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1. INTRODUCTION

Quality assurance of food products is undoubtedly one of the most relevant
topics related to food security. It is also directly related to the satisfaction of
consumer expectations and demands, who focus on certain intrinsic and extrinsic
characteristics of foods such as color, shape, size, freedom from defects, texture,
sweetness, acidity, aroma, flavor, shelf life, and nutritional value (Margeta et al.,
2019). Quality assurance, and therefore consumer acceptance, is linked to the
control, study, and implementation of practices that ensure optimal products
throughout the entire food production process, from the initial production of raw
materials to the final product. Agricultural products are often perishable and
subject to varying quality, which introduces uncertainty and requires active
involvement in primary production to ensure food safety (Tadesse, 2024).
Furthermore, once raw materials are processed into food products, their quality
may continue to change depending on storage, transportation, and treatment
conditions prior to consumption (Dunno et al., 2016).

The production and consumption of fresh eggs is important due to their
nutritional contribution to the human diet. Furthermore, enriched eggs, which
offer greater nutritional benefits, can be produced by varying the diet of laying
hens, including relevant nutrients that will be assimilated and transferred to the
egg. However, such dietary changes can alter the organoleptic characteristics of
the eggs, which in many cases can have a negative effect and decrease consumer
acceptability. It is advisable to conduct sensory evaluations of the organoleptic
profile of eggs, which have traditionally been performed through human
evaluation panels (Hayat et al., 2010; Mian K. et al., 2017). Although valuable,
this approach has limitations due to the subjectivity and variability inherent in
human perception. Given the growing interest in the consumption of enriched
eggs through feed modification, this research used advanced sensory
technologies (Aouadi et al., 2020), including electronic tongue (e-tongue) which
detects soluble compounds in liquids and the electronic nose (e-nose) which
identifies volatile compounds in gases and aromas, for a more objective
evaluation of the sensory of enriched eggs from laying hens feed with an
industrial brewery by-product enriched with organic zinc on the diet.

Probiotics are important food supplements that promote a positive balance of
beneficial microbiota in the gastrointestinal tract, bringing potential advantages
for overall health. This beneficial supplements are predominantly sourced from
bacterial groups such as Lactobacillus, Bifidobacterium and Enterococcus, as
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well as yeast strains such as Saccharomyces boulardii (Menezes et al., 2018;
Sanders et al., 2018). Therefore, the study of stress factors that may compromise
the viability of these probiotics, such as the temperature of the probiotic
beverage preparation water and its concentration, is relevant.

Microgreens are also important agricultural products which have gained
popularity being recognized as functional foods with notable nutritional benefits
and high acceptance in modern gastronomy (Paraschivu et al., 2022). Therefore,
the proper cultivation of these little plants is relevant to achieve a high quality
product. Environmental factors influence plant development and, consequently,
their morphological characteristics and biochemical components. It is important
to adequately establish the influence of these factors using techniques that allow
for adequate monitoring and comprehensive evaluation.

In this regard, optical methods like Near Infrared Spectroscopy (NIRS) have
gained popularity for their non-destructive, environmentally friendly, fast, and
real-time monitoring capabilities. NIRS measures the interaction between light
and matter to determine food quality features. It is particularly useful because
the NIR spectrum corresponds to overtones and combinations of chemical bonds
such as C-H, O-H, and N-H, which relate to food structure and its properties
(Burns and Ciurczak, 2008; Ozaki, Genkawa and Futami, 2017). NIRS shows
potential in characterizing probiotic drinks prepared at different water
temperature and concentration conditions, and predicting their viability; on the
other hand, NIRS shows some potential for characterization and agronomical
and biochemical parameter prediction of plant products like pea microgreens
grown under different temperature and photoperiod conditions. The study aimed
to demonstrate NIRS’s capability in providing real-time, non-invasive
monitoring for the considered analyzed matrixes (probiotic supplements and pea
microgreens) which have been subjected to stressing conditions.

Despite their advantages, these technologies (e-tongue, e-nose and NIRS)
require expertise in measurement interpretation and in adjusting mathematical
and statistical models to fit new conditions and food matrices. To enhance their
effectiveness, they are often combined with chemometric approaches such as
Principal Component Analysis (PCA), Discriminant Analysis, and Partial Least
Squares Regression (PLSR). These techniques help to extract relevant patterns
from complex data, classify food samples, and predict various quality
parameters.



2. OBJECTIVES

The primary aim of this thesis is to determine the applicability and effectiveness
of rapid correlative methods: NIRS, e-tongue, e-nose, for assessing alterations in
food quality caused by significant stress factors, offering advantages over
conventional quality evaluation techniques.

The first research aim was to evaluate the applicability of e-tongue and e-nose to
detect the possible alteration of the organoleptic properties of eggs produced by
hens, with diets containing different levels of an organic zinc-enriched by-
product.

1. Develop models for e-tongue to discriminate, classify, and predict eggs
based on the level of zinc-enriched by-product in the diet.

2. Develop models for e-nose to discriminate, classify, and predict eggs
based on the level of zinc-enriched by-product in the diet and storage time.

The second aim of our study was to determine the applicability of NIRS to
detect changes in probiotic drinks prepared with varying concentrations of
probiotic powder and different water temperatures prior to consumption.

1. Develop models for characterization of three commercial probiotic food
supplement powders containing lactic acid bacteria (LAB) subjected to probiotic
concentration and water temperature conditioning factors.

2. Develop models for viability prediction of lactic acid bacteria (LAB)
from three commercial probiotic food supplement powders subjected to
probiotic concentration and water temperature conditioning factors.

The third research aim was to determine the applicability of NIRS for detecting
changes induced by different environmental conditions during the growth of pea
microgreens.

1. Develop models to characterize pea microgreens and predict key
agronomical and physicochemical properties under varying temperature and
photoperiod conditions.

2. Develop and assess models for two different sample types: Microgreens
fresh-cut samples pea samples and Aqueous microgreens extracts samples pea
samples.



3. MATERIALS AND METHODS

3.1. Materials and methods for egg sensory evaluation

This study evaluate the sensory qualities of eggs derived from Lohmann Brown
Classic hens subjected to various dietary treatments. The dietary treatments
included a control feed (0% Zincoppyeast) and Zincoppyeast supplemented
feeds: ZP 2.5% (2.5% Zincoppyeast), and ZP 5.0% (5.0% Zincoppyeast). The
evaluation was designed to assess the impact of these dietary variations on the
sensory properties by human sensory analysis, e-tongue and e-nose and
additionally the effect of storage time by e-nose.

Eggs from the three groups feeding groups were collected for evaluation on day
30 (batch 1) and day 60 (batch 2) of the experimental period, totaling 90 samples
per batch for human sensory analysis, 18 for e-tongue analysis, and 90 for e-
nose.

For human sensory analysis eggs were evaluated, for five trained panelists, on
three presentations: fresh raw (Albumin color, Yolk color, Yolk shape, Albumin
density), boiled (Albumin color, Yolk color, Egg odor, Unusual odor, Albumin
flavor, Unusual taste, Albumin flexibility, Yolk creaminess) and fried eggs
(Yolk color, Egg odor, Sweet aroma, Unusual odor, Egg taste, Sweet taste,
Unusual taste, Texture) in a scale from 0 to 9. Evaluation was established
according to three feeding groups ZP 0%, ZP 2.5%, ZP 5% for two the batches.
Results from the sensory evaluation were statistically analyzed using SPSS
software (version 20.0). Differences between treatment groups were evaluated
using one-way ANOVA, and Tukey's Honestly Significant Difference (HSD)
post hoc tests (p < 0.05).

An Alpha Astree electronic tongue from AlphaMOS was used to evaluate the
soluble compounds present in of the fresh egg samples by seven potentiometric
sensors. To prepare each sample, 2 g of homogenized egg mixture was
transferred to individual 100 mL volumetric flasks and made up to the mark with
distilled water. Six parallel samples were taken from each of the three
experimental groups, giving a total of 18 eggs samples for the two batches
tested. These samples were then subjected to analysis using e-tongue.
Chemometrics was applied to the resulting data from e-tongue analysis, by
Euclidean distances, PCA and LDA for classification between feeding groups
for each of the two batches. The validation type for the LDA models was three-
fold cross validation (by repeat) by data splitting: 2/3 for training and 1/3
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validation.

The evaluation of the aroma profiles of egg samples was carried out using the
ultrafast chromatograph Alpha MOS Heracles NEO electronic nose. One type of
evaluation was made in fresh eggs for Batch 1 and Batch 2 with preheating
temperature of 50 °C and 80 °C during e-nose chromatograph analysis. Models
were performed according to each preheating temperature by applying PCA-
LDA for classification between feeding groups. A second type of evaluation
consisted on the classification of eggs according to storage time, were the
number of days considered for storage were 0, 30, 60 days. In this case, two
preheating for the creation of the classification models were also considered. The
models were validated by three-fold cross validation (by repeat) were data was
splitted in 2/3 for training and 1/3 for validation.

Kovats index (related to each peak detection) were identified. These indices
were checked against the AroChemBase database to recognize the volatiles
associated with the odors. The methodology for sensory analysis of the enriched
eggs experiment is shown in Figure 1.

" Enriched |
eggs
experiment
| | I
Prestablishmen Sensory
t of experiment analysis
|
| 1 1
Hens feeding:
== Control, ZP 2.5%, Human E-tongue E-nose
ZP 5%
Eggs collected on Evaluation of E : Evaluation of
valuation of
== 30 and 60 days of fresh raw, boiled || fresh eggs == fresh eggs, 30, 60
laying period — and fried eggs (21 storage eggs
sensory
T ——— characteristics)
Primary analysis L | Euclidean
of eggs: Chemical — distances, PCA, |&= PCA-LDA
e and — LDA
microbiological
| staws | = ANOVA

Figure 1. Methodological scheme for sensory and analytical assessment of
enriched eggs



3.2. Materials and methods for probiotics evaluation

It was evaluated three commercial probiotic food supplements in a powder
format named as probiotic N (Istanbul, Turkey), P, and A (Budapest, Hungary),
in this research. These probiotics which contained lactic acid bacteria (LAB)
were prepared as beverages by adding water at different temperatures of 25 °C
(control), 60 °C and 90 °C, and considering three different probiotic
concentrations (C1: 3 g/125 mL, C2: 2.5 g/125 mL, and C3: 2 g/125 mL). Once
water (at different temperatures was poured onto the probiotics), the mixture
liquid was let to cool down before measurements. A total of three repetitions of
each preparation were made, resulting in 81 samples for the three probiotic
products (three probiotics x three concentrations x three temperatures x three
repetitions). For the determination of the viability of probiotics under the stress
factors under study, microbiological analysis was performed, which consisted in
the culture of lactobacillus spp. in a low-selective medium MRS agar by pour
plating. The plates were incubated at 37 °C for 72 hours, after which the number
of colonies (log CFU/g) was counted. A statistical analysis on the Viable counts
(Log CFU/qg) of the samples was performed using ANOVA and Tukey's test (p
< 0.05) to evaluate the differences between the groups.

A Benchtop MetriNIR spectrophotometer was used to collect the transflectance
spectra of the probiotic samples. Samples were placed in a self-made, thermo-
regulated circular cuvette at 25 °C, with a metallic wall (inner diameter: 5 cm;
outer diameter: 8.5 cm) and a 0.4 mm thick crystal layer, which also included a
white reflector. The 81 samples were scanned in three parallel and three
consecutive scans. A total of 729 scans were obtained: 243 for each probiotic
product. The recorded spectra was analyzed in the 950 to 1650 nm range.

PCA-LDA models were built for classification according to probiotic type,
concentration, and temperature groups separately. Classification models were
performed by three-fold cross-validation. In each step of the cross-validation, the
data of one repeat of the samples was left out. Two-thirds of the data were used
for model building, while the remaining third was used for external validation.
Single and combined spectra pretreatments were evaluated to determine the best
possible PCA-LDA models, resulting in a total of 41 evaluated spectra
pretreatments. Single spectra pretreatments were: Savitzky—Golay (SG)
smoothing filter, second-order polynomial (13, 17, or 21 points), first derivative,
second derivatives, multiplicative scatter correction (MSC), standard normal
variate (SNV), and de-trending (deTr). Following the acquisition of PCA-LDA

results, the most suitable models were identified based on the spectral
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pretreatments that yielded the highest CV accuracy percentage. For the PLSR
regression model used to predict viability, two-thirds of the data were used to
build the PLSR models (for calibration and cross-validation). The final model
was tested to ascertain its robustness by using the remaining one-third of the data
for prediction. The methodology for probiotics experiment is shown in Figure 2.

Probiotic drinks

experiment
|
| |
. NIRS analysis and
Samples preparation chemometrics
|
| |
= Probiotics: N, P, A Reference analysis NIRS
Probiotic samples Microbiological analysis -
concentration: C1 (3 g), . J 4 L
| viable counts (Log Adquisition in
C2(2.59),andC3(29) .
in 125ml CFU/g)) |__| transflectance mode in
the 950-1630 nm
wavelength range
Water temperature: T1

b (25 °C), T2 (60 °C), and
T3 (90 °C)

Chemometrics: PCA,
PCA-LDA, PLSR

Figure 2. Methodological scheme for probiotic drinks assessment

3.3. Materials and methods for microgreens evaluation

For the purpose of this study, a critical phase of the project involved the
development of custom-designed climate chambers, achieved through a stepwise
approach. Initially, individual control components were developed separately
and subsequently integrated into a unified system. The developed set up for
microgreens growth permitted to regulate the temperature and photoperiod with
photon flux density (PPFD) of 75.7 pumol/m?/s + 4.96. Additionally, sensors
coupled inside the chambers for real-time humidity monitoring and ventilation
control. Pea microgreens (Debrecen sotetzold) were planted in soil (organic
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horticultural substrate). Twelve different environmental conditions (temperature-
photoperiod) were considered for microgreens growth: temperature (15, 20, 25
°C), photoperiod (0 hours of light, 6 hours of light, 12 hours of light, 18 hours of
light), relative humidity around 70-80%. At temperatures of 20 and 25 °C, higher
temperatures promoted faster emergence and growth, plants were harvested at 7,
11 and 14 days after sowing. Meanwhile, at a temperature of 15 °C, emergency
and growth were slower, so plants were harvested at 11, 14 and 18 days.

NIRS analysis was conducted independently on two different types of prepared
samples: microgreens fresh-cut samples (measured in reflectance in a benchtop
XDS Rapid Content Analyzer) and Aqueous microgreens extracts samples
(measured in transmittance in a benchtop XDS Rapid Liquid Analyzer). For
NIRS analysis of fresh cut samples, which consisted on microgreens cut in
homogeneous pieces around (2.5cm) (without roots), samples were placed in a
circular cuvette of 0.4 mm layer thickness, meanwhile, for NIRS analysis of
aqueous extracts, consisting on the same microgreens but subsequently blended
with distilled water (in a proportion 1:5) and filtered, samples were place in a 1
mm pathlength quartz cuvette.

The total number of scans for each type of the two matrices consisted of 324
spectra (3 temperatures x 4 photoperiods x 3 harvesting days x 3 repeats x 3
scans). The spectral analysis was focused on the 1150 to 1850 nm which showed
better results compared to other NIR ranges tested. The spectral pretreatments
consisted on Savitzky-Golay smoothing (2nd polynomial, and 45 window width)
and standard normal variate. Next, Principal component analysis (PCA) data
exploration by harvest day, temperature and photoperiod was performed on the
full data for pattern recognition. Followed by PCA-LDA analysis, for
classification of microgreens, performed according to temperature, photoperiod,
temperature-photoperiod, harvesting day. Supervised three-fold cross-validation
was applied (leaving out one from three repeats for CV in each iteration).

PLSR was carried out for height, weight, Lab color components, pH,
conductivity, °Brix, chlorophyll A, B, total carotene. Two from three repeats
were used for model calibration and cross-validation, and the last repeat for
prediction. Additionally, PLSR models were performed for total water soluble
polyphenolic compounds (TPC) and antioxidant capacity (TAC). Leave-one-out
cross-validation was used for the PLSR models in this case. The experimental
design is summarized in Figure 3.



Pea
microgreens

Prestablishment
of experiment

Building of climate

experiment
N
NIRS analysis
and
chemometrics
L
N I
Reference analysis NIRS
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microgreens at:
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°C), photoperiod (0 6, 12
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Chemometrics: PCA,
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Figure 3. Methodological scheme for pea microgreens assessment



4. RESULTS

4.1. Results of sensory evaluation of eggs

The sensory evaluation of eggs by a trained human panel assessed differences
across three feeding groups (control, ZP 2.5%, and ZP 5.0%) using eggs
prepared raw, boiled, and fried from two production batches. Statistical analyses
(ANOVA and Tukey tests) revealed that most sensory attributes did not show
significant differences between the groups, especially in boiled and fried eggs,
which were generally described as representative of fresh eggs. Notably, raw
eggs from Batch 1 in the ZP-supplemented groups demonstrated more intense
sensory characteristics, such as greater yolk color intensity, yolk convexity, and
protein density, compared to the control. Fried eggs from the same batch also
showed higher values for yolk color, odor, and sweet flavor in the ZP-fed
groups. In contrast, boiled eggs from Batch 1 exhibited slight differences, with
the ZP 2.5% group displaying slightly more intense yolk color and white flavor.
However, results from Batch 2 were less pronounced, suggesting that hens may
have adapted to the supplemented diet over time, leading to more uniform egg
characteristics. Overall, the findings suggest that while some sensory differences
emerged, especially in the first batch, these were not consistent or strongly
apparent across all samples.

The LDA models from e-tongue analysis showed major overlapping with some
degree of separation within each group of eggs (Control, ZP 2.5% and ZP 5.0%)
for the two Batches tested. The average calibration accuracy for batch 1 was
95.92%, with a cross-validation accuracy of 64.81%. Additionally, batch 2
exhibited an average calibration accuracy of 100% and a cross-validation
accuracy of 56.23%. This suggests that the models captures some useful
information from real data, but there is evidence of overfitting. The analysis of a
matrix of random numbers showed a calibration accuracy of 80.07% and cross-
validation accuracy of 29.95%. Differences between the CV values of real data
(64.81%) and random data (29.95%) demonstrates that the real data contains
relevant information for classification.

The e-nose analysis provided valuable results to establish sensory profile
of eggs from different feeding groups and storage durations. Linear discriminant
analysis based on principal component analysis (PCA-LDA) revealed high
discrimination between batches and feeding groups, particularly between
Control and 5.0% ZP. In the classification of fresh eggs according to the feeding
groups in both batches at 50 °C, the average calibration accuracy was 98.00%,
and cross-validation accuracy 68.49%. At 80 °C, the calibration and cross-
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validation accuracy was 82.65%and 62.22%, respectively. The three-fold cross-
validation results showed some misclassification between adjacent egg groups.
However, the Control and ZP 5.0% groups showed a clearer tendency toward
separation. A significant gap was identified between the calibration and cross-
validation results obtained from the PCA-LDA models from e-nose. Analysis on
simulated data (random numbers) showed a calibration accuracy of 98.77% and
a cross-validation accuracy of 39.64%. Difference between the CV accuracy of
real data (68.49%) and simulated data (39.64%) shows that the real data
contains relevant information for classification. Moreover, PCA-LDA models
from the analysis according to eggs stored at 0, 30 and 60 days showed complete
separation of samples according to storage time, with 100% correct
classification in calibration and cross-validation.

Important sensors involved in the differentiation to both dietary treatment and
storage effects were linked to different volatile compounds including
acetaldehyde, methyl acetate, 2-methylpropanal, between others. Overall, by e-
nose, it was possible to determine differences attributed to feeding regimes and
storage conditions on the volatile profiles of eggs.

4.2.  Results of probiotic samples evaluation

During the assessment of probiotic supplements under varying conditions,
microbiological analysis showed that microorganism viability is strongly
influenced by temperature, were high temperatures (60 °C and 90 °C) decreases
the viability of probiotics.

The PCA-LDA analysis on pretreated spectra with SG 2-17-0 performed the
best on the three probiotics (N, A, and P) at 25°C correctly separating the
groups, with 100% of the groups being correctly classified for calibration and
99.18% for cross-validation. Probiotic N showed the most distinct separation
compared to probiotics A and P which were more closely related. Additionally,
classification by concentration showed clear separation between levels at 90°C,
with minor overlap between adjacent concentrations. The models reached 100%
accuracy in calibration and over 90% in cross-validation. Probiotic A had the
highest cross-validation accuracy (95.06%), followed by probiotic P (93.52%)
and probiotic N (90.12%). The best pretreatments were DeTr + MSC for
probiotic N, SG 2-21-0 + DeTr for probiotic A, and SG 2-17-0 + SG 2-17-2 for
probiotic P. At lower temperatures, classification depends more on the probiotic
type. NIR spectroscopy with PCA-LDA appears effective for identifying
probiotic concentrations in solutions. Classification based on temperature also

11



resulted in high accuracy. Probiotic A performed the best, with 100% accuracy
in both classification and cross-validation. Probiotics P and N also showed high
classification accuracy, both above 90%, with minor misclassifications between
adjacent temperatures. The best pretreatments were de 2-13-0 + SG 2-21-1 for
probiotic N, SG 2-17-0 + MSC for probiotic A, and DeTr for probiotic P. NIR
spectroscopy showed effectiveness for distinguishing probiotic solutions based
on temperature. Regarding PLSR, the most accurate predictive model for CFU
counts used SG 2-21-0 and SG 2-13-2 pretreatments, resulting in an R2Pr of
0.82 and an RMSEP of 0.64 Log CFU/g. Wavelengths between 1300-1600 nm
were important for predicting probiotic viability, with relevant molecular
interactions involving water and organic compounds, including OH and NH
stretching, notably at 1458 nm, 1484 nm, and 1140 nm.

4.3.  Results of pea microgreens samples evaluation

The evaluation of agronomic and phytochemical characteristics of pea microgreens
grown under different environmental conditions of photoperiod and temperature
showed in a major extent the classical behavior reported in literature. Higher
temperatures, especially 25 °C, and longer light exposure significantly improved plant
growth and pigment accumulation. For instance, microgreens under 25 °C with 18-
hour light showed enhanced plants height, weight, deeper green coloration, and higher
chlorophyll and carotenoid levels. In contrast, plants grown in complete darkness
were taller but lacked pigmentation due to etiolation.

°Brix values were highest at lower temperatures and longer light exposure, indicating
greater sugar retention. pH remained relatively stable, and no specific trends were
found, while electrical conductivity varied without a consistent pattern.

Color analysis confirmed that increased light reduced L* and b* values which
improved green intensity. Color and pigment content was directly correlated with
photoperiod length, emphasizing the importance of light for photosynthetic and
nutritional quality.

The parameters were evaluated through different days, in general height, weight, and
pigments consistently increase over the analyzed period. In the case, of the other
parameter the behavior was more variable and specific photoperiod-temperature
dependent.

Overall, optimal conditions for producing pea microgreens related for the majority of
parameters tested are 20-25 °C with 12-18 hours of light per day. Except for TAC
and TPC which increase at lower temperatures 15°C.
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Classification of Pea Microgreen Samples via PCA-LDA

The data collected was assessed by performing classification models on aqueous
microgreens extracts samples and classification models on fresh-cut microgreens
samples. Microgreens grew at 12 different conditions of temperature-
photoperiod (treatments). Each treatment was classified according to harvesting
days. The models from aqueous microgreens extracts samples achieved better
results compared to microgreens fresh-cut samples in most treatments (classified
by harvesting day), reporting CV between 81.45% to 100% for treatments from
15 °C and 25 °C, meanwhile for 20 °C, it was between 66.67% and 82.26%.

In a different approach, by selecting a specific day, samples were classified
according to photoperiod-temperature treatment. Once again, aqueous
microgreens extracts samples achieved higher CV classification accuracies
(between 56.47% to 87.72%) compared to microgreens fresh-cut samples
(between 48.39% and 59.72%). Next, samples were classified by selecting a
specific day and classification according to temperature. The PCA-LDA models
showed higher accuracy at day 11 for aqueous microgreens extracts samples
with a CV of 85.58%, meanwhile microgreens fresh-cut samples achieved
81.79%. In the case of photoperiod, the best classification was at day 7 for
aqueous microgreens extracts samples with a CV of 85.45%, meanwhile for
microgreens fresh-cut samples was 67.83% at day 14. The last approach and
consistent with the previous results, one more time aqueous microgreen extract
samples had better discrimination were all the samples from the dataset was
selected at the time and the classification models were according to harvesting
day, treatment, temperature and photoperiod with CV accuracies of 95.59,
68.34, 88.87 and 66.89%, respectively.

Partial Least Squares Regression (PLSR) models on Pea Microgreen Samples

Models for physical traits (weight and height) performed better in fresh-cut
samples (R2pr = 0.78 and 0.70) than in extracts.

Color components L* and b* showed similar R?pr values for microgreens fresh-
cut samples (R?pr = 0.73 for L* and 0.70 for b*) and aqueous microgreens
extracts samples (R?pr = 0.71 and 0.65). While a* showed poor predictability.

For pigments, PLSR models showed consistent values, with R2pr = 0.71,
0.62, and 0.73 for chlorophyll A, B, and carotene in microgreens fresh-cut
samples; and R?pr = 0.68, 0.65, and 0.69, respectively, in aqueous microgreens
extracts samples.

°Brix models showed fair accuracy (R?%pr ~0.70), but pH and
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conductivity models performed poorly due to limited variability.

TAC and TPC were predicted more accurately in aqueous extracts
(R?CV = 0.73 and 0.71), meanwhile models for microgreens fresh-cut samples
behaved poorly.

PLSR models using the full spectral range (1150-1850 nm) showed acceptable
performance (R? > 0.6), but often required many latent variables (LV),
increasing overfitting risk. Focusing on significant wavelength ranges reduced
the number of LV, particularly for fresh-cut microgreens, without significantly
compromising accuracy.

Similar important wavelength profiles was revealed in several PLSR models,
principally for height, weight, pigments (chlorophyll A, B, and total carotene),
and °Brix in pea microgreens. This similarity is likely attributed from their
shared physiological and biochemical bases, mainly water content,
carbohydrates, and proteins, which are determinant for plant growth and
biomass accumulation. Notably, for solid microgreens, the most relevant
wavelengths for height and weight were around 1196, 1286, 1392, 1417, 1446,
1480, 1508, 1543, 1600, 1704, and 1838 nm. In contrast, aqueous extract
samples showed key wavelengths at 1337, 1368, 1396, 1409, 1433, 1460,
1484, 1530, 1590, 1640, 1685, 1706, 1746, and 1793 nm.
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5. CONCLUSIONS AND RECOMMENDATIONS

Human sensory analysis, e-tongue, and e-nose were used to assess sensory
variations of eggs enriched through dietary supplementation, in laying hens, with
ZP (0%, 2.5% and 5.0%). Human panelists did not report consistent sensory
differences across treatments or egg types (raw, boiled, fried), with all samples
being perceived as fresh. However, e-tongue analysis revealed a certain degree
for discrimination between the feeding groups, especially between the Control
and ZP 5.0% groups and showing greater misclassification between neighboring
groups (Control-ZP 2.5%) and (ZP 2.5%- ZP 5%). These results were consistent
in both the eggs belonging to Batch 1 and those of Batch 2, which refer to eggs
collected on day 30 and day 60 of the laying period, respectively.

For the e-nose evaluation, important contributing sensors related to the Kovats
index and specific volatile compounds established the results in the classification
models. Sensory variations were detected in the e-nose evaluations, marking the
same pattern in the classification models (similar to e-tongue), which showed
greater misclassification between adjacent groups, while lower misclassification
was evident between the control and ZP 5.0% groups. These results were true for
both Batch 1 and Batch 2. And they were true for both the 50°C and 80°C
preheating temperature classification models. In the case of E-nose, an
additional analysis was carried out in which fresh eggs were stored for a specific
time (0, 30, and 60 days) at 10-14°C. Evaluation highlighted stronger
differentiation based on storage duration (with full classification between
groups) rather than feeding treatment (which, as noted, presented
misclassification). These findings suggest that electronic sensing is more
effective for detecting storage-related changes than diet-induced differences.

Regarding probiotics, three commercial probiotic food supplement powders N,
A and P containing lactic acid bacteria (LAB) were evaluated. To prepare the
probiotic drinks were considered three concentrations (3 g/125 mL, 2.5 g/125
mL, 2 g/125 mL) and temperatures of water (25 °C, 60 °C, 90 °C) as stressing
factors. Overall, applying chemometrics to the NIR spectra resulted in PCA-
LDA classification models with high accuracy in both calibration and cross-
validation. Temperature has an important impact on sample classification. The
most effective models were obtained at 90 °C, showing high accuracy in both
recognition and prediction. However, prediction performance declined at lower
temperatures, with a notable drop at 25°C for two of the three probiotics.
Moreover, at higher temperature levels, both calibration and cross-validation
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accuracies were consistently high, approaching optimal performance.
Additionally, the partial least squares regression (PLSR) model showed potential
of NIRS for predicting colony-forming units (log CFU/g) of the probiotic
samples.

Pea microgreens were grown at 15, 20, and 25 °C under photoperiods of 0, 6, 12,
and 18 hours, harvested at different intervals from 7 to 18 days depending on the
temperature; and NIRS scanning and chemometric evaluation was performed on
two different sample preparations in reflectance mode for fresh-cut samples and
in transmittance mode for aqueous extracts. The classification patterns of pea
microgreens were generally better in aqueous extracts than in fresh-cut samples.
Global classification models (analysis on the entire data) confirmed higher
accuracy in aqueous samples, particularly when grouping by harvesting day and
temperature. Similarly, to determine if specific datasets such as a treatment
(temperature-photoperiod) could be adequately classified by harvesting day,
individual models were created for a specific temperature or photoperiod, or if
microgreens from a specific day could be classified according to treatments,
temperatures, or photoperiod. Similarly, models generally performed better on
aqueous extracts than on fresh-cut samples.

PLSR models showed low to moderate accuracies on the various parameters
analyzed. Generally, models had similar although slightly better predictions in
fresh-cut samples for physical parameters (height, weight), color components,
pigments, °Brix, while in aqueous extracts was better predicted TPC and TAC. It
was evidenced a narrow range or lack of structured variations of the data
belonging to a* color component, pH and conductivity parameters, consequently
showing poor predictability. PLSR models using the full spectral range (1150—
1850 nm) often required many latent variables (LV), increasing overfitting risk.
In some cases, the LV was reduced significantly without substantially
compromising accuracy by selecting significant wavelength ranges, particularly
for fresh-cut microgreens. Height, weight, pigments (chlorophyll A, B, and total
carotene), and °Brix in pea microgreens showed similarities on the important
wavelength profiles which may be attributed to shared physiological and
biochemical interactions that determine these parameters.

Imperfect classification was present in both the enriched egg (by LDA for e-
tongue and PCA-LDA for e-nose) and microgreens (by PCA-DA) experiments
due to the nature of the samples analyzed and limitations encountered during the
chemometric analysis, thus some models could incur in certain degree of
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overfitting. To this end, through parallel analysis on simulated data, the
superiority of the classification models was established when using real data,
which establishes that the data contains important information for the
classification.

Although certain valuable results were found in this research, future studies
could explore the applicability of these correlative methods (NIRS, e-tongue,
and electronic nose) on a larger scale, given that this study was conducted with a
limited number of samples. Likewise, whether this technology is transferable to
other food matrices subject to the stress factors considered in this study, for
example, whether Zincoppyeast or another analogous element can cause changes
in the sensory characteristics of eggs (or even on meat) of different poultry
species and be detected by (e-senses). Additionally, future probiotics
experiments using NIRS are encouraged to evaluate how temperature and
concentration as conditioning factors may affect the viability of other probiotic
strains beyond lactic acid bacteria (LAB). Or in the case of microgreen whether
NIRS can detect differences in other species (besides pea) when subjected to
different temperature and photoperiod conditions. It may also be worthwhile to
consider the use of alternative chemometric approaches (e.g., PLS-DA, ANN, k-
NN, SVM) to achieve more accurate classification and prediction models.

17



6. NEW SCIENTIFIC RESULTS

For the purpose of these new scientific findings, the term benchtop MetriNIR
spectrophotometer refers to the MetriNIR (MetriNIR, Research Development
and Service Co., Budapest, Hungary), whereas the term benchtop NIR XDS
spectrophotometer refers to the NIR XDS spectrometer (Metrohm, Herisau,
Switzerland), with two separate attachable modules: Rapid Solid Analyzer
(RCA) and Rapid Liquid Analyzer (RLA). The term e-tongue refers to the
Alpha Astree potentiometric electronic tongue (AlphaM.O.S, Toulouse, France)
equipped with seven sensors specifically developed for food application (called
by the manufacturer: BB, HA, ZZ, GA CA, JE, JB), an Ag/AgCl in 3M KCI
reference electrode and a 16-position autosampler. E-nose refers to the Alpha
MOS Heracles NEO electronic nose (e-nose), which functions as an ultrafast gas
chromatograph analyzer featuring dual columns (MXT-5 and MXT-1701) and
performs evaluation of odor intensity associated with volatile substances
through the Kovats index.

New scientific findings focusing on eggs evaluation

Sensory attributes of enriched eggs produced by hens fed with feed with added
brewer's yeast and wet yeast biomass enriched with organic zinc, polyphenols,
and vitamins (ZP) at concentrations of ZP 0% (Control), ZP 2.5%, and ZP 5.0%
as feeding regimes were analyzed. Batch 1 and batch 2 correspond to the eggs
collected for evaluation on day 30 and day 60 of the experimental period,
respectively.

Human sensory analysis

1) This study shows that eggs enriched with Zincopyeast (ZP) at 2.5% and
5.0% did not consistently differ in sensory attributes from non-supplemented
eggs (control group) across two production batches in case of boiled (albumin
color, yolk color, egg odor, unusual odor, aloumin flavor, unusual taste, albumin
flexibility, and yolk creaminess) and fried eggs (yolk color, egg odor, sweet
aroma, strange odor, egg taste, sweet taste, strange taste, and texture). While
some statistically significant differences were observed between feeding groups
in certain sensory characteristics, these differences were not consistently
replicated between the two batches. Therefore, ZP supplementation at the tested
levels does not appear to alter the overall sensory profile of boiled or fried eggs.

18



Characterization of eggs by e-tongue

2) The ability of an electronic tongue (e-tongue) to effectively distinguish
egg samples based on feeding regimes with different levels of Zincoppyeast (ZP)
supplementation was proven. ZP 2.5%, and ZP 5% were correctly distinguished
from the Control showing a 64.81% accuracy in cross-validation for fresh eggs
collected at day 30 of the laying period. The largest differences were observed
between the groups Control and ZP 5.0% samples.

Characterization of eggs by e-nose

3) The effectiveness of electronic nose (e-nose) to classify enriched eggs
according to storage time was proven. Eggs from 0, 30, and 60 days of storage
were correctly classified with 100% accuracy in cross-validation. Moreover, the
use of e-nose prove to be valuable distinguishing fresh eggs samples based on
different feeding-(ZP) supplementation regimens. ZP 2.5%, and ZP 5% were
correctly distinguished from the Control with 76.5% accuracy in cross-
validation.

4) The e-nose analysis revealed that specific volatile compounds played a
critical role in distinguishing storage durations. Among these, methyl acetate and
2-methylpropanal (sensor 528.86), acetaldehyde (469.52 and 430.57), 2,4,5-
trimethyl-3-oxazoline and 2-butanone, 3-mercapto (818.98), as well as 2-
hexanol and hexanal (803.41) were the primary contributors to the observed
separations of eggs stored at 0, 30 and 60 days. Moreover, the major volatile
compounds responsible for the separation of the feeding regimes in fresh eggs
included, 2-butanol and n-butanol (602.94), homofuraneol and methyl 3-
pyridinecarboxylate (1140.88), methyl acetate and 2-methylpropanal (528.86),
as well as 2-propanone and propanal (494.47).

New scientific findings focusing on microgreens evaluation
Prediction of probiotics viability by NIRS

5) It was proven that viability of the probiotic samples, influenced by
concentration and temperature stress factors, can be predicted through NIR
spectrophotometry coupled with PLSR modeling. The models achieved a R2Pr
of 0.82 and RMSEP of 0.64 Log CFU/qg.
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New scientific findings focusing on microgreens evaluation

Pea microgreens grown under different environment stress conditions of
temperature (15, 20, 25 °C), and photoperiod (0, 6, 12, 18 hours of light) and
harvested at 7, 11 and 14 and 18 days were scanned in two modes: reflectance
for Microgreens fresh-cut samples and in transmission for Aqueous microgreens
extracts samples (1:5 plant - distilled water) and analyzed in the 1150-1850 nm
range and applied spectral pretreatment SG (p=2, n=45, m=0) + SNV.
Classification PCA-LDA models and partial least squares regression (PLSR)
models were developed to test prediction capacity for 13 agronomical and
physicochemical variables.

Classification of pea microgreens by NIRS

6) The near-infrared spectroscopy (NIRS), combined with PCA-LDA
analysis, enabled effective classification of pea microgreens according to
harvesting day, temperature, photoperiod, and combined treatment in both fresh-
cut and aqueous extract samples. In fresh-cut samples, cross-validation accuracy
were 6.98% for harvesting day, 75.74% for temperature, 71.05% for
photoperiod, and 58.54% for treatment. In contrast, aqueous extract samples
yielded higher classification rates of 95.59%, 88.87%, 66.89%, and 68.34% for
the same parameters, respectively. These results indicate better class separability
in aqueous extracts, likely due to the homogenized nature of the samples and
enhanced spectral response under transmission mode, reflecting the
compositional changes induced by these environmental stressors.

Prediction of pea microgreens for physical characteristics, pigments and
bioactive compounds by NIRS

7) The temperature and photoperiod combinations successfully reproduced
known growth patterns in pea microgreens. Under these combined stress
conditions, NIRS predicted height and weight in fresh-cut samples with R?2
values of 0.78 and 0.70, respectively. Aqueous extract samples yielded lower
values of 0.64 and 0.65, despite the theoretically more favorable optical
properties of homogeneous solutions in transmission mode, there might be some
structural and morphological characteristics retained in fresh-cut samples
measured in diffuse reflectance mode such as tissue density, stem thickness, and
leaf arrangement that better correlate with physical traits like height and weight.
NIRS shows potential as a non-destructive method for estimating biomass traits
under environmental stress.
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8) It was proven that pea microgreens pigments are influenced for
temperature and photoperiod. 20C_18L and 25C_18L treatments showed higher
pigments accumulation, denoting that especially photoperiod is the most limiting
factor in this regard when OL treatments presented chlorophyll values close to 0.
The PLSR pigments prediction models had R2pr of 0.71 for chlorophyll A, 0.62
for chlorophyll B and 0.73 for total carotenes in microgreens fresh-cut samples,
comparable to 0.68, 0.65, and 0.69, respectively for aqueous microgreens
extracts samples. These results proves the moderate potential of NIRS to
measure pigments (chlorophyl A, B, total carotenes) of pea microgreens,
subjected to temperature-photoperiod stress factors, in both microgreens fresh-
cut samples and aqueous microgreens extracts samples.

9) °Brix evaluation showed that lower temperatures (15 °C) favor sucrose
accumulation compared to higher temperatures (20 °C and 25 °C); furthermore,
microgreens with 18 hours of light had higher °Brix values compared to other
treatments. The results indicates that the lower temperature and higher
photoperiods in this study promotes °Brix accumulation in pea microgreens. The
PLSR prediction of °Brix for microgreens fresh-cut samples showed R2pr of
0.70 and for aqueous microgreens extracts samples R2pr of 0.68, but pH and
conductivity had low predictive accuracy (below 0.34) for both (agqueous
microgreens extracts samples and microgreens fresh-cut samples). It is proven
that NIRS provides modest accuracy for prediction of chemical properties of pea
microgreens subjected to temperature-photoperiod stress factors, however it is
capable of measuring °Brix in some extent, in both microgreens fresh-cut
samples and aqueous microgreens extracts samples.

10)  In the bioactive compound analysis in pea microgreens, it was proven
that lower temperatures (15 °C) and longer photoperiods enhance phenolic
compounds accumulation and antioxidant capacity, with 15C_18L being the
most effective (particularly on day 14). Moreover, the results show proof of the
moderate potential of NIRS for measuring TAC and TPC of pea microgreens
subjected to temperature-photoperiod stress factors, especially for agueous
microgreens extracts samples. the PLS regression for TAC and TPC for aqueous
microgreens extracts samples achieved R2CV of 0.73 and 0.71 in aqueous
microgreens extracts samples, compared to 0.35 and 0.56 in microgreens fresh-
cut samples, respectively.
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11)  The study proves the effectiveness of Near Infrared Spectroscopy (NIRS)
for simultaneous prediction of correlated agronomic and physicochemical
variables in pea microgreens. Height, weight, pigments (chlorophyll A, B, and
total carotene), and °Brix PLSR models for pea microgreens showed similar
spectral profiles. The notable wavelengths for weight and height, which had a
broad spectral profile and can be compared with the other variables, included
important wavelengths at 1196, 1286, 1392, 1417, 1446, 1480, 1508, 1543,
1600, 1704, and 1838 nm in microgreens fresh-cut samples, while the prominent
wavelengths for aqueous microgreens extracts samples were 1337, 1368, 1396,
1409, 1433, 1460, 1484, 1530, 1590, 1640, 1685, 1706, and 1746 nm. These
wavelengths, pinpointed through PLSR models, underline the capability of NIRS
to detect shared spectral markers across diverse variables, advancing its
application in quality assessment and predictive modeling of plant
characteristics.
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