
 
 

1 
 

 

 

 

 

 

 

 

 

Thesis of the PhD dissertation 

 

 

 

 

Zinabu Hailu Siyum 

 

 

 

 

Budapest 

2025 



 
 

2 
 

 

Hungarian University of Agriculture and Life Sciences 

 

 

APPLICATION OF NON-DESTRUCTIVE TECHNIQUES IN QUALITY 

ASSESSMENT OF FRUITS AND VEGETABLES DURING POST-HARVEST 

STORAGE 

 

 

 

         

 

 

 

Zinabu Hailu Siyum 

 

 

Budapest 

2025 

 



 
 

3 
 

 

 



 
 

i 
 

TABLE OF CONTENTS 

 

TABLE OF CONTENTS .................................................................................................................. i 

1. INTRODUCTION ........................................................................................................................ 1 

2. RESEARCH OBJECTIVES ........................................................................................................ 2 

3. MATERIALS AND METHODS .................................................................................................. 3 

3.1 Materials ................................................................................................................................. 3 

3.2 Measurement of Quality Attributes ........................................................................................ 4 

3.2.1 Ethylene Production ......................................................................................................... 4 

3.2.2 Respiration Rate ............................................................................................................... 4 

3.2.3 Weight Loss ...................................................................................................................... 4 

3.2.4 Firmness ........................................................................................................................... 4 

3.2.5 Soluble Solid Content (SSC) ........................................................................................... 5 

3.2.6 Peel Color ......................................................................................................................... 5 

3.3 Non-destructive measurement techniques .............................................................................. 6 

3.3.1 NIR spectroscopy (NIR) .................................................................................................. 6 

3.3.2 Laser light backscattering imaging (LLBI) ...................................................................... 7 

3.4. Experimental design .............................................................................................................. 9 

3.4.1 Quality assessment of green asparagus during post-harvest storage ............................... 9 

3.4.2 Quality assessment of Plums during post-harvest storage ............................................. 10 

3.4.3 Quality assessment of apple during post-harvest storage .............................................. 11 

3.5 Data analysis ......................................................................................................................... 12 

4. RESULTS ................................................................................................................................... 13 

4.1 Quality assessment of green asparagus during post-harvest storage .................................... 13 

4.1.1 Weight loss ..................................................................................................................... 13 

4.1.2 Firmness ......................................................................................................................... 13 

4.1.3 Peel color ....................................................................................................................... 14 

4.1.4 NIR spectroscopy ........................................................................................................... 14 

4.1.5 Laser light backscattering imaging (LLBI) .................................................................... 15 

4.2 Assessment of quality changes in plums during post-harvest storage .................................. 17 

4.2.1 Ethylene production ....................................................................................................... 17 

4.2.2 Respiration rate .............................................................................................................. 17 

4.2.3 Weight loss ..................................................................................................................... 17 



 
 

ii 
 

4.2.4 Firmness ......................................................................................................................... 18 

4.2.5 Soluble solid content (SSC) ........................................................................................... 18 

4.2.6 Peel Color ....................................................................................................................... 18 

4.2.7 NIR spectroscopy ........................................................................................................... 19 

4.3. Assessment of quality changes of apples during post-harvest storage ................................ 21 

4.3.1 Ethylene production ....................................................................................................... 21 

4.3.2 Respiration Rate ............................................................................................................. 21 

4.3.3 Weight loss ..................................................................................................................... 22 

4.3.4 Firmness ......................................................................................................................... 22 

4.3.5 Soluble solid content (SSC) ........................................................................................... 22 

4.3.6 Peel color ....................................................................................................................... 22 

4.3.7 NIR spectroscopy ........................................................................................................... 22 

4.3.8 Laser light backscattering imaging (LLBI) .................................................................... 23 

5. NEW SCIENTIFIC RESULTS .................................................................................................. 24 

6. CONCLUSION AND SUGGESTIONS .................................................................................... 26 

7. LIST OF PUBLICATIONS IN THE FIELD OF STUDY ......................................................... 27 

REFERENCES ............................................................................................................................... 28 

 

 



 
 

1 
 

1. INTRODUCTION 

The global demand for quality fruits and vegetables has created a need for efficient and reliable 

postharvest quality assessment methods (Costa and Lima, 2013; Valenzuela et al., 2023). 

Traditional approaches, such as measuring firmness, weight loss, or soluble solids content (SSC), 

are often destructive, time-consuming, and unsuitable for large-scale, real-time monitoring, leading 

to product waste and inconsistent quality control (Fodor et al., 2024; Palumbo et al., 2022). Non-

destructive techniques address these limitations by enabling rapid, cost-effective, and continuous 

evaluation of entire batches, improving sorting, reducing spoilage, and extending shelf life (Abasi 

et al., 2018; Aline et al., 2023). 

Near-Infrared (NIR) spectroscopy and machine vision systems are among the promising optical 

techniques. NIR spectroscopy evaluates internal quality by measuring light absorption in the 700–

2500 nm range, providing information on attributes like SSC and firmness (Nicolaï et al., 2007; 

Tian and Xu, 2022). Laser Light Backscattering Imaging (LLBI) evaluates backscattered light to 

characterize internal tissue structure and surface properties (Baranyai & Zude, 2009; Qing et al., 

2008). On the other hand, digital imaging with machine vision captures external attributes such as 

color, size, and defects (Bhargava & Bansal, 2021; Nguyen et al., 2021). These techniques are 

favored for industrial applications due to lower cost, faster acquisition, and adaptability compared 

to hyperspectral imaging (Mollazade et al., 2012; Wieme et al., 2022). 

Despite their advantages, non-destructive methods face challenges, including the heterogeneous 

nature of fruits and vegetables, where overlapping spectral signals complicate analysis (Assaad, 

2020; Paz et al., 2008). To overcome this, spectral preprocessing (e.g., Savitzky-Golay filters) and 

advanced wavelength selection methods (e.g., genetic algorithms) are applied (Nicolaï et al., 2007; 

Yao et al., 2023). When these methods are combined with chemometric models such as partial least 

squares regression (PLSR) and support vector machines (SVM) the accuracy of quality predictions 

is significantly enhanced (Yao et al., 2023; Zhang et al., 2018). These techniques are widely applied 

to predict various quality attributes of fruits and vegetables (Aline et al., 2023; Kashef, 2021). For 

instance, Liu et al. (2021) also applied PLSR to evaluate weight loss (R² = 0.96, RMSEP = 1.432%) 

and firmness (R² = 0.60, RMSEP = 2.453 N) in Chinese mini cabbage.  Qing et al. (2007) 

demonstrated that LLBI combined with PLSR could predict fruit firmness with R2 = 0.81 and 

RMSEP = 5.44 N. Thus, NIR spectroscopy, LLBI, and calibration models were applied to assess 

the postharvest quality of popular Hungarian fruits and vegetables, including asparagus, plums, 

and apples 
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2. RESEARCH OBJECTIVES 

The objective of the work was to apply non-destructive techniques to assess quality changes in 

fruits and vegetables during post-harvest storage. The following goals were established: 

1. To develop classification and prediction models using optimized and full NIR spectra to detect 

quality changes during storage 

• Applying different linear and non-linear models using the full spectral range provided by 

the handheld near-infrared (NIR) spectrometer (900–1700 nm). 

• Optimizing the full NIR spectra by analyzing the standard deviation (SD) of the normalized 

spectra and selecting high-SD wavelengths for multispectral analysis. 

2. To compare different mathematical models in Laser light backscattering imaging (LLBI) for 

describing the signal and utilizing model coefficients for classification and prediction models 

• Emitting multispectral laser diodes (532–1064 nm) onto the sample surface and acquiring 

backscattering images. 

• Extracting features and characterizing peaks using various theoretical mathematical 

models. 

• Optimizing wavelengths based on the analysis of variance (ANOVA) of the extracted model 

coefficients. 

• Comparing the performance of both beam and line-based LLBI systems at a specific 

wavelength 

3. To evaluate the applicability of the developed techniques for assessing quality changes in 

asparagus, plum, and apple during post-harvest storage 

• Applying reference measurement methods to investigate changes in quality attributes such 

as weight loss, firmness, SSC, and color in samples stored under different time and 

temperature conditions. 

• Applying the developed LLBI and NIR techniques to monitor quality changes in asparagus, 

plum, and apple during post-harvest storage. 
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3. MATERIALS AND METHODS 

3.1 Materials  

This study evaluated the postharvest quality of three horticultural products of plum, asparagus, and 

apple were collected from commercial orchards located in Csengőd, Kiskőrös, and 

Dunaszentmiklós, Hungary. After harvest, the fruits and vegetables were packed in polypropylene 

crates and transported to the Laboratory of the Department of Food Measurement and Process 

Control, Institute of Food Science and Technology, at the Hungarian University of Agriculture and 

Life Sciences. Upon arrival, all samples were inspected for uniform size, ripeness, and defects. 

Initially, a total of 1,300 samples were used. This included 120 green asparagus spears (Eros’) with 

an average mass of 36.88 ± 4.59 g, length of 20.42 ± 0.58 cm, diameter of 11.94 ± 3.52 mm, and 

firmness at the base, middle, and tip of 15.01 ± 2.78 N, 12.86 ± 3.64 N, and 10.86 ± 1.09 N, 

respectively. Additionally, 1,020 plums (510 per cultivar) were analyzed, with average firmness of 

45.76 ± 6.97 N ( ‘Stanley’) and 44.74 ± 5.83 N (‘Elena’), and SSC of 14.50 ± 1.03% and 14.95 ± 

0.52%, respectively. Furthermore, 160 ‘Granny Smith’ apples were evaluated, with SSC of 10.75 

± 1.09%, an average height of 72.97 ± 3.66 mm, a width of 66.25 ± 4.36 mm, and a starch index 

of 4.81 ± 0.83. 

Storage conditions were tailored for each product. Asparagus samples were randomly divided into 

three groups, packed in low-density polyethylene (LDPE) plastic bags with ventilation holes. They 

were stored at 2 °C, 10 °C, and 15 °C for 12 days. Each plum cultivar was divided into four groups 

and stored at 1 °C, 5 °C, 10 °C, and 15 °C for 24 days. Apples were divided into two groups and 

stored at 2 °C for up to 27 weeks and at 22 °C for 5 weeks. 

Relative humidity (RH) in the storage was measured using a Sain Lang humidity meter and DL-

120TH Voltcraft data loggers.  Cold storage conditions (1–10 °C) were 90–95% RH, while ambient 

storage (22 °C) was 60–65% RH.  Some samples in each treatment were removed from the 

experiment before the scheduled measurement due to decay. Decayed fruits were excluded from 

the groups in accordance with Regulation (EU) No 543/2011 (Article 3, Annex I, Part A). 
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3.2 Measurement of Quality Attributes 

3.2.1 Ethylene Production 

Ethylene production was measured by placing a standardized quantity of produce (typically 1 kg) 

in a hermetically sealed container. The container was sealed for one hour, after which the 

accumulated ethylene gas concentration was recorded using an ICA-56 hand-held ethylene 

analyzer (International Controlled Atmosphere Ltd., United Kingdom). The results were expressed 

as the volume of ethylene produced per kilogram of produce per hour (µL/kg·h). 

3.2.2 Respiration Rate 

The respiration rate was determined by placing produce (typically 1 kg) inside a sealed polymethyl 

methacrylate (plexiglass) container equipped with FY A600-CO2H carbon dioxide (CO₂) sensors 

connected to an Almemo 3290-8 data logger (Ahlborn Mess- und Regelungstechnik GmbH, 

Germany). The container was sealed to maintain a controlled environment, and CO₂ levels were 

recorded after one hour. Results were expressed as the volume of CO₂ produced per kilogram of 

produce per hour (mL/kg·h). 

3.2.3 Weight Loss 

Weight loss of fresh produce was determined using a digital balance (WLC 2/A2, RADWAG, 

Radom, Poland). The initial weight of each sample was recorded, followed by subsequent 

measurements over time. Weight loss was calculated as the percentage difference between the 

current and initial weights, relative to the initial value. The weighing method varied by produce 

type: green asparagus and Granny Smith apples were weighed individually, while plums were 

weighed in groups (20 fruits per group). 

3.2.4 Firmness 

Asparagus 

The firmness of asparagus samples was measured using a texture analyzer (TA-XTplus, Stable 

Microsystems, Surrey, UK) equipped with a blade cutter (HDP/BSK). The test speed was set to 1 

mm/s with a 0.01 s data acquisition delay. Ten asparagus spears were tested at every 4-day interval 

per storage temperature group. Maximum force (N) was recorded at three positions: base, middle, 

and tip.  

Plum 

Firmness was measured using a portable fruit firmness tester (FT 327, T.R. Turoni srl, Forlì, Italy) 

equipped with a 7.9 mm cylindrical probe. The probe penetrated the peeled plum tissue to a depth 

of 2 mm. Maximum force (N) was recorded on two opposite sides of each fruit. Twenty fruits were 

measured every 4 days across four storage temperature groups  
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Apple 

Apple firmness was measured using a handheld fruit firmness tester (FT 327, T.R. Turoni srl, Forlì, 

Italy) mounted on a vertical stand for stability. A 7.9 mm cylindrical probe penetrated the peeled 

apple tissue to a depth of 10 mm. Maximum force (N) was recorded at three equatorial positions 

on each fruit. Twenty apples were measured every 9 weeks under cold storage (2 °C) and every 2 

weeks at room temperature (22 °C)  

3.2.5 Soluble Solid Content (SSC) 

SSC was measured using a handheld refractometer (PAL-1, Atago Co. Ltd., Tokyo, Japan; 0–53% 

range). Juice was extracted from each fruit, clarified of pulp, and one drop was placed on the prism 

to record °Brix. Twenty plums were measured every 4 days across four storage temperatures, while 

twenty apples were sampled from each temperature group every 2 weeks at room temperature and 

every 9 weeks under cold storage. 

3.2.6 Peel Color 

Minolta Chroma Meter 

Plum peel color was measured using a Minolta Chroma Meter CR-400 (Minolta Corporation, 

Osaka, Japan) calibrated with a standard white plate (CR-A43). Measurements were taken at two 

opposite equatorial points per fruit. CIE parameters (L*, a*, b*) were recorded. Chroma (C*) was 

calculated as √(a²+b²), and hue angle as tan⁻¹(b*/a*). 

Computer Vision 

A computer vision (CV) system was used to monitor peel color changes in asparagus and apples 

during storage. The system consisted of a high-performance color digital camera (Hitachi HV-C20 

3CCD, Tokyo, Japan) operated in manual mode with default settings. The color temperature was 

3200 K and was used for image acquisition. The camera was mounted 60 cm above the sample 

chamber, positioned perpendicular to the surface of the samples to ensure consistent top-down 

imaging and eliminate perspective distortion. LED lights (1m/1m LED light strips, 30LEDs, 2.8W) 

were arranged in a circular configuration around the inner ceiling of the chamber, providing 

uniform and diffuse illumination. This setup minimized shadows and reflections, ensuring 

consistent lighting across all samples. The color change in asparagus and apples during storage was 

evaluated. Four to five samples were placed on a white background, which also served as a color 

reference. Images were captured at a resolution of 768 × 576 pixels and processed using Scilab 

software (version 2024.0.1), following the image analysis method described by Nguyen et al. 

(2021). The IP_hue spectra were extracted from each image and used to quantitatively evaluate 

color changes at different storage times and temperatures.  It is a weighted histogram of hue angle 

and a summary of saturation over the captured image. The color change of the samples is 

represented by the displacement of the peaks. The root mean square error (RMSE) was calculated 

between the IP_hue spectra curve of consecutive measurement days using the following formula:  
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𝑅𝑀𝑆𝐸𝐴−𝐵 = √
∑ (𝐴𝑖−𝐵𝑖)2𝑛

𝑖=1

𝑛
 

where 𝐴𝑖 and  𝐵𝑖 represent the saturation values at the ith hue degree for two consecutive 

measurement days, and n is the total number of hue degrees (typically 360).   

3.3 Non-destructive measurement techniques 

3.3.1 NIR spectroscopy (NIR) 

NIR Spectra Acquisition 

A handheld near-infrared (NIR) spectrometer (NIR-S-G1, InnoSpectra Co., Hsinchu, Taiwan) was 

used to collect absorption spectra in the 900–1700 nm wavelength range, with a spectral resolution 

of 4 nm. The device is based on digital light processing (DLP) technology and operates in 

reflectance mode. It features compact optics and is equipped with both Micro USB and Bluetooth 

Low Energy (BLE) interfaces, allowing data transfer either via USB or wirelessly to smartphones, 

tablets, or personal computers. Spectral acquisition was performed using the manufacturer’s 

software (NIRScan) under ambient laboratory conditions. The device is internally calibrated and 

does not require an external white reference tile, as calibration is automatically managed by the 

internal system. During measurement, asparagus spears were positioned horizontally, and spectra 

were collected from three distinct locations along each spear: the base, middle, and tip. This 

approach was used to capture spatial variation in tissue composition along the spear. For plums and 

apples spectral data were collected from both opposite sides at the equatorial region. At each 

measurement location, two scans were taken for asparagus and three for plums and apples to ensure 

repeatability and reliability. During scanning, the measurement window was fully covered by the 

sample surface to maintain a consistent contact area and minimize external light interference. 

Pre-processing of NIR spectra 

The spectral data were pre-processed using several techniques to correct physical and chemical 

effects, such as non-zero baselines and scatter. These methods included Savitzky-Golay (SG) 

smoothing (i.e., polynomial, n=3 and window size, m =21) to reduce noise and Standard Normal 

Variate (SNV) to correct for scatter effects. These pre-processing techniques were applied to green 

asparagus, plums, and apple experiments to improve the quality of the spectra for subsequent 

analysis. 

Selection of sensitive wavelengths 

In this study, sensitive wavelengths were selected using a filter-based variable selection approach. 

The acquired spectra were pre-processed using SNV to remove the noise that is potentially 

produced by specular reflection and the device. The standard deviation of the normalized spectra 

was calculated column-wise to identify local maxima values, and significant wavelengths were 

manually selected. These wavelengths were considered important because they corresponded to 

changes in quality parameters such as WL, firmness, and SSC. Their relevance was further 
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confirmed by calculating quality indices, including the normalized difference index (NDI) and 

quality index (QI), at the selected wavelengths. The reference wavelength was chosen based on the 

minimum standard deviation of the normalized full spectrum. 

𝑁𝐷𝐼 =
𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑− 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑+ 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
,            𝑄𝐼 =

𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

Where 𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is NIR absorbance at the selected wavelength(s), 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is NIR absorbance 

of the reference wavelength.  These indices were linked to quality parameters such as weight loss (WL), 

firmness, and SSC. 

3.3.2 Laser light backscattering imaging (LLBI) 

In this method, a laser light illuminates a point and line on the fruit's surface in a dark chamber, 

and the resulting light scattering provides valuable information about the fruit's mechanical and 

textural properties  

Laser Module and Camera Specifications 

Beam-based LLBI 

A laser beam imaging system with a 12-bit/pixel monochrome CMOS camera (MV1-D1312, 

Photon Focus, Lachen, Switzerland) with default settings was used to generate diffusely reflected 

signals. Laser diodes (3 mW) emitting at 532, 635, 780, 808, 850, and 1064 nm were used. The 

incident angle of the laser beams was set to 15°, focused within a circular area of Ø1 mm. Image 

acquisition was performed in a dark chamber to minimize external light interference and improve 

the signal-to-noise ratio. The system captured images at a resolution of 0.113 mm/pixel and a size 

of 512 × 512 pixels.   The images were stored in raw binary format for analysis. 

Line-Based LLBI 

A line laser imaging system was implemented to monitor quality changes in samples during post-

harvest storage. The system comprised a dark chamber, a monochrome industrial camera 

(DMK38GX540-a, 1.2-inch Sony CMOS, GigE Interface (RJ45), Imaging Source, Bremen, 

Germany), and a 635 nm LM Laser KH93242 single-line laser module (1 mW power, 1 mm line 

thickness). The laser module was used to illuminate the samples, generating diffusely reflected 

signals for imaging.  The camera lens was positioned 27 cm from the sample surface, and a laser 

module was mounted at an incident angle of 20° within a dark chamber to reduce direct reflections 

and geometric distortion. Digital images were captured at a resolution of 0.0325 mm per pixel, to 

ensure the spatial accuracy and minimize curvature-related distortions. 
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Description of LLBI profiles 

An image processing algorithm was developed using Scilab (version 2024.1.0). Raw RGB image 

files were transformed into greyscales, resulting in a two-dimensional (2D) matrix of pixels with 

intensity values ranging from 0 to 255 . The incident (center) point was determined by calculating 

the intensity-weighted average of pixel positions. A 5-pixel-wide band crossing the incident point 

was selected as the region of interest (ROI). The 1D profiles were obtained from the intensity values 

within the ROI. Then, the profiles were modeled using the modified Cauchy distribution (CD) 

function (Eq. a) and modified Gaussian distribution (GD) function (Eq. b), which are 

mathematically expressed as follows: 

  𝐼𝐶 = 𝑧1𝑐 +
𝑧2𝑐 𝑧3𝑐

2

(𝑥−𝑧4𝑐)2+𝑧3𝑐
2
                                           (a) 

𝐼𝐺 = 𝑧1𝑔 + 𝑧2𝑔exp (−
(𝑥−𝑧4𝑔)2

2 𝑧3𝑔
2

)                                (b)            

Where 𝐼𝐶 and 𝐼𝐺  denotes estimated light intensity;  𝑥 denote the picture width ;  𝑧1𝑐 and 𝑧1𝑔 are the 

baseline intensity; 𝑧2𝑐 and 𝑧2𝑔 are amplitude; 𝑧3𝑐 and 𝑧3𝑔 are shape factors; and 𝑧4𝑐 and 𝑧4𝑔 are 

the locations of the peaks of the CD and GD functions. The coefficient parameters of the intensity 

profile were extracted using a signal approximation approach based on modified Cauchy 

distribution and Gaussian distribution function models. The coefficients derived from the model 

demonstrated strong performance in characterizing intensity profiles and were used to develop 

models for monitoring quality changes.   

Image processing and feature extraction 

The collected laser signal images were processed using a developed algorithm using Scilab 

software (version 2024.1.0, Dassault Systèmes, Vélizy-Villacoublay, France). The coefficient 

parameters of the intensity profile were extracted using a signal approximation approach based on 

modified Cauchy distribution and Gaussian distribution function models. The coefficients derived 

from the model demonstrated strong performance in characterizing intensity profiles and were used 

to develop models for monitoring quality changes. 
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3.4. Experimental design  

3.4.1 Quality assessment of green asparagus during post-harvest storage 

Storage treatment  

The LDPE-packed green asparagus spears (Eros’) were stored at three different temperatures (2 - 

10 ℃ with 90-95 RH% and 15 ℃ with default RH%). Measurements were taken at 4-day intervals, 

with 10 samples tested from each group at each time point. The samples were kept at room 

temperature for 12 h to maintain the surface temperature of the samples the same as the room 

temperature. First, non-destructive measurements were performed on each spear at three positions 

of the base, middle, and tip. Afterward, destructive analyses were conducted on the same tested 

spears, which were then removed from the sample pool.  

Measurement 

The weight loss and firmness of the green asparagus spears were measured using the methods 

described in Sections 3.2.3 and 3.2.4, respectively. The device used for NIR and the system for 

LLBI evaluations are detailed in Sections 3.3.1 and 3.3.2 

 

NIR spectroscopy 

 

NIR spectra were collected non-destructively from three positions (base, middle, tip) of each spear. 

Spectra were preprocessed with SG and SNV, the standard deviation was computed of the 

normalized spectra, and peak wavelengths were manually selected. NDI and QI were calculated to 

assess sensitivity. The dataset (684 samples) covered four storage times (0, 4, 8, 12 days) and three 

temperatures (2 °C, 10 °C, 15 °C), split into 80% training and 20% validation. Classification 

models (PLS-DA, LDA) and prediction models (PLSR, SVM) were built using full and selected 

spectra. Model performance was evaluated using accuracy, sensitivity, specificity, precision, F-

score, R², RMSE, and RPD, with reliability confirmed by 100 bootstraps. 

Line LLBI 

Line-based LLBI was conducted at the wavelength of 635 nm, capturing three LLBI images from 

the base, middle, and peak of each asparagus spear. The Cauchy curve fitting method extracted 

LLBI parameters (i.e, amplitude, shape and FWHM) from the LLBI profile. A total of 344 

observations were collected from asparagus spears stored at 2 °C, 10 °C, and 15 °C. MVR and 

MARS models were developed to predict weight loss and firmness, while LDA was applied to 

evaluate quality changes in the asparagus. The dataset was randomly split into two subsets, with 

80% used for training and 20% for validation. Bootstrapping with 100 repetitions was performed 

to evaluate model performance, generating statistical metrics such as mean and 95% confidence 

intervals for R², RMSE, and RPD. 
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3.4.2 Quality assessment of Plums during post-harvest storage 

Storage treatment  

Two plum cultivars (Stanley’ and ‘Elena’) were used in the study. A total of 510 fruits were selected 

for each cultivar, of which 30 were used for initial measurements. The remaining 480 fruits were 

randomly divided into four temperature groups (1 -10 °C with 90-95 RH%, and 15 °C) and stored 

for 24 days. Storage duration was recorded in days. On each measurement day, 20 fruits were taken 

from each temperature group, and they were kept for 12 h before the measurement to maintain the 

sample’s surface temperature the same as the room temperature.  Moreover, some groups were 

terminated early due to decay. 

Measurements 

The physiological and quality changes of the plums were measured using the methods described in 

Sections 3.2.1 to 3.2.6. The device used for NIR and the system for LLBI evaluations are detailed 

in Sections 3.3.1 and 3.3.2. 

NIR spectroscopy 

Spectral data were collected from both sides of each fruit with three consecutive scans.  Full raw 

spectra were preprocessed using SNV.  The standard deviation of the normalized spectra was 

calculated to identify local maxima, and the prominent wavelengths were manually selected for 

model development. NDI and QI indices were also calculated for these wavelengths to validate 

their sensitivity. PLSR and SVM models were developed and compared using both full spectra and 

selected wavelengths to predict WL and SSC. The data set consisted of a total of 2965 observations, 

including 1649 observations for ‘Stanley’ and 1316 observations for ‘Elena’. Each dataset (i.e, two-

cultivar and cultivar-specific) was randomly split into two subsets, with 80% used for training and 

20% for validation. Bootstrapping with 100 repetitions was applied to evaluate model performance, 

providing statistical metrics such as the mean and 95% confidence intervals for R², RMSE, and 

RPD. 

Beam LLBI 

Beam-based LLBI was applied to the surface of plum fruits, capturing two LLBI images from both 

sides of each fruit across six wavelengths (532, 635, 780, 808, 850, and 1064 nm). The optimized 

wavelengths were identified through ANOVA and Tukey’s post hoc analysis, which highlighted the 

wavelengths most sensitive to quality variations. A total of 1,276 observations were collected, 

comprising 569 observations from the ‘Stanley’ cultivar and 707 observations from the ‘Elena’ 

cultivar. LDA models were applied to classify samples based on storage time, effectively detecting 

quality changes throughout the storage period. Additionally, MVR models, utilizing two LLBI 

parameters at optimized wavelengths, were used to predict firmness, soluble solids content (SSC), 

and skin color for both cultivars. Bootstrapping with 100 repetitions ensured robust performance 

metrics (R², RMSE, and RPD) with 95% confidence intervals, demonstrating reliable model 

stability. 
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3.4.3 Quality assessment of apple during post-harvest storage 

Storage treatment 

Similar to green asparagus and plums, the assessment of quality changes in ‘Granny smith’ using 

NIR spectroscopy and LLBI techniques during postharvest storage was performed.  A total of 160 

apple samples were randomly divided into two groups. The first part was stored at room 

temperature (22 °C with 60-65 RH%) for 5 weeks and sampled at 2-week intervals. The second 

part apples were stored under cold conditions (2 °C with 90-95 RH%) for 26 weeks, followed by 1 

week at 22 °C for shelf life, with sampling conducted at 9-week intervals. 

Measurement 

The physiological and quality changes of the ‘Granny Smith apples were measured using the 

methods described in Section 3.2.1. to 3.2.6 The device used for NIR and the system for LLBI 

evaluations are detailed in Sections 3.3.1 and 3.3.2 

NIR Spectroscopy 

A handheld NIR spectrometer (900–1700 nm) collected spectra from two opposite locations around 

the equator of each apple, with three consecutive scans per location. Spectra were preprocessed 

using SG smoothing and SNV. The significant wavelengths were identified from column-wise 

standard deviations. Additionally, NDI and QI indices for these wavelengths were calculated to 

confirm their sensitivity. PLSR and SVM models were developed using both the full spectra and 

the selected wavelengths, and their performance was compared. A total of 834 observations were 

collected. This dataset was randomly divided into two sheets, with 80% used for training and 20% 

for validation. Bootstrapping with 100 repetitions was employed to assess model performance, 

providing statistical metrics such as the mean and 95% confidence intervals for R², RMSE, and 

RPD, ensuring robust and reliable evaluation of the models. 

Line LLBI 

In the line-based system, LLBI images were captured from two opposite locations at the equatorial 

surface of each apple. The LLBI profile at 635 nm was fitted with the modified Cauchy Distribution 

(CD) model, and three parameters (i.e., amplitude, shape, and FWHM) were extracted from both 

the beam- and line-based systems. These parameters were used to develop the MVR and SVM 

models. A total of 643 observations were collected from both systems (line: n = 382; beam: n = 

261). The dataset was randomly divided into two subsets, with 80% used for training and 20% for 

validation. Bootstrapping with 100 repetitions was performed, and model performance metrics (R², 

RMSE, and RPD) were evaluated using t-tests with 95% confidence intervals. 
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3.5 Data analysis 

The data analysis provides a comprehensive framework for the spectral analysis of horticultural 

products, employing both classification and prediction techniques to effectively assess and manage 

fruit quality. This integration of advanced spectral analysis with multivariate statistical methods 

enables precise control and improvement of post-harvest handling and processing procedures. In 

this dissertation, basic descriptive statistics on the quality parameters of the fresh produce during 

treatments were presented in plots, Analysis of Variance (ANOVA) was used to evaluate the effects 

of the treatments on these parameters. Moreover, classification and prediction models were applied 

to assess the association between quality parameters and the laser and NIR spectral variables. 

Partial Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA) 

were established to classify the samples based on their treatment groups, utilizing the ‘plsdepot’ 

(version 0.2.0) and ‘mda’ (version 0.5-3) packages. Additionally, Partial Least Squares Regression 

(PLSR), Multivariate Regression (MVR) Support Vector Machine Regression (SVM) and Adaptive 

Regression Splines (MARS) were built to predict the quality attributes of the samples using the 

‘pls’ (version 2.8-2), ‘aquap2’ (version 0.4.2), ‘e1071’ (version 1.7-13), ‘earth’ (version 5.3.3) 

packages, respectively. All statistical analyses were performed using R software (version 4.2.3, R 

Foundation for Statistical Computing, Vienna, Austria). 
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4. RESULTS  

4.1 Quality assessment of green asparagus during post-harvest storage 

This section presents the results of NIR spectroscopy and line-based LLBI techniques used to 

monitor quality changes in green asparagus during storage. For NIR spectroscopy analysis, a total 

of 684 observations were generated by acquiring spectral data at three positions (base, middle, and 

peak) on each spear, using two scans per position. The collected spectra were preprocessed using 

standard normal variate (SNV), and five prominent wavelengths were manually selected based on 

the standard deviation of the normalized spectra. Normalized difference index (NDI) and quality 

index (QI) were calculated to validate the sensitivity of these wavelengths. Classification models 

(PLS-DA, LDA) and prediction models PLSR and SVM were developed using both full spectra 

and the spectra at selected wavelengths to evaluate changes in asparagus quality. PLS-DA was 

implemented using the ‘plsdepot’ package (version 0.2.0), while LDA was performed using the 

‘mda ’package (version 0.5-3) in R. For LLBI, 344 observations were obtained by capturing images 

at 635 nm from the same three positions on each spear. LLBI parameters (i.e., amplitude, shape 

and FWHM) were extracted using Cauchy curve fitting. MVR using ‘pls’ (version 2.8-2), and 

MARS with ‘earth’ (version 5.3.3) package in R. The models were developed to predict weight 

loss and firmness, while LDA was used to detect quality changes over time for the samples stored 

at different storage temperature groups. All datasets were randomly split into training (80%) and 

validation (20%) subsets. Model performance was evaluated using bootstrapped metrics (R², 

RMSE, RPD) with 95% confidence intervals 

4.1.1 Weight loss 

The influence of storage temperature and duration on weight loss in green asparagus was 

significant. As storage time increases from 0 to 12 days, weight loss rises across all temperature 

groups, with the highest losses observed at 15 °C, followed by 10 °C, and the lowest at 2 °C. This 

trend indicates that higher temperatures accelerate moisture loss, likely due to increased respiration 

and transpiration rates. ANOVA also confirmed that the effects of both storage temperature (F-

value = 655.347) and time (F-value = 2014.46) were significant (P < 0.001). The weight loss 

increased progressively during storage and is mainly attributed to water loss by transpiration due 

to differences in water vapor pressure between the atmosphere and the asparagus surface.  

4.1.2 Firmness 

The firmness of asparagus spears from the base section increased notably over time across all 

storage temperatures (2°C, 10°C, and 15°C). Initially, at day 0, the firmness values were lowest 

and relatively similar across all temperature treatments. However, as storage progressed, firmness 

increased markedly at all temperatures; moreover, the magnitude and rate of increase were more 

pronounced at higher temperatures. This pattern may be attributed to continued lignification and 

fiber development, as well as water loss and changes in cell wall structure. Furthermore, these 

findings were supported by ANOVA, which showed a significant effect (F-values = 862.10 and 

4751.08, p < 0.001). In addition, significant differences in firmness were observed across spear 
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positions (F = 168.087, p < 0.001). The base of the spears consistently exhibited the highest 

firmness values, particularly at 15 °C, indicating rapid lignification and moisture loss. The middle 

section showed intermediate firmness, increasing steadily with storage duration and temperature. 

In contrast, the peak remained the least firm, reflecting its naturally tender tissue and lower 

susceptibility to structural hardening. Therefore, it can be inferred that the degradation of organic 

compounds and the varying fiber content across different sections of the asparagus spear (base, 

middle, and tip) contribute to these observed differences 

4.1.3 Peel color 

The IP_hue spectra for each temperature group across their respective storage durations showed 

that shift of both the hue angles and saturation values. The IP_hue spectra at 2 °C are relatively 

close together for storage times of 4, 8, and 12 days, with only small changes observed in the peak 

position as storage time increased. This indicates that asparagus color remains relatively stable over 

time at low temperatures. In contrast, at 10 °C, there is a noticeable separation between the curves, 

with the peak shifting slightly and a gradual decrease in overall saturation as storage time increases. 

This suggests moderate color changes and some loss of visual quality at this intermediate 

temperature. At 15 °C, the separation between curves for different storage durations becomes much 

more pronounced. There is a larger decrease in saturation at hues with prolonged storage, and the 

peak position shifts more than at the lower temperatures. The RMSE values between consecutive 

measuring days further support these observations. At 2 °C, RMSE values remain very low, 

confirming that only minimal color changes occur during storage at this temperature. In contrast, 

at both 10 °C and 15 °C, RMSE values are noticeably higher, particularly over longer storage 

periods. This indicates that color stability is greatly reduced at higher temperatures, with asparagus 

losing color quality. This is attributed to the loss of its freshness. 

4.1.4 NIR spectroscopy 

Spectral description 

The prominent wavelengths with higher standard deviations were 907 nm, 923 nm, 1069 nm, 1442 

nm, and 1696 nm, reflecting quality changes in the spears. Their sensitivity was further confirmed 

by the Normalized Difference Index (NDI) and Quality Index (QI) parameters. For example, the 

NDI of 1696 nm vs 1252 nm changes its values with time and temperature, likely due to increased 

metabolic and enzymatic activity. Moreover, a significant correlation was observed between NIR 

absorbances at specific wavelengths, such as between NIR-907 and NIR-1069 (r = 0.998). Both 

NIR-907 (r = 0.928) and NIR-1069 (r = 0.923) exhibit significant correlations with firmness. 

Similarly, a significant correlation is observed between NIR absorbance at these wavelengths and 

weight loss (r = 0.829). The absorbance at longer wavelengths, such as NIR-1442 and NIR-1696, 

exhibited moderate correlations with firmness (r = 0.453 and r = 0.607, respectively) and weaker 

correlations with weight loss (r = 0.233 and r = 0.439, respectively). This can be attributed to the 

ability of longer wavelengths to penetrate deeper into the tissue, capturing more complex structural 

changes, as well as their exposure to spectral overlap within the absorption bands. 
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Quality change detection over storage time  

The comparative evaluation of partial least squares discriminant analysis (PLS-DA) and linear 

discriminant analysis (LDA) models for detecting quality changes in green asparagus stored at 

15 °C, assessed at four-day intervals (0, 4, 8, and 12 days). Both models were constructed using 

five latent variables; however, PLS-DA utilized the full NIR spectral range, while LDA was 

developed using a set of selected wavelengths.  The LDA model demonstrated superior 

performance compared to PLS-DA, achieving detection accuracies of 76.9%   at 15 °C, 74.3% at 

10 °C, and 60.4% at 2 °C.  The improved performance of the LDA model is attributed to feature 

selection, which reduces spectral noise and highlights the most discriminative wavelengths. 

However, detection accuracy declined at lower storage temperatures (e.g., 2 °C), likely because 

slower physiological changes in asparagus produced less distinct spectral differences between 

storage intervals. 

Quality detection over temperature-induced variation  

On the other hand, the quality detection efficiency of the PLS-DA and LDA models for green 

asparagus stored at three different temperatures (2°C, 10°C, and 15°C) on the 12th day of storage. 

Both models were constructed using five latent variables (LV = 5). The PLS-DA model, which used 

the full NIR spectrum, achieved a mean accuracy of 42.8%. In contrast, the LDA model, 

constructed using a set of selected wavelengths, demonstrated enhanced performance. The LDA 

model achieved an accuracy of 87.7%.  

Prediction of Weight Loss and Firmness 

The performance of PLSR and SVM models using the full NIR spectra and spectra at selected 

wavelengths for predicting weight loss (%) and firmness (N) in green asparagus. The SVM model 

showed relatively improved predictive accuracy when using selected wavelengths compared to the 

PLSR model for both parameters. For weight loss, the model achieved R² = 0.768, RMSE =5.690 

%, and RPD = 2.080. For the firmness, the model achieved R² = 0.829, RMSE = 5.380 N, and RPD 

=2.322. These results indicate that focusing on informative spectral regions combined with 

nonlinear regression models enhances model performance. 

4.1.5 Laser light backscattering imaging (LLBI) 

LLBI Profile Description 

The amplitude, shape, and FWHM parameters of the LLBI profile were extracted using the Cauchy 

model. The average curve-fitting efficiency across all sample images (n = 344) demonstrated that 

the modified Cauchy model achieved R² = 0.78 and RPD = 2.29, performing better than the 

Gaussian model, which exhibited lower efficiency with R² = 0.53 and RPD = 1.96.  The LLBI 

parameters extracted from the modified Cauchy model were used for further analysis. The 

amplitude and shape parameters consistently increase with both time and temperature. Amplitude 

values indicate scattering intensity, while the shape parameter reflects the light distribution size 

within the asparagus tissue. These changes would be related to physiological processes like water 
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loss, cell wall degradation, and tissue senescence. ANOVA results also indicated significant effects 

of storage time on amplitude (F = 641.172, p < 0.001) and shape (F = 431.757, p < 0.001). Pearson’s 

correlation analysis shows strong correlations between amplitude and shape (r = 0.816), amplitude 

and weight loss (r = 0.809), and shape with firmness (r = 0.928).  

Quality detection over storage time   

To evaluate the effect of storage time on green asparagus quality, an LDA model using the three 

LLBI parameters was developed, considering all temperature groups. The model achieved an 

overall detection accuracy of 79.7%. However, performance improved when calibrated for 

individual temperature groups: at 2 °C, the validation accuracy was 81.4%; at 10 °C, it increased 

to 89.6%; and at 15 °C, it reached 93.4%. 

Prediction of Weight Loss and Firmness 

The comparative regression model results demonstrate the prediction of weight loss and firmness 

using LLBI parameters combined with both multivariate regression (MVR) and multivariate 

adaptive regression splines (MARS). The MARS model outperformed the MVR model in 

predicting both weight loss (R² = 0.846, RMSE = 6.401%, RPD = 2.558) and firmness (R² = 0.927, 

RMSE = 3.266 N, RPD = 3.775). 
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4.2 Assessment of quality changes in plums during post-harvest storage 

In this section, the results obtained from physiological assessments, near-infrared (NIR) 

spectroscopy, and beam-based LLBI techniques are presented to evaluate the quality attributes of 

plum fruits during storage. For NIR spectroscopy analysis, a total of 2,965 observations were 

produced by acquiring spectral data from both sides of each fruit using three consecutive scans, 

followed by SNV preprocessing and manual selection of five prominent wavelengths. NDI and QI 

indices were calculated to validate spectral sensitivity.  PLSR and SVM models were developed 

using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-13), respectively. These models 

were calibrated using both the full spectra and selected wavelengths to predict weight loss and 

soluble solids content in green asparagus. For LLBI, 1,276 observations were obtained by capturing 

images at six wavelengths (532, 635, 780, 808, 850, and 1064 nm) from both sides of each fruit. 

Optimized wavelengths were identified through ANOVA and Tukey’s post hoc analysis. LDA and 

MVR models were used to detect the quality changes by classifying samples into their storage time 

groups and predicting firmness, SSC, and skin color, respectively.  The datasets included samples 

from two cultivars (Stanley’ and ‘Elena’) and were split into training and validation subsets. Model 

performance was evaluated using bootstrapped metrics (R², RMSE, RPD) with 95% confidence 

intervals. 

4.2.1 Ethylene production 

The rate of ethylene production increased with both storage temperature (F-value = 321.80 and 

109.11; P < 0.001) and storage time (F-value = 170.42 and 69.03; P < 0.001) in both ‘Stanley’ and 

‘Elena’ plums. However, the ethylene production of plums stored at 1 °C significantly differed 

from those stored at higher temperatures. The ‘Stanley’ plums showed a relatively higher rate of 

ethylene production than the ‘Elena’ plums.  

4.2.2 Respiration rate 

The respiration rate of both ‘Stanley’ and ‘Elena’ plums increased with both storage temperature 

(F-value = 195.04 and 565.46; P < 0.001) and storage time (F-value = 816.80 and 269.53; P < 

0.001). ‘Stanley’ plums stored at 10 °C and 15 °C exhibited higher respiration rates compared to 

those stored at 1 °C and 5 °C, while ‘Elena’ plums showed the highest respiration at 15 °C 

Respiration peaked at 8 days for ‘Stanley’ and 12 days for ‘Elena’, then declined after 20 days.  

4.2.3 Weight loss 

The changes in plum weight loss (WL) at different storage temperatures and times. The effect of 

time and temperature was more pronounced in ‘Stanley’ plums compared to ‘Elena’. ANOVA 

analysis confirmed that both storage time and temperature significantly impacted WL (F = 6.06 × 

10²⁸ and 1.88 × 10²⁸; p < 0.001), with significant differences between the two cultivars (F = 1.21 × 

10²⁸; p < 0.001). WL variation was higher after 12 days, primarily due to increased water loss as 

the fruit ripened. The variation in plums' weight loss is influenced by storage temperature and 

duration, which accelerate enzymatic activities that enhance ripening due to increased respiration 

rates.  
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4.2.4 Firmness 

The firmness of the plums declined steadily over time for both plum cultivars. Samples stored at 

15 °C exhibited the shortest shelf life, followed by those stored at 10 °C, indicating that higher 

temperatures accelerated softening. ANOVA confirmed that storage time (F = 8992.12, p < 0.001), 

storage temperature (F = 1927.80, p < 0.001), and cultivar differences (F = 3142.06, p < 0.001) all 

had significant effects on firmness. These findings suggest that firmness loss may be driven by 

storage conditions and inherent cultivar traits. The faster decline in firmness at higher temperatures 

reflects the acceleration of ripening and softening processes, while cooler storage slows these 

changes and better preserves fruit texture.  

4.2.5 Soluble solid content (SSC) 

Soluble solids content (SSC) increased significantly with both storage time and temperature 

(ANOVA: F_time = 124,779.90, F_temperature = 4,632.10, p < 0.001), and there were also 

significant differences between cultivars (F_cultivar = 250,701.30, p < 0.001). Higher storage 

temperatures accelerated SSC accumulation, with samples stored at 15 °C exhibiting the highest 

SSC values. These results indicate that SSC is influenced by both physiological changes and 

storage conditions. Higher SSC reflects greater sweetness and ripeness, but rapid increases at 

elevated temperatures may accelerate overripening and shorten shelf life. Maintaining lower 

storage temperatures slows SSC accumulation, extending fruit quality and shelf life, while cultivar 

selection affects the rate and extent of sweetness development. 

4.2.6 Peel Color 

Chroma and hue values from the Minolta chroma device showed that both plum cultivars changed 

significantly during storage, with greater deviation observed at higher temperatures. The ‘Stanley’ 

cultivar showed a stronger decline in chroma, and more pronounced hue changes compared to 

‘Elena’, indicating greater sensitivity to temperature-related color changes. Storage at lower 

temperatures (1 °C and 5 °C) slowed these changes, although ‘Stanley’ exhibited a sudden hue 

decline at 5 °C, suggesting susceptibility to water loss and accelerated ripening under certain 

conditions. Two-way ANOVA confirmed that chroma was most influenced by cultivar (F = 

1498.539), followed by storage time (F = 1433.125) and temperature (F = 273.025). Hue was 

primarily affected by storage time (F = 1803.530) and temperature (F = 244.233). These results 

suggest that color changes in plums are driven by both genetic differences and storage conditions. 

Higher temperatures accelerate pigment transformations and ripening, while lower temperatures 

help preserve visual quality.  
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4.2.7 NIR spectroscopy 

Spectral description 

Sensitive wavelengths were identified at 909, 1064, 1323, 1447, and 1650 nm, which reflected 

physiological and biochemical changes in plums during storage. These variations may be related 

to sugar accumulation, water dynamics, and structural changes in fruit tissues. Two-way ANOVA 

showed that NDI of the selected wavelengths relative to 1532 nm was more sensitive to both time 

(F-value = 93.05–251.37, p < 0.001) and temperature (F = 16,536.74–25,347.47, p < 0.001). 

Cultivar differences were most evident at longer wavelengths (1447 nm: F = 55.71; 1650 nm: F = 

37.75; p < 0.001). SSC significantly correlated with WL (r = 0.868) and with absorbances at 1650 

nm (r = 0.803). In contrast, it was negatively correlated with absorbance at 1447 nm (r = –0.734).  

Prediction of WL and SSC 

 SVM models outperformed PLSR in predicting soluble solids content (SSC) and weight loss (WL) 

of plums, with accuracy further enhanced by wavelength selection. For WL, SVM using a set of 

selected wavelengths achieved R² = 0.917, RMSE = 0.884%, RPD = 3.492, and for SSC, SVM 

achieved R² = 0.844, RMSE = 0.781%, and RPD = 2.499. 

4.2.8 Laser Back Scattering Imaging 

Amplitude and shape parameters at 532 nm and 780 nm were identified as the most sensitive 

indicators of postharvest plum quality (ANOVA: F_amplitude = 623.86, F_shape = 2321.50, p < 

0.001). The modified Cauchy distribution provided superior model fitting (R² > 0.96, RPD > 4.5) 

compared to the Gaussian distribution (R² < 0.70, RPD < 4.5).  At 532 nm, amplitude correlated 

with firmness (r = 0.607), and shape correlated significantly with color and firmness (r = 0.748 and 

0.600, respectively). At 780 nm, amplitude correlated with firmness and chroma (r = 0.607 and 

0.661) and negatively with SSC (r = –0.609), while shape correlated significantly with firmness 

and chroma (r = 0.720 and 0.670) and negatively with SSC (r = –0.570) 

Plum Quality change detection over storage period 

Linear Discriminant Analysis (LDA) models were initially developed by considering all 

temperature groups to detect storage time-related quality changes in ‘Stanley’ and ‘Elena’ plums 

using four LLBI parameters at 532 nm and 780 nm. The model detected quality changes with 61.3% 

accuracy for ‘Stanley’ and 77.3% for ‘Elena’. Performance improved when calibrated for 

individual temperature groups; at 1 °C, detection accuracy increased to 92.3% for ‘Stanley’ and 

91.9% for ‘Elena’. Furthermore, LDA models for 5 °C storage achieved detection accuracy of  

100% for both cultivars across all time points. 
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Prediction of quality parameters 

Two-cultivar and cultivar-specific MVR models were established using four LLBI parameters to 

predict firmness, SSC, chroma, and hue. The two-cultivar model showed moderate performance 

for firmness (R² = 0.632, RMSE = 3.924 N, RPD = 1.653), whereas cultivar-specific models 

achieved higher accuracy, particularly for ‘Stanley’ (R² = 0.769, RMSE = 3.049 N, RPD = 2.084). 

SSC predictions followed a similar pattern, with cultivar-specific models outperforming the multi-

cultivar model (‘Elena’: R² = 0.818, RMSE = 0.873%, RPD = 2.366). Color parameters from 

Minolta chroma also improved with cultivar-specific calibration, with chroma reaching R² = 0.866, 

RMSE = 0.634 in ‘Elena’ and hue R² = 0.731, RMSE = 16.62° in ‘Stanley’. These results 

demonstrate that cultivar-specific calibration enhances the predictive accuracy of LLBI. 
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4.3. Assessment of quality changes of apples during post-harvest storage 

This section also discusses the results of physiological measurement, NIR spectroscopy, and LLBI 

techniques applied to assess quality attributes of ‘Granny smith’ apples stored under different 

temperature conditions. In NIR spectroscopy analysis, a total of 834 observations were made by 

acquiring spectral data from two locations around equatorial part of each apple using three 

consecutive scans per location. The apples were rotated 180 degrees between scans to ensure full 

surface coverage. Spectral data in the 900–1700 nm range were preprocessed using SNV, and five 

significant wavelengths were manually selected based on the standard deviation of the normalized 

spectra. NDI and QI were computed to assess the sensitivity of selected wavelengths. PLSR and 

SVM models were developed using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-

13), respectively. These models were calibrated using both full spectra and selected wavelengths 

to predict weight loss, firmness, and SSC. For LLBI, 643 observations were collected using both 

line-based (n = 382) and beam-based (n = 261) systems. LLBI images were captured at 635 nm, 

and the resulting profiles were fitted using the Cauchy Distribution model to extract amplitude and 

shape parameters. These parameters were used to develop MVR and SVM models for predicting 

weight loss and firmness. All datasets were randomly divided into training (80%) and validation 

(20%) subsets. Model performance was evaluated using bootstrapped metrics (R², RMSE, RPD) 

with 95% confidence intervals. 

4.3.1 Ethylene production 

The ethylene production rate in apples is strongly influenced by storage temperature and duration. 

Apples stored under cold conditions and later exposed to room temperature exhibited a continuous 

increase in ethylene production, whereas apples stored at room temperature initially increased in 

ethylene output but declined after two weeks. By the end of the storage period, apples under shelf-

life conditions produced approximately 50 µL/kg·h of ethylene. ANOVA indicated that both 

storage temperature and time had significant effects on ethylene production (F = 171.985 and 

111.961; p < 0.001). Cold storage suppresses immediate ethylene production but enhances the 

peel’s potential to produce ethylene upon warming, while higher storage temperatures accelerate 

ripening and ethylene emission.  

4.3.2 Respiration Rate 

The respiration rate in apples followed a similar pattern to ethylene production. Apples stored in 

cold storage and then exposed to room temperature showed an increasing respiration rate over time, 

while those stored continuously at room temperature increased initially and then declined. ANOVA 

indicated significant effects of storage temperature and time on respiration (F = 83.665 and 49.668; 

p < 0.001). The highest respiration rate was observed in apples subjected to cold storage followed 

by room temperature shelf life, peaking at 18.50 mL/ Kg.h after 27 weeks. Apples stored at cold 

temperatures had lower respiration (11.88 mL/ Kg.h), while those stored at room temperature 

peaked at 6.20 mL/ Kg.h after 2 weeks before declining.  
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4.3.3 Weight loss 

The weight loss of apples during storage increased over time, with apples stored at cold 

temperatures showing lower weight loss than those stored at room temperature. ANOVA confirmed 

significant effects of storage time and temperature on weight loss (F-value = 571.58 and 216.57; p 

< 0.001). Higher temperatures accelerate respiration and water loss, leading to faster weight loss, 

while lower temperatures slow respiration and preserve freshness.  

4.3.4 Firmness 

The firmness of apples decreased over time under both cold storage and cold-to-ambient storage 

conditions. Apples stored under cold-to-ambient conditions experienced a faster reduction in 

firmness compared to those stored solely at ambient temperatures. ANOVA showed that both 

storage time (F = 1469.8) and temperature (F = 2561.2) significantly affected firmness (p < 0.001), 

with temperature having a greater impact. This trend is likely due to temperature-induced changes 

in cellular structure, including cell wall breakage and pectin degradation, as well as accelerated 

ethylene production and respiration rates during ripening. These metabolic changes contribute to 

tissue softening and reduced firmness over time. 

4.3.5 Soluble solid content (SSC) 

The SSC of apples increased over time and with rising storage temperatures. ANOVA indicated 

that both storage time (F = 354.3) and temperature (F = 16.8) significantly affected SSC (p < 0.001). 

The observed increase is primarily due to the conversion of starch into sugars during ripening. In 

cold storage, this conversion is slowed, while transfer to ambient temperatures accelerates 

respiration and ethylene production, resulting in a rapid rise in SSC. 

4.3.6 Peel color 

The hue spectra of ‘Granny Smith’ apples were monitored over the storage period. During early 

ripening (0, 2, 4, 5 weeks), RMSE values between intervals were low, with the maximum being 

0.003068 (week 2 vs. week 5), indicating gradual color changes. Long-term storage (0, 8, 17, 26 

weeks) showed higher RMSE values, particularly between 0–26 weeks (0.003847) and 17–26 

weeks (0.002359), reflecting more pronounced spectral shifts and hue transformations. Late storage 

(9–27 weeks) had a maximum RMSE of 0.004004, demonstrating dynamic color changes during 

extended storage. These results indicate that apple color changes are gradual during early storage 

but become more pronounced over long-term storage, with significant shifts in hue and saturation 

corresponding to aging, pigment changes, and loss of freshness. Higher storage temperatures 

accelerate these color changes, while prolonged storage leads to greater variability in hue. 

4.3.7 NIR spectroscopy 

The sensitive wavelengths were identified as 908, 1080, 1358, 1450, and 1650 nm. Their sensitivity 

was further evidenced by NDI and QI values relative to 1531 nm as a reference. Both NDI and QI 

at 908–1650 nm were significantly affected by storage time and temperature, with 1650 nm 

showing the strongest sensitivity (NDI F = 4346.35; QI F = 4579.41; p < 0.001). Early in storage, 



 
 

23 
 

NDI exhibited high variability, which decreased as the apples became more uniform. Correlation 

analysis confirmed that the NDI of 1650 nm vs 1531 nm was strongly associated with weight loss 

(r = –0.87), firmness (r = 0.818), and SSC (r = –0.843). 

Prediction models 

Comparison of PLSR and SVM models using bootstrapped validation shows that wavelength 

selection substantially improves prediction accuracy over full spectra. SVM consistently 

outperformed PLSR for weight loss, firmness, and SSC. For weight loss, PLSR with selected 

wavelengths achieved R² = 0.893, RMSE = 1.116%, and RPD = 3.046, while SVM further 

improved predictions to R² = 0.955, RMSE = 0.708%, and RPD = 4.85. For firmness, PLSR yielded 

R² = 0.823, RMSE = 4.545 N, and RPD = 2.39, whereas SVM achieved R² = 0.958, RMSE = 

2.201 N, and RPD = 5.09. For SSC, PLSR reached R² = 0.791, RMSE = 0.440%, and RPD = 2.20, 

while SVM significantly outperformed it with R² = 0.937, RMSE = 0.250%, and RPD = 3.93. 

These results indicate that SVM combined with selected wavelengths provides better predictive 

accuracy for apple quality parameters, outperforming both PLSR and full-spectrum approaches. 

4.3.8 Laser light backscattering imaging (LLBI) 

The modified Cauchy distribution (CD) function provided good curve-fitting performance for 

extracting LLBI parameters, achieving R² = 0.970 and RPD = 6.08 for the beam system, and R² = 

0.884 and RPD = 3.145 for the line system.  

Prediction models 

The three LLBI parameters extracted from modified Cauchy fitting of both line and spot 

illumination systems, combined with SVM models, demonstrated strong predictive performance 

for weight loss (R² > 0.96) and firmness (R² > 0.91). Specifically, weight loss prediction was 

highest with line illumination (R² = 0.971, RMSE = 0.608%, RPD = 6.035), reflecting greater 

sensitivity to surface changes, while firmness prediction was best with spot illumination (R² = 

0.940, RMSE = 2.626 N, RPD = 4.100), due to deeper light penetration.  
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5. NEW SCIENTIFIC RESULTS 

This study evaluated the application of non-destructive techniques to monitor quality changes in 

green asparagus, plums, and apples during post-harvest storage. The main scientific results from 

each practical experiment are presented as follows: 

1. An optimum set of wavelengths (907, 923, 1069, 1442, and 1696 nm) was selected for the quality 

assessment of green asparagus during storage and shelf life. Linear Discriminant Analysis (LDA) 

using the selected wavelengths successfully detected the quality change in 4 days storage interval. 

The model achieved classification accuracies of 60.4% at 2 °C, 74.3% at 10 °C, and 76.9% at 15 °C.  

After 12 days, temperature-induced changes were detected with 87.7% accuracy. The SVM model 

demonstrated enhanced predictive accuracy compared to the PLSR model when calibrated using 

NIR spectra at selected wavelengths for predicting weight loss and firmness. The SVM model 

achieved R² = 0.768, RMSE = 5.690%, and RPD = 2.080 for weight loss, while for firmness, it 

achieved R² = 0.829, RMSE = 5.380 N, and RPD = 2.322.  

 

2. Line-based Laser Light Backscattering Imaging (LLBI) analysis with a single laser module 

emitting at 635 nm was applied, and diffusely illuminated surfaces were captured from three 

positions (base, middle, tip) on asparagus spears. LLBI parameters of amplitude, shape, and 

FWHM were extracted using Cauchy curve fitting. The LDA model based on LLBI parameters 

detected quality changes in asparagus spears after 4 days across all temperature groups with 79.7% 

accuracy. For individual temperatures, accuracy was 81.4% at 2 °C, 89.6% at 10 °C, and 93.4% at 

15 °C. MVR and MARS models were developed to predict weight loss and firmness. MARS 

outperformed MVR, and predicted weight loss with R² = 0.846, RMSE = 6.401%, RPD = 2.558, 

and firmness with R² = 0.927, RMSE = 3.266 N, RPD = 3.775. 

 

3. An optimum set of wavelengths (909, 1064, 1323, 1447, 1650 nm) was selected for quality 

assessment of plum fruits during storage and shelf life. Using these wavelengths, PLSR predicted 

weight loss with R² = 0.738, RMSEP = 1.582%, and RPD = 1.953, and SSC with R² = 0.740, 

RMSEP = 0.980%, and RPD = 1.991. However, performance improved with the SVM model, 

which achieved R² = 0.917, RMSEP = 0.844%, and RPD = 3.492 for weight loss, and R² = 0.844, 

RMSEP = 0.780%, and RPD = 2.498 for SSC. 

 

4. The beam based LLBI technique with a Cauchy distribution function fitted on the signal of 532 nm 

and 780 nm was able to detect quality changes of plum. Plums stored at 1 °C showed detectable 

quality changes within 4 days interval, with LDA models achieving classification accuracy of 

92.3% for ‘Stanley’ and 91.9% for ‘Elena’. For storage at 5 °C, the models reached 100% accuracy 

across all time points and cultivars. Cultivar-specific regression models outperformed combined 

models. The best cross-validation results were observed for ‘Elena’ (Minolta chroma-based 

chroma: R² = 0.866, RMSE = 0.634; SSC: R² = 0.818, RMSE = 0.873%) and ‘Stanley’ (firmness: 

R² = 0.769, RMSE = 3.049 N; Minolta chroma-based hue angle: R² = 0.731, RMSE = 16.62°).This 
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showed the potential of LLBI combined with multivariate models (i.e. LDA, MVR) for real-time 

quality assessment in postharvest handling and cold chain management. 

 

5. Optimized wavelengths (908, 1080, 1358, 1450, and 1650 nm) were used to assess storage quality 

and shelf-life of ‘Granny Smith ’apples. The SVM model showed better performance than PLSR, 

predicting weight loss (R² = 0.955, RMSEP = 0.708%, RPD = 4.852), firmness (R² = 0.958, 

RMSEP = 2.201 N, RPD = 5.088), and SSC (R² = 0.937, RMSEP = 0.249%, RPD = 3.932). 

 

6. LLBI technique demonstrated the effectiveness of both line and beam laser configurations on apple 

quality assessment. The SVM with three LLBI parameters extracted from the modified Cauchy 

fitting on the LLBI profile, the system demonstrated good predictive performance for both weight 

loss (R² > 0.96) and firmness (R² > 0.91). Hence, line-based LLBI combined with SVM enhanced 

its performance in predicting weight loss (R² = 0.971, RMSEP = 0.608%, RPD = 6.035), while the 

beam laser setup yielded the best results for firmness prediction (R² = 0.940, RMSEP = 2.626 N, 

RPD = 4.100).  
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6. CONCLUSION AND SUGGESTIONS 

This study demonstrated the effectiveness of non-destructive techniques, namely machine vision, 

Near-Infrared (NIR) Spectroscopy, and Laser Light Backscattering Imaging (LLBI in monitoring 

the post-harvest quality of green asparagus, plums, and apples. By integrating spectral and imaging 

data with advanced chemometric models such as PLSR, SVM, MVR, and MARS, the research 

successfully predicted key quality parameters, including weight loss, firmness, soluble solids 

content (SSC), and peel color. The optimized multispectral approach, using selected wavelengths, 

significantly improved model accuracy and reduced computational complexity compared to full-

spectrum analysis. LLBI, particularly when combined with modified Cauchy distribution 

modeling, proved that it is sensitive to internal structural and surface changes in produce during 

storage. Together, these tools support early spoilage detection, better inventory control, and 

optimized cold chain management. However, Further testing on other horticultural products and 

quality attributes, along with improved spectral and image processing algorithms, could broaden 

their application 
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