23.8 33.3  

25 °C Calibration 0.17 con./μL 61.9 10.0 10.7 19.4 58.2% 

Injury  1.7 con./μL 8.3 63.3 16.1 15.0  

***  17 con./μL 11.9 15.0 60.7 18.9  
  170 con./μL 17.9 11.7 12.5 46.7  

 Validation 0.17 con./μL 35.7 28.9 14.3 35.6 24.6% 
  1.7 con./μL 11.9 17.8 21.4 26.7  
  17 con./μL 23.8 35.6 40.5 33.3  
  170 con./μL 28.6 17.8 23.8 4.4  

25 °C Calibration 0.17 con./μL 68.5 17.2 10.3 9.7 69.7% 

Intact  1.7 con./μL 19.1 66.1 7.1 8.3  

****  17 con./μL 4.2 12.2 76.3 13.9  
  170 con./μL 8.3 4.4 6.4 68.1  
 Validation 0.17 con./μL 42.9 44.4 18.0 33.3 31.5% 
  1.7 con./μL 14.3 8.9 23.1 13.9  
  17 con./μL 21.4 44.4 41.0 19.4  
  170 con./μL 21.4 2.2 18.0 33.3  

* sgol-2-21-0; Nr = 154; NrPCs = 20 

** sgol-2-17-0, sgol-2-21-1; Nr = 162; NrPCs = 11 

*** sgol-2-13-0, sgol-2-17-2; Nr = 174; NrPCs = 13 

**** sgol-2-21-0, sgol-2-21-1; Nr = 162; NrPCs = 14 
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Table 37. PCA-LDA classification accuracies on the NIR spectra of sour cherries showing monilial activity 

when classification was based on the day of appearance of visible infection signs ± 2 days.  

   -2 days -1 day 0 day +1 day +2 days 
Classification 

accuracies 

EB Calibration -2 days 85.2 12.4 6.1 2.2 0.0 77.2% 

*  -1 days 11.1 64.8 20.7 0.0 0.0  

  0 days 3.7 22.2 65.7 2.2 0.0  

  +1 days 0.0 0.6 3.0 75.6 5.1  

  +2 days 0.0 0.0 4.6 20.0 94.9  

 Validation -2 days 52.4 37.0 18.2 13.3 0.0 48.2% 
  -1 days 30.2 25.9 16.7 0.0 0.0  

  0 days 14.3 31.5 51.5 26.7 3.9  

  +1 days 1.6 1.9 4.6 26.7 11.5  

  +2 days 1.6 3.7 9.1 33.3 84.6  

UF Calibration -2 days 35.3 9.34 7.6 2.8 0.4 49.1% 

**  -1 days 39.2 57.07 26.6 8.7 13.9  

  0 days 15.7 24.75 45.1 23.6 25.4  

  +1 days 7.4 5.05 9.5 50.7 3.2  

  +2 days 2.5 3.79 11.1 14.2 57.1  

 Validation -2 days 17.7 30.3 14.1 6.9 1.6 31.7% 
  -1 days 54.9 34.34 15.2 11.1 25.4  

  0 days 15.7 13.13 33.7 37.5 19.1  

  +1 days 7.8 13.13 13.0 25.0 6.4  

  +2 days 3.9 9.09 23.9 19.4 47.6  

* sgol-2-13-0, sgol-2-21-1; Nr = 224; NrPCs = 19 

** sgol-2-21-0; Nr = 377; NrPCs = 13 
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Table 38. PCA-LDA classification accuracies on the NIR spectra of TD plums when classification was 

based on initial conidial contamination.  

TD  Initial 

conidium conc. 
1.05 con./μL 10.5 con./μL 105 con./μL 

Classification 

accuracies 

5 °C Calibration 1.05 con./μL 80.4 9.3 21.4 76.5% 

Injury  10.5 con./μL 3.6 80.0 9.5  

*  105 con./μL 16.1 10.7 69.1  

 Validation 1.05 con./μL 47.6 45.7 38.1 34.0% 
  10.5 con./μL 21.4 25.7 33.3  

  105 con./μL 31.0 28.6 28.6  

5 °C Calibration 1.05 con./μL 75.6 5.4 10.5 74.2% 

Intact  10.5 con./μL 12.8 72.0 14.5  

**  105 con./μL 11.5 22.6 75.0  

 Validation 1.05 con./μL 53.9 26.2 34.2 50.4% 
  10.5 con./μL 25.6 50.0 18.4  

  105 con./μL 20.5 23.8 47.4  

22 °C Calibration 1.05 con./μL 80.4 1.7 13.6 84.2% 

Injury  10.5 con./μL 7.1 90.6 4.6  

***  105 con./μL 12.5 7.8 81.8  

 Validation 1.05 con./μL 50.0 26.7 29.6 47.3% 
  10.5 con./μL 21.4 53.3 31.8  

  105 con./μL 28.6 20.0 38.6  

22 °C Calibration 1.05 con./μL 68.2 5.8 16.7 77.8% 

Intact  10.5 con./μL 11.4 89.1 7.1  

****  105 con./μL 20.5 5.1 76.2  

 Validation 1.05 con./μL 18.2 5.1 33.3 39.2% 
  10.5 con./μL 24.2 59.0 26.2  

  105 con./μL 57.6 35.9 40.5  

* sgol-2-17-0, sgol-2-21-1; Nr = 119; NrPCs = 15 

** sgol-2-21-0, msc; Nr = 119; NrPCs = 8 

*** sgol-2-21-0; Nr = 131; NrPCs = 18 

**** sgol-2-17-0, sgol-2-21-2; Nr = 114; NrPCs = 10 
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Table 39. PCA-LDA classification accuracies on the NIR spectra of TP plums when classification was 

based on initial conidial contamination.  

TP  Initial 

conidium conc.  
2.31 con./μL 23.1 con./μL 231 con./μL 

Classification 

accuracies 

5 °C Calibration 2.31 con./μL 82.0 1.9 0.0 92.9% 

Injury  23.1 con./μL 15.0 98.1 1.4  

*  231 con./μL 3.0 0.0 98.6  

 Validation 2.31 con./μL 20.0 51.3 8.3 47.2% 
  23.1 con./μL 64.0 41.0 11.1  

  231 con./μL 16.0 7.7 80.6  

5 °C Calibration 2.31 con./μL 82.8 15.2 9.4 78.9% 

Intact  23.1 con./μL 15.6 76.2 12.8  

**  231 con./μL 1.7 8.5 77.8  

 Validation 2.31 con./μL 48.9 56.1 26.7 35.1% 
  23.1 con./μL 44.4 9.8 26.7  

  231 con./μL 6.7 34.2 46.7  

22 °C Calibration 2.31 con./μL 88.6 3.5 8.3 89.4% 

Injury  23.1 con./μL 3.0 91.0 3.2  

***  231 con./μL 8.3 5.6 88.5  

 Validation 2.31 con./μL 36.4 11.1 35.9 47.2% 
  23.1 con./μL 27.3 69.4 28.2  

  231 con./μL 36.4 19.4 35.9  

22 °C Calibration 2.31 con./μL 83.9 6.6 5.4 87.9% 

Intact  23.1 con./μL 7.8 89.9 4.8  

****  231 con./μL 8.3 3.6 89.9  

 Validation 2.31 con./μL 33.3 45.2 23.8 51.6% 
  23.1 con./μL 33.3 54.8 9.5  

  231 con./μL 33.3 0.0 66.7  

* sgol-2-21-0; Nr = 100; NrPCs = 18 

** sgol-2-21-0, sgol-2-17-2; Nr = 131; NrPCs = 12 

*** sgol-2-21-0, sgol-2-17-2; Nr = 108; NrPCs = 19 

**** sgol-2-13-0, sgol-2-13-1; Nr = 129; NrPCs = 19 
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Table 40. PCA-LDA classification accuracies on the NIR spectra of plums showing monilial activity when 

classification was based on the day of appearance of visible infection signs ± 2 days.  

   -2 days -1 day 0 day +1 day +2 days 
Classification 

accuracies 

TD Calibration -2 days 69.5 18.6 11.0 13.0 5.7 61.0% 

*  -1 days 16.4 55.5 18.8 12.0 6.1  
  0 days 8.9 17.3 60.4 12.7 10.2  
  +1 days 3.1 8.7 6.9 48.6 6.8  
  +2 days 2.2 0.0 3.0 13.8 71.2  

 Validation -2 days 56.7 21.8 10.7 14.5 3.0 49.6% 
  -1 days 22.1 49.5 22.6 20.3 7.6  
  0 days 9.6 18.8 39.3 7.3 15.2  
  +1 days 7.7 9.9 13.1 44.9 16.7  

  +2 days 3.9 0.0 14.3 13.0 57.6  

TP Calibration -2 days 61.6 15.32 22.0 18.8 31.8 38.9% 

**  -1 days 18.5 49.73 28.0 27.9 37.9  
  0 days 13.4 27.42 41.6 15.4 9.1  
  +1 days 6.0 6.45 5.4 34.6 14.4  
  +2 days 0.6 1.08 3.0 3.3 6.8  

 Validation -2 days 50.0 32.26 31.3 25.0 42.4 25.3% 
  -1 days 21.4 29.03 36.1 25.0 21.2  
  0 days 20.2 31.18 24.1 23.3 27.3  
  +1 days 4.8 2.15 7.2 23.3 9.1  
  +2 days 3.6 5.38 1.2 3.3 0.0  

* sgol-2-13-0, sgol-2-13-1; Nr = 424; NrPCs = 20 

** sgol-2-21-0, sgol-2-17-2; Nr = 353; NrPCs = 11 
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Table 41. PCA-LDA classification accuracies on the HSI spectra of EB sour cherries when classification 

was based on initial conidial contamination.  

EB  Initial 

conidium conc. 
0.15 con./μL 1.5 con./μL 15 con./μL 150 con./μL 

Classification 

accuracies 

5 °C Calibration 0.15 con./μL 85.3 8.6 5.3 2.1 85.5% 

Injury  1.5 con./μL 9.6 85.0 7.6 0.0  

*  15 con./μL 1.5 4.3 78.0 4.3  

  150 con./μL 3.7 2.1 9.1 93.6  

 Validation 0.15 con./μL 70.6 22.9 18.2 14.3 45.0% 
  1.5 con./μL 11.8 45.7 48.5 11.4  

  15 con./μL 5.9 28.6 12.1 22.9  

  150 con./μL 11.8 2.9 21.2 51.4  

5 °C Calibration 0.15 con./μL 85.0 12.1 2.9 0.0 85.6% 

Intact  1.5 con./μL 12.1 83.6 1.5 0.0  

**  15 con./μL 2.9 3.6 82.4 8.3  

  150 con./μL 0.0 0.7 13.2 91.7  

 Validation 0.15 con./μL 37.1 54.3 5.9 3.0 33.1% 
  1.5 con./μL 42.9 14.3 29.4 0.0  

  15 con./μL 17.1 28.6 29.4 45.5  

  150 con./μL 2.9 2.9 35.3 51.5  

25 °C Calibration 0.15 con./μL 73.5 7.9 7.1 16.4 61.6% 

Injury  1.5 con./μL 8.1 57.9 16.4 14.3  

***  15 con./μL 0.7 17.1 55.7 10.0  

  150 con./μL 17.7 17.1 20.7 59.3  

 Validation 0.15 con./μL 47.1 11.4 14.3 20.0 39.6% 
  1.5 con./μL 38.2 42.9 31.4 22.9  

  15 con./μL 5.9 22.9 40.0 28.6  

  150 con./μL 8.8 22.9 14.3 28.6  

25 °C Calibration 0.15 con./μL 80.5 7.1 6.8 5.9 83.0% 

Intact  1.5 con./μL 4.7 85.0 7.6 5.2  

****  15 con./μL 6.3 2.1 81.1 3.7  

  150 con./μL 8.6 5.7 4.6 85.3  

 Validation 0.15 con./μL 31.3 22.9 21.2 20.6 36.6% 
  1.5 con./μL 28.1 28.6 27.3 17.7  

  15 con./μL 25.0 22.9 39.4 14.7  

  150 con./μL 15.6 25.7 12.1 47.1  

* sgol-2-13-0, sgol-2-21-2; Nr = 137; NrPCs = 18 

** sgol-2-21-0, msc; Nr = 137; NrPCs = 20 

*** sgol-2-21-0, sgol-2-17-2; Nr = 139; NrPCs = 6 

**** sgol-2-13-0, sgol-2-13-2; Nr = 134; NrPCs = 20 
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Table 42. PCA-LDA classification accuracies on the HSI spectra of UF sour cherries when classification 

was based on initial conidial contamination.  

UF  Initial 

conidium conc. 
0.17 con./μL 1.7 con./μL 17 con./μL 170 con./μL 

Classification 

accuracies 

5 °C Calibration 0.17 con./μL 100.0 0.0 0.0 0.0 92.6% 

Injury  1.7 con./μL 0.0 92.9 8.9 4.7  

*  17 con./μL 0.0 3.6 82.1 0.0  

  170 con./μL 0.0 3.6 8.9 95.3  

 Validation 0.17 con./μL 80.0 7.1 7.1 0.0 45.2% 
  1.7 con./μL 0.0 28.6 14.3 25.0  

  17 con./μL 0.0 50.0 28.6 31.3  

  170 con./μL 20.0 14.3 50.0 43.8  

5 °C Calibration 0.17 con./μL 100.0 0.0 0.0 0.0 98.0% 

Intact  1.7 con./μL 0.0 100.0 0.0 0.0  

**  17 con./μL 0.0 0.0 96.4 4.4  

  170 con./μL 0.0 0.0 3.6 95.6  

 Validation 0.17 con./μL 41.7 10.5 7.1 0.0 53.3% 
  1.7 con./μL 50.0 84.2 21.4 11.8  

  17 con./μL 8.3 5.3 28.6 29.4  

  170 con./μL 0.0 0.0 42.9 58.8  

25 °C Calibration 0.17 con./μL 90.6 3.6 6.5 4.6 83.4% 

Injury  1.7 con./μL 3.1 73.8 4.8 3.4  

***  17 con./μL 0.8 14.3 83.9 6.8  

  170 con./μL 5.5 8.3 4.8 85.2  

 Validation 0.17 con./μL 59.4 33.3 25.8 22.7 32.5% 
  1.7 con./μL 12.5 0.0 25.8 18.2  

  17 con./μL 9.4 47.6 38.7 27.3  

  170 con./μL 18.8 19.1 9.7 31.8  

25 °C Calibration 0.17 con./μL 87.5 4.5 3.4 4.4 89.1% 

Intact  1.7 con./μL 7.1 91.1 6.8 5.4  

****  17 con./μL 2.7 0.9 88.6 1.1  

  170 con./μL 2.7 3.6 1.1 89.1  

 Validation 0.17 con./μL 50.0 21.4 13.6 39.1 46.3% 
  1.7 con./μL 21.4 50.0 27.3 21.7  

  17 con./μL 7.1 7.1 59.1 13.0  

  170 con./μL 21.4 21.4 0.0 26.1  

* sgol-2-21-0, sgol-2-13-1; Nr = 54; NrPCs = 18 

** sgol-2-21-0, sgol-2-21-1; Nr = 62; NrPCs = 20 

*** sgol-2-17-0, sgol-2-21-2; Nr = 106; NrPCs = 18 

**** sgol-2-13-0, sgol-2-13-2; Nr = 101; NrPCs = 20 
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Table 43. PCA-LDA classification accuracies on the HSI spectra of sour cherries showing monilial activity 

when classification was based on the day of appearance of visible infection signs ± 2 days.  

   -2 days -1 day 0 day +1 day +2 days 
Classification 

accuracies 

EB Calibration -2 days 73.8 16.4 9.9 0.0 0.0 72.6% 

*  -1 days 7.1 77.9 7.8 0.0 0.0  
  0 days 12.5 5.7 58.3 21.0 14.4  
  +1 days 6.6 0.0 13.5 73.0 5.8  
  +2 days 0.0 0.0 10.4 6.0 79.8  

 Validation -2 days 59.5 51.4 25.0 12.0 19.2 25.9% 
  -1 days 14.3 17.1 16.7 4.0 0.0  
  0 days 11.9 22.9 29.2 40.0 26.9  
  +1 days 9.5 2.9 14.6 12.0 42.3  

  +2 days 4.8 5.7 14.6 32.0 11.5  

UF Calibration -2 days 91.7 0 4.0 8.3 0.0 86.5% 

**  -1 days 5.9 89.58 1.6 0.5 0.0  
  0 days 1.5 10.42 90.5 5.2 21.7  
  +1 days 1.0 0 2.4 84.9 2.2  
  +2 days 0.0 0 1.6 1.0 76.1  

 Validation -2 days 78.4 41.67 15.9 14.6 0.0 57.4% 
  -1 days 7.8 25 15.9 0.0 0.0  
  0 days 11.8 33.33 54.0 2.1 26.1  
  +1 days 2.0 0 6.4 72.9 17.4  
  +2 days 0.0 0 7.9 10.4 56.5  

* sgol-2-17-0, sgol-2-17-2; Nr = 176; NrPCs = 17 

** sgol-2-13-0, sgol-2-13-2; Nr = 197; NrPCs = 20 
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Table 44. PCA-LDA classification accuracies on the HSI spectra of TD plums when classification was 

based on initial conidial contamination.  

TD  Initial conidium 

conc. 
1.05 con./μL 10.5 con./μL 105 con./μL 

Classification 

accuracies 

5 °C Calibration 1.05 con./μL 86.4 14.3 6.4 83.8% 

Injury  10.5 con./μL 8.6 77.1 5.7  

*  105 con./μL 5.0 8.6 87.9  

 Validation 1.05 con./μL 54.3 37.1 17.1 55.2% 
  10.5 con./μL 37.1 54.3 25.7  

  105 con./μL 8.6 8.6 57.1  

5 °C Calibration 1.05 con./μL 94.1 1.4 0.0 92.9% 

Intact  10.5 con./μL 2.9 94.3 9.9  

**  105 con./μL 2.9 4.3 90.2  

 Validation 1.05 con./μL 67.7 25.7 21.2 54.1% 
  10.5 con./μL 17.7 40.0 24.2  

  105 con./μL 14.7 34.3 54.6  

22 °C Calibration 1.05 con./μL 95.7 4.3 0.0 97.1% 

Injury  10.5 con./μL 4.3 95.7 0.0  

***  105 con./μL 0.0 0.0 100.0  

 Validation 1.05 con./μL 65.7 28.6 2.9 75.2% 
  10.5 con./μL 25.7 68.6 5.9  

  105 con./μL 8.6 2.9 91.2  

22 °C Calibration 1.05 con./μL 78.7 11.4 11.4 81.6% 

Intact  10.5 con./μL 11.8 82.6 5.0  

****  105 con./μL 9.6 6.1 83.6  

 Validation 1.05 con./μL 52.9 36.4 28.6 42.8% 
  10.5 con./μL 14.7 21.2 17.1  

  105 con./μL 32.4 42.4 54.3  

* sgol-2-17-0, sgol-2-17-2; Nr = 105; NrPCs = 15 

** sgol-2-13-0, sgol-2-17-2; Nr = 102; NrPCs = 20 

*** sgol-2-17-0, sgol-2-21-1; Nr = 104; NrPCs = 19 

**** sgol-2-13-0, sgol-2-13-2; Nr = 102; NrPCs = 12 
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Table 45. PCA-LDA classification accuracies on the HSI spectra of TP plums when classification was 

based on initial conidial contamination. 

TP  Initial conidium 

conc. 
2.31 con./μL 23.1 con./μL 231 con./μL 

Classification 

accuracies 

5 °C Calibration 2.31 con./μL 92.9 0.7 7.6 92.0% 

Injury  23.1 con./μL 2.9 92.9 2.3  

*  231 con./μL 4.3 6.4 90.2  

 Validation 2.31 con./μL 74.3 17.1 36.4 50.0% 
  23.1 con./μL 14.3 48.6 36.4  

  231 con./μL 11.4 34.3 27.3  

5 °C Calibration 2.31 con./μL 96.4 5.7 0.0 96.9% 

Intact  23.1 con./μL 2.1 94.3 0.0  

**  231 con./μL 1.4 0.0 100.0  

 Validation 2.31 con./μL 65.7 25.7 17.1 69.5% 
  23.1 con./μL 31.4 71.4 11.4  

  231 con./μL 2.9 2.9 71.4  

22 °C Calibration 2.31 con./μL 83.6 6.4 10.0 87.1% 

Injury  23.1 con./μL 6.4 90.0 2.1  

***  231 con./μL 10.0 3.6 87.9  

 Validation 2.31 con./μL 48.6 8.6 31.4 61.9% 
  23.1 con./μL 8.6 82.9 14.3  

  231 con./μL 42.9 8.6 54.3  

22 °C Calibration 2.31 con./μL 100.0 0.0 0.0 100% 

Intact  23.1 con./μL 0.0 100.0 0.0  

****  231 con./μL 0.0 0.0 100.0  

 Validation 2.31 con./μL 87.1 14.7 2.9 79.3% 
  23.1 con./μL 12.9 79.4 25.7  

  231 con./μL 0.0 5.9 71.4  

* sgol-2-21-0, sgol-2-13-1; Nr = 103; NrPCs = 18 

** sgol-2-21-0, deTr; Nr = 105; NrPCs = 20 

*** sgol-2-21-0, sgol-2-21-2; Nr = 105; NrPCs = 12 

**** sgol-2-13-0, sgol-2-13-2; Nr = 100; NrPCs = 19 
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Table 46. PCA-LDA classification accuracies on the HSI spectra of plums showing monilial activity when 

classification was based on brown rot signs by day of appearance.  

   -2 days -1 day 0 day +1 day +2 days 
Classification 

accuracies 

TD Calibration -2 days 68.9 11.1 10.0 0.4 0.4 65.3% 

*  -1 days 16.1 53.9 17.1 5.3 0.4  
  0 days 15.0 29.3 59.6 18.0 3.6  
  +1 days 0.0 5.7 11.1 60.2 12.1  
  +2 days 0.0 0.0 2.1 16.2 83.6   

 Validation -2 days 48.6 37.1 18.6 2.8 4.3 46.5% 
  -1 days 30.0 25.7 14.3 9.9 2.9  
  0 days 17.1 21.4 48.6 26.8 1.4  
  +1 days 0.0 15.7 11.4 38.0 20.0  

  +2 days 4.3 0.0 7.1 22.5 71.4   

TP  Calibration -2 days 64.2 12.14 13.6 3.8 0.0 57.3% 

**  -1 days 17.8 60.71 19.2 11.4 3.3  
  0 days 8.4 9.29 38.0 16.6 5.9  
  +1 days 8.7 13.81 12.8 59.2 26.3  
  +2 days 0.9 4.05 16.5 9.0 64.5   

 Validation -2 days 43.4 20.95 16.0 9.8 0.0 33.5% 
  -1 days 28.9 34.29 24.5 21.7 5.3  
  0 days 9.6 16.19 9.6 19.6 7.9  
  +1 days 14.5 15.24 26.6 31.5 38.2  
  +2 days 3.6 13.33 23.4 17.4 48.7   

* sgol-2-17-0, sgol-2-21-1; Nr = 351; NrPCs = 18 

** sgol-2-13-0, sgol-2-13-2; Nr = 450; NrPCs = 15 
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10.2.4. Annexes to the fruit juice fortification results  

 
Figure 77. NIR spectra of sour cherry juices when colouring was based on total extract content: raw spectra recorded 

with the hand-held NIR device (a); raw spectra recorded with the benchtop NIR device (b); 2nd derivative spectra 

recorded with the hand-held NIR device (c); 2nd derivative spectra recorded with the benchtop NIR device (d).  

 
Figure 78. PCA-LDA on the NIR spectra of sour cherry juices when classification was based on the dosed plant 

extract content: PCA-LDA score plot on the data recorded with the hand-held NIR device (a); LDA discriminating 

power plot on the data recorded with the hand-held NIR device (b); PCA-LDA score plot on the data recorded with 

the benchtop NIR device (c); LDA discriminating power plot on the data recorded with the benchtop NIR device (d).  
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Figure 79. NIR spectra of plum juices when colouring was based on total extract content: raw spectra recorded with 

the hand-held NIR device (a); raw spectra recorded with the benchtop NIR device (b); 2nd derivative spectra recorded 

with the hand-held NIR device (c); 2nd derivative spectra recorded with the benchtop NIR device (d).  

 
Figure 80. PCA-LDA on the NIR spectra of plum juices when classification was based on the type of dosed plant 

extract: PCA-LDA score plot on the data recorded with the hand-held NIR device (a); LDA discriminating power plot 

on the data recorded with the hand-held NIR device (b); PCA-LDA score plot on the data recorded with the benchtop 

NIR device (c); LDA discriminating power plot on the data recorded with the benchtop NIR device (d).  
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Table 47. PCA-LDA classification accuracies on the spectra of sour cherry juices recorded different NIR instruments when classification was based on total extract 

content. 

  Total extract content 0.0 g/100 mL 0.5 g/100 mL 0.7 g/100 mL 1.0 g/100 mL 1.4 g/100 mL 1.9 g/100 mL 2.5 g/100 mL 
Classification 

accuracy 

MicroNIR Calibration 0.0 g/100 mL 83.89 6.35 4.76 0.00 0.00 0.00 0.00 71.73% 

hand-held  0.5 g/100 mL 9.44 68.25 21.83 7.14 0.00 0.00 0.00  

device  0.7 g/100 mL 6.67 18.25 61.11 23.02 1.59 0.00 0.00  

*  1.0 g/100 mL 0.00 4.37 12.30 55.16 10.32 1.19 0.00  
  1.4 g/100 mL 0.00 2.78 0.00 12.70 73.02 18.25 0.00  
  1.9 g/100 mL 0.00 0.00 0.00 1.98 15.08 69.84 9.13  
  2.5 g/100 mL 0.00 0.00 0.00 0.00 0.00 10.71 90.87  
 Validation 0.0 g/100 mL 60.00 28.57 12.70 0.00 0.00 0.00 0.00 49.62% 
  0.5 g/100 mL 22.22 38.10 19.05 14.29 0.00 0.00 0.00  
  0.7 g/100 mL 13.33 11.11 36.51 22.22 6.35 1.59 0.00  
  1.0 g/100 mL 4.44 12.70 20.63 25.40 20.63 6.35 0.00  
  1.4 g/100 mL 0.00 9.52 11.11 26.98 52.38 14.29 0.00  
  1.9 g/100 mL 0.00 0.00 0.00 6.35 20.63 57.14 22.22  

  2.5 g/100 mL 0.00 0.00 0.00 4.76 0.00 20.63 77.78  

NIRflex Calibration 0.0 g/100 mL 85.00 4.76 1.59 0.00 0.00 0.00 0.00 76.02% 

benchtop  0.5 g/100 mL 14.44 72.22 23.81 2.38 0.40 0.00 0.00  

device  0.7 g/100 mL 0.56 19.44 59.13 12.30 1.98 0.00 0.00  

**  1.0 g/100 mL 0.00 3.57 15.48 75.79 13.10 0.00 0.00  

  1.4 g/100 mL 0.00 0.00 0.00 9.52 71.03 16.53 0.00  

  1.9 g/100 mL 0.00 0.00 0.00 0.00 13.49 75.00 6.05  

  2.5 g/100 mL 0.00 0.00 0.00 0.00 0.00 8.47 93.95  

 Validation 0.0 g/100 mL 86.67 7.94 1.59 0.00 0.00 0.00 0.00 58.29% 

  0.5 g/100 mL 13.33 47.62 38.10 6.35 4.76 0.00 0.00  

  0.7 g/100 mL 0.00 28.57 33.33 20.63 0.00 0.00 0.00  

  1.0 g/100 mL 0.00 12.70 17.46 41.27 17.46 0.00 0.00  

  1.4 g/100 mL 0.00 0.00 9.52 31.75 55.56 27.42 0.00  

  1.9 g/100 mL 0.00 3.17 0.00 0.00 22.22 59.68 16.13  

  2.5 g/100 mL 0.00 0.00 0.00 0.00 0.00 12.90 83.87  

* sgol-2-21-0, sgol-2-21-1; Nr = 423; NrPCs = 14 

** sgol-2-43-0, sgol-2-43-2; Nr = 421; NrPCs = 20 
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Table 48. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of sour cherry 

juices recorded with the hand-held NIR device.  

Sour cherry juice Extract Pretreatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

All  CBE conc. 
sgol-2-13-0, 

sgol-2-21-2 
369 4 0.50 0.40 0.46 0.42 

blends  GSE conc. 
sgol-2-21-0, 

sgol-2-13-1 
345 15 0.71 0.31 0.65 0.34 

  PGE conc. sgol-2-21-0 346 17 0.90 0.17 0.85 0.21 

  Total extacts 
sgol-2-17-0, 

sgol-2-21-1 
343 7 0.90 0.25 0.87 0.29 

Simple + CBE CBE conc. 
sgol-2-13-0, 

sgol-2-13-2 
86 6 0.96 0.18 0.92 0.25 

blends  GSE conc. – – – – – – – 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-21-0, 

deTr 
91 5 0.94 0.20 0.90 0.27 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-21-0, 

deTr 
95 5 0.95 0.19 0.87 0.31 

  Total extacts – – – – – – – 

Binary + CBE CBE conc. sgol-2-21-0 88 5 0.96 0.09 0.91 0.13 

blends + GSE GSE conc. sgol-2-21-0 88 5 0.96 0.09 0.91 0.13 

  PGE conc. – – – – – – – 

  Total extacts sgol-2-21-0 88 5 0.96 0.17 0.91 0.26 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-21-0, 

msc 
94 2 0.72 0.22 0.66 0.25 

 + PGE PGE conc. 
sgol-2-21-0, 

msc 
94 2 0.72 0.22 0.66 0.25 

  Total extacts 
sgol-2-21-0, 

msc 
94 2 0.72 0.45 0.66 0.49 

 + CBE CBE conc. 
sgol-2-13-0, 

sgol-2-13-1 
87 7 0.93 0.11 0.85 0.16 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-13-0, 

sgol-2-13-1 
87 7 0.93 0.11 0.85 0.16 

  Total extacts 
sgol-2-13-0, 

sgol-2-13-1 
87 7 0.93 0.22 0.85 0.33 

Ternary + CBE CBE conc. 
sgol-2-13-0, 

sgol-2-13-1 
87 7 0.97 0.05 0.93 0.07 

blends + GSE GSE conc. 
sgol-2-13-0, 

sgol-2-13-1 
87 7 0.97 0.05 0.93 0.07 

 + PGE PGE conc. 
sgol-2-13-0, 

sgol-2-13-1 
87 7 0.97 0.05 0.93 0.07 

  Total extacts 
sgol-2-13-0, 

sgol-2-13-1 
87 7 0.97 0.15 0.93 0.22 
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Table 49. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of sour cherry 

juices recorded with the benchtop NIR device.  

Sour cherry juice Extract Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

All  CBE conc. 
sgol-2-35-0, 

sgol-2-27-1 346 17 0.93 0.16 0.87 0.21 

blends  GSE conc. 
sgol-2-43-0, 

msc 
360 12 0.91 0.17 0.90 0.17 

  PGE conc. sgol-2-43-0 343 16 0.98 0.09 0.97 0.10 

  Total extacts 
sgol-2-27-0, 

sgol-2-27-1 
345 7 0.96 0.16 0.95 0.18 

Simple + CBE CBE conc. 
sgol-2-43-0, 

msc 
85 2 0.97 0.13 0.97 0.13 

blends  GSE conc. – – – – – – – 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-43-0, 

deTr  
73 6 0.95 0.18 0.92 0.23 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-35-0, 

sgol-2-27-2 
80 7 0.98 0.12 0.97 0.15 

  Total extacts – – – – – – – 

Binary + CBE CBE conc. 
sgol-2-43-0, 

deTr 
90 3 0.9686 0.08 0.95 0.09 

blends + GSE GSE conc. 
sgol-2-43-0, 

deTr 
90 3 0.9686 0.08 0.95 0.09 

  PGE conc. – – – – – – – 

  Total extacts 
sgol-2-43-0, 

deTr 
90 3 0.97 0.15 0.95 0.19 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-43-0, 

sgol-2-43-2 
74 7 0.98 0.07 0.97 0.08 

 + PGE PGE conc. 
sgol-2-43-0, 

sgol-2-43-2 
74 7 0.98 0.07 0.97 0.08 

  Total extacts 
sgol-2-43-0, 

sgol-2-43-2 
74 7 0.98 0.13 0.97 0.16 

 + CBE CBE conc. 
sgol-2-43-0, 

sgol-2-35-2 
80 7 0.94 0.11 0.86 0.16 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-43-0, 

sgol-2-35-2 
80 7 0.94 0.11 0.86 0.16 

  Total extacts 
sgol-2-43-0, 

sgol-2-35-2 
80 7 0.94 0.21 0.86 0.32 

Ternary + CBE CBE conc. 
sgol-2-43-0, 

msc 
82 7 0.99 0.03 0.98 0.04 

blends + GSE GSE conc. 
sgol-2-43-0, 

msc 
82 7 0.99 0.03 0.98 0.04 

 + PGE PGE conc. 
sgol-2-43-0, 

msc 
82 7 0.99 0.03 0.98 0.04 

  Total extacts 
sgol-2-43-0, 

msc 
82 7 0.99 0.09 0.98 0.12 
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Table 50. PCA-LDA classification accuracies on the spectra of plum juices recorded different NIR instruments when classification was based on the type of plant 

extract added.  

  Juice blends  Juice + CBE + GSE + PGE +(CBE+GSE) +(GSE+PGE) +(PGE+CBE) +(CBE+GSE+PGE) Classification accuracy 

MicroNIR Calibration Juice 74.44 1.39 0.00 0.00 0.00 0.00 0.00 0.00 53.11% 

hand-held   Juice+CBE 18.33 79.63 1.85 10.65 10.65 1.85 18.98 6.02  

device  Juice+GSE 0.00 0.00 43.52 7.41 11.57 6.94 0.93 5.09  

*  Juice+PGE 0.00 0.00 6.48 48.15 5.56 8.80 9.72 4.17  
  Juice+(CBE+GSE) 0.00 7.87 12.50 2.31 51.39 2.78 10.65 10.65  
  Juice+(GSE+PGE) 0.00 0.00 18.52 11.11 3.70 43.98 18.98 16.67  
  Juice+(PGE+CBE)  7.22 5.56 14.35 12.50 4.63 16.67 36.11 9.72  
  Juice+(CBE+GSE+PGE) 0.00 5.56 2.78 7.87 12.50 18.98 4.63 47.69   
 Validation Juice 64.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.04% 
  Juice+CBE 22.22 51.85 7.41 16.67 12.96 5.56 18.52 14.81  
  Juice+GSE 0.00 11.11 11.11 20.37 29.63 16.67 5.56 14.81  
  Juice+PGE 2.22 9.26 20.37 11.11 5.56 16.67 14.81 7.41  
  Juice+(CBE+GSE) 0.00 18.52 33.33 9.26 16.67 5.56 11.11 12.96  
  Juice+(GSE+PGE) 0.00 0.00 9.26 18.52 12.96 22.22 22.22 12.96  
  Juice+(PGE+CBE)  11.11 7.41 7.41 7.41 9.26 14.81 16.67 14.81  

  Juice+(CBE+GSE+PGE) 0.00 1.85 11.11 16.67 12.96 18.52 11.11 22.22   

NIRflex Calibration Juice 72.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55.08% 

benchtop   Juice+CBE 15.56 66.20 0.93 0.47 10.65 0.00 5.09 2.78  

device  Juice+GSE 0.00 0.46 46.30 13.21 8.80 7.87 0.93 7.41  

**  Juice+PGE 0.00 0.00 13.89 45.28 0.00 16.67 3.70 11.57  

  Juice+(CBE+GSE) 2.22 10.65 8.33 4.72 53.70 1.85 6.02 7.41  

  Juice+(GSE+PGE) 0.56 2.78 14.35 13.21 1.85 45.37 5.09 5.56  

  Juice+(PGE+CBE)  2.78 11.57 9.26 14.62 10.65 12.96 61.57 15.28  

  Juice+(CBE+GSE+PGE) 6.67 8.33 6.94 8.49 14.35 15.28 17.59 50.00   

 Validation Juice 66.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.04% 

  Juice+CBE 17.78 35.19 0.00 0.00 1.85 0.00 5.56 9.26  

  Juice+GSE 0.00 0.00 25.93 37.74 7.41 14.81 0.00 11.11  

  Juice+PGE 0.00 1.85 22.22 3.77 0.00 12.96 9.26 3.70  

  Juice+(CBE+GSE) 8.89 29.63 14.81 5.66 35.19 9.26 3.70 12.96  

  Juice+(GSE+PGE) 2.22 5.56 16.67 28.30 3.70 29.63 14.81 12.96  

  Juice+(PGE+CBE)  2.22 12.96 9.26 16.98 12.96 18.52 44.44 18.52  

  Juice+(CBE+GSE+PGE) 2.22 14.81 11.11 7.55 38.89 14.81 22.22 31.48   

* sgol-2-21-0, deTr; Nr = 423; NrPCs = 20  

** sgol-2-35-0, sgol-2-27-1; Nr = 422; NrPCs = 16  
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Table 51. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of plum juices 

recorded with the hand-held NIR device.  

Plum  juice Extract Pretreatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

All  CBE conc. sgol-2-21-0 348 8 0.15 0.54 0.00 0.58 

blends  GSE conc. 
sgol-2-21-0, 

msc 
374 4 0.46 0.42 0.42 0.43 

  PGE conc. 
sgol-2-13-0, 

sgol-2-21-2 
348 16 0.69 0.32 0.55 0.39 

  Total extacts 
sgol-2-21-0, 

msc 
323 7 0.82 0.32 0.80 0.34 

Simple + CBE CBE conc. sgol-2-21-0 91 7 0.73 0.44 0.53 0.59 

blends  GSE conc. – – – – – – – 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-17-0, 

sgol-2-21-2 
79 6 0.89 0.29 0.76 0.42 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-13-0, 

sgol-2-13-1 
91 7 0.91 0.25 0.47 0.62 

  Total extacts – – – – – – – 

Binary + CBE CBE conc. 
sgol-2-21-0, 

deTr 
91 3 0.84 0.17 0.77 0.20 

blends + GSE GSE conc. 
sgol-2-21-0, 

deTr 
91 3 0.84 0.17 0.77 0.20 

  PGE conc. – – – – – – – 

  Total extacts 
sgol-2-21-0, 

deTr 
91 3 0.84 0.34 0.77 0.40 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-21-0, 

msc 
87 6 0.96 0.09 0.93 0.12 

 + PGE PGE conc. 
sgol-2-21-0, 

msc 
87 6 0.96 0.09 0.93 0.12 

  Total extacts 
sgol-2-21-0, 

msc 
87 6 0.96 0.17 0.93 0.23 

 + CBE CBE conc. 
sgol-2-21-0, 

msc 
81 7 0.92 0.12 0.84 0.17 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-21-0, 

msc 
81 7 0.92 0.12 0.84 0.17 

  Total extacts 
sgol-2-21-0, 

msc 
81 7 0.92 0.25 0.84 0.34 

Ternary + CBE CBE conc. 
sgol-2-13-0, 

sgol-2-21-1 
88 7 0.91 0.08 0.77 0.13 

blends + GSE GSE conc. 
sgol-2-13-0, 

sgol-2-21-1 
88 7 0.91 0.08 0.77 0.13 

 + PGE PGE conc. 
sgol-2-13-0, 

sgol-2-21-1 
88 7 0.91 0.08 0.77 0.13 

  Total extacts 
sgol-2-13-0, 

sgol-2-21-1 
88 7 0.91 0.25 0.77 0.39 
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Table 52. PLSR prediction of plant extract concentration (g/ 100 mL) based on the spectra of plum juices 

recorded with the benchtop NIR device.  

Plum  juice Extract Pre-treatment Nr NrLV RC
2 RMSEC RCV

2 RMSECV 

All  CBE conc. 
sgol-2-43-0, 

deTr 
342 17 0.76 0.28 0.66 0.33 

blends  GSE conc. 
sgol-2-35-0, 

sgol-2-43-1 
340 7 0.70 0.32 0.59 0.37 

  PGE conc. 
sgol-2-43-0, 

msc 
333 12 0.78 0.28 0.71 0.32 

  Total extacts 
sgol-2-27-0, 

sgol-2-27-1 339 7 0.90 0.24 0.87 0.28 

Simple + CBE CBE conc. 
sgol-2-43-0, 

msc 
88 6 0.67 0.50 0.61 0.54 

blends  GSE conc. – – – – – – – 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-43-0, 

deTr 
80 8 0.95 0.20 0.90 0.27 

  PGE conc. – – – – – – – 

  Total extacts – – – – – – – 

  CBE conc. – – – – – – – 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-35-0, 

sgol-2-35-2 
75 6 0.96 0.16 0.95 0.18 

  Total extacts – – – – – – – 

Binary + CBE CBE conc. 
sgol-2-43-0, 

sgol-2-35-2 
75 7 0.95 0.10 0.94 0.10 

blends + GSE GSE conc. 
sgol-2-43-0, 

sgol-2-35-2 
75 7 0.95 0.10 0.94 0.10 

  PGE conc. – – – – – – – 

  Total extacts 
sgol-2-43-0, 

sgol-2-27-2 
73 7 0.96 0.17 0.93 0.24 

  CBE conc. – – – – – – – 

 + GSE GSE conc. 
sgol-2-27-0, 

sgol-2-27-2 
81 7 0.96 0.08 0.94 0.09 

 + PGE PGE conc. 
sgol-2-27-0, 

sgol-2-27-2 
81 7 0.96 0.08 0.94 0.09 

  Total extacts 
sgol-2-27-0, 

sgol-2-27-2 
81 7 0.96 0.15 0.94 0.19 

 + CBE CBE conc. 
sgol-2-35-0, 

sgol-2-43-1 
83 5 0.97 0.07 0.96 0.08 

  GSE conc. – – – – – – – 

 + PGE PGE conc. 
sgol-2-35-0, 

sgol-2-43-1 
83 5 0.97 0.07 0.96 0.08 

  Total extacts 
sgol-2-35-0, 

sgol-2-43-1 
83 5 0.97 0.15 0.96 0.17 

Ternary + CBE CBE conc. sgol-2-43-0 79 6 0.98 0.03 0.98 0.04 

blends + GSE GSE conc. sgol-2-43-0 79 6 0.98 0.03 0.98 0.04 

 + PGE PGE conc. sgol-2-43-0 79 6 0.98 0.03 0.98 0.04 

  Total extacts sgol-2-43-0 79 6 0.98 0.10 0.98 0.13 
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