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1. INTRODUCTION

The global demand for quality fruits and vegetables has created a need for efficient and reliable
postharvest quality assessment methods (Costa and Lima, 2013; Valenzuela et al., 2023).
Traditional approaches, such as measuring firmness, weight loss, or soluble solids content (SSC),
are often destructive, time-consuming, and unsuitable for large-scale, real-time monitoring, leading
to product waste and inconsistent quality control (Fodor et al., 2024; Palumbo et al., 2022). Non-
destructive techniques address these limitations by enabling rapid, cost-effective, and continuous
evaluation of entire batches, improving sorting, reducing spoilage, and extending shelf life (Abasi
et al., 2018; Aline et al., 2023).

Near-Infrared (NIR) spectroscopy and machine vision systems are among the promising optical
techniques. NIR spectroscopy evaluates internal quality by measuring light absorption in the 700—
2500 nm range, providing information on attributes like SSC and firmness (Nicolai et al., 2007;
Tian and Xu, 2022). Laser Light Backscattering Imaging (LLBI) evaluates backscattered light to
characterize internal tissue structure and surface properties (Baranyai & Zude, 2009; Qing et al.,
2008). On the other hand, digital imaging with machine vision captures external attributes such as
color, size, and defects (Bhargava & Bansal, 2021; Nguyen et al., 2021). These techniques are
favored for industrial applications due to lower cost, faster acquisition, and adaptability compared
to hyperspectral imaging (Mollazade et al., 2012; Wieme et al., 2022).

Despite their advantages, non-destructive methods face challenges, including the heterogeneous
nature of fruits and vegetables, where overlapping spectral signals complicate analysis (Assaad,
2020; Paz et al., 2008). To overcome this, spectral preprocessing (e.g., Savitzky-Golay filters) and
advanced wavelength selection methods (e.g., genetic algorithms) are applied (Nicolai et al., 2007;
Yao et al., 2023). When these methods are combined with chemometric models such as partial least
squares regression (PLSR) and support vector machines (SVM) the accuracy of quality predictions
is significantly enhanced (Yao et al., 2023; Zhang et al., 2018). These techniques are widely applied
to predict various quality attributes of fruits and vegetables (Aline et al., 2023; Kashef, 2021). For
instance, Liu et al. (2021) also applied PLSR to evaluate weight loss (R?= 0.96, RMSEP = 1.432%)
and firmness (R*> = 0.60, RMSEP = 2.453 N) in Chinese mini cabbage. Qing et al. (2007)
demonstrated that LLBI combined with PLSR could predict fruit firmness with R?> = 0.81 and
RMSEP = 5.44 N. Thus, NIR spectroscopy, LLBI, and calibration models were applied to assess
the postharvest quality of popular Hungarian fruits and vegetables, including asparagus, plums,
and apples



2. RESEARCH OBJECTIVES

The objective of the work was to apply non-destructive techniques to assess quality changes in
fruits and vegetables during post-harvest storage. The following goals were established:

1. To develop classification and prediction models using optimized and full NIR spectra to detect
quality changes during storage

Applying different linear and non-linear models using the full spectral range provided by
the handheld near-infrared (NIR) spectrometer (900—1700 nm).

Optimizing the full NIR spectra by analyzing the standard deviation (SD) of the normalized
spectra and selecting high-SD wavelengths for multispectral analysis.

2. To compare different mathematical models in Laser light backscattering imaging (LLBI) for

describing the signal and utilizing model coefticients for classification and prediction models

Emitting multispectral laser diodes (532—-1064 nm) onto the sample surface and acquiring
backscattering images.

Extracting features and characterizing peaks using various theoretical mathematical
models.

Optimizing wavelengths based on the analysis of variance (ANOVA) of the extracted model
coefficients.

Comparing the performance of both beam and line-based LLBI systems at a specific
wavelength

3. To evaluate the applicability of the developed techniques for assessing quality changes in

asparagus, plum, and apple during post-harvest storage

Applying reference measurement methods to investigate changes in quality attributes such
as weight loss, firmness, SSC, and color in samples stored under different time and
temperature conditions.

Applying the developed LLBI and NIR techniques to monitor quality changes in asparagus,
plum, and apple during post-harvest storage.



3. MATERIALS AND METHODS
3.1 Materials

This study evaluated the postharvest quality of three horticultural products of plum, asparagus, and
apple were collected from commercial orchards located in Csengdd, Kiskords, and
Dunaszentmiklés, Hungary. After harvest, the fruits and vegetables were packed in polypropylene
crates and transported to the Laboratory of the Department of Food Measurement and Process
Control, Institute of Food Science and Technology, at the Hungarian University of Agriculture and
Life Sciences. Upon arrival, all samples were inspected for uniform size, ripeness, and defects.

Initially, a total of 1,300 samples were used. This included 120 green asparagus spears (Eros’) with
an average mass of 36.88 £ 4.59 g, length of 20.42 + 0.58 cm, diameter of 11.94 + 3.52 mm, and
firmness at the base, middle, and tip of 15.01 £ 2.78 N, 12.86 + 3.64 N, and 10.86 = 1.09 N,
respectively. Additionally, 1,020 plums (510 per cultivar) were analyzed, with average firmness of
45.76 £ 6.97 N ( ‘Stanley’) and 44.74 + 5.83 N (‘Elena’), and SSC of 14.50 £ 1.03% and 14.95 +
0.52%, respectively. Furthermore, 160 ‘Granny Smith’ apples were evaluated, with SSC of 10.75
+ 1.09%, an average height of 72.97 + 3.66 mm, a width of 66.25 = 4.36 mm, and a starch index
of 4.81 +0.83.

Storage conditions were tailored for each product. Asparagus samples were randomly divided into
three groups, packed in low-density polyethylene (LDPE) plastic bags with ventilation holes. They
were stored at 2 °C, 10 °C, and 15 °C for 12 days. Each plum cultivar was divided into four groups
and stored at 1 °C, 5°C, 10 °C, and 15 °C for 24 days. Apples were divided into two groups and
stored at 2 °C for up to 27 weeks and at 22 °C for 5 weeks.

Relative humidity (RH) in the storage was measured using a Sain Lang humidity meter and DL-
120TH Voltcraft data loggers. Cold storage conditions (1-10 °C) were 90-95% RH, while ambient
storage (22 °C) was 60-65% RH. Some samples in each treatment were removed from the
experiment before the scheduled measurement due to decay. Decayed fruits were excluded from
the groups in accordance with Regulation (EU) No 543/2011 (Article 3, Annex I, Part A).



3.2 Measurement of Quality Attributes

3.2.1 Ethylene Production

Ethylene production was measured by placing a standardized quantity of produce (typically 1 kg)
in a hermetically sealed container. The container was sealed for one hour, after which the
accumulated ethylene gas concentration was recorded using an ICA-56 hand-held ethylene
analyzer (International Controlled Atmosphere Ltd., United Kingdom). The results were expressed
as the volume of ethylene produced per kilogram of produce per hour (uL/kg-h).

3.2.2 Respiration Rate

The respiration rate was determined by placing produce (typically 1 kg) inside a sealed polymethyl
methacrylate (plexiglass) container equipped with FY A600-CO2H carbon dioxide (CO2) sensors
connected to an Almemo 3290-8 data logger (Ahlborn Mess- und Regelungstechnik GmbH,
Germany). The container was sealed to maintain a controlled environment, and CO: levels were
recorded after one hour. Results were expressed as the volume of CO: produced per kilogram of
produce per hour (mL/kg-h).

3.2.3 Weight Loss

Weight loss of fresh produce was determined using a digital balance (WLC 2/A2, RADWAG,
Radom, Poland). The initial weight of each sample was recorded, followed by subsequent
measurements over time. Weight loss was calculated as the percentage difference between the
current and initial weights, relative to the initial value. The weighing method varied by produce
type: green asparagus and Granny Smith apples were weighed individually, while plums were
weighed in groups (20 fruits per group).

3.2.4 Firmness
Asparagus

The firmness of asparagus samples was measured using a texture analyzer (TA-XTplus, Stable
Microsystems, Surrey, UK) equipped with a blade cutter (HDP/BSK). The test speed was set to 1
mm/s with a 0.01 s data acquisition delay. Ten asparagus spears were tested at every 4-day interval
per storage temperature group. Maximum force (N) was recorded at three positions: base, middle,
and tip.

Plum

Firmness was measured using a portable fruit firmness tester (FT 327, T.R. Turoni srl, Forli, Italy)
equipped with a 7.9 mm cylindrical probe. The probe penetrated the peeled plum tissue to a depth
of 2 mm. Maximum force (N) was recorded on two opposite sides of each fruit. Twenty fruits were
measured every 4 days across four storage temperature groups



Apple

Apple firmness was measured using a handheld fruit firmness tester (FT 327, T.R. Turoni srl, Forli,
Italy) mounted on a vertical stand for stability. A 7.9 mm cylindrical probe penetrated the peeled
apple tissue to a depth of 10 mm. Maximum force (N) was recorded at three equatorial positions
on each fruit. Twenty apples were measured every 9 weeks under cold storage (2 °C) and every 2
weeks at room temperature (22 °C)

3.2.5 Soluble Solid Content (SSC)

SSC was measured using a handheld refractometer (PAL-1, Atago Co. Ltd., Tokyo, Japan; 0—-53%
range). Juice was extracted from each fruit, clarified of pulp, and one drop was placed on the prism
to record °Brix. Twenty plums were measured every 4 days across four storage temperatures, while
twenty apples were sampled from each temperature group every 2 weeks at room temperature and
every 9 weeks under cold storage.

3.2.6 Peel Color
Minolta Chroma Meter

Plum peel color was measured using a Minolta Chroma Meter CR-400 (Minolta Corporation,
Osaka, Japan) calibrated with a standard white plate (CR-A43). Measurements were taken at two
opposite equatorial points per fruit. CIE parameters (L*, a*, b*) were recorded. Chroma (C*) was
calculated as V(a*+b?), and hue angle as tan!(b*/a*).

Computer Vision

A computer vision (CV) system was used to monitor peel color changes in asparagus and apples
during storage. The system consisted of a high-performance color digital camera (Hitachi HV-C20
3CCD, Tokyo, Japan) operated in manual mode with default settings. The color temperature was
3200 K and was used for image acquisition. The camera was mounted 60 cm above the sample
chamber, positioned perpendicular to the surface of the samples to ensure consistent top-down
imaging and eliminate perspective distortion. LED lights (1m/Im LED light strips, 30LEDs, 2.8W)
were arranged in a circular configuration around the inner ceiling of the chamber, providing
uniform and diffuse illumination. This setup minimized shadows and reflections, ensuring
consistent lighting across all samples. The color change in asparagus and apples during storage was
evaluated. Four to five samples were placed on a white background, which also served as a color
reference. Images were captured at a resolution of 768 x 576 pixels and processed using Scilab
software (version 2024.0.1), following the image analysis method described by Nguyen et al.
(2021). The IP_hue spectra were extracted from each image and used to quantitatively evaluate
color changes at different storage times and temperatures. It is a weighted histogram of hue angle
and a summary of saturation over the captured image. The color change of the samples is
represented by the displacement of the peaks. The root mean square error (RMSE) was calculated
between the IP_hue spectra curve of consecutive measurement days using the following formula:



i=1(A;-B;)?
n

RMSE,_p =

where A; and B; represent the saturation values at the i hue degree for two consecutive
measurement days, and n is the total number of hue degrees (typically 360).

3.3 Non-destructive measurement techniques

3.3.1 NIR spectroscopy (NIR)
NIR Spectra Acquisition

A handheld near-infrared (NIR) spectrometer (NIR-S-G1, InnoSpectra Co., Hsinchu, Taiwan) was
used to collect absorption spectra in the 900—1700 nm wavelength range, with a spectral resolution
of 4 nm. The device is based on digital light processing (DLP) technology and operates in
reflectance mode. It features compact optics and is equipped with both Micro USB and Bluetooth
Low Energy (BLE) interfaces, allowing data transfer either via USB or wirelessly to smartphones,
tablets, or personal computers. Spectral acquisition was performed using the manufacturer’s
software (NIRScan) under ambient laboratory conditions. The device is internally calibrated and
does not require an external white reference tile, as calibration is automatically managed by the
internal system. During measurement, asparagus spears were positioned horizontally, and spectra
were collected from three distinct locations along each spear: the base, middle, and tip. This
approach was used to capture spatial variation in tissue composition along the spear. For plums and
apples spectral data were collected from both opposite sides at the equatorial region. At each
measurement location, two scans were taken for asparagus and three for plums and apples to ensure
repeatability and reliability. During scanning, the measurement window was fully covered by the
sample surface to maintain a consistent contact area and minimize external light interference.

Pre-processing of NIR spectra

The spectral data were pre-processed using several techniques to correct physical and chemical
effects, such as non-zero baselines and scatter. These methods included Savitzky-Golay (SG)
smoothing (i.e., polynomial, n=3 and window size, m =21) to reduce noise and Standard Normal
Variate (SNV) to correct for scatter effects. These pre-processing techniques were applied to green
asparagus, plums, and apple experiments to improve the quality of the spectra for subsequent
analysis.

Selection of sensitive wavelengths

In this study, sensitive wavelengths were selected using a filter-based variable selection approach.
The acquired spectra were pre-processed using SNV to remove the noise that is potentially
produced by specular reflection and the device. The standard deviation of the normalized spectra
was calculated column-wise to identify local maxima values, and significant wavelengths were
manually selected. These wavelengths were considered important because they corresponded to
changes in quality parameters such as WL, firmness, and SSC. Their relevance was further
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confirmed by calculating quality indices, including the normalized difference index (NDI) and
quality index (QI), at the selected wavelengths. The reference wavelength was chosen based on the
minimum standard deviation of the normalized full spectrum.

NDI — Aselected— Areference QI — Aselected

b
Aselected T Areference Areference

Where Ageecteq 1S NIR absorbance at the selected wavelength(s), Ayeference 1S NIR absorbance

of the reference wavelength. These indices were linked to quality parameters such as weight loss (WL),
firmness, and SSC.

3.3.2 Laser light backscattering imaging (LLBI)

In this method, a laser light illuminates a point and line on the fruit's surface in a dark chamber,
and the resulting light scattering provides valuable information about the fruit's mechanical and
textural properties

Laser Module and Camera Specifications
Beam-based LLBI

A laser beam imaging system with a 12-bit/pixel monochrome CMOS camera (MV1-D1312,
Photon Focus, Lachen, Switzerland) with default settings was used to generate diffusely reflected
signals. Laser diodes (3 mW) emitting at 532, 635, 780, 808, 850, and 1064 nm were used. The
incident angle of the laser beams was set to 15°, focused within a circular area of @1 mm. Image
acquisition was performed in a dark chamber to minimize external light interference and improve
the signal-to-noise ratio. The system captured images at a resolution of 0.113 mm/pixel and a size
of 512 x 512 pixels. The images were stored in raw binary format for analysis.

Line-Based LLBI

A line laser imaging system was implemented to monitor quality changes in samples during post-
harvest storage. The system comprised a dark chamber, a monochrome industrial camera
(DMK38GX540-a, 1.2-inch Sony CMOS, GigE Interface (RJ45), Imaging Source, Bremen,
Germany), and a 635 nm LM Laser KH93242 single-line laser module (I mW power, 1 mm line
thickness). The laser module was used to illuminate the samples, generating diffusely reflected
signals for imaging. The camera lens was positioned 27 cm from the sample surface, and a laser
module was mounted at an incident angle of 20° within a dark chamber to reduce direct reflections
and geometric distortion. Digital images were captured at a resolution of 0.0325 mm per pixel, to
ensure the spatial accuracy and minimize curvature-related distortions.



Description of LLBI profiles

An image processing algorithm was developed using Scilab (version 2024.1.0). Raw RGB image
files were transformed into greyscales, resulting in a two-dimensional (2D) matrix of pixels with
intensity values ranging from 0 to 255 . The incident (center) point was determined by calculating
the intensity-weighted average of pixel positions. A 5-pixel-wide band crossing the incident point
was selected as the region of interest (ROI). The 1D profiles were obtained from the intensity values
within the ROI. Then, the profiles were modeled using the modified Cauchy distribution (CD)
function (Eq. a) and modified Gaussian distribution (GD) function (Eq. b), which are
mathematically expressed as follows:

_ Z2c 2302
IC = Z1e + (X—=24¢)?+23.2 (a)
(x—2ag)?
Ig = 214 + 2y 4€xp (— ﬁ) (b)

Where I and I; denotes estimated light intensity; x denote the picture width ; z;. and z, 4 are the
baseline intensity; z,. and z,, are amplitude; z;. and z34 are shape factors; and z,. and z,4 are
the locations of the peaks of the CD and GD functions. The coefficient parameters of the intensity
profile were extracted using a signal approximation approach based on modified Cauchy
distribution and Gaussian distribution function models. The coefficients derived from the model
demonstrated strong performance in characterizing intensity profiles and were used to develop
models for monitoring quality changes.

Image processing and feature extraction

The collected laser signal images were processed using a developed algorithm using Scilab
software (version 2024.1.0, Dassault Systemes, Vélizy-Villacoublay, France). The coefficient
parameters of the intensity profile were extracted using a signal approximation approach based on
modified Cauchy distribution and Gaussian distribution function models. The coefficients derived
from the model demonstrated strong performance in characterizing intensity profiles and were used
to develop models for monitoring quality changes.



3.4. Experimental design

3.4.1 Quality assessment of green asparagus during post-harvest storage

Storage treatment

The LDPE-packed green asparagus spears (Eros’) were stored at three different temperatures (2 -
10 °C with 90-95 RH% and 15 °C with default RH%). Measurements were taken at 4-day intervals,
with 10 samples tested from each group at each time point. The samples were kept at room
temperature for 12 h to maintain the surface temperature of the samples the same as the room
temperature. First, non-destructive measurements were performed on each spear at three positions
of the base, middle, and tip. Afterward, destructive analyses were conducted on the same tested
spears, which were then removed from the sample pool.

Measurement

The weight loss and firmness of the green asparagus spears were measured using the methods
described in Sections 3.2.3 and 3.2.4, respectively. The device used for NIR and the system for
LLBI evaluations are detailed in Sections 3.3.1 and 3.3.2

NIR spectroscopy

NIR spectra were collected non-destructively from three positions (base, middle, tip) of each spear.
Spectra were preprocessed with SG and SNV, the standard deviation was computed of the
normalized spectra, and peak wavelengths were manually selected. NDI and QI were calculated to
assess sensitivity. The dataset (684 samples) covered four storage times (0, 4, 8, 12 days) and three
temperatures (2 °C, 10 °C, 15 °C), split into 80% training and 20% validation. Classification
models (PLS-DA, LDA) and prediction models (PLSR, SVM) were built using full and selected
spectra. Model performance was evaluated using accuracy, sensitivity, specificity, precision, F-
score, R?, RMSE, and RPD, with reliability confirmed by 100 bootstraps.

Line LLBI

Line-based LLBI was conducted at the wavelength of 635 nm, capturing three LLBI images from
the base, middle, and peak of each asparagus spear. The Cauchy curve fitting method extracted
LLBI parameters (i.e, amplitude, shape and FWHM) from the LLBI profile. A total of 344
observations were collected from asparagus spears stored at 2 °C, 10 °C, and 15 °C. MVR and
MARS models were developed to predict weight loss and firmness, while LDA was applied to
evaluate quality changes in the asparagus. The dataset was randomly split into two subsets, with
80% used for training and 20% for validation. Bootstrapping with 100 repetitions was performed
to evaluate model performance, generating statistical metrics such as mean and 95% confidence
intervals for R2, RMSE, and RPD.



3.4.2 Quality assessment of Plums during post-harvest storage

Storage treatment

Two plum cultivars (Stanley’ and ‘Elena’) were used in the study. A total of 510 fruits were selected
for each cultivar, of which 30 were used for initial measurements. The remaining 480 fruits were
randomly divided into four temperature groups (1 -10 °C with 90-95 RH%, and 15 °C) and stored
for 24 days. Storage duration was recorded in days. On each measurement day, 20 fruits were taken
from each temperature group, and they were kept for 12 h before the measurement to maintain the
sample’s surface temperature the same as the room temperature. Moreover, some groups were
terminated early due to decay.

Measurements

The physiological and quality changes of the plums were measured using the methods described in
Sections 3.2.1 to 3.2.6. The device used for NIR and the system for LLBI evaluations are detailed
in Sections 3.3.1 and 3.3.2.

NIR spectroscopy

Spectral data were collected from both sides of each fruit with three consecutive scans. Full raw
spectra were preprocessed using SNV. The standard deviation of the normalized spectra was
calculated to identify local maxima, and the prominent wavelengths were manually selected for
model development. NDI and QI indices were also calculated for these wavelengths to validate
their sensitivity. PLSR and SVM models were developed and compared using both full spectra and
selected wavelengths to predict WL and SSC. The data set consisted of a total of 2965 observations,
including 1649 observations for ‘Stanley’ and 1316 observations for ‘Elena’. Each dataset (i.e, two-
cultivar and cultivar-specific) was randomly split into two subsets, with 80% used for training and
20% for validation. Bootstrapping with 100 repetitions was applied to evaluate model performance,
providing statistical metrics such as the mean and 95% confidence intervals for R?, RMSE, and
RPD.

Beam LLBI

Beam-based LLBI was applied to the surface of plum fruits, capturing two LLBI images from both
sides of each fruit across six wavelengths (532, 635, 780, 808, 850, and 1064 nm). The optimized
wavelengths were identified through ANOVA and Tukey’s post hoc analysis, which highlighted the
wavelengths most sensitive to quality variations. A total of 1,276 observations were collected,
comprising 569 observations from the ‘Stanley’ cultivar and 707 observations from the ‘Elena’
cultivar. LDA models were applied to classify samples based on storage time, effectively detecting
quality changes throughout the storage period. Additionally, MVR models, utilizing two LLBI
parameters at optimized wavelengths, were used to predict firmness, soluble solids content (SSC),
and skin color for both cultivars. Bootstrapping with 100 repetitions ensured robust performance
metrics (R?, RMSE, and RPD) with 95% confidence intervals, demonstrating reliable model
stability.
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3.4.3 Quality assessment of apple during post-harvest storage

Storage treatment

Similar to green asparagus and plums, the assessment of quality changes in ‘Granny smith’ using
NIR spectroscopy and LLBI techniques during postharvest storage was performed. A total of 160
apple samples were randomly divided into two groups. The first part was stored at room
temperature (22 °C with 60-65 RH%) for 5 weeks and sampled at 2-week intervals. The second
part apples were stored under cold conditions (2 °C with 90-95 RH%) for 26 weeks, followed by 1
week at 22 °C for shelf life, with sampling conducted at 9-week intervals.

Measurement

The physiological and quality changes of the ‘Granny Smith apples were measured using the
methods described in Section 3.2.1. to 3.2.6 The device used for NIR and the system for LLBI
evaluations are detailed in Sections 3.3.1 and 3.3.2

NIR Spectroscopy

A handheld NIR spectrometer (900—1700 nm) collected spectra from two opposite locations around
the equator of each apple, with three consecutive scans per location. Spectra were preprocessed
using SG smoothing and SNV. The significant wavelengths were identified from column-wise
standard deviations. Additionally, NDI and QI indices for these wavelengths were calculated to
confirm their sensitivity. PLSR and SVM models were developed using both the full spectra and
the selected wavelengths, and their performance was compared. A total of 834 observations were
collected. This dataset was randomly divided into two sheets, with 80% used for training and 20%
for validation. Bootstrapping with 100 repetitions was employed to assess model performance,
providing statistical metrics such as the mean and 95% confidence intervals for R?, RMSE, and
RPD, ensuring robust and reliable evaluation of the models.

Line LLBI

In the line-based system, LLBI images were captured from two opposite locations at the equatorial
surface of each apple. The LLBI profile at 635 nm was fitted with the modified Cauchy Distribution
(CD) model, and three parameters (i.e., amplitude, shape, and FWHM) were extracted from both
the beam- and line-based systems. These parameters were used to develop the MVR and SVM
models. A total of 643 observations were collected from both systems (line: n = 382; beam: n =
261). The dataset was randomly divided into two subsets, with 80% used for training and 20% for
validation. Bootstrapping with 100 repetitions was performed, and model performance metrics (R?,
RMSE, and RPD) were evaluated using t-tests with 95% confidence intervals.
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3.5 Data analysis

The data analysis provides a comprehensive framework for the spectral analysis of horticultural
products, employing both classification and prediction techniques to effectively assess and manage
fruit quality. This integration of advanced spectral analysis with multivariate statistical methods
enables precise control and improvement of post-harvest handling and processing procedures. In
this dissertation, basic descriptive statistics on the quality parameters of the fresh produce during
treatments were presented in plots, Analysis of Variance (ANOVA) was used to evaluate the effects
of the treatments on these parameters. Moreover, classification and prediction models were applied
to assess the association between quality parameters and the laser and NIR spectral variables.
Partial Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA)
were established to classify the samples based on their treatment groups, utilizing the ‘plsdepot’
(version 0.2.0) and ‘mda’ (version 0.5-3) packages. Additionally, Partial Least Squares Regression
(PLSR), Multivariate Regression (MVR) Support Vector Machine Regression (SVM) and Adaptive
Regression Splines (MARS) were built to predict the quality attributes of the samples using the
‘pls’ (version 2.8-2), ‘aquap2’ (version 0.4.2), ‘€1071° (version 1.7-13), ‘earth’ (version 5.3.3)
packages, respectively. All statistical analyses were performed using R software (version 4.2.3, R
Foundation for Statistical Computing, Vienna, Austria).

12



4. RESULTS

4.1 Quality assessment of green asparagus during post-harvest storage

This section presents the results of NIR spectroscopy and line-based LLBI techniques used to
monitor quality changes in green asparagus during storage. For NIR spectroscopy analysis, a total
of 684 observations were generated by acquiring spectral data at three positions (base, middle, and
peak) on each spear, using two scans per position. The collected spectra were preprocessed using
standard normal variate (SNV), and five prominent wavelengths were manually selected based on
the standard deviation of the normalized spectra. Normalized difference index (NDI) and quality
index (QI) were calculated to validate the sensitivity of these wavelengths. Classification models
(PLS-DA, LDA) and prediction models PLSR and SVM were developed using both full spectra
and the spectra at selected wavelengths to evaluate changes in asparagus quality. PLS-DA was
implemented using the ‘plsdepot’ package (version 0.2.0), while LDA was performed using the
‘mda package (version 0.5-3) in R. For LLBI, 344 observations were obtained by capturing images
at 635 nm from the same three positions on each spear. LLBI parameters (i.e., amplitude, shape
and FWHM) were extracted using Cauchy curve fitting. MVR using ‘pls’ (version 2.8-2), and
MARS with ‘earth’ (version 5.3.3) package in R. The models were developed to predict weight
loss and firmness, while LDA was used to detect quality changes over time for the samples stored
at different storage temperature groups. All datasets were randomly split into training (80%) and
validation (20%) subsets. Model performance was evaluated using bootstrapped metrics (R?,
RMSE, RPD) with 95% confidence intervals

4.1.1 Weight loss

The influence of storage temperature and duration on weight loss in green asparagus was
significant. As storage time increases from 0 to 12 days, weight loss rises across all temperature
groups, with the highest losses observed at 15 °C, followed by 10 °C, and the lowest at 2 °C. This
trend indicates that higher temperatures accelerate moisture loss, likely due to increased respiration
and transpiration rates. ANOVA also confirmed that the effects of both storage temperature (F-
value = 655.347) and time (F-value = 2014.46) were significant (P < 0.001). The weight loss
increased progressively during storage and is mainly attributed to water loss by transpiration due
to differences in water vapor pressure between the atmosphere and the asparagus surface.

4.1.2 Firmness

The firmness of asparagus spears from the base section increased notably over time across all
storage temperatures (2°C, 10°C, and 15°C). Initially, at day 0, the firmness values were lowest
and relatively similar across all temperature treatments. However, as storage progressed, firmness
increased markedly at all temperatures; moreover, the magnitude and rate of increase were more
pronounced at higher temperatures. This pattern may be attributed to continued lignification and
fiber development, as well as water loss and changes in cell wall structure. Furthermore, these
findings were supported by ANOVA, which showed a significant effect (F-values = 862.10 and
4751.08, p < 0.001). In addition, significant differences in firmness were observed across spear
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positions (F = 168.087, p < 0.001). The base of the spears consistently exhibited the highest
firmness values, particularly at 15 °C, indicating rapid lignification and moisture loss. The middle
section showed intermediate firmness, increasing steadily with storage duration and temperature.
In contrast, the peak remained the least firm, reflecting its naturally tender tissue and lower
susceptibility to structural hardening. Therefore, it can be inferred that the degradation of organic
compounds and the varying fiber content across different sections of the asparagus spear (base,
middle, and tip) contribute to these observed differences

4.1.3 Peel color

The IP_hue spectra for each temperature group across their respective storage durations showed
that shift of both the hue angles and saturation values. The IP_hue spectra at 2 °C are relatively
close together for storage times of 4, 8, and 12 days, with only small changes observed in the peak
position as storage time increased. This indicates that asparagus color remains relatively stable over
time at low temperatures. In contrast, at 10 °C, there is a noticeable separation between the curves,
with the peak shifting slightly and a gradual decrease in overall saturation as storage time increases.
This suggests moderate color changes and some loss of visual quality at this intermediate
temperature. At 15 °C, the separation between curves for different storage durations becomes much
more pronounced. There is a larger decrease in saturation at hues with prolonged storage, and the
peak position shifts more than at the lower temperatures. The RMSE values between consecutive
measuring days further support these observations. At 2 °C, RMSE values remain very low,
confirming that only minimal color changes occur during storage at this temperature. In contrast,
at both 10 °C and 15 °C, RMSE values are noticeably higher, particularly over longer storage
periods. This indicates that color stability is greatly reduced at higher temperatures, with asparagus
losing color quality. This is attributed to the loss of its freshness.

4.1.4 NIR spectroscopy

Spectral description

The prominent wavelengths with higher standard deviations were 907 nm, 923 nm, 1069 nm, 1442
nm, and 1696 nm, reflecting quality changes in the spears. Their sensitivity was further confirmed
by the Normalized Difference Index (NDI) and Quality Index (QI) parameters. For example, the
NDI of 1696 nm vs 1252 nm changes its values with time and temperature, likely due to increased
metabolic and enzymatic activity. Moreover, a significant correlation was observed between NIR
absorbances at specific wavelengths, such as between NIR-907 and NIR-1069 (r = 0.998). Both
NIR-907 (r = 0.928) and NIR-1069 (r = 0.923) exhibit significant correlations with firmness.
Similarly, a significant correlation is observed between NIR absorbance at these wavelengths and
weight loss (r = 0.829). The absorbance at longer wavelengths, such as NIR-1442 and NIR-1696,
exhibited moderate correlations with firmness (r = 0.453 and r = 0.607, respectively) and weaker
correlations with weight loss (r = 0.233 and r = 0.439, respectively). This can be attributed to the
ability of longer wavelengths to penetrate deeper into the tissue, capturing more complex structural
changes, as well as their exposure to spectral overlap within the absorption bands.
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Quality change detection over storage time

The comparative evaluation of partial least squares discriminant analysis (PLS-DA) and linear
discriminant analysis (LDA) models for detecting quality changes in green asparagus stored at
15 °C, assessed at four-day intervals (0, 4, 8, and 12 days). Both models were constructed using
five latent variables; however, PLS-DA utilized the full NIR spectral range, while LDA was
developed using a set of selected wavelengths. The LDA model demonstrated superior
performance compared to PLS-DA, achieving detection accuracies of 76.9% at 15 °C, 74.3% at
10 °C, and 60.4% at 2 °C. The improved performance of the LDA model is attributed to feature
selection, which reduces spectral noise and highlights the most discriminative wavelengths.
However, detection accuracy declined at lower storage temperatures (e.g., 2 °C), likely because
slower physiological changes in asparagus produced less distinct spectral differences between
storage intervals.

Quality detection over temperature-induced variation

On the other hand, the quality detection efficiency of the PLS-DA and LDA models for green
asparagus stored at three different temperatures (2°C, 10°C, and 15°C) on the 12th day of storage.
Both models were constructed using five latent variables (LV = 5). The PLS-DA model, which used
the full NIR spectrum, achieved a mean accuracy of 42.8%. In contrast, the LDA model,
constructed using a set of selected wavelengths, demonstrated enhanced performance. The LDA
model achieved an accuracy of 87.7%.

Prediction of Weight Loss and Firmness

The performance of PLSR and SVM models using the full NIR spectra and spectra at selected
wavelengths for predicting weight loss (%) and firmness (N) in green asparagus. The SVM model
showed relatively improved predictive accuracy when using selected wavelengths compared to the
PLSR model for both parameters. For weight loss, the model achieved R? = 0.768, RMSE =5.690
%, and RPD = 2.080. For the firmness, the model achieved R =0.829, RMSE = 5.380 N, and RPD
=2.322. These results indicate that focusing on informative spectral regions combined with
nonlinear regression models enhances model performance.

4.1.5 Laser light backscattering imaging (LLBI)
LLBI Profile Description

The amplitude, shape, and FWHM parameters of the LLBI profile were extracted using the Cauchy
model. The average curve-fitting efficiency across all sample images (n = 344) demonstrated that
the modified Cauchy model achieved R* = 0.78 and RPD = 2.29, performing better than the
Gaussian model, which exhibited lower efficiency with R? = 0.53 and RPD = 1.96. The LLBI
parameters extracted from the modified Cauchy model were used for further analysis. The
amplitude and shape parameters consistently increase with both time and temperature. Amplitude
values indicate scattering intensity, while the shape parameter reflects the light distribution size
within the asparagus tissue. These changes would be related to physiological processes like water
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loss, cell wall degradation, and tissue senescence. ANOVA results also indicated significant effects
of storage time on amplitude (F=641.172, p <0.001) and shape (F=431.757,p <0.001). Pearson’s
correlation analysis shows strong correlations between amplitude and shape (r = 0.816), amplitude
and weight loss (r = 0.809), and shape with firmness (r = 0.928).

Quality detection over storage time

To evaluate the effect of storage time on green asparagus quality, an LDA model using the three
LLBI parameters was developed, considering all temperature groups. The model achieved an
overall detection accuracy of 79.7%. However, performance improved when calibrated for
individual temperature groups: at 2 °C, the validation accuracy was 81.4%; at 10 °C, it increased
to 89.6%; and at 15 °C, it reached 93.4%.

Prediction of Weight Loss and Firmness

The comparative regression model results demonstrate the prediction of weight loss and firmness
using LLBI parameters combined with both multivariate regression (MVR) and multivariate
adaptive regression splines (MARS). The MARS model outperformed the MVR model in
predicting both weight loss (R?=0.846, RMSE = 6.401%, RPD =2.558) and firmness (R*=0.927,
RMSE =3.266 N, RPD = 3.775).
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4.2 Assessment of quality changes in plums during post-harvest storage

In this section, the results obtained from physiological assessments, near-infrared (NIR)
spectroscopy, and beam-based LLBI techniques are presented to evaluate the quality attributes of
plum fruits during storage. For NIR spectroscopy analysis, a total of 2,965 observations were
produced by acquiring spectral data from both sides of each fruit using three consecutive scans,
followed by SNV preprocessing and manual selection of five prominent wavelengths. NDI and QI
indices were calculated to validate spectral sensitivity. PLSR and SVM models were developed
using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-13), respectively. These models
were calibrated using both the full spectra and selected wavelengths to predict weight loss and
soluble solids content in green asparagus. For LLBI, 1,276 observations were obtained by capturing
images at six wavelengths (532, 635, 780, 808, 850, and 1064 nm) from both sides of each fruit.
Optimized wavelengths were identified through ANOVA and Tukey’s post hoc analysis. LDA and
MVR models were used to detect the quality changes by classifying samples into their storage time
groups and predicting firmness, SSC, and skin color, respectively. The datasets included samples
from two cultivars (Stanley’ and ‘Elena’) and were split into training and validation subsets. Model
performance was evaluated using bootstrapped metrics (R?, RMSE, RPD) with 95% confidence
intervals.

4.2.1 Ethylene production

The rate of ethylene production increased with both storage temperature (F-value = 321.80 and
109.11; P < 0.001) and storage time (F-value = 170.42 and 69.03; P < 0.001) in both ‘Stanley’ and
‘Elena’ plums. However, the ethylene production of plums stored at 1 °C significantly differed
from those stored at higher temperatures. The ‘Stanley’ plums showed a relatively higher rate of
ethylene production than the ‘Elena’ plums.

4.2.2 Respiration rate

The respiration rate of both ‘Stanley’ and ‘Elena’ plums increased with both storage temperature
(F-value = 195.04 and 565.46; P < 0.001) and storage time (F-value = 816.80 and 269.53; P <
0.001). ‘Stanley’ plums stored at 10 °C and 15 °C exhibited higher respiration rates compared to
those stored at 1 °C and 5 °C, while ‘Elena’ plums showed the highest respiration at 15 °C
Respiration peaked at 8 days for ‘Stanley’ and 12 days for ‘Elena’, then declined after 20 days.

4.2.3 Weight loss

The changes in plum weight loss (WL) at different storage temperatures and times. The effect of
time and temperature was more pronounced in ‘Stanley’ plums compared to ‘Elena’. ANOVA
analysis confirmed that both storage time and temperature significantly impacted WL (F = 6.06 X
10%® and 1.88 % 10%; p <0.001), with significant differences between the two cultivars (F = 1.21 x
10%%; p < 0.001). WL variation was higher after 12 days, primarily due to increased water loss as
the fruit ripened. The variation in plums' weight loss is influenced by storage temperature and
duration, which accelerate enzymatic activities that enhance ripening due to increased respiration
rates.
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4.2 .4 Firmness

The firmness of the plums declined steadily over time for both plum cultivars. Samples stored at
15 °C exhibited the shortest shelf life, followed by those stored at 10 °C, indicating that higher
temperatures accelerated softening. ANOVA confirmed that storage time (F = 8992.12, p <0.001),
storage temperature (F = 1927.80, p < 0.001), and cultivar differences (F = 3142.06, p < 0.001) all
had significant effects on firmness. These findings suggest that firmness loss may be driven by
storage conditions and inherent cultivar traits. The faster decline in firmness at higher temperatures
reflects the acceleration of ripening and softening processes, while cooler storage slows these
changes and better preserves fruit texture.

4.2.5 Soluble solid content (SSC)

Soluble solids content (SSC) increased significantly with both storage time and temperature
(ANOVA: F time = 124,779.90, F_temperature = 4,632.10, p < 0.001), and there were also
significant differences between cultivars (F_cultivar = 250,701.30, p < 0.001). Higher storage
temperatures accelerated SSC accumulation, with samples stored at 15 °C exhibiting the highest
SSC values. These results indicate that SSC is influenced by both physiological changes and
storage conditions. Higher SSC reflects greater sweetness and ripeness, but rapid increases at
elevated temperatures may accelerate overripening and shorten shelf life. Maintaining lower
storage temperatures slows SSC accumulation, extending fruit quality and shelf life, while cultivar
selection affects the rate and extent of sweetness development.

4.2.6 Peel Color

Chroma and hue values from the Minolta chroma device showed that both plum cultivars changed
significantly during storage, with greater deviation observed at higher temperatures. The ‘Stanley’
cultivar showed a stronger decline in chroma, and more pronounced hue changes compared to
‘Elena’, indicating greater sensitivity to temperature-related color changes. Storage at lower
temperatures (1 °C and 5 °C) slowed these changes, although ‘Stanley’ exhibited a sudden hue
decline at 5 °C, suggesting susceptibility to water loss and accelerated ripening under certain
conditions. Two-way ANOVA confirmed that chroma was most influenced by cultivar (F =
1498.539), followed by storage time (F = 1433.125) and temperature (F = 273.025). Hue was
primarily affected by storage time (F = 1803.530) and temperature (F = 244.233). These results
suggest that color changes in plums are driven by both genetic differences and storage conditions.
Higher temperatures accelerate pigment transformations and ripening, while lower temperatures
help preserve visual quality.
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4.2.7 NIR spectroscopy

Spectral description

Sensitive wavelengths were identified at 909, 1064, 1323, 1447, and 1650 nm, which reflected
physiological and biochemical changes in plums during storage. These variations may be related
to sugar accumulation, water dynamics, and structural changes in fruit tissues. Two-way ANOVA
showed that NDI of the selected wavelengths relative to 1532 nm was more sensitive to both time
(F-value = 93.05-251.37, p < 0.001) and temperature (F = 16,536.74-25,347.47, p < 0.001).
Cultivar differences were most evident at longer wavelengths (1447 nm: F = 55.71; 1650 nm: F =
37.75; p <0.001). SSC significantly correlated with WL (r = 0.868) and with absorbances at 1650
nm (r = 0.803). In contrast, it was negatively correlated with absorbance at 1447 nm (r = —0.734).

Prediction of WL and SSC

SVM models outperformed PLSR in predicting soluble solids content (SSC) and weight loss (WL)
of plums, with accuracy further enhanced by wavelength selection. For WL, SVM using a set of
selected wavelengths achieved R? = 0.917, RMSE = 0.884%, RPD = 3.492, and for SSC, SVM
achieved R? = 0.844, RMSE = 0.781%, and RPD = 2.499.

4.2.8 Laser Back Scattering Imaging

Amplitude and shape parameters at 532 nm and 780 nm were identified as the most sensitive
indicators of postharvest plum quality (ANOVA: F_amplitude = 623.86, F_shape = 2321.50, p <
0.001). The modified Cauchy distribution provided superior model fitting (R? > 0.96, RPD > 4.5)
compared to the Gaussian distribution (R? < 0.70, RPD < 4.5). At 532 nm, amplitude correlated
with firmness (r = 0.607), and shape correlated significantly with color and firmness (r = 0.748 and
0.600, respectively). At 780 nm, amplitude correlated with firmness and chroma (r = 0.607 and
0.661) and negatively with SSC (r = —0.609), while shape correlated significantly with firmness
and chroma (r = 0.720 and 0.670) and negatively with SSC (r = -0.570)

Plum Quality change detection over storage period

Linear Discriminant Analysis (LDA) models were initially developed by considering all
temperature groups to detect storage time-related quality changes in ‘Stanley’ and ‘Elena’ plums
using four LLBI parameters at 532 nm and 780 nm. The model detected quality changes with 61.3%
accuracy for ‘Stanley’ and 77.3% for °‘Elena’. Performance improved when calibrated for
individual temperature groups; at 1 °C, detection accuracy increased to 92.3% for ‘Stanley’ and
91.9% for ‘Elena’. Furthermore, LDA models for 5 °C storage achieved detection accuracy of
100% for both cultivars across all time points.
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Prediction of quality parameters

Two-cultivar and cultivar-specific MVR models were established using four LLBI parameters to
predict firmness, SSC, chroma, and hue. The two-cultivar model showed moderate performance
for firmness (R? = 0.632, RMSE = 3.924 N, RPD = 1.653), whereas cultivar-specific models
achieved higher accuracy, particularly for ‘Stanley’ (R? = 0.769, RMSE = 3.049 N, RPD = 2.084).
SSC predictions followed a similar pattern, with cultivar-specific models outperforming the multi-
cultivar model (‘Elena’: R? = 0.818, RMSE = 0.873%, RPD = 2.366). Color parameters from
Minolta chroma also improved with cultivar-specific calibration, with chroma reaching R? = 0.866,
RMSE = 0.634 in ‘Elena’ and hue R? = 0.731, RMSE = 16.62° in ‘Stanley’. These results
demonstrate that cultivar-specific calibration enhances the predictive accuracy of LLBI.
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4.3. Assessment of quality changes of apples during post-harvest storage

This section also discusses the results of physiological measurement, NIR spectroscopy, and LLBI
techniques applied to assess quality attributes of ‘Granny smith’ apples stored under different
temperature conditions. In NIR spectroscopy analysis, a total of 834 observations were made by
acquiring spectral data from two locations around equatorial part of each apple using three
consecutive scans per location. The apples were rotated 180 degrees between scans to ensure full
surface coverage. Spectral data in the 900—1700 nm range were preprocessed using SNV, and five
significant wavelengths were manually selected based on the standard deviation of the normalized
spectra. NDI and QI were computed to assess the sensitivity of selected wavelengths. PLSR and
SVM models were developed using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-
13), respectively. These models were calibrated using both full spectra and selected wavelengths
to predict weight loss, firmness, and SSC. For LLBI, 643 observations were collected using both
line-based (n = 382) and beam-based (n = 261) systems. LLBI images were captured at 635 nm,
and the resulting profiles were fitted using the Cauchy Distribution model to extract amplitude and
shape parameters. These parameters were used to develop MVR and SVM models for predicting
weight loss and firmness. All datasets were randomly divided into training (80%) and validation
(20%) subsets. Model performance was evaluated using bootstrapped metrics (R?, RMSE, RPD)
with 95% confidence intervals.

4.3.1 Ethylene production

The ethylene production rate in apples is strongly influenced by storage temperature and duration.
Apples stored under cold conditions and later exposed to room temperature exhibited a continuous
increase in ethylene production, whereas apples stored at room temperature initially increased in
ethylene output but declined after two weeks. By the end of the storage period, apples under shelf-
life conditions produced approximately 50 uL/kg-h of ethylene. ANOVA indicated that both
storage temperature and time had significant effects on ethylene production (F = 171.985 and
111.961; p < 0.001). Cold storage suppresses immediate ethylene production but enhances the
peel’s potential to produce ethylene upon warming, while higher storage temperatures accelerate
ripening and ethylene emission.

4.3.2 Respiration Rate

The respiration rate in apples followed a similar pattern to ethylene production. Apples stored in
cold storage and then exposed to room temperature showed an increasing respiration rate over time,
while those stored continuously at room temperature increased initially and then declined. ANOVA
indicated significant effects of storage temperature and time on respiration (F = 83.665 and 49.668;
p <0.001). The highest respiration rate was observed in apples subjected to cold storage followed
by room temperature shelf life, peaking at 18.50 mL/ Kg.h after 27 weeks. Apples stored at cold
temperatures had lower respiration (11.88 mL/ Kg.h), while those stored at room temperature
peaked at 6.20 mL/ Kg.h after 2 weeks before declining.
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4.3.3 Weight loss

The weight loss of apples during storage increased over time, with apples stored at cold
temperatures showing lower weight loss than those stored at room temperature. ANOVA confirmed
significant effects of storage time and temperature on weight loss (F-value = 571.58 and 216.57; p
< 0.001). Higher temperatures accelerate respiration and water loss, leading to faster weight loss,
while lower temperatures slow respiration and preserve freshness.

4.3 .4 Firmness

The firmness of apples decreased over time under both cold storage and cold-to-ambient storage
conditions. Apples stored under cold-to-ambient conditions experienced a faster reduction in
firmness compared to those stored solely at ambient temperatures. ANOVA showed that both
storage time (F = 1469.8) and temperature (F = 2561.2) significantly affected firmness (p < 0.001),
with temperature having a greater impact. This trend is likely due to temperature-induced changes
in cellular structure, including cell wall breakage and pectin degradation, as well as accelerated
ethylene production and respiration rates during ripening. These metabolic changes contribute to
tissue softening and reduced firmness over time.

4.3.5 Soluble solid content (SSC)

The SSC of apples increased over time and with rising storage temperatures. ANOVA indicated
that both storage time (F = 354.3) and temperature (F = 16.8) significantly affected SSC (p <0.001).
The observed increase is primarily due to the conversion of starch into sugars during ripening. In
cold storage, this conversion is slowed, while transfer to ambient temperatures accelerates
respiration and ethylene production, resulting in a rapid rise in SSC.

4.3.6 Peel color

The hue spectra of ‘Granny Smith’ apples were monitored over the storage period. During early
ripening (0, 2, 4, 5 weeks), RMSE values between intervals were low, with the maximum being
0.003068 (week 2 vs. week 5), indicating gradual color changes. Long-term storage (0, 8, 17, 26
weeks) showed higher RMSE values, particularly between 0-26 weeks (0.003847) and 17-26
weeks (0.002359), reflecting more pronounced spectral shifts and hue transformations. Late storage
(9-27 weeks) had a maximum RMSE of 0.004004, demonstrating dynamic color changes during
extended storage. These results indicate that apple color changes are gradual during early storage
but become more pronounced over long-term storage, with significant shifts in hue and saturation
corresponding to aging, pigment changes, and loss of freshness. Higher storage temperatures
accelerate these color changes, while prolonged storage leads to greater variability in hue.

4.3.7 NIR spectroscopy

The sensitive wavelengths were identified as 908, 1080, 1358, 1450, and 1650 nm. Their sensitivity
was further evidenced by NDI and QI values relative to 1531 nm as a reference. Both NDI and QI
at 908—-1650 nm were significantly affected by storage time and temperature, with 1650 nm
showing the strongest sensitivity (NDI F =4346.35; QI F = 4579.41; p < 0.001). Early in storage,
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NDI exhibited high variability, which decreased as the apples became more uniform. Correlation
analysis confirmed that the NDI of 1650 nm vs 1531 nm was strongly associated with weight loss
(r=-0.87), firmness (r = 0.818), and SSC (r = —0.843).

Prediction models

Comparison of PLSR and SVM models using bootstrapped validation shows that wavelength
selection substantially improves prediction accuracy over full spectra. SVM consistently
outperformed PLSR for weight loss, firmness, and SSC. For weight loss, PLSR with selected
wavelengths achieved R? = 0.893, RMSE = 1.116%, and RPD = 3.046, while SVM further
improved predictions to R?=0.955, RMSE =0.708%, and RPD =4.85. For firmness, PLSR yielded
R? = 0.823, RMSE = 4.545N, and RPD = 2.39, whereas SVM achieved R?> = 0.958, RMSE =
2.201 N, and RPD = 5.09. For SSC, PLSR reached R?=0.791, RMSE = 0.440%, and RPD = 2.20,
while SVM significantly outperformed it with R* = 0.937, RMSE = 0.250%, and RPD = 3.93.
These results indicate that SVM combined with selected wavelengths provides better predictive
accuracy for apple quality parameters, outperforming both PLSR and full-spectrum approaches.

4.3.8 Laser light backscattering imaging (LLBI)

The modified Cauchy distribution (CD) function provided good curve-fitting performance for
extracting LLBI parameters, achieving R? = 0.970 and RPD = 6.08 for the beam system, and R? =
0.884 and RPD = 3.145 for the line system.

Prediction models

The three LLBI parameters extracted from modified Cauchy fitting of both line and spot
illumination systems, combined with SVM models, demonstrated strong predictive performance
for weight loss (R* > 0.96) and firmness (R* > 0.91). Specifically, weight loss prediction was
highest with line illumination (R? = 0.971, RMSE = 0.608%, RPD = 6.035), reflecting greater
sensitivity to surface changes, while firmness prediction was best with spot illumination (R* =
0.940, RMSE =2.626 N, RPD =4.100), due to deeper light penetration.
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5. NEW SCIENTIFIC RESULTS

This study evaluated the application of non-destructive techniques to monitor quality changes in
green asparagus, plums, and apples during post-harvest storage. The main scientific results from
each practical experiment are presented as follows:

. An optimum set of wavelengths (907, 923, 1069, 1442, and 1696 nm) was selected for the quality
assessment of green asparagus during storage and shelf life. Linear Discriminant Analysis (LDA)
using the selected wavelengths successfully detected the quality change in 4 days storage interval.
The model achieved classification accuracies 0of 60.4% at 2 °C, 74.3% at 10 °C, and 76.9% at 15 °C.
After 12 days, temperature-induced changes were detected with 87.7% accuracy. The SVM model
demonstrated enhanced predictive accuracy compared to the PLSR model when calibrated using
NIR spectra at selected wavelengths for predicting weight loss and firmness. The SVM model
achieved R? = 0.768, RMSE = 5.690%, and RPD = 2.080 for weight loss, while for firmness, it
achieved R2=0.829, RMSE = 5.380 N, and RPD = 2.322.

. Line-based Laser Light Backscattering Imaging (LLBI) analysis with a single laser module
emitting at 635 nm was applied, and diffusely illuminated surfaces were captured from three
positions (base, middle, tip) on asparagus spears. LLBI parameters of amplitude, shape, and
FWHM were extracted using Cauchy curve fitting. The LDA model based on LLBI parameters
detected quality changes in asparagus spears after 4 days across all temperature groups with 79.7%
accuracy. For individual temperatures, accuracy was 81.4% at 2 °C, 89.6% at 10 °C, and 93.4% at
15°C. MVR and MARS models were developed to predict weight loss and firmness. MARS
outperformed MVR, and predicted weight loss with R? = 0.846, RMSE = 6.401%, RPD = 2.558,
and firmness with R?=0.927, RMSE = 3.266 N, RPD = 3.775.

. An optimum set of wavelengths (909, 1064, 1323, 1447, 1650 nm) was selected for quality
assessment of plum fruits during storage and shelf life. Using these wavelengths, PLSR predicted
weight loss with R? = 0.738, RMSEP = 1.582%, and RPD = 1.953, and SSC with R? = (.740,
RMSEP = 0.980%, and RPD = 1.991. However, performance improved with the SVM model,
which achieved R? = 0.917, RMSEP = 0.844%, and RPD = 3.492 for weight loss, and R? = 0.844,
RMSEP = 0.780%, and RPD = 2.498 for SSC.

. The beam based LLBI technique with a Cauchy distribution function fitted on the signal of 532 nm
and 780 nm was able to detect quality changes of plum. Plums stored at 1 °C showed detectable
quality changes within 4 days interval, with LDA models achieving classification accuracy of
92.3% for ‘Stanley’ and 91.9% for ‘Elena’. For storage at 5 °C, the models reached 100% accuracy
across all time points and cultivars. Cultivar-specific regression models outperformed combined
models. The best cross-validation results were observed for ‘Elena’ (Minolta chroma-based
chroma: R? =0.866, RMSE = 0.634; SSC: R*=0.818, RMSE = 0.873%) and ‘Stanley’ (firmness:
R2=0.769, RMSE = 3.049 N; Minolta chroma-based hue angle: R?=0.731, RMSE = 16.62°).This
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showed the potential of LLBI combined with multivariate models (i.e. LDA, MVR) for real-time
quality assessment in postharvest handling and cold chain management.

. Optimized wavelengths (908, 1080, 1358, 1450, and 1650 nm) were used to assess storage quality
and shelf-life of ‘Granny Smith ’apples. The SVM model showed better performance than PLSR,
predicting weight loss (R? = 0.955, RMSEP = 0.708%, RPD = 4.852), firmness (R? = 0.958,
RMSEP =2.201 N, RPD = 5.088), and SSC (R*=0.937, RMSEP = 0.249%, RPD = 3.932).

. LLBI technique demonstrated the effectiveness of both line and beam laser configurations on apple
quality assessment. The SVM with three LLBI parameters extracted from the modified Cauchy
fitting on the LLBI profile, the system demonstrated good predictive performance for both weight
loss (R*>0.96) and firmness (R* > 0.91). Hence, line-based LLBI combined with SVM enhanced
its performance in predicting weight loss (R>=0.971, RMSEP = 0.608%, RPD = 6.035), while the
beam laser setup yielded the best results for firmness prediction (R? = 0.940, RMSEP = 2.626 N,
RPD =4.100).
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6. CONCLUSION AND SUGGESTIONS

This study demonstrated the effectiveness of non-destructive techniques, namely machine vision,
Near-Infrared (NIR) Spectroscopy, and Laser Light Backscattering Imaging (LLBI in monitoring
the post-harvest quality of green asparagus, plums, and apples. By integrating spectral and imaging
data with advanced chemometric models such as PLSR, SVM, MVR, and MARS, the research
successfully predicted key quality parameters, including weight loss, firmness, soluble solids
content (SSC), and peel color. The optimized multispectral approach, using selected wavelengths,
significantly improved model accuracy and reduced computational complexity compared to full-
spectrum analysis. LLBI, particularly when combined with modified Cauchy distribution
modeling, proved that it is sensitive to internal structural and surface changes in produce during
storage. Together, these tools support early spoilage detection, better inventory control, and
optimized cold chain management. However, Further testing on other horticultural products and
quality attributes, along with improved spectral and image processing algorithms, could broaden
their application
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