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1. INTRODUCTION, OBJECTIVES

This chapter outlines the significance of the research topic and presents the study's objectives.

1.1. Introduction

Global electricity demand is growing rapidly, driven by population growth, industrial
expansion, and the surging energy needs of data centers (IEA, 2025). In response, a global shift
toward renewable energy (RE) has become a top priority globally. In 2023, renewable capacity
expanded by 570 GW, a 50% increase from 2022, with a major growth coming from solar PV
(IEA, 2024). Furthermore, forecasts show that utility-scale PV installations will account for
approximately 66.7% of the global energy mix by 2050. Similarly, the adoption and utilization
of residential PV are skyrocketing, as buildings, once primary energy consumers, have become
energy producers (Silva and Hendrick, 2017a). Declining costs of home batteries and PV
components are driving consumers to generate their own power locally, reducing their grid
reliance (Teklebrhan et al., 2025). However, extensive deployment of these resources
challenges the grid, as large-scale integration requires complex system adaptations. Key issues
include intermittency, matching, forecast uncertainty, adequacy, and grid stability (Solomon,
2019). To overcome these challenges, various solutions have been proposed in the literature,
including energy storage (Denholm and Mai, 2019) resource complementarity, curtailment,
resource diversity and advanced forecasting (Limouni et al., 2023), (Perez et al., 2019),
(Simoes et al., 2017).

In the context of large-scale PV integration, it is crucial to evaluate the combined impact of
multiple enabling tools, including the PVV-wind mix, storage capacity and duration, curtailment
strategies, and balancing requirements. Considering these factors together provides a more
comprehensive understanding of system design and operation, as focusing on PV alone fails to
capture the full complexity and interdependencies inherent in modern power system dynamics.
A well-balanced PV-wind mix can increase RE penetration while reducing storage and
curtailment compared to standalone PV systems. Integrating large-scale PV requires diverse
energy storage solutions, which are essential for enhancing grid flexibility, increasing
renewable penetration, and accelerating the transition to 100% RE (Bullich-Massagué et al.,
2020). Energy storage technologies can be classified as long-term storage, such as hydrogen,
which can be utilized for extended durations ranging from weeks up to months (Breunig et al.,
2024), and short-term storage, such as lithium-ion batteries, which are more suitable for daily
cycling or even sub-daily (hourly) balancing needs (Javed et al., 2019). Other enabling tools,
such as curtailment (intentional dumping of RE output), offer technical advantages by lowering
storage and balancing capacity requirements. Studies show that adopting curtailment policies
can enhance the cost-effectiveness and feasibility of integrating high shares of RE into the grid
(Perez et al., 2019). Curtailing a portion of Variable Renewable Energy (VRE) generation can
enhance the balance between supply and demand, thereby reducing storage requirements and
enabling higher renewable penetration (Solomon et al., 2019). This illustrates part of the
required paradigm shift in operating the future renewable-dominated grids as compared to the
current traditional practices (Teklebrhan et al., 2023).

In the context of RE integration, identifying the potential optimized solutions aligned with a
specific country or regional scale is essential for advancing the transition toward RE-dominated
power systems (Oyewo et al., 2021). However, there are critical challenges that require close
examination. First, the inherent variability of renewable resources complicates the
development of clear system design principles for achieving 100% RE systems. Traditional
approaches—such as screening curves and load duration curves—are increasingly inadequate in
a landscape dominated by large-scale PV and wind, and diverse storage technologies (Jean-
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Michel, 2021). Second, the development of future energy markets that prioritize efficiency and
societal welfare requires a clear understanding of evolving system needs and analytical tools
capable of visualizing system boundaries over time (Jean-Michel, 2021). Notably, scenarios
that appear techno-economically viable may still result in reduced net energy output,
underscoring the risks associated with multidimensional pricing structures and operational
uncertainties (Solomon et al., 2024). These considerations, coupled with location-specific
climatological conditions, underscore the necessity of a comprehensive understanding of the
interplay among various physical parameters to determine sustainable design options and their
complementary operational requirements. In addition, the adoption of advanced, innovative
technologies and Al-based tools for power generation forecasting (Limouni et al., 2023) and
grid management and optimization is crucial for enabling the large-scale integration of
renewable energy sources (Cardo-Miota et al., 2025).

1.2. Objectives

Understanding how penetration, storage capacity and duration, curtailment, PV-wind mix, and
balancing requirements interact provides key insights for managing the transition to a
renewable-dominated grid and anticipating its operational requirements. However, empirical
data showing the interaction between these parameters with sufficient detail does not exist. The
majority of the current energy transition studies are primarily driven by least-cost optimization
(techno-economic) models, often overlooking these critical technical factors in favour of
extensive economic data. This work, therefore, aims to develop a flexible modelling framework
that assesses interactions among key system design parameters and supports optimized PV
integration while leveraging the benefits of residential PV and advanced PV generation
forecasting and optimization.

The primary objectives of this research are to:

e Maximize the share of PV in the electricity grid with high reliability and operational
efficiency, contributing to a sustainable energy system;

e Investigate the complex interaction among the various system design parameters, such
as PV-wind mix, storage capacity and duration, curtailment strategies, and balancing
requirements, and their impact on system design and performance;

e Formulate a relationship among the major design parameters and system efficiency,
supported by robust empirical data, to develop practical guidelines for achieving high
levels of renewable integration.

e Enhance the contribution of residential PV on the power mix by exploring the impact
of feed-in constraints on promoting higher local consumption of residential PV in low-
voltage local networks;

e Leverage machine learning-based PV generation forecasting to enhance real-time
operational management and optimization of PV systems, mitigating uncertainties and
limitations inherent in the design phase of PV integration.

By addressing these objectives, this study aims to deepen the understanding of the design and
operational strategies of future renewable-dominated grids through the application of a clear
and transparent model that accounts for varying system parameters. Ultimately, it contributes
to the broader effort to unify related studies under a more coherent theoretical foundation.

10



2. LITERATURE REVIEW

This chapter offers a comprehensive overview of large-scale renewable energy (RE) integration
and its related technical requirements. It discusses fundamental concepts of various
components, focusing on PV, and other technologies that enable large-scale PV integration,
including wind, storage, curtailment, forecasting, and balancing requirements. This chapter
digests the literature that defines the interactions among the system design parameters required
for large-scale PV integration. It also discusses recent methodologies, approaches, and models
for large-scale RE integration and identifies the existing gaps that motivate this study.

2.1. Photovoltaics Technology

Photovoltaic is a combination of two words: photo, which refers to light, and volta, derived
from the name of an Italian physicist, Alessandro Volta, the unit of voltage (Quaschning, 2016).
Photovoltaic energy directly converts sunlight into electricity through the photoelectric effect.
When photons of solar irradiance strike a free electron in the p-n junction of a semiconductor
device, they excite the free electrons, generating an electric current (Miles et al., 2005).

2.1.1. PV principle, operation, and characterization

Photovoltaic cells or solar cells are the building block of the photovoltaic system that converts
the energy of photons into electricity (DC current) through the photovoltaic effect (Shubbak,
2019). Their working principle is based solely on the behavioural architecture of semiconductor
materials. When two semiconductor regions with different charge concentrations are
combined, an effect is created that results in special charge mobility along the edges of the
semiconductor devices. When these two (positively charged plates called p-type and the
negatively charged zone called n-type) semiconductor devices are placed together a charge
transfer effect is produced, which ultimately leads to the production of an electric field
(Lucefio-Sanchez et al., 2019). The phenomenon of the photoelectric effect had been known
for nearly a century, the milestone widely recognized as the beginning of the modern era of PV
power generation was the production of around 6% efficient crystalline silicon solar cell in
1954 (Ali et al., 2025). From that time, the efficiency of silicon cells has been increasing
continuously, with lab efficiency currently exceeding 20%. Although a significant leap has
been recorded in PV efficiency enhancement, several research studies are ongoing to enhance
efficiency further and decrease the overall cost of PV-generated electricity (NREL, 2025).

As shown in Fig. 2.1 silicon cells are made up of two layers, p-junctions (layers of holes) and
n-junctions (layers of electrons). Due to the unique properties of the semiconductor material,
only a small amount of energy is required to excite an electron from the valence band to the
conduction band, creating a free-moving electron and enabling electric current flow
(Abdelhady et al., 2017).

During the 1960s, photovoltaic cells were produced manually, which made them very costly
and limited their use to space applications. By the late 1980s, mass production methods were
introduced, significantly lowering costs and broadening their applications to include standalone
and remote devices, as well as grid-connected systems. Since the first discovery of solar PV in
1839, advancements have been made in manufacturing costs, efficiency, and capacity.
Furthermore, the technology has been experiencing significant growth and innovations in
various technical fields, including materials, chemistry, physics, electronics, and mechanics.

11
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Fig. 2.1. Energy band model showing how solar cell works (Quaschning, 2016)

There are different solar PV technologies, such as thin film, amorphous silicon (a-Si), cadmium
telluride (CdTe), poly-crystalline (pc-Si) modules, and perovskite. The efficiency, temperature
coefficients, and spectral response of these technologies vary widely due to the intrinsic
structure (Caifiete et al., 2014). Moreover, the technological maturity and market penetration of
these technologies vary widely. Modules such as conventional mono-si and poly-si are at their
higher technological maturity, and the dominant technology of solar PV compared to thin film
technologies (Schmela et al., 2022)

100% l ‘
95% l l al a a # a
9 % i B
S :
80% g g g %
e Eﬁﬁ?aa | B B
%00‘0 %QQI\ ’\9060 %QQ“ S o S 5 %Q\,” f&@’ 'P\? ’19\?) %Q\i" %Q\/,‘ %Q‘\c" S W q9®° 9'9

# CrystallineSi s Thin FilmSi  mThin Film Non Si

Fig. 2.2. Share of different solar PV technologies in manufacturing capacity (Schmela et al.,
2022)

According to their development stages, solar photovoltaics can also be categorized into
different parts:
e The first generation includes crystalline silicon technologies, such as monocrystalline,
polycrystalline, and gallium arsenide (GaAs).

e The second generation includes technologies tied to amorphous silicon (a-Si),
microcrystalline silicon, cadmium telluride/cadmium sulfide (CdTe/CdS), thin-film
technologies, and copper-indium-gallium-selenide (CIGS) solar cells.

e The third generation encompasses technologies utilizing new compounds, including
nanocrystalline films, active quantum dots, organic (polymer-based) solar cells, and
tandem or stacked multilayers made from inorganic materials like GaAs/GalnP. It also
includes dye-sensitized solar cells, among others.

12
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e The fourth generation comprises innovative inorganic nanostructures like metal
nanotubes and metal oxides, commonly referred to as ‘inorganic.

The different PV generation technologies and their respective commercial and lab efficiencies
are given in Fig. 2.3.

PV Technologies

v v Y
1%t Generation 2"d Generation 3 Generation
/ Silicon Technolog / Thin film Technology / Multi-junction Tech.
gy gy ]
—» Amorphous silicon cell —»  Organic solar cell
—» Mono-crystalline cell
—» Cadmium telluride cell » Copper zinc tin sulfide
—  Poly-crystalline cell cel
Copper indium gallium
—»  cclenide cell —»  Dye-sensitized cell
—»  Perovskite cell
Commercial Commercial > Quatitum eell
efficiency- 16% efficiency- 10%
Efficiency at lab Efficiency at lab Efficiency at lab
scale- 26% scale- 16%

scale- 45%

Fig. 2.3. Solar PV generations and their efficiency (Dhankar et al., 2025)

First-generation PV cells are the most efficient and mature technology with efficiency ranging
from 15-22%; however, their large-scale deployment is hindered due to their higher cost. In
response to the high cost of the first generation, research is being initiated to address this in the
second generation (Nayak et al., 2019). Although the second generation shows material
effectiveness, they still have concerns about toxicity, instability, and low efficiency, and their
large-scale deployment has not been realized. The third generation that covers a wide range of
design variations has several advantages, such as working in dim light and being cheaper to
manufacture as they can be manufactured from inexpensive materials, but they are still prone
to the environment as technologies such as perovskites are sensitive to humidity and heat. The
need for more efficient, eco-friendly, and stable solar cells necessitates the latest research in
fourth-generation solar cells. This generation combines all the benefits of previous generations
and features a cost-effective, flexible structure with stable nanomaterials. It also introduces
various advanced materials, including 2D solar cells, and holds great promise for future PV
advancements. (Rehman et al., 2023) .

Atsu et al., (2021) conducted a performance evaluation of different grid-connected PV
technologies, namely, pc-Si) and a-Si modules. The authors use different performance
indicators to assess and compare the performance of the different PV technologies installed at
the lab of the Hungarian University of Agriculture and Life Sciences. They found that Hungary
has relatively high solar energy potential compared to other neighbouring European countries,
but it has not yet been fully exploited.

2.1.2. Modelling of solar cells

A solar cell can be defined as an electrical circuit that contains a p-n junction (acting as a
diode), a resistor, and the main component, called the photocurrent generator. A circuit that
contains such a component is referred to as a single diode solar cell model (Vinod etal., 2018).

13
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A PV model is a mathematical expression that enables us to assess the electrical behavior and
performance of PV panels under varying operating conditions, as the output power of PV is
influenced by environmental factors such as incident radiation, temperature, irradiance, and
material properties (Olayiwola et al., 2024). An effectively designed PV cell model can assist
in:

e Understand the electrical characteristics of a PV cell
e Improve the overall performance and efficiency of the PV system

e Enhance the control system by assisting in optimization of the maximum power point
tracking system (MPPT)

Modelling the electrical behaviour of PV cells is typically categorized into three main types:
circuit models, analytical models, and empirical models. Accurate modelling of solar cells is
essential for the design and optimization of PV systems. The best model should accurately
determine the electrical behaviour of the PV cell with simplicity. However, there is always a
trade-off between accuracy and complexity. The circuit model — shown in Fig. 2.4 — is the most
widely used approach for representing the electrical behaviour of PV cells. However, due to
the nonlinear nature of the current-voltage (I-V) characteristics, parameter estimation remains
a challenging task in achieving efficient solar system design (Jordehi, 2016). In the figure, Iph,
Ip, and Ip represent the photocurrent, diode current, and parallel current, respectively. Whereas
Rs and Rp are the series and parallel resistances.

—_
—» +

[ A A

OIRVAI

Fig. 2.4. Single diode equivalent circuit of the real model of solar cell (Quaschning, 2016)

Traditional modelling approaches, such as the analytical methods, face challenges in accurately
determining the various parameters due to the non-linear and complex, multimodal features of
the models.

Zheng et al. (2022) utilize a powerful tool, an advanced optimization modelling tool, called the
Peafowl Optimization Algorithm from the recently developed meta-heuristic algorithm for
solar cell parameter identification. The authors validated the proposed approach using two
types of PV cell models, the double diode model and the triple diode model. The results showed
that the Peafowl optimization Algorithm can determine and identify unknown solar cell
parameters accurately compared to other algorithms at a higher convergence speed.

Precise modelling of PV cells is crucial for enhancing the performance of photovoltaic systems,
as it enables the accurate identification of key parameters. Cutting-edge optimization methods,
such as the Peafowl Optimization Algorithm, have significantly improved the accuracy and
speed of parameter estimation, thereby enhancing the reliability of PV modelling. As research
progresses, the integration of artificial intelligence, hybrid optimization techniques, and data-

14
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driven models is expected to further enhance predictive accuracy, adaptability, and
computational efficiency.

Looking forward, enhanced PV modelling will facilitate the seamless integration of large-scale
renewable energy. It will boost system reliability, minimize inefficiencies, and optimize
storage while interacting with the grid. This is especially crucial for maintaining stable
operations when renewable energy penetration is high. A well-designed PV system model
serves as the foundation for both standalone and grid-connected applications.

The modular feature of photovoltaics offers a wide range of applications, from small milliwatt
devices, such as watches, to large gigawatt utility power plants (Quaschning, 2016). This
scalability enables PV systems to be implemented in various forms, including standalone units
that supply energy in isolated locations and grid-connected setups that enhance grid stability,
facilitating the transition toward sustainable energy. A grid-connected PV system can be either
a utility-scale PV installation or a residential PV system. The following section examines these
configurations, with a focus on the grid-connected PV system.

2.1.3. Stand-alone photovoltaic

Photovoltaic technologies that operate independently of the grid are called stand-alone systems.
These systems comprise a photovoltaic generator, batteries for storage, AC and DC loads, and
various power conditioning components, as shown in Fig. 2.5. A photovoltaic generator is
composed of multiple arrays connected in a systematic manner to meet the load requirements.
Each array contains several modules connected in series and parallel configurations. The
storage system stores electricity when production exceeds the load and releases it when
production is low or insufficient. Stand-alone systems can supply power to both AC loads, such
as heaters and motors, as well as DC loads, such as lighting. The power conditioning system,
including charge controllers, DC to AC inverters, and blocking diodes, provides the necessary
protection and interface among the components of the PV system (Hansen et al., 2000).

DCload

Fig. 2.5. Stand-alone PV system components (Hansen et al., 2000)

2.1.4. Grid-connected photovoltaic system

The integration of renewable energy into the utility network is showing substantial interest by
utilities and governments for its numerous advantages. Among various renewable energy
sources, the integration of solar PV into transmission and distribution networks remains a key
focus, with significant future growth potential. Compared to standalone systems, grid-
connected PV systems offer several advantages, including higher energy harvesting efficiency
and better utilization of generated power. Notably, grid-connected PV installations account for
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more than 99% of the total installed capacity worldwide. In the case of residential grid-
connected PV, the need for energy storage is reduced or eliminated, depending on the design
and grid standards of the specific region. Consequently, all or part of the generated electricity
is injected into the grid without requiring excessive storage, particularly during periods of
surplus generation around noon (Kouro et al., 2015). Additionally, these systems support the
grid by supplying power to local consumers and feeding excess electricity into the grid during
peak solar hours, thereby reducing transmission and distribution losses (Obi and Bass, 2016).

However, the seamless integration of PV systems into the utility grid needs to satisfy a set of
technical guidelines and standards from both the PV system side and the utility side. Strict
implementation of these technical guidelines and standards is compulsory for safe and efficient
integration of PV to the utility grid. The rapid increase of PV installation has also called for
evolutionary conversion technologies. The development of converter along with the other
semiconductor interfaces brings several advantages in grid-connected PV systems such as ease
of integration, efficiency enhancement, and reduction in cost. The technology of PV
inverter/converter is evolving rapidly and reaches at a level of efficiency of about 98%.
Moreover, modern PV converters are extremely reliable, efficient and compact (Kouro et al.,
2015). Inverters are devices that convert the DC power output of PV arrays to AC power that
can be used in ordinary power systems and are compatible with the grid standard frequency.

The power output of PV plants fluctuates over time due to the stochastic nature of solar
radiation. Therefore, any drop in power generation from a solar plant must be compensated for
by increased generation from another plant to meet customer demand. This presents a
significant challenge for power operators, particularly when the penetration of PV increases,
as sufficient reserves with rapid ramping capabilities must always be available to dampen
sudden fluctuations. A proper understanding of the temporal and spatial characteristics of PV
power output can partially solve this (Femin et al., 2016).

Fig. 2.6 shows the components of the conventional grid-connected PV system. As shown in
the figure, the DC current generated in the PV array is transformed and transferred via various
interfacing devices to the grid. Optional components, such as a DC/DC converter, boost the
voltage to a certain level if required and decouple the PV from the grid-connected inverter. The
low-frequency transformer is an optional device that is integrated into the system depending
on the system topology and regulation. Other elements such as grid connection filter and grid
monitoring unit are also incorporated to the system to provide safety features such as
synchronization and anti-islanding detection (Kouro et al., 2015).
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Fig. 2.6. Schematic representation of a grid-connected PV system (Soham et.al., 2017)
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In contrast to small, distributed PV generators, large-scale grid-connected PV systems
necessitate careful configuration and design to maximize energy extraction. The output current
and voltage of PV modules are significantly lower than the grid's voltage and current.
Therefore, modules are connected in series and parallel to enhance voltage and current,
respectively. Additionally, the quantity and placement of converters introduce various
configuration options. The configuration of the grid-connected PV system is shown in Fig. 2.7.
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Fig. 2.7. Inclusive representation of a grid-connected PV system (Zeb et al., 2018)

In a centralized configuration system depicted in Fig. 2.8a, modules connect in both series and
parallel to supply power to the commutated inverter. In the string topology represented in Fig.
2.8b, each string channels power to the grid via an inverter. Likewise, the multi-string setup,
shown in Fig. 2.8c, includes a DC-DC converter for each string, designed for maximum power
point tracking. Ultimately, the strings transmit their power output through a DC link to an
inverter. A more reliable and efficient system emerges when multiple low-power parallel
inverters are used instead of a single centralized inverter. The fourth generation, illustrated in
Fig. 2.8d, offers several advantages such as improved expandability and simplified installation,
utilizing a complex power electronic interface for each module (Mirhassani et al., 2015).
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Fig. 2.8. Different topologies for a grid-connected PV system: a) Centralized approach, b)
String approach, ¢) Multi-string approach, d) AC-module approach (Mirhassani et al., 2015)
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2.1.5. Grid-connected residential photovoltaic system

Residential PV has become a crucial aspect of distributed generation, transforming buildings
from mere electricity consumers into significant contributors due to their increasing
implementation (de Oliveira e Silva and Hendrick, 2017a). This trend has considerable
potential to lower the carbon footprint of residential buildings (Chandel et al., 2024).
Additionally, the falling prices of residential PV systems and home battery storage encourage
consumers to produce energy locally, thereby diminishing their reliance on the grid (Procopiou
etal., 2019). Nevertheless, the rise in PV energy from homes might surpass local demand. Such
uncontrolled integration of PV systems can disrupt load patterns, potentially threaten grid
stability (Ruf, 2018a), violate dispatch margins, and elevate the overall operational costs of
the power system (Dierckxsens et al., 2015; Kenneth and Folly, 2014). Utilizing Al
technologies like machine learning, blockchain, and the Internet of Things (10T) (Tajjour and
Singh Chandel, 2023), alongside grid management strategies, such as feed-in limits, can
effectively manage unpredictable renewable energy generation.

Numerous studies indicate that a considerable portion of a household's electricity demand can
be satisfied by combining PV with battery storage at the residential level (Camilo et al., 2017,
Gudmunds et al., 2020; Li et al., 2018). In an effort to attain self-sufficiency in household
energy consumption through affordable methods, several nations have enacted support policies
and incentives to promote the installation of residential PV-battery storage systems (Held et
al., 2020; Zeh and Witzmann, 2014). However, there is a lack of research explicitly examining
developing countries, such as Eritrea, which has a less stable energy system.

In Ruf. (2018b) a comprehensive grid planning strategy in Germany is discussed, along with
its implications for inducing technical constraints. Germany is the leading nation in renewable
energy utilization and adoption in Europe, credited to its cutting-edge research and
development initiatives. The authors indicate that the current grid planning strategy is not
encouraging large-scale PV integration at all levels, particularly in the low-voltage work, as
such feed-in from PV at the low-voltage network was not considered during the design stage
of the existing grid. However, new technologies can increase the hosting capacity of the low-
voltage distribution network.

Another study that deals with the Belgian electricity grid evaluates different combinations of
residential PV, storage, and fixed wind capacity with the sole aim of increasing the direct
consumption of PV and wind generation in the electricity grid (Meuris et al., 2019). The model
utilizes hourly historical data to simulate the case study, selecting the scenario that maximizes
the directly injected generation from PV and wind sources. Increasing PV and wind requires
some curtailment of generated electricity, and adding a battery at this stage increases the overall
effectiveness of the system. However, they identified an upper limit above which any additional
battery storage does not return benefits to the system. They also found that minimum
curtailment, along with optimal storage, could be cost-effective in the future grid dominated
by renewables. Another study, conducted by Teklebrhan et al. (2025), examined the effect of
the feed-in limit in low-voltage networks using historical data from Eritrea. The study indicates
that residential PV can contribute up to 32% of total demand when combined with a battery
and an optimal feed-in limit. They developed a transparent and easy-to-follow algorithm to
determine injection limits, battery sizing, and PV configuration, maximizing the total injected
PV and wind power into the low-voltage network. Feed-in limits between 0.4 and 0.5 KW/kWp,
combined with home battery storage of less than 2 kWh/kWp, yield the most favourable
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outcomes. A schematic illustration of a grid-connected residential PV system with an energy
storage device is given in Fig. 2.9.
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Fig. 2.9. lllustrate diagram how the Residential P\ works (Silva and Hendrick, 2017)

2.1.6. Grid inverter technologies

The grid-inverter is the essential element of a distributed generation system; it serves as a
crucial interface for distributed renewable energy resources. A PV inverter's primary function
is to maximize energy capture from the solar PV system through Maximum Power Point
Tracking (MPPT) technology and effectively convert it into a utility-compatible power source.
It ensures efficient power conversion from DC to AC, aligns with the grid frequency, and
facilitates the smooth integration of solar electricity into the desired distribution or transmission
network. Furthermore, contemporary inverters enhance system reliability, improve power
quality, and contribute to grid stability by regulating voltage fluctuations and reactive power.
Grid-connected inverters can be classified into four categories based on their configuration
(Kabalci, 2020; Zeb et al., 2018):

a. Central inverters

b. String inverters

c. Multi-string inverters and

d. AC Module inverters or microinverters

Each configuration has its own advantages and drawbacks. The topography of each category
is shown in Fig. 2. 10.
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Inverters are responsible for detecting islanding and protecting human life and equipment from
damage by disconnecting the PV system in a very short time. Islanding is the condition when
the inverter continues to supply power to the grid when the utility side is stopped or
disconnected due to different reasons, such as maintenance, damage, or accident (Kjaer et al.,
2005). Such a situation is critical since utility operators may engage in different activities,
assuming the grid is safe (not operating), but due to the grid-tied PV system, the grid can be
energized, posing dangers to personnel working on the feeders. For this reason, inverters are
equipped with anti-islanding protection features to quickly stop feeding power to the utility
when the utility is disconnected.

2.1.7. Power quality issues in distributed generation

Renewable energy-based distributed generation systems are reaching a record high level of
integration in the distribution network for their remarkable environmental, technical, and
economic advantages. The main contributor of distributed generation is residential PV, as
buildings once primarily electricity consumers are now contributing significantly to generation
via residential PV installation (Silva and Hendrick, 2017a). In this context, the power system
behaves differently as it changes from unidirectional, in conversational systems, to
bidirectional power flow with distributed generation units. When the penetration level of solar
PV in the distribution network increases, it creates several challenges in the distribution
network, including reverse power flow, increased power losses, voltage unbalance, transformer
and cable rating, and malfunction of on-load tap chargers (OLTC), and this ultimately affects
the control, operation, and security of the traditional distribution feeders. The most critical
power quality issues related to grid-connected PV systems are power fluctuation, voltage
deviation, flicker, and harmonics (Hossain et al., 2018).

2.2. Enabling technologies supporting large-scale photovoltaic integration

Integrating large-scale renewable energy sources has proven to have numerous environmental
and economic benefits. Specifically, integrating large-scale PV as the fastest-growing
technology with a remarkable increase in capacity presents both opportunities and challenges
(Mansouri et al., 2019). Extensive PV integration provides several benefits in addition to
covering a significant share of demand. They help decrease emissions, promote energy
independence, provide a cleaner energy mix, and improve grid stability. Additionally, these
plants provide ancillary services, such as frequency control. Nonetheless, integrating large-
scale PV presents various challenges, including system complexity, generation
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unpredictability, technical constraints, voltage regulation issues, the need for coordination with
traditional power plants, and the implementation of sophisticated control strategies to comply
with grid code requirements, particularly during periods of peak generation (Rakhshani et al.,
2019). The literature proposes various enabling tools that maximize their reliable and efficient
integration.

Solomon et al. (2019) discussed several supply-side enabling technologies, including resource
complementarities, energy storage, transmission interconnection, improved forecasting, and
curtailment that facilitate large-scale PV integration. Utilizing these enabling technologies can
facilitate large-scale PV integration by addressing challenges like variability, uncertainty, and
system adequacy. However, a solid theoretical framework is necessary for designing a secure
system, as the significance of one technology may differ based on PV share (penetration) and
the role of other enabling technologies. Enabling technologies, such as demand response, can
help adjust consumption in relation to PV generation by shifting loads to different times,
thereby enhancing grid stability. In Zubi et al. (2025), the importance of energy storage
solutions in managing variability and uncertainty, as well as balancing supply and demand, is
presented and discussed, along with their impact on grid operation and economic viability.

A time series simulation was conducted on the Texas grid to examine the impact of variable
generation, with varying ratios of PV, concentrating solar power, and wind designed to provide
approximately 80% of the total demand (Denholm, 2011). The author examined various
enabling technologies, including energy storage, conventional generator flexibility, demand
response, and load shifting. Different combinations of these enabling technologies create a
better energy mix at a specific level of renewable penetration by minimizing surplus curtailed
solar and wind energy.

The renowned renewable energy report from IRENA indicates that the innovation landscape
for integrating large-scale renewable energy necessitates synergies among various enabling
technologies to achieve a viable solution (IRENA, 2019). The report classified the solution for
the significant uptake of solar and wind energy into four major categories: innovation, enabling
technologies, market design, business model, and system operation. The most significant
enabling technologies that facilitate large-scale PV integration have been identified, including
electric vehicles, smart charging, utility-scale batteries, Internet of Things, behind-the-meter
batteries, artificial intelligence, big data, and blockchain.

Mansouri et al. (2020) investigate the importance of enabling technologies in facilitating the
integration of large-scale photovoltaic (PV) systems into the power grid. The technologies
investigated include energy storage, active power curtailment, advanced inverters, and
innovative grid technologies that help mitigate power quality issues such as harmonics, voltage
fluctuation and imbalance. Several challenges created by PV integration are resolved using
these supporting technologies, including power quality, system stability, and reliability. The
study identifies the primary issues arising from the large-scale integration of PV in the public
network. It quantifies the impact of various enabling technologies on large-scale PV
integration.

In Denholm and Margolis (2007a) a detailed analysis of technologies that enable the integration
of 50% of PV power into the utility grid was conducted by simulating hourly solar insolation
and load data to address the limitations of conventional generators on PV integration. VVarious
enabling techniques, such as increased flexibility, energy storage, and load shifting, were
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explored to reduce the curtailed PV that occurs at high penetration levels. Increasing system
flexibility by lowering the system minimum can facilitate greater absorption of PV, while
shifting loads to times of higher PV generation can enhance the usability of the generated PV
power.

Solar PV is among the most promising variable renewable energy sources, anticipated to make
a significant contribution to the power mix. However, its increased deployment is accompanied
by numerous challenges. In Mateo et al. (2017), technical solutions that can overcome the
barriers that hinder the integration of large-scale PV into the electricity network were proposed.
The solutions are grouped into three big categories: distribution system operator solutions,
prosumer solutions, and interactive solutions. Among the various proposed solutions, PV
curtailment enhanced PV hosting capacity and eliminated unnecessary PV-driven network
investments.

Although the aforementioned studies differ in the scenarios considered and the geographical
locations analysed, they all share the common goal of identifying the optimal combination of
enabling technologies to support large-scale PV integration. This thesis identifies four key
enabling technologies that support higher PV penetration: resource complementarity, energy
storage, curtailment strategies, and advanced forecasting. Each of these plays a crucial role in
facilitating the integration of large-scale PV. These technologies will be reviewed in detail in
the following sections.

2.2.1. Complementarity of solar PV with wind

Renewable energy resources such as solar and wind are naturally intermittent and
unpredictable. Large-scale integration of these resources could result in various technical
challenges, as the existing grid is not designed for variable supply but for variable load demand.
Specifically, the integration of variable renewables in weak grids without a proper or sufficient
storage system could severely affect the reliability of the power system. The variability and
intermittency of renewables can be partially solved by mixing two renewables into an optimum
combination, improving overall system reliability and adequacy (Badwawi et al., 2016).

The concept of complementarity in renewables basically refers to how different renewables,
such as solar and wind (variable renewables) or hydropower and geothermal (non-variable
renewables), complement each other’s variability in time (diurnal or seasonal), or space
(geographically diverse resources), or both in time and space. Fig. 2.11 shows the seasonal
variability of solar, wind, and electricity demand.

Jurasz et al. (2020) grouped complementarity into three main categories:

1) Spatial complementarity: In this category, one or more renewable energy resources can
complement each other in a certain region. For example, a resource deficit in region A
can be complemented by a resource of its kind in region B. By doing so, we can improve
the smoothing level of distributed resources.

2) Temporal complementarity: In this category, two or more VRE resources complement
each other in the time domain. For example, at the seasonal level, limited solar energy
during the winter is complemented by stronger wind generation in the same season,
while in summer, higher solar output can offset lower wind availability. A comparable
analogy exists for daily changes in solar and wind energy production; diminished or
absent solar output at night can be offset by robust wind generation during the night.
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3) Spatio-temporal complementarity: Refers to the ability of different renewable energy
sources to compensate for each other's variability across time and space. When single
or multiple VRE resources are investigated for complementarity simultaneously in time
and space domains.
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Fig. 2.11. Time-based variation in solar, wind, and electricity demand (Shaner et al., 2018)

Resource complementarity is defined as the ability of a mix of renewable generation resources,
spread across space and time, to enhance electricity supply conditions. Thanks to the better
alignment of output with demand profiles, this improvement occurs with fewer operational
challenges and a reduced reliance on enabling technologies. Resource complementarity offers
significant benefits to the power grid by smoothing generation profiles, particularly wind-PV
complementarity, providing multi-dimensional benefits such as increasing penetration,
reducing curtailment, improving energy storage requirements, and improving overall system
reliability. Compared to stand-alone PV or wind, complementarity significantly increases grid
penetration without energy storage; however, as capacity increases, the benefit of
complementarity on increasing the grid penetration decreases due to the mismatch between
generation and demand (Solomon et al., 2020).

Different metrics and indices, such as the correlation coefficient (CC) and standard deviation,
are used to assess the local complementarity of renewable resources at various time scales
(Miglietta et al., 2017). Other studies, such as in Naeem et al. (2019) utilize generation profiles
to maximize the economic benefits by exploiting the PV and wind complementarity across
different time steps.

The study indicated that anticorrelated PV and wind sites present the best-case scenario for
meeting demand without storage and curtailment. In this context, a negative correlation
(CC=-1) is ideal for smoothing generation profiles and enhancing the penetration of PV and
wind without requiring additional enabling technologies.

Although several studies have been conducted to analyse the benefits of PV and wind
complementarity, most focus on examining correlations and other statistical indicators of
renewable resources over time and/or space. Studies based on data collected from actual utility
plants are rare. Such studies could provide valuable insights into how a future grid dominated
by renewables might be sustained. However, because of the current low share of renewables,
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comprehensive information cannot be obtained to address the challenges that may arise for
future grids due to the integration of large-scale renewables. Some studies use actual generation
profiles from utilities to examine the complementarity benefits in the power system. In Couto
and Estanqueiro, (2021) correlation and energy metrics are used to assess the hourly and daily
complementarity potential of actual wind parks with solar PV plants in Portugal. They found a
high correlation between PV and wind, allowing the integration of a higher share of variable
renewables at reduced excess generation. Fig. 2.12 shows the concept of complementarity
using a sine signal.
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Fig. 2.12. The complementary concept is explained by means of a sine signal. CC —
coefficient of correlation (Jurasz et al., 2020)

Transitioning to clean energy requires integrating large-scale VRE resources, such as PV and
wind, which in turn raises several uncertainties in grid reliability and operational requirements.
The current grid has strict standards, such as planning supply that meets peak load with an
additional 15% reserve margins (Cauley and Cook, 2011). However, unlike the existing grid,
which has uncertainty only from the demand side, the future grid dominated by renewables will
pose uncertainty challenges from both the supply and demand sides. Thus, a future grid will
behave differently, as it will require significant energy curtailment accompanied by subtly used
large conventional balancing capacity and large storage facilities. Though hybrid systems are
believed to relieve such grid stress to some extent, demand response is also thought to help
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maintain such a new grid infrastructure by leveraging loads with generation. A study by
Solomon et al. (2016) conducted a deeper and comprehensive analysis to understand the
characteristics of a high-renewable California electricity grid by closely examining the year-
round generation and demand profiles and dispatch patterns. The authors explore the supply-
side reliability issues and the impact of complementarity on system design and operation. They
reported that PV-wind complementarity offers several benefits, such as increased penetration
and reliability. Further, they noted that at a particular curtailment level of 20%, their optimal
mix enables higher penetration at reduced storage and balancing capacity requirements.

While these studies may vary in scope, geography, metrics, methodologies, and the variables
used, their ultimate goal is to quantify the ideal combination of renewable sources and the
accompanying enabling technologies. Most of these studies demonstrate that PV-wind
complementarity is the most promising approach to achieving a future grid with a high share
of renewables, as it offers several benefits to this grid. Comparison between studies is still not
possible as these studies consider different scenarios, resource potential, and locations.
However, they may share common performance indicators and system parameters such as
penetration (% annual demand met by renewables), resource mix, storage size, and curtailment.

To wrap up, the benefits of resource complementarity (in our context PV-wind) to the grid can
be generalized into three main categories: improving reliability, reducing balancing
requirement and storage capacity, and improving grid penetration.

2.2.2. Electrical Energy Storage

The existing power system would undergo a transformative paradigm shift if energy storage
operations reached a high efficiency level with better economic viability. Intermittent
renewables, such as PV and wind, could be widely deployed to transition the energy mix to a
eco-friendlier and more sustainable model. Technologically mature and efficient energy
storage could improve the stability and reliability of a power system. The most important
feature of energy storage is that it can be used both during deficit and excess generation. When
intermittent renewables generate excess power, energy storage can shift the high generation to
off-peak hours or deficit times. This allows the system to run more efficiently in balanced mode
without disturbance. Moreover, energy storage can encourage distributed generation by
enabling the use of residential PV and wind systems. Energy storage offers several benefits to
the power system such as operational flexibility and intermittency mitigation (Rahman et al.,
2020).

Energy storage is a device that converts energy from one form to another, depending on the
purpose, in our context, to electricity, after being kept for some specific duration. Energy
storage can be characterized by its response time, storage duration, and function. However, it
can also be more effectively classified into mechanical, electrochemical, electrical, and
chemical categories, based on the type of energy stored (Rahman et al., 2020). Based on how
energy is converted back, storage devices can also be divided into power-to-power, power-to-
thermal, power-to-liquid, and power-to-gas. If excess renewable electricity is stored in
electrical energy storage and converted back to electricity, it is called a power-to-power system.
This system is the most promising energy storage system and is widely used for several
applications. Its advantages include, but are not limited to, time-shifting power dispatch,
smoothing mismatch, consequently allowing a higher level of RE integration, encouraging
distributed generation, decreasing curtailment, enhancing electricity value chain, increasing
overall system efficiency, and maintaining system frequency and voltage fluctuation that
ultimately improves grid reliability and security (Gallo et al., 2016).
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Fig. 2.13 depicts the finer classification of the various categories of energy storage systems.
These technologies are at different levels of technological maturity and market penetration.
Recently, energy storage systems have evolved rapidly with swift technological advancement
and cost decline. Electro-chemical batteries such as Vanadium-redox, lithium ion (Li-ion),
sodium-sulfur and lead-acid batteries are extensively used in different applications, with Li-
ion having emerged as a transformative breakthrough in storage applications. With advances
in technology and cost reductions, large-scale grid-integrated battery storage systems have
become increasingly necessary in modern power systems (Rahman et al., 2020). Specifically,
ambitious renewable integration targets, increasing electronic energy conversion devices
(allowing bidirectional flow), and Electric Vehicles make such diversity and increasing use of
battery services imperative for the next-generation power system. However, optimal technical
and economic operation and performance will remain a primary concern in the future (Zhao et
al., 2023).
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Fig. 2.13. Different types of Energy Storage technologies and their interaction (Amir et al.,
2023)

The literature discusses various aspects of the grid-connected storage system, including
performance evaluation, techno-economic assessment, and technological advancements. In
Noyanbayev et al. (2018) a simulation model was developed to investigate the efficiency
performance of a system installed at the University of Manchester. They identified the optimum
operation mode by accounting for the state of charge and the rate of battery storage charging
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and discharging. They reported that the developed simulation model was well aligned with
hardware performance, with a difference of approximately 2%. Another study was performed
on modelling, simulation, and performance evaluation of grid-integrated PV with battery
storage. They introduced a control method to manage and enhance the battery storage's state of
charge, charging, and discharging, providing a benefit for regulating DC bus voltage (Daud et
al., 2012).

Engineering design must ensure technical feasibility and economic viability of options. Studies
show that PV plus storage offers a significant economic advantage by utilizing energy that
would otherwise be wasted. As study by Denholm et al. (2017) conducted a case study in
southern California, using their engineered metric called Benefit/cost ratio. They evaluated the
trade-off of using PV plus storage with the shared inverter. At a low PV penetration of 6%,
they found that the Benefit/cost ratio for PV without storage is higher than that of PV with
storage. However, the trend changes as the PV penetration increases. The results suggest that
decreasing PV values can be offset by incorporating storage, facilitating cost-effective large-
scale PV integration.

When the VRE penetration level is low, integration, operation, and performance improvement
are manageable; however, as penetration increases, unforeseen issues arise due to the mismatch
between generation and demand. Diurnal and seasonal weather variability strongly affect
storage operation and overall system performance. A study by Twitchell et al. (2023) evaluates
the depth and breadth of future decarbonized grid energy mismatches and identifies that two
types of long-term energy storage are required for a fully decarbonized grid: 20-hour storage
for diurnal cycles and longer-lasting weeks or months for seasonal mismatches.

Other studies examined various energy storage technologies suitable for solar and wind hybrid
systems, each designed with unique characteristics that optimize them for specific time scales
and applications. These technologies comprise batteries (Javed et al., 2019), hydrogen storage
(Gabrielli et al., 2020), pumped hydro storage (Guezgouz et al., 2019), compressed air energy
storage (CAES) (Torreglosa et al., 2015), and hybrid storage systems, such as battery-hydrogen
(Lietal., 2023).

Energy storage technologies are deployed at various levels of renewable penetration to mitigate
diurnal and seasonal weather-induced generation fluctuations. Therefore, integrating both
diurnal and seasonal storage is essential for addressing the weather-driven variability of daily
and seasonal cycles in a renewable-dominated grid.

Fig. 2.14 shows the energy and power components of the major energy storage technologies
widely deployed at scale.

27



2. Literature review

Pumped-

Storage

Plant PPl | Lithium-lon
Battery
System

\ 4 ‘ Turbine/Generator
Discharge ==
R

Lower Reservoir

(a) Pumped storage hydro (b) Li-ion battery

Hydrogen
Storage

Flow Battery
System

| Electrolyte
Storage

\ Compressor!

f Station

; A | Gas
| Fuel Cell | ; Turbine
Power

lﬂ Plant

Underground
Cavern

(c) Flow battery (d) Hydrogen

Fig. 2.14. Different energy storage technologies show both energy and power components
(Denholm et al., 2021)

2.2.2.1. Diurnal storage for daily cycles

Renewable energy deployment has been shown to be beneficial in creating a carbon-free and
eco-friendly energy system. However, their introduction necessitates additional weather-
derived informed decision-making to ensure a secure and reliable power system (Bloomfield
et al., 2018). A thorough understanding of the meteorological drivers that cause the fluctuation
in renewable generation is imperative. Moreover, understanding these variables' cyclic pattern
and time step or frequency of occurrence is crucial in designing a secure system, as local
weather patterns could affect the short-term (diurnal) or long-term (seasonal) system
performance (Bloomfield et al., 2022).

Solar and wind energy show variations over different timescales, from minutes to seasons,
influenced by elements like atmospheric conditions, Earth's rotation, orbital position, and axial
tilt. The daily cycle of solar radiation leads to considerable fluctuations in PV generation,
peaking between noon and 3 pm, then declining until it approaches zero in the late evening.
Similarly, wind patterns exhibit a distinct diurnal variation, influenced by surface temperature
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caused by solar radiation. Wind speeds generally reach their peak in the afternoon after the
maximum surface heating and dip to their lowest in the early morning, about 12 hours earlier
(Mulder, 2014). Such diurnal variation leads to generation fluctuation, consequently affecting
the matching ability of renewable generation and load.

The net load, which results from subtracting variable renewable generation from total load,
needs to be balanced throughout the year using a dispatchable power supply unit. This can
include non-variable renewables like hydropower or geothermal, or energy storage solutions
(Graabak and Korpds, 2016).

The choice of a storage technology is influenced by factors such as storage capacity, response
time, cost-effectiveness, energy losses, and its effectiveness for short-term or long-term energy
shifting. For short-term (intraday) energy storage batteries, such as Li-ion and flow batteries,
are ideal due to their high, rapid response, round-trip efficiency, and relatively low energy loss.
They effectively handle daily intermittency in PV and wind-generated electricity by storing
excess electricity produced during peak generation hours and supplying it at a generation
deficit. Due to their special features in modularity and scalability, they can be used in both
large-scale grid-connected systems and in small-scale distributed generation (which may be
stand-alone or grid-connected) applications. However, the limited storage duration and
associated high capital expenditure make them unsuitable for long-term seasonal energy
storage (Denholm et al., 2023).

The literature presents a range of storage solutions, along with detailed evaluations of their
performance and techno-economic viability (Child and Breyer, 2016; Cole and Frazier, 2023;
Denholm et al., 2022), In a study conducted for Texas grid, Denholm and Mai. (2019) analysed
storage duration required to integrate large-scale renewable energy to the grid with reasonable
curtailment. The study revealed that the addition of a storage capacity of about 8.5 GW with a
four-hour duration could drastically reduce curtailment from 11-16% (without storage) to 8-
10%. The technical feasibility and the cost become challenging when RE penetration exceeds
80-90% as shown in Fig. 2.15.

The seasonal problem (largely unsolved,
but some pathways have been proposed
and additional research needed)

>

The diurnal mismatch
problem (partially solved,
additional research needed)

The short-term variability
problem (largely solved)

Degree of Difficulty/ Cost

Fraction of Annual Energy From RE

Fig. 2.15. The increasing difficulty and cost of RE deployment with balance challenges
(Denholm et al., 2021a)

Recently, there has been a growing interest in utilizing energy storage systems with a capacity
lasting more than four hours, owing to their crucial role in integrating large-scale renewables
and transitioning to a decarbonized grid. A diurnal storage range of 6-10 hours has shown
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economic opportunities for hundreds of Gigawatts of storage, even with existing policies for
reducing carbon emissions. The potential and role of diurnal storage in decarbonizing and
integrating large-scale renewable energy are tremendous. Studies in the US grid show that the
capability of diurnal storage (4-hour storage) to meet peak demand in summer can be enhanced
by deploying large-scale solar generation (Denholm et al., 2023).

However, the role of diurnal storage is reduced as the penetration of renewables increases.
After a certain penetration threshold, any addition of diurnal storage offers negligible benefits
in increasing penetration, as clearly elaborated in (Solomon et al., 2017). Therefore, long-term
storage that offsets the seasonal mismatch is required at high levels of renewable penetration.

2.2.2.2. Long-term seasonal mismatches

Understanding storage behaviour at different time scales and penetration levels gives a strong
foundation for modelling and designing a reliable power system dominated by renewables.
Short-term energy storage technologies, as discussed above, are suitable for satisfying the daily
generation fluctuations. However, solar and wind exhibit seasonal fluctuations driven by
different factors such as the axial tilt and orbital position. The amount of solar radiation
reaching the Earth's surface varies considerably depending on the season and the latitude of the
specific location (Quaschning, 2016). The seasonal variation in solar radiation is more
pronounced at higher latitudes, where a difference of about a factor of 6 in solar insolation
between summer and winter is observed. In contrast, the difference in insolation at lower
latitudes, such as the Western Sahara, shows less seasonal variation, with the difference
between summer and winter varying by a factor of about 1.5. This suggests that PV generation
output can vary by a factor of approximately 1.5 to 6, depending on the geographical location
of the plant, although this range may be slightly influenced by power conversion efficiency and
other system-specific factors. Likewise, wind speed shows seasonal fluctuations, generally
peaking in winter compared to summer. This seasonal variation can be as much as twofold in
numerous areas, with winter wind speeds nearly double those during summer. This difference
is crucial for assessing the seasonal potential of wind energy and for the strategic planning of
renewable energy systems (Mulder, 2014). Such fluctuations present a significant technical
challenge for a renewable-dominated grid in ensuring a reliable supply to meet demand, where
a greater flexibility in system design and operation is required. Identifying the necessary
storage solution that fulfils the requirements is highly effective for balancing supply and
demand, as it offers operational reserves (Zakeri and Syri, 2015).

Diurnal storage, such as Li-ion batteries, has been proven to increase the share of renewables
significantly; however, their role and significance decrease as renewable penetration increases,
typically above 80%. In contrast, seasonal storage technologies such as hydrogen storage and
pumped hydro storage (PHS) offer a better fit for long-term energy storage. With an efficiency
of 70-85% and a long lifespan, PHS is the most mature and widely used long-term storage
technology (Dujardin et al., 2017a). Recently, hydrogen storage has emerged as the most
flexible and scalable storage solution, promising a bright future for balancing seasonal
fluctuations caused by weather variability. Hydrogen storage utilizes an electrolyser in
combination with a fuel cell or gas turbine. Excess renewable energy is stored as hydrogen
produced through electrolysis, and this stored hydrogen is converted back into electricity via a
fuel cell or gas turbine when there is a need for generation deficit (Ourya et al., 2023). For
long-term applications, hydrogen storage provides significant advantages, including high
energy density and the ability to store energy with minimal losses (Breunig et al., 2024).
Additional advantages, such as application in transportation and aviation, make it a cost-

30



2. Literature review

effective solution (Denholm et al., 2022). Its lower round-trip efficiency makes it better suited
for seasonal applications instead of frequent (daily) charging and discharging. Fig. 2.16 shows
the seasonal challenge for a very high RE penetration (nearly 100% RE) for the ERCOT grid.
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Fig. 2.16. Seasonal challenge for a nearly 100% renewable energy system in the ERCOT grid
(Mai et al., 2022)

Other studies also explore the benefits of hybrid storage, including short-term battery storage
combined with long-term hydrogen storage. This combination provides unique advantages by
leveraging the strengths of both short-term and long-term storage. In these configurations,
batteries are used to balance short-term fluctuations, typically lasting 4 to 8 hours, while
hydrogen addresses the long-term seasonal mismatch of over 12 hours. This combined strategy
boosts system reliability, reduces curtailment, and maximizes the utilization of renewable
resources (Guerra et al., 2020a; Qiu et al., 2024).

Several studies agree on the necessity of various flexibility options, including seasonal and
diurnal storage, balancing capacity, and curtailment, to achieve a high renewable penetration,
typically exceeding 80% (Guerra et al., 2020a). Denholm et al. (2022) demonstrated that a
penetration of approximately 90% can be achieved by deploying wind, PV, diurnal storage,
advanced transmission, and other technologies currently used extensively at scale at minimal
incremental cost. However, satisfying the remaining 10% of the demand remains uncertain as
the technologies that lead to complete decarbonization, such as low-carbon fuels and hydrogen,
are still not yet utilized at scale. Mai et al. (2022) proposed multiple solutions to tackle the
difficulties in meeting the last 10% of demand while ensuring 100% renewable energy
integration. Some of the suggested pathways are uncertain as they depend on various emerging
technologies that are in their initial phase of development. Various types of seasonal storage
are among the proposed solutions that have the potential to satisfy the last 10% of the demand.
Seasonal storage can mitigate the seasonal mismatch that occurs in peak summer and winter,
as deploying short-term diurnal storage and installing additional VRE capacity at this stage
might provide minimal benefits to the system (Denholm et al., 2021a).

Therefore, efforts to achieve a high penetration level require deploying various technologies
currently utilized at scale, such as PV, wind, and diurnal storage, to attain approximately 90%
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of the penetration. However, the remaining 10% of the demand can be satisfied by seasonal
storage, such as hydrogen storage, and other non-variable dispatchable renewable resources,
such as geothermal and hydropower.

2.2.3. Renewable curtailment

In recent decades, the integration of renewable energy resources, especially PV and wind, has
substantially increased, driven by policy incentives and cost reductions. However, their
increased penetration raises concerns about their integration into the power system due to a
mismatch between generation, demand, and transmission or operational constraints. Such
circumstances require power operators to act to maintain system operation in a safer mode by
utilizing various techniques. One such technique involves accepting a limited portion of
renewable generation while dumping the excess, which is curtailment. Curtailment can be
taken for different reasons, such as transmission congestion, lack of transmission, constraints
to local networks, and balancing challenges (Gu and Xie, 2014). Although the definition of
curtailment may vary, in this context, it refers to producing a limited portion of the available
potential of PV and wind power at a specific time. Curtailment due to over-generation during
periods of low demand can happen when must-run plants produce more power than the load
and desired exports (Golden and Paulos, 2015). Curtailment in wind power plants can be
associated with two main circumstances: transmission and system balancing issues, as wind
energy is more available during the night when loads are at their minimum. Similarly, for solar
generation, curtailment occurs in the distribution network when there is more energy at the
feeders than is consumed, which can cause reverse flow (Bird et al., 2016). If protective
mechanisms and other safeguards are not designed in advance, reverse flow can cause serious
problems to connected devices. In Henriot. (2015) The advantages of economic/optimum
curtailment in VRE were discussed. The study highlighted that in a power system with a large
share of VRE and inflexible thermal generators, curtailment of intermittent renewables could
lead to system efficiency gains. The penetration of intermittent renewables increases with
modest curtailment; however, the gain in penetration beyond 20% of renewable curtailment is
minimal (Negash et al., 2023).

The interaction between storage, penetration, and curtailment is complex, therefore,
understanding how these parameters interact is essential for identifying safer design options
and their operational requirements. Specifically, when designing a power system with a
significant share of intermittent renewables, a clear understanding of the interaction between
renewable penetration, energy storage requirements, curtailment, PV-wind mix ratio, and
balancing capacity requirements has paramount importance in foreseeing its operational
requirements (Negash et al., 2023). Several studies have examined the relationship between
these parameters to some extent, (Ardenas et al., 2021; Denholm and Margolis, 2007b; Perez
etal., 2019). Remarkably, the authors in (Frew et al., 2021; Kroposki et al., 2017; Perez et al.,
2019) challenge the common sense that curtailment is a waste of energy by clearly
demonstrating its economic and technical advantages. These studies demonstrate the benefits
of curtailment and indicate its trajectory toward becoming the new normal in future grids.

While the literature provides numerous studies on energy transition pathways, most of these
studies emphasize economic aspects by utilizing techno-economic models (Bogdanov et al.,
2021; Cole et al., 2021; Denholm et al., 2022; Guerra et al., 2020; Jacobson et al., 2019; Teske,
2022). Because the studies primarily focus on economic aspects, the physical interaction
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among these parameters and their impact are inadequately explored. However, some studies,
such as those in Israel (Solomon et al., 2019), North America (Guerra et al., 2021) and Europe
(Gils et al., 2017), have attempted to formulate and reveal the link between these system
parameters. Due to the difference in their approach and the difference in scenarios and details
explored, a comparison between these studies is challenging. However, when comparable
methodologies are applied, consistent trends emerge in how physical parameters interact,
though location-specific climatological and demand-related factors still introduce differences.
This highlights the need for more studies that generate comparable data through improved
methodologies and standardized parameters, thereby supporting a unified framework that
captures location-independent parameter interactions while also clarifying the influence of
location-specific system differences.

This underscores the need for approaches that not only capture the complex interactions among
key system design parameters but also translate these interactions into quantifiable
relationships that can inform system efficiency and practical integration strategies. By
developing such a framework, it becomes possible to interpret how curtailment, storage, and
penetration collectively influence performance across different scenarios, providing a bridge
between generalizable trends and location-specific characteristics. For example, in Solomon et
al. (2019), when only solar PV is deployed, a conventional generator capacity of about 0.5% is
required at a 20% curtailment level. In contrast, Gils et al. (2017) show that the system requires
conventional generation equivalent to approximately 1% and 8% of demand at a 30%
curtailment level even while benefiting from PV-wind complementarity. Both studies
underline the necessity of seasonal storage after penetration of renewables exceeds 80%. In all
these papers, the three system parameters- curtailment, storage, and penetration- increase
simultaneously.

The common argument of the aforementioned studies is to show the need for an optimal
economic curtailment as a means of flexibility in integrating large-scale intermittent
renewables. This could potentially lead to a paradigm shift in how future grids operate in
renewable-dominated systems. Despite significant research progress in energy transition
concepts (100% renewable grids), empirical data demonstrating the complex interactions
between key design parameters—curtailment, storage, penetration, and the PV-wind mix—
remains lacking, a gap that this thesis aims to address.

2.2.4. Balancing capacity requirement

Both solar PV and wind are implemented across various system scales due to their scalability.
Therefore, the increasing share of their integration into the power system necessitates re-
evaluating the existing power infrastructure to accommodate the new requirements posed by
the recently added intermittent renewables. Due to the intermittency and variability of solar PV
and wind power, balancing supply and demand is the most challenging task (Eltawil and Zhao,
2010). With the increasing share of intermittent renewables, the risk of structural imbalances
in the power system intensifies. The widespread adoption of decentralized sources, such as
residential PV systems and prosumer participation, further exacerbates this challenge.
Consequently, maintaining key operational parameters of the electricity system within defined
limits becomes essential for stable and reliable grid performance. The two widely adopted
mechanisms for this purpose are curtailment (Gils et al., 2017) and storage (Budischak et al.,
2013). The current policy utilizes curtailment as a tool to prevent surplus and balances or back-
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up facilities (which can include non-variable renewables or fast-ramping generators,
dispatchable units) during deficits. This strategy supports the existing grid in achieving the
higher renewable penetration. However, a future renewable-dominated grid requires further
policy improvements beyond these limited enablers. The deployment of various storage
technologies has demonstrated their critical role in facilitating the energy transition by helping
to balance supply and demand. However, the potential of electrical energy storage to perform
this function has an upper limit, beyond which additional solutions are necessary to address the
remaining imbalances (Hirth and Ziegenhagen, 2015). In this context, balancing generators
(conventional power plants) are required to serve as backup when deployed RE storage fails to
balance supply and demand (Solomon, et al., 2012).

Conventional balancing generators must sustain frequent on-off cycles throughout the year.
They should possess fast ramping capabilities and a quick start, which are suitable for providing
peak loads whenever they are called up (Solomon et al., 2012). Energy dumping, specifically
up to 20%, significantly improves system performance by increasing storage utilization,
increasing penetration, and reducing the balancing requirements. Heuberger & Mac Dowell.
(2018) examine system reliability and operability during the transition to 100% renewable
energy, highlighting real-world challenges that may emerge in the process of rapid
decarbonization. For example, at about 30% curtailment, the system requires conventional
power plants to cover between 1% and 8% of the demand (Gils et al., 2017).

Understanding the complex interactions among various system design parameters, such as
balancing capacity, storage, curtailment, and the PV-wind mix, and their impacts is essential
for designing systems that can effectively address the weather-driven uncertainties.

2.2.5. PV generation forecasting

Several factors, such as resource potential (Quaschning, 2016), cost reduction (Kavlak et al.,
2018), efficiency enhancement, and improvements in manufacturing motivates the adoption of
solar PV more than any other renewable option. However, its dynamic, intermittent, and
variable nature is a bottleneck for large-scale deployment aimed at transitioning to
decarbonized grids (Hansen et al., 2019). The increased deployment of electronic devices in
response to the large-scale deployment of renewables brings a new challenge to the existing
grid, which is designed without accounting for such features. Advanced forecasting is among
the several solutions proposed to address such challenges. Such strategies allow for balancing
and managing the supply and demand, ultimately enhancing grid stability, optimizing storage
dispatch, reducing backup capacity, and increasing overall system performance (Voyant et al.,
2017).

The indeterministic nature of solar and wind generation, along with the underlying factors
affecting their output, makes accurate forecasting challenging. While solar PV and wind energy
present significant forecasting challenges, solar forecasting is particularly complex due to its
dependence on various weather variables such as cloud cover, rainfall, and temperature (Abdel-
Nasser and Mahmoud, 2019). These parameters vary widely across all time scales, from
seconds to seasons, and forecasting should also address such time scales to provide a practical
solution for grid operational management.

Depending on the time horizon, forecasting of PV generation can be grouped into four broad
categories: ultra-short-term, short-term, medium-term, and long-term horizon predictions,
(Limouni et al., 2022). Predicting solar PV on different time scales addresses various
challenges encountered at the system management level. For example, intra-hour forecasting
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can help mitigate power fluctuations and rapid changes (flicker and power ramps), enabling
power operators to manage real-time dispatch and marketing operations more effectively.
While intraday and day-ahead forecasting, which is mid-term forecasting, can improve
transmission scheduling and optimize balancing reserves (Pierro et al., 2017). Predictions that
address long-term horizons are important for long-term policy planning and decision-making,
transmission expansion, distribution expansion, and infrastructure development (Limouni et
al., 2022).

Based on the modelling approach, PV forecasting can also be divided into physical, statistical,
and artificial intelligence (Al) (Antonanzas et al., 2016). Physical forecasting techniques
utilize weather variables to build models that predict future PV generation based on physical
properties (Ye et al., 2022). The simplest method for physical forecasting involves creating a
model that transforms solar irradiance into PV power output (Huang et al., 2010). The most
widely recognized physical model, the Numerical Weather Prediction (NWP) model, employs
various thermodynamic and other differential equations to characterize the physical state and
dynamics of the atmosphere (Limouni et al., 2022).

In contrast, statistical forecasting methods do not require detailed knowledge of the complex
physical processes involved in photoelectric conversion within PV systems. Instead, they rely
on large volumes of historical data to establish functional relationships between inputs and
outputs through techniques like curve fitting and parameter estimation. The most common
models include regression analysis and autoregressive moving average (ARIMA). Formulating
a model that generalizes across various regions is relatively simple in this approach.
Nevertheless, it requires a considerable amount of historical data from weather prediction
models and significant computational power, especially for short-term forecasts (Dai et al.,
2023). In (Li et al., 2016). a different approach to day-ahead PV power forecasting was
introduced, utilizing a nonlinear regression technique called Multivariate Adaptive Regression
Splines (MARS). The study found MARS to be more straightforward and deliver more reliable
results compared to other nonlinear models like k-nearest neighbors (KNN) and Atrtificial
Neural Networks (ANN). Fig. 2.17 illustrates the various stages of a machine learning-based
forecasting model.
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Recently, sophisticated forecasting methods utilizing Artificial Intelligence (Al) have become
increasingly popular because of their remarkable capacity to learn patterns from intricate, non-
linear inputs-patterns that traditional modelling techniques often struggle to capture (Inman et
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al., 2013). Al-based forecasting has a broader impact on various sectors, and solar PV
forecasting is no different. The rapidly growing interest in the field reflects promising results
and is expected to enhance the share of PV in the energy mix. Several researchers are using the
most notable methods, such as Artificial Neural Network (ANN), Long-Short-Term Memory
(LSTM), Support Vector Machines (SVM), and other hybrid models to predict solar PV
generation on different time scales (Limouni et al., 2023). These models can be implemented
using straightforward approaches, such as Artificial Neural Networks (ANN), to achieve
reasonable accuracy in PV generation forecasting, as demonstrated in (Mellit et al., 2014) for
a 1 MW grid-connected plant in southern Italy. In that study, solar irradiance and module
temperature were used as input parameters, classified into three distinct daily conditions to
improve forecasting accuracy. Other studies, such as those conducted in (Abdel-Nasser and
Mahmoud, 2019), propose a more complicated hybrid model to forecast PV output in Aswan
and Cairo, Egypt. The LSTM's unique memory unit capability in extracting temporal patterns
was used to reduce the prediction error. Limouni et al. (2023) introduced an innovative hybrid
forecasting method that combines Long Short-Term Memory (LSTM) with Temporal
Convolutional Networks (TCN) to forecast photovoltaic (PV) power generation. This method
utilizes publicly available historical data from Alice Springs, Australia. The model takes
advantage of LSTM's strength in capturing temporal dependencies within the input data while
integrating TCN to effectively correlate input features with output results. The authors assessed
the hybrid model’s performance against standalone LSTM and TCN models across various
seasons and daytime conditions, including cloudy, clear, and intermittent scenarios. The
findings indicated that the hybrid model consistently surpassed both individual models
regarding standard error metrics.

LSTM is widely used for PV generation forecasting over different time frames, thanks to its
effective management of complex sequences and errors through its memory structure
(Hochreiter and Schmidhuber, 1997). Recently, there has been a growing emphasis on
integrating LSTM with other models, such as GRU, which provide complementary advantages
to improve forecasting accuracy and computational efficiency by addressing the shortcomings
of individual models (Negash et al., 2025). This hybrid strategy leverages LSTM’s capabilities
in recognizing temporal patterns and controlling errors. Models such as reinforcement learning
(RL) are used for grid management and optimization of storage charge and discharge(Cardo-
Miota et al., 2025).

However, a significant challenge with Al forecasting methods is the necessity for substantial
amounts of high-quality historical data. This section addresses this challenge by establishing
an empirical relationship between satellite and real data measurements.

2.3. Modelling large-scale renewable integration

The concept of achieving a 100% renewable electricity system has recently evolved from an
idealistic vision into a serious topic of scientific inquiry in the research community (Palmintier
and Webster, 2016). Extensive assessments have been carried out at the continental scale,
including North America (Becker et al., 2014), Europe (Heide et al., 2011, 2010), and Australia
(Elliston et al., 2016). Additionally, numerous national-level analyses have been performed for
countries such as Sweden (Zhong et al., 2021), Switzerland (Dujardin et al., 2017b), UK
(Ardenas et al., 2021), US (Denholm et al., 2022), South Africa (Oyewo et al., 2019), and
China (Ren et al., 2022).
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Energy modelling or planning to achieve 100% clean energy considers various resource
potential to reach an optimal resource mix that balances supply and demand. The most
commonly deployed renewables are solar and wind, along with other enabling technologies
(Denholm et al., 2022). Different approaches, such as simulation, optimization, and
commercial and open energy modelling tools, combine various renewables to quantitatively
meet demand. The advantages and disadvantages, as well as the suitability of each model for
generation expansion planning, were outlined in (Fattahi et al., 2020).

Renewable energy integration requires several approaches to analyse the technical
requirements and their impact on the energy system. Although different methods are employed,
computer tools remain the most commonly used for modelling energy systems. Notable
examples include EnergyPLAN, NEMS, MARKAL, MESSAGE, TIMES, and RETScreen,
which are among the most popular computer tools (Connolly et al., 2010). These low-carbon
energy system models aim to provide policymakers with actionable insights as they make long-
term energy transition decisions.

Although numerous energy system models have been developed, they often lack consistency
in reaching similar conclusions. For instance, as noted in (Fattahi et al., 2020) regarding the
goal of achieving 100% renewable electricity in the EU by 2050, studies vary significantly in
their estimates of the additional annual costs required for a carbon-free energy system. Some
even conclude that achieving 100% renewable power is unfeasible. These discrepancies likely
stem from differences in underlying assumptions, the selection of parameters, the level of
technological detail, and the degree of system flexibility considered in each model.

Therefore, developing an energy transition model at the national level is strongly
recommended. Such an approach offers several advantages, including access to high-resolution
data, the use of context-specific and logical assumptions, and the creation of an open and
transparent framework that ensures reproducibility and clarity of results. In this context, the
present study aims to develop an innovative modelling approach, using Eritrea as a case study
centred on solar PV and wind technologies, integrated with essential enabling technologies.

Although the data used in this study is specific to Eritrea, the developed methodology is generic
and can be quantitatively applied on a global scale.

2.4. Summary of literature review

The current literature review provides a comprehensive assessment of the technical feasibility
of large-scale PV grid integration, along with the supporting technologies that facilitate this
process. To analyse the existing knowledge advancements and highlight the opportunities and
challenges of large-scale integration, the review investigates state-of-the-art research articles,
review papers, and International Energy Agency reports. The main research activities and
directions in this topic can be categorized into the following points:

e It reviews the fundamentals of PV technology and its evolution in terms of materials
and performance, providing a detailed analysis of its modelling approaches and
technical characterization. Furthermore, it highlights how advancements in PV cell
materials and performance will play a critical role in enabling the stability, efficiency,
and scalability of future renewable-dominated power grids.

e It provides a comprehensive examination of various PV system types, including
standalone, grid-connected, and residential systems, critically analysing their
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configurations, development trajectories, and technological progress and control
strategies. The discussion also underscores the pivotal role each system plays in shaping
the next-generation energy landscape and accelerating the decarbonization of power
grids.

It reviews the most up—to—date research on energy transition concepts, encompassing
methodologies such as modelling, optimization, and simulation. The studies are
critically categorized to identify patterns and formulate emerging relationships, aiming
to lay the groundwork for unified theories that can guide the development of future
high-renewable energy grids.

It critically reviews the various enabling technologies utilized to support large-scale PV
integration, examining their individual roles, complex interdependencies, and overall
impact on system stability, flexibility, and performance. The review highlights how
these technologies, such as storage, curtailment, balancing needs, and Al based
forecasting and optimisation, collectively facilitate high-penetration PV systems'
reliable and efficient operation.

After a comprehensive analysis of the broadly categorized research topics and more detailed
aspects within each category related to this thesis's objectives, the following gaps were
identified.

Most existing approaches depend on complex optimization algorithms or proprietary
commercial tools that lack public accessibility, limiting transparency and
reproducibility of their findings. Furthermore, a key challenge in achieving 100%
renewable energy penetration lies in the uncertainty surrounding the identification of
an optimal (least-cost) technology mix, an issue that remains insufficiently addressed
in current literature. Moreover, due to the inherent variability of renewable resources
and system configurations, clear design principles for achieving full (100%) RE
integration are still lacking.

Most energy transition models — models that allow large-scale RE integration — rely
heavily on techno-economic models, which typically yield a limited set of optimal
solutions aligned with predefined economic objectives. However, the physical
interactions among key design parameters, such as PV-wind mix, curtailment, storage
requirements, renewable penetration, and balancing needs, are often overshadowed by
dominant economic datasets. Thus, the need to design a modelling approach that
captures the complex interactions among the critical system design parameters, such as
curtailment, storage, penetration, and generation mix, is clearly identified.

The review highlights a critical gap in establishing a unified theoretical framework for
future renewable-dominated grids, particularly one supported by data-driven empirical
evidence that explores the complex interaction among key system design parameters.

While the literature provides numerous studies on energy transition pathways, due to
the differences in their approach and the differences in scenarios and details explored,
a comparison between these studies is challenging. However, when comparable
methodologies are applied, consistent trends emerge in how physical parameters
interact, though location-specific climatological and demand-related factors still
introduce differences. This highlights the need for more studies that generate
comparable data through improved methodologies and standardized parameters,
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thereby supporting a unified framework that captures location-independent parameter
interactions while also clarifying the influence of location-specific system differences.

e Though residential PV integration represents a paradigm shift, with its contribution
expected to increase as conventional grids evolve to support local consumption. The
typical method used in residential PV integration is based on a customer-led control
strategy—charging home batteries during PV surplus and discharging them during
supply deficits. However, this approach presents challenges for LV networks: limited
night-time demand prevents full battery discharge, reducing available capacity for the
next day's PV surplus and causing early saturation before peak generation. This
undermines the batteries’ role in mitigating reverse power flow. Despite increasing
adoption, there is still a lack of data-driven insights on how to optimize residential PV
integration without compromising LV network power quality.

e The literature clearly articulates the significance of Al-based PV generation forecasting
and system optimization on maximizing PV integration; it also highlights a critical
challenge for extensive historical measurement data to ensure accurate predictions.
However, there is no significant progress in data pre-processing techniques to bridge
the gap.

By addressing these gaps and limitations, this study seeks to develop a distinctive approach
that establishes a functional relationship between key design parameters, facilitating the
integration of large-scale PV in the power system.
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This chapter provides a comprehensive explanation of the materials, techniques, and equipment
utilized. It presents a detailed account of both the numerical and empirical formulations
underlying the novel methodology and indicators introduced. Additionally, the scientific
methods employed for data collection and pre-processing are thoroughly described, ensuring
alignment with the thesis's overall objectives. The methods section is divided into three major
sections — large-scale PV integration, Residential PV, and PV forecasting — while providing all
necessary methodological approaches, such as experimental data collection and geographical
descriptions of study sites for each section.

3.1. PV integration modelling

In this section, all possible ways to maximize the integration of large—scale PV into the utility
grid will be explored.

3.1.1. Site description and data collection approach

The study is conducted in Eritrea, North East Africa, located in the arid and semi-arid regions
of the Sahel region in Africa. Eritrea is a small country with one time zone, located on the
western side of the Red Sea at a latitude between 12 ©22"and 18° 02’ N and a longitude between
36° 26' and 43° 13’ E (Ghebrezgabher et al., 2016). Its strategic location features a lengthy
coastline of more than 1,200 kilometres along the Red Sea, stretching from the northern border
with Sudan to the southern border with Djibouti. The country's topographical orientation is
broadly divided into three regions: the central highlands, the eastern coastal areas, and the
Western lowlands.

Eritrea possesses rich renewable energy resources, particularly in solar and wind, with
considerable technical potential (Negash et al., 2020) as shown in Fig. 3.1. In the southern
coastal regions, wind speeds can reach up to 9.5 m/s at a 10-meter height, while additional
promising wind sites exist in the central highlands (Rosen et al., 1999). Solar energy
availability is also high, with irradiance levels ranging from 5.28 to 6.55 kWh/m*day (Kbret,
2006). By harnessing the complementary nature of these resources, Eritrea can address its
energy demands with reduced reliance on extensive storage and balancing infrastructure.

Global Horizontal
Irradiation
[kWh/m2a]

P 2400

1900

Fig. 3.1. Geographical location of studied sites and spatial distribution: a) daily solar
radiation, b) wind speed resources in Eritrea
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Data for this study were sourced from multiple databases. Historical solar irradiation and wind
speed data for 25 sites were obtained from Eritrea’s Ministry of Energy and Mines but were
not used for modelling due to outdated measurements, technical gaps, and limited national
coverage. Instead, these data served as a benchmark to evaluate online datasets. A
comprehensive analysis was conducted to identify the most reliable databases that accurately
represent ground measurement data. The Photovoltaic Geographical Information System
(PVGIS) and the Global Wind Atlas (GWA) were selected as the most reliable sources to
represent actual conditions.

Potential sites for solar and wind energy were then chosen after a thorough analysis of their
complementarity and resource potential using PVGIS and GWA. Demonstrating self-balancing
through a suitable mix of geographically diverse VRE sources and various enabling tools will
create a vital foundation for designing a renewable-dominated grid. Tables 1 and 2 provide the
geographical information for the chosen sites.

Table 1. Solar sites (actual sites may be located near the listed towns and cities)

Site Map | Geographical location | Altitude Annual AC
No. (m) | electricity KWh/KWp
Araeta 1 14.69N, 40.64E 23 1687
Areza 2 14.92N, 38.57E 1949 1752
Dekemhare 3 15.07N, 39.05E 2015 1800
Digsa 4 14.99N, 39.23E 2143 1770
Himbrti 5 15.27N, 38.72E 2161 1769
Kerkebet 6 16.28N, 37.36E 384 1801
Table 2. Wind sites (actual sites may be located near the listed towns and cities)
Map | Geographical | Altitude | Roughnes | Average | Full load
Site No. location (m) s length wind hours
(z0) speed
(10 m)
AdiTekelezan 7 15.68N, 38.75E 2539 0.05 6 3106
Gizgiza 8 16.04N, 38.45E 1180 0.3 6.3 3626
Nakfa 9 16.81N,38.29E 1724 0.3 6.2 3607
Teseney 10 | 15.37N, 36.68E 950 0.1 9 4787
Qarora 11 | 17.28N, 38.54E 413 0.005 5 3575
Qohaito 12 | 14.94N, 39.42E 2671 0.2 6.4 3188

3.1.2. Solar PV and wind generation modelling

The year—long hourly time series data for solar PV generation profiles and wind speed utilized
in this study were obtained from the open-source database PVGIS, which offers comprehensive
global information on solar radiation and other weather parameters. From the various options
provided on the platform, a non-tracking, freestanding crystalline silicon PV system with
optimized slope and azimuth angles and an overall system loss of approximately 14% in the
AC power generation was selected (Huld et al., 2012).

Based on the pattern and magnitude of the measured data, estimating the wind speed for each
site is done in two steps. The wind speed obtained from PVGIS showed a similar pattern to the
measured data, whereas the magnitude resembles the GWA data. Therefore, the hourly wind
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speed from PVGIS was scaled using the mean wind speed from GWA (Davis et al., 2023). The
scaled wind speed (vy;,) was then extrapolated to the 80 m turbine hub height using the log-law
equation as follows:

ln(Z/ZO)

Uth = 1.77- ln(ZT/ZO)a

3.1)

where: v, is the wind speed at the reference height z,. and z, is the roughness length.

In estimating wind power, roughness length (commonly represented as z,) is an essential
parameter that describes how surface features, such as vegetation, buildings, and terrain, affect
wind flow near the ground. In this work z, was estimated through a combination of on-site
visual inspection and GWA to characterize barriers. However, for the sites that are not easily
accessible, GWA was the only tool used to estimate the roughness value.

Air density plays a crucial role in wind power generation, with higher density enabling more
air mass to flow through the turbine, thus boosting energy output. As air density reduces with
altitude, turbines situated at higher elevations may generate less power than those positioned
lower, even in similar wind conditions. A density correction was implemented to account for
these discrepancies, as there is a significant elevation difference between the selected sites.

The local density (p) of each site depends on temperature and altitude, and is given by:

101.29-2:0.011837+22-4.793-10~7
T

p = 3.4837

: (3.2)

where: T is temperature in kelvin, and
z is altitude above sea level in meters.

The manufacturer-provided standard power curve P4 (v), applicable at standard air density,
was adjusted by scaling the input wind speed based on the following formula:

1/3
Py = Pua (w0 (2) ) 33)
where: p,=1.225 kg/m? is the standard air density.

The wind generation capacity is evenly distributed between the six locations, with the total
generation normalized to a peak capacity of 1 MW. Similarly, the solar PV generation,
distributed equally across six sites, is normalized to a peak capacity of 1 MW, while the
annual load normalizes the load profile.

The load data for Eritrea used in this study were collected from three sources. One year of
hourly electricity consumption data was obtained from the Ministry of Energy and Mines,
Eritrea, but it was unsuitable for detailed analysis and used only as a benchmark. The main
limitations are its age (2004) and the lack of evidence that it represents actual demand without
load shedding. In the presence of load shedding, the data may reflect generator capacity rather
than true consumption patterns. Next, two additional options were explored. The second option
involved identifying publicly available load data for developed countries, for which Greece
and Denmark were chosen to represent the consumption patterns of Eritrea’s highlands and
lowlands, respectively. As a third option, a relevant hourly time series data from Ethiopia, a
neighbouring country with similar climatic and cultural characteristics to Eritrea, was obtained
for the full year. After comparing the three profiles, the Ethiopian dataset was chosen for the
analysis, as it best captured Eritrea's seasonal variability and consumption patterns.

The load time series from Ethiopia is then scaled to a near-future scenario in Eritrea, where per
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capita power consumption is projected to reach 2000 kWh, resulting in a total demand of about
16 TWh.

3.1.3. Assessing complementarity

Initially, solar PV and wind generation profiles were collected for several sites across the
country. Criteria were set to identify the potential sites to be included in the modelling. The
criteria considered were the potential of complementarity between spatially distributed sites
(PV with wind or wind with wind), proximity to load centres, and cross-border energy
exchange potential, a key for enhancing system flexibility and resilience.

The Kendall correlation coefficient (), the one adopted in this study is considered the most
suitable statistical measure to assess resource complementarity among RE sources (Ren et al.,
2019).

Let’s say (P (t1),R,(t1)), and (P(t2),R,(t2)) are two pairs of independent generation
profiles of solar PV P,(t) and wind power B, (t). The Kendall correlation coefficient is
computed according to

t = P{(B,(t1) — B, (t2)) — (P(t1) — P(¢2)) > 0} — {{(Pw(tl) — P, (t2)) — (R(tD) -
R () < 0} (3.4)
where: {P} is a probability of the occurrence of an event,

{(R,(t1) — B,(t2)) — (P.(t1) — R, (t2)) > 0} is concordance, and

{(P,(t1) — B, (£2)) — (Ps(t1) — Ps(£2)) < 0} is discordance

The values of 7 varies between 1 and -1. When the value t is positive, solar PV and wind
generation profiles exhibit similar temporal patterns. In this condition, PV and wind do not
complement each other. However, if the value 7 is negative, PV and wind power generation
are predominantly opposite temporally, allowing them to complement each other at times. The
MATLAB function corr is used to compute the correlation coefficient.

3.1.4. Mathematical modelling of PV-Wind mix and energy balance

In this thesis, a novel and transparent simulation model is developed, specifically designed to
account for several interacting parameters in a MATLAB computing environment on a high-
performance PC equipped with a Core i7 processor and 32 GB of RAM. The modelling requires
high-resolution datasets with a minimum of hourly generation profiles. Thus, all inputs, both
generation profiles (PV and wind) and the load profile, are provided at a 1-hour resolution for
the whole year. Using the hourly generation profiles and load data, a forward-running
simulation was carried out to evaluate how different combinations of solar PV and wind
generation could meet the hourly load demand.

The following assumptions were adopted in conducting the energy transition modelling, which
evaluates the technical feasibility of achieving 100% renewable energy (RE) penetration:

e No transmission constraints: Following the "copper plate” assumption, all solar PV and
wind generation sites are assumed to be connected to the main grid without any
transmission or distribution constraints.
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e Fully flexible balancing capacity: All conventional generators used for balancing
supply-demand are assumed to be fully flexible, with fast ramping capabilities.

e Worst-case scenario focus: The analysis focuses solely on supply-side options, without
incorporating demand-side management measures, which could otherwise enhance
system performance.

Based on these assumptions and by exploring various critical scenarios and sensitivities, this
modelling identifies multiple pathways and options to achieve a user-specified penetration
level by quantitatively adjusting the PV/wind mix while balancing storage needs and managing
curtailment levels. However, the main target is to identify the pathway with the optimum
combination of the different parameters to achieve 100% RE penetration with a high share of
PV, compatible with my stated objective of maximizing the share of PV in the electricity grid.

The modelling adopts a hierarchical approach, progressing from broader system-level analyses
to more detailed evaluations.

e By iteratively mixing various PV and wind generation ratios, it creates a search space.
This approach aids in identifying the ideal ratios of solar PV and wind power that
minimize the gap between generation and demand.

e Assessing different technical scenarios to facilitate the integration of large-scale RE.
These scenarios primarily concentrate on analysing the resource mix required to fulfil
electricity demand, along with the corresponding design requirements, which include a
storage model, curtailment, and balancing capacity aspects.

The generation mix at each hour of the year that quantitatively combines different mixes of
solar PV and wind power (in MW) is calculated according to:

Prew(t) =p CZ(T') (T' pPV(t) + (1 - T') pwind(t))! (35)

where: t - is atime step,
ppv(t) - is PV generation at hour ¢ relative to its peak capacity (MW/MWp),

Pwina(t) - s the wind turbine generation at time t relative to its peak capacity
(MW/MWp),

r - is the PV ratio ranges from 0 to 1 in increments of 0.1, whereas
r = 0 corresponds to 100% wind (hereafter called wind-only scenario)
r = 1 corresponds to 100% solar (hereafter called solar-only scenario)
r = 0.5 correspond to 50 PV and 50 wind (hereafter called 50-50 PV-
wind scenario),

p - is the minimum of the no-dump capacity (P,,;) (in MWp). It is the maximal
power generated by renewables without necessitating power dumping. In
other words, the generated power is fully integrated into the grid without
any curtailment or storage requirement.

a(r) — is a factor that is determined from a requirement that:
2ea(r)(r ppy(t) + (1 — 1) pyina(t)) = const , (3.6)
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and that «(0.5) = 1. By this construction, a variation of the PV ratios (r) leaves the annually
generated electric energy from renewables unchanged. This is reasonable, since a comparison
of different mixes is only relevant when the annual generation is the same for the mixes.

The two equations below determine the no-dump capacity (in MWp):

— Pload(t)
Fup = (r ppyv(O+(1=7) Pyina(t)) ' 3.7)

Pyp is a matrix of 8760 x11. Then the minimum no-dump capacity (P,,) is consequently
determined according to

ND ND ND
Pi,j Pi,j+1 Pi,11
_ | PNP . pND. .. PNP
Pnd = min l-I:l,] l+]:,]+1 l+‘1,11 (38)
ND ND ND
P8760,j P8760,j+1 P8760,11

where Py,,4(t) is the hourly load demand, and the minimum is taken first with respect to t, then
to r. This ensures that the generation B, (t) is always lower than the consumption P,,,4(t).

The net load (P,,;,), the mismatch between renewable generation and load can be computed
as:

Pmix(t) = .8 Pnd a(r) (T pPV(t) + (1 - T') pwind(t)) - Pload(t)' (39)

where B is a multiplier that enables oversizing the generation. Each multiplier B represents a
renewable-to-load energy ratio, calculated by dividing the total renewable generation by the
total load. The model generates various mismatch values (P,;): positive when renewable
generation exceeds the load, zero when generation exactly matches the load, and negative when
generation falls short. This is achieved by iteratively oversizing the generation capacity-up to
8 times the minimum no-dump capacity-while allowing unrestricted energy dumping.

A range of individual generation profiles is developed by varying the share of PV (r) from 0
to 1 in steps of 0.1, while adjusting the wind share to 1-r, to maintain a constant total renewable
capacity. Each PV-wind combination was evaluated against hourly electricity demand over the
course of a year to assess compatibility and derive the corresponding net load profile (Ppix)-
This net load profile was then used to inform the design and dispatch strategy for the proposed
energy storage system. The aim is to examine the resource and technical limitations of
achieving a high-renewable electricity system.

3.1.5. Storage modelling

When the mismatch is positive (P,,;, > 0), it indicates that the renewable energy generation
exceeds the electricity demand at that hour. In this case, the surplus energy is first stored in the
storage system, taking into account a charging efficiency (n.;). If the storage system reaches
its maximum capacity, any additional surplus energy that cannot be stored is curtailed, meaning
it is intentionally discarded to maintain system balance. Conversely, when the mismatch is
negative (P < 0), the renewable generation is insufficient to meet the electricity demand.
In such instances, the model attempts to supply the deficit by discharging energy from the
storage system, considering a discharging efficiency (n4;). If the available stored energy is
inadequate to fully cover the shortfall, it is assumed that the remaining unmet demand is
supplied by a balancing capacity reserve (such as back-up from dispatchable generators). The
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energy losses associated with storage, such as self-discharge and inefficiencies during charging
and discharging, are equally incorporated into the model by embedding them into the charging
(n.r) and discharging (n4;s) efficiencies.

3.1.5.1. Diurnal storage modelling

In this study, diurnal storage is modelled using a battery with a round-trip efficiency of 90%,
meaning that the combined charging and discharging processes retain 90% of the stored energy.
To represent this, the model assumes equal charging and discharging efficiencies, with each
efficiency set to the square root of the round-trip efficiency (¢, = Nais = V0.9) (Zucker and
Hinchliffe, 2014). While there are different storage technologies, each offers distinct
advantages and limitations, Li-ion batteries are particularly favoured in this analysis due to
their high scalability, allowing them to be easily adjusted to meet a wide range of storage
capacity needs. Furthermore, batteries can help reduce transmission and distribution losses
because they can be strategically deployed close to major load centres, thereby minimizing the
distance electricity must travel and enhancing overall system efficiency.

This study focuses on Li-ion as short-term storage. As a mature and widely adopted technology
(Technology Readiness Level 8-9), Li-ion technology offers high energy and power density,
making it ideal for both transportation and stationary uses. Competing technologies include
Lead-acid batteries, known for low cost and moderate efficiency; flow batteries, valued for
long service life, low self-discharge and fast response; and emerging options like Sodium
Sulphide (NaS), which offer high specific energy for specific applications (Kebede et al.,
2022). However, these alternatives struggle to match Li-ion’s dominance, driven by ongoing
cost reductions and scalability. In fact, the successor to short-duration Li-ion storage may
simply be longer-duration Li-ion systems. Emerging technologies face significant challenges
in competing with Li-ion’s established market presence. Rapid growth in electric vehicle
adoption continues to accelerate innovation and cost declines, which will likely benefit
stationary applications as well. For newer technologies to achieve cost parity, large-scale
deployment is essential (Denholm et al., 2023).

The storage model can be represented by

S(t - At) + min (nch Pmix(t)' Proom_d(t)) At' if Pmix = 0

S = S(t — At) + min (P“;;Et),Pmom_d(t)) At, ifP.. <0 (3.10)
vVt € |1,N|
S(0)=0
where: S(t) — is the stored energy (MWh) at time t, A t = 1 h is the time step,
N — is the number of hours in a normal year, 8760, and
Proom aAt — is the hourly remaining capacity of storage during charging and
discharging (MWh), and
min (smax —St-1), AS;"T) if P >0
Proom a(t) = ' (3.11)

: Smax :
—min (S(t - 1)'rfun ), ifPix <O
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where: S,.x — represents the maximum energy capacity of the storage system, and varies
from 0.01 to 0.8 times the average daily demand, and

Atg— denotes the minimum time needed to charge or discharge the storage fully. This is
equivalent to the energy-to-power ratio, or inversely, the maximum C-rate.

The storage model relies on the storage system's energy and power capacity. In this study, the
storage's charging and discharging capabilities are constrained by its minimum charging time
up to the full state, set at Atq,y;. The value of Atg,; was changing between 1h, 2h, 4h, 6h, 8 h
and 10h, according to the scenario. But we use Atg,; value of 6 hours (h) as a focus of my
reporting due to reasons to be clarified in the result, and literature data that considers 6h storage
is most effective in resolving the timing mismatch between midday solar PV generation and
peak electricity demand in the evening, thereby enhancing system adequacy and flexibility
(Denholm et al., 2022). Perhaps such predetermined constraints are expected to impose some
limitations on the flexibility of the model's performance. The storage model, however, was
devised to conduct simulations by iteratively adjusting the storage capacity from its minimum
to a maximum of 0.8 times the average daily demand.

3.1.5.2. Seasonal storage modelling

The effectiveness of diurnal storage decreases as the penetration increases. Typically,
penetration levels above 80-90% the role of diurnal storage diminishes as longer duration
mismatch requires another application other than diurnal storage. Seasonal storage (hydrogen)
is introduced to complement the limitations and drawbacks of diurnal storage. Hydrogen
storage is considered due to its suitability for seasonal energy shifting, high energy density,
and ability to complement large-scale PV generation. Although its technology readiness level
(TRL) ranges from 3—7 depending on the application, mature components such as electrolysers
and fuel cells are increasingly demonstrated at pilot and commercial scales, making it a viable
option for modelling long-term storage scenarios (Sebastian et al., 2023).

First, the behaviour of the excess generation after diurnal storage is studied.

The excess power (E;) at any time ¢, after the diurnal storage has reached full capacity can be
calculated as follows:

Ep(t) = Pmix(t) — min (Pmix(t)' M)' (312)

P
Nch

The deficit power B, (unmet demand) after deploying diurnal storage is (Pyix < 0)

Pu(t) = _Pmix(t) - min(_Pmix(t) ’ _ndisproom_d(t))' (313)

Seasonal storage is introduced only when the following two conditions are met after the
deployment of diurnal storage.

i. when the renewable energy penetration surpasses 80% and
ii. Excess generation or curtailment (E},) is greater or equal to 5%.

Above this threshold, further increases in penetration would require a disproportionately large
expansion of diurnal storage, which would minimize its overall effectiveness, which calls for
seasonal applications. Below these thresholds, seasonal storage is not required, as diurnal
storage alone effectively manages the system with high storage utilization.

Seasonal storage S, at each hour of the year is computed according to
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Sh(t - At) + min (nch_s Ep(t)ﬂ Proom_s(t)) At, if Pmix =0

Sp(t) = (RO _ (3.14)
S, (t — At) — min ; , —Poom (D) ) At if Py <O
dis_s -
where: S,.«, — 1S the maximum capacity of the hydrogen storage (seasonal storage),
Nen_s — IS the electrolyser efficiency,
nais.s — 1S fuel cell efficiency, and
B.oom s — IS the available capacity at each hour and is computed according to:
. Smax .
min (Smaxh - Sh (t - 1), m) , if Pmix =0
Proomfs(t) = s - (3.15)
—min (Sh(t — 1), —mah ) ifP.. <0
Atgyy_disch

where: Atg, o~ denotes the charging hours for the electrolyser
Ateg giscn - denotes the discharging hours of the fuel cell, respectively.

The curtailed power after both storage technologies are deployed (Py,) attime t is computed
according:

P room_s ®)

ch_ s

Pypi(t) = E,(t) — min (Ep(t), ) if Py = 0 (3.16)

The unmet demand (Py)

The charging (Chy,se s) and discharging(Dischyys ) 10ss is computed according to

. Proom S(t)
ChlosefS(t) = (1 - nchis) min (Ep(t)' Th_s)’ (317)
The unmet demand (P,)
Puf(t) = Pu(t) - mln(Rl(t) ’ _ndis_sproom_s (t))' if Pmix <0 (318)
DiSChlose S(t) = (7) — — 1) <min (:;u(t) ’ Proom s(t))> (319)
- dis_s dis_s -

Table 3 presents the detailed specification and the parameters used in each storage technology.

Table 3. Technical properties of storage technologies

Storage Storage Storage Charging/ | Roundtrip | Lifetime | Source
application | technology | (average daily | discharging | efficiency | (calendar
demand*) hours (hrs) | (%) years)

Short-term | Li-ion 0.16 6 90 15 (Zucker

(Diurnal and

storage) Hinchliffe,
2014)

Long-term | Hydrogen | 10 72/96 40 18 (Guerra et

(Seasonal al., 2020b)

storage)

*1 average daily demand is equivalent to 43.8 GWh
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3.1.6. System performance indicators

This study explores the interrelated dynamics of future renewable energy systems by assessing
various system parameters, including renewable penetration, curtailment, PV-wind mix and
balancing capacity requirements by linking with newly introduced system used index (a proxy
of system efficiency). Through this analysis, the study offers valuable insights into how varying
energy mixes influence overall system performance, operational resilience, and the integration
of variable renewable resources. By quantifying the complex interaction between the various
design parameters, the study addresses the main objective of the thesis.

Renewable penetration (P) represents the net fraction of total electricity demand met by solar
PV and wind, accounting for storage losses and curtailed energy.
p = Lfmdt (3.20)

% Pload At’

where: P.,,(t) —is the total consumed RE that is supplied to the grid after removing the
losses and dumped part:

Pcon (t) = Prew(t) - (Pdpf(t) + ChlosefS(t) + DiSChlosefS(t))a (321)

This parameter includes both energy losses resulting from storage inefficiencies and power that
is directly wasted due to excess generation.

The unmet demand (B,,,) can be computed:

Pum(t) = _Pmix (t) - min(_Pmix (t) ’ _ndisProom(t))' (322)
The balancing capacity is then computed as the maximum of the unmet demand divided by
peak load. The model is designed to allocate the hourly balancing capacity required to meet the
year-round hourly power deficit. Quantifying the requirement for balancing capacity holds
immense importance in the design of such a system. While storage technologies provide
balancing in both negative and positive power mismatches, balancing generators are utilized
only in the case of negative power mismatches.

This study presents a novel multi-functional approach to optimize the use of RE across various
mixing ratios. It is designed with an innovative framework aimed at achieving a more thorough
understanding of interactions among these factors. New metrics, such as storage utilization and
the system use index (a proxy for system efficiency), are introduced to assess the impact of
different tools. Storage utilization (SU) is defined as the ratio of annual energy delivered by
storage to the total storage capacity. SU can be interpreted as a number of full battery cycles
per year.

—X(S®)-S(t-AD)

Smax

SU = if S(t) < S(t — At) (3.23)

System-use index (SUI) is computed as:

SUIl=SU X kxmxXu (3.24)

where: k, m and u —are calculated by dividing annual energy discharge by the total consumed
RE, average charging power by power capacity (PC), and total consumed RE by total
RE generation, respectively:

Kk = %‘Sf(t;m if (S(t) <S(t—At) (3.25)
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m = W} if (S(t) > S(t — At) (3.26)
. —_ Smax
where: PC = “max/ At
_ ZPuseful
U= T (3.27)

The proposed approach enables me to create a novel and improved 3D visualization of the
intricate relationships among these various interactive factors, providing a more
comprehensive understanding of their interactions. The created index gives an arbitrary index
that can compare the system performance in relation to used storage characteristics, curtailment
and storage energy delivery.

This study examines the impact of complementarity on system performance by creating various
solar and wind mixes, from which PV ratios of 0%, 50%, and 100% of the total renewable
generation, representing wind-only, 50-50 wind-solar, and solar-only scenarios, respectively,
were selected to represent the extreme and median conditions of their complementarity

Technoeconomic analysis

In this study preliminary economic analysis based on unit cost analysis is conducted to validate
the techno-economic suitability of the proposed approach. The economic requirements of three
conditions were investigated: first, satisfying demand with over generation and curtailment
without storage, second, satisfying demand with storage and over generation/curtailment, and
third, the optimal mix scenario. Based on recent literature data (Bloomberg, 2023), the
difference in lifetimes between the batteries and the PV-wind systems was accounted by
assuming the battery lifetime to be roughly half that of the PV and wind plants. Over the 30-
year project horizon, this results in one full battery replacement. This approach allows the
preliminary unit-cost estimates to incorporate the effect of replacement cycles and provide
indicative cost values for the configurations. Although a fully annualized cost (i.e., spreading
the total cost evenly over each year of operation) was not calculated, the inclusion of
replacement cycles ensures that our cost estimates are more realistic than using a single
installation cost for each technology (PV, wind, and storage). The main objective of the
economic analysis is to demonstrate the general applicability and techno-economic viability of
the proposed approach. Some assumptions, such as land availability under government
ownership (as in Eritrea), were made. The study primarily focuses on exploring the complex
technical interactions among design parameters, forming a foundation for future
comprehensive modeling that will integrate detailed economic, transmission, and policy
constraints.

3.2. Residential PV integration

Large-scale PV integration requires coordinated efforts across utility-scale PV plants and
distributed residential PV systems. Residential PV has become a vital part of distributed
generation, as buildings, which were once mainly consumers of electricity, now also generate
significant power due to the adoption of rooftop PV systems.

The data sets employed in the study are detailed in Table 1. The simulation begins by selecting
100 MWp of residential PV and 120 MWp of wind that can be integrated to the grid without
storage or curtailment requirements, with the ultimate goal of maximizing the direct use of the
generated electricity.
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3.2.1. PV feed-in limit

PV injection is managed by installing inverters with capacities smaller than the PV peak output.
Fig. 3.2 shows the simplified algorithm employed, which applies feed-in limit after a certain
PV injection level to avoid grid congestion during high PV generation. When PV output is
below this limit, all generated electricity is fed into the distribution network for local use. If
PV output exceeds the limit, the surplus is stored in a battery, and any excess beyond the
battery’s capacity is curtailed.
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Fig. 3.2. An illustrative diagram showing the PV-battery dispatch strategy in the proposed
method, with a feed-in limit applied (for June 1%)

3.2.2. PV-battery dispatch strategy

In the simulation, a fixed battery capacity (kwWh) is installed behind the meter for each installed
PV unit (kWp). Placing the battery behind the meter provides two main benefits:

1) it avoids the need for a separate DC/AC inverter and
2) reduces network congestion by storing energy on the consumer side.

In practice, residential loads are also behind the meter, and the difference between local PV
generation and local demand is typically subject to the feed-in limit. However, we only have
aggregated load data and lack information on individual residential loads, which can also differ
greatly from one house to another. Moreover, during peak PV production periods, residential
load tends to be low, so analysing the scenario shown in Fig. 3.3 is justified.

The battery storage is charged when PV generation is above the predetermined feed-in limit.
The storage is then discharged to the LV network during night hours equally at constant rate
and a fresh storage is ready every morning. This strategy solves the limitations discussed in
(Procopiou et al., 2019; Ruf, 2018) which are based on customer-let control strategy, that is
charging home batteries during PV surplus periods and discharging them during supply
deficits. These limitations arise because home batteries cannot fully discharge overnight due to
lower night-time residential demand. Consequently, there is less storage available to store
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surplus PV generation for the next day and reach their full state of charge early, before high
PV generation occurs, when batteries are most needed to reduce reverse power flow.
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Fig. 3.3. Simplified schematic illustration detailing the employed energy flow mechanism
In accordance with thesis objective of enhancing residential PV in the power mix, the following
dispatch algorithms are computed at each time step, at the distribution side of the network.
The power that is directly fed (P;,;) to the grid at a time, ¢ is:

Pinj(£) = min ( Pyen(©), Piimit), (3.28)
where: P, — is the generated PV power at time ¢ and
Pjimit — IS the injection limit.
Based on the generated PV ( F,.,) the battery energy storage (BES) is charged at that particular

hour until it reaches its maximum capacity. Here, the battery round-trip efficiency is assumed
to be 90% (Zucker and Hinchliffe, 2014b), with equal charging and discharging efficiencies

(Men = Nais = V0.9).
BES(t) = BES(t — 1) + min (7¢, (Pexcess(8), Proom (D)) At — Pparinj(£),  (3.29)
where: P, ...s — IS the excess generation above the feed-in limit
Prxcess(t) = Poen(t) — Plimit » (3.30)

and

BESax— BES(t—1
Proon (£) = Fomac 2R (331)

At — is time step of the simulation,

Ppatinj— denotes the constant night-time battery discharge (battery injection to the
grid) from  18:00 to 7:00, calculated by dividing the total daily stored
energy by total night-time hours, accounting for n4;s, and
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BES,,,.x — IS battery rated capacity.
Consequently, curtailed part of the PV becomes

P t
PPV,cur(t) = Pexcess(t) - room( )/Tlch (3-32)

After integrating and managing the PV generation in distribution side of the network wind
energy is added in the HV side of the network. The total renewable energy generation (TRE)
in the power system is then determined by:

TRE(t) = Ppi(t) + Poat,inj(t) + Pwina(t) (3.33)
Finally, the energy balance between generation and demand (Pyer) iS checked at each time

step (hour). When TRE exceeds demand at that specific hour the excess energy is curtailed
from wind generation

Pwind‘,cur(t) = TRE(t) - Pdem(t)v if TRE(t) > Pdem(t) (334)
and if TRE is less than demand the deficit is met by balancing gen sets (Pg.).
PBCFt) = Pon(t) — TRE(t), if TRE(t) < Pgom(t) (3.35)

The system performance is then accessed using two distinct performance indicators called
penetration (Pen) and curtailment:

— LiPusea(ti)
Pen = YiPdem(t) (3.36)
where:
Pused(t) = Pdem(t) — Pgc (337)

The total curtailed energy is then computed by

Zi PPV,cur (ti) +Pwind,cur (ti)
X TRE(t;) ’ (3.38)

3.2.3. Experimental setup for power quality analysis

The experiment was conducted at the Hungarian University of Agriculture and Life Sciences,
Szent Istvan Campus (coordinates 47°35'40.7"N and 19°21'42.3"E), at the grid-connected PV
system located in front of the Aula building. Measurements were taken at the point of common
coupling, where the transparent glass modules of the monocrystalline Si connected to the grid
through the SolarEdge inverter. Connectors were installed to safely facilitate measurements
using a standard power quality analyser, the Wally ‘A’ Power Quality Analyzer. The PV
system, with a total capacity of 3.3 kW, is installed at an inclination of 40° and an azimuth of
10°, west to south. The specification of the PV system and inverter is given in Appendix A7.
Fig. 3.4 and Fig. 3.5 show the complete set of measurement setups. The power quality
measurement analyser records various power quality parameters, including current and voltage
total harmonic distortion (Thdl and ThdV), interharmonic distortion, voltage deviation, and
voltage unbalance, and special events for voltage and current. Measurements were taken at
various time scales from milliseconds to hours.
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Two sets of Transparent glass PV modules with total 3.3 kW capacity

Fig. 3.4. A 3.3 kW transparent glass PV module at the entrance of the Aula building

Measurements were conducted on October 12 and 13, 2025, under partly sunny conditions.
These dates were deliberately selected to assess the impact of varying weather conditions on
power quality. On October 12, data collection occurred between 10:30 a.m. and 5:40 p.m.,
while on October 13, measurements were taken from 7:30 a.m. to 5:15 p.m.
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Fig. 3.5. Power quality analyser measurement setup

3.3. PV power generation forecasting

Designing a power system with a high share of renewables is inherently challenging due to the
variability and uncertainty of weather conditions. System design typically relies on historical
weather data, which can differ significantly across timescales, ranging from minutes to seasons
and even across years. As a result, systems optimized on past data may underperform under
actual operating conditions. To mitigate this, system design based on historical data should be
complemented by real-time control and forecasting strategies. However, accurate forecasting
remains difficult due to the stochastic nature of key influencing factors. Weather variables such
as cloud cover, temperature, and rainfall have complex, non-linear impacts on PV output,
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complicating the prediction process. Fig. 3.6 provides the general schematic diagram of the
methodological approach followed in this section.
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Fig. 3.6. Graphical abstract of the proposed methodological approach followed

3.3.1. Data collection and reprocessing techniques

Full-year measured data were collected from the Areza site (see Table 1 for details),
complemented by satellite-based PVGIS data, which are readily available online. Areza is a
site where a 1.25 MWp PV plant is installed. The PV-based microgrid is powered by 1.25
MWp of PV, battery storage, and diesel generators with a sophisticated SCADA-based control
system. The microgrid generates sufficient power to serve the local rural villagers’ energy
needs. The study utilizes 17 years of hourly weather data from the PVGIS data assimilation
platform, along with one year of measured data from the actual plant, to develop a forecasting
model for predicting hours ahead of PV power generation. The PVGIS dataset offers extensive
data with multiple features, including historical PV generation, reflected irradiance, direct
irradiance, diffuse irradiance, temperature, wind speed, and sun angle. However, the measured
data is limited to one year and consists of only two features (historical PV generation, global
solar irradiation), which restricts the forecasting to the available features in the measured data.
Two engineered features were introduced to help the models capture seasonal and time-related
patterns: the sine and cosine transformations of the timestamp.

Model accuracy largely depends on the quality of training and testing data. Outliers and missing
values, often resulting from measurement errors or equipment failures, can significantly
degrade forecasting accuracy. To address this, all outliers and missing values were removed.
A key challenge was data sparsity, especially in solar generation data, where over 50% of
values are null due to diurnal cycles. These night-time nulls distort training, so only daytime
data was used. Additionally, since features had different units and magnitudes, normalization
was essential to avoid bias. All features were scaled to X,, in range of 0 to 1 using the MinMax
Scaler, computed as:
X—Xmin

Xp = Fa—— (3.39)

where:
X —the observed value

Xmin — the minimum of the data
Xmax — 1S the max of the data
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3.3.2. Model development

This study explores several deep learning models for accurate PV power forecasting, including
LSTM, GRU, and a hybrid LSTM-GRU network as base models. LSTM and GRU are widely
used in time-series forecasting due to their ability to retain temporal patterns and model
sequential dependencies. The LSTM-GRU hybrid enhances performance on complex time
series by combining the strengths of both architectures. The forecasting accuracy of these base
models is then evaluated against traditional approaches like Extreme Gradient Boosting
(XGBoost) and SARIMAX, as well as advanced models such as CNN, TCN, and transformers.

LSTM networks are particularly well-suited for time-series analysis, as they can effectively
model the intricate dependencies between successive data points and depth-related variations.
This capability makes them ideal for capturing complex temporal patterns in solar irradiance
data. The model structure, key equations, and operational principles are given in (Limouni et
al., 2023). GRU is a streamlined version of LSTM with fewer gates and parameters. Despite
its simpler structure, it effectively captures temporal dependencies, making it well-suited for
time-series tasks like PV forecasting. The model architecture and its working principle, along
with the model equations, are given in (Elmousaid et al., 2024).

Then, a hybrid LSTM-GRU model is developed that combines the advantages of both
architectures to effectively learn complex temporal patterns. The model begins with three
LSTM layers (256, 128, 64 units) for extracting high-level features, followed by reshaping. It
then uses three GRU layers (64, 32, 16 units) to further refine the temporal information, and
concludes with a Dense layer with linear activation for both uni-step and multi-step forecasting.

The base case model is then evaluated against different widely used solar PV forecasting
models, such as XGBoost and SARIAMX, due to their ability to handle missing data and non-
linear relationships efficiently, and advanced forecasting architectures such as convolutional
neural networks (CNNs) and informer-based architectures which have significantly advanced
time series forecasting tasks, including solar PV power prediction. Detailed descriptions of the
model architectures and formulations can be found in (Krizhevsky et al., 2017) for CNNs, (Bai
et al., 2018) for Temporal Convolutional Networks (TCNs), and (Zhou et al., 2021) for
informers. Hybrid models such as CNN-LSTM, CNN-GRU, and TCN-LSTM are constructed
to benefit from their combined features.

3.3.3. Modified Z-score transformation

The Z-score transformation is widely applied across disciplines such as medicine (Andrade,
2021), (Wang et al., 2024), signal processing (Yaro et al., 2023), and time series analysis —
especially in solar radiation studies (Chauhan, 2017) — due to its ability to highlight patterns
and detect outliers without biasing results toward features with larger magnitudes. Forecasting
models require a large quantity of data to predict the target variable accurately. However, in
our case, the scarcity of high-quality and sufficiently extensive actual PV generation data limits
prediction accuracy. Data shortages, inconsistencies, and incompleteness are among the main
barriers to achieving high prediction accuracy. To address this, data-driven models were trained
using 17 years of satellite data to predict actual PV generation, with one year of test data from
the actual PV site. Since, the distribution of the two data sets were not uniform, a modified Z-
score transformation was applied to mitigate the distribution-related errors. The modified
version of the Z-score transformation aligns satellite-derived solar data with ground-based
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measurements by linking the mean and standard deviation of both datasets. To address the issue
of negative values at low generation levels, the entire data set was shifted by a small positive
constant. This modified approach is designed to reduce distribution-related error.

For each value in satellite-derived data, we find the standard normal form using the Z-score
transformation (z).

7 = Dsati” Wsat (3.40)

Osat

The rescaled value (Pyg, ;) is computed to match the distribution of the measured data using:
Ps,at,i = Z * Omeas T Wmeas (341)

where:
P4 — satellite-derived hourly PV generation

Wsqr — Mean of the satellite-derived data,
0sq¢ — Standard deviation of the satellite-derived data,
Wmeas — Mean of the measured data,

Omeas — Standard deviation of the measured data.

3.3.4. Evaluation of model performance

In this study, the forecasting model’s accuracy was evaluated using four distinct metrics: Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE), and R-
squared (R?) score, as given below. These metrics are widely utilized in PV forecasting studies

to capture different dimensions of model accuracy and reliability.

The equations for these metrics are given as follows:

1 2
RMSE = \/;Z?zl(Ppred,i - Pmeas,i) (3-42)
1
MAE = n ?=1|Ppred,i - Pmeas,il (3-43)
1
MBE = n ?=1(Ppred,i - Pmeas,i) (3-44)
n _ )2
R2—=1— 21=1(Ppred,1 Pmeas.l)2 (345)
Z?=1(Ppred,i_ Pmean)
where:
Pyrea,i 1S the predicted value at time |,

Ppeas,i 1s the measured value at time |,
n is the total number of observations, and
Pean is the mean of the measured data.

The forecasting model was optimized using the Adam algorithm with a learning rate of 0.0005.
A window size of 12 proved most effective during training trials, and the model was trained
for 150 epochs to ensure comprehensive learning and convergence. Table 4 summarizes the
performance of the different forecasting scenarios developed, along with the different input
and output parameters utilized in each scenario.
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Table 4. The different scenarios analysed and the corresponding meteorological variables used

Reason/ Advantage (+) and

Training data

Test data

derived data)

to train models
(+) offer long-term coverage

meteorological data,
season, and periodic

Scenario disadvantage (-) Input +output Input +output
Scenario 1 (+) Availability of sufficient | Satellite-derived PV | Satellite-derived
(Based on publicly accessible satellite- | generation, Satellite- | PV generation,
satellite- derived meteorological data | derived Satellite-derived

meteorological
data, season and

actual data)

meteorological and PV

periodic encoding

(+) Help define the encoding periodic encoding
hyperparameter baseline + +
(_) fail to Capture Sate“ite.'derived PV Satenite'-deriVEd PV
microclimatic effects such | generation generation,
as local shading, soiling, or
aerosol
Scenario 2 (+) Leverage the advantages | Satellite-derived PV | Actual PV
(Satellite- of more reliable actual PV | generation, satellite- | generation, actual
derived data | generation and publicly derived direct solar irradiance,
+ available satellite-derived irradiance data, periodic encoding

+

actual data)

generation data by
developing an empirical
relationship

+
actual PV generation

without data | generation data + actual PV
transformatio | (-) Ground-based Satellite-derived PV | generation
n meteorological and PV generation

generation data are limited

in duration and coverage

(-) data distribution

mismatch
Scenario 3 (+) Leverage the advantages | Transformed Actual PV
(Satellite- of more reliable actual PV | satellite-derived PV | generation, actual
derived data | generation and publicly generation and direct | solar irradiance,

+ available satellite-derived solar irradiation, periodic encoding

transformed | meteorological and PV periodic encoding +

actual PV
generation

3.3.5. Reinforcement Learning

Reinforcement Learning (RL) is a rapidly evolving area of machine learning that provides a
solid framework for addressing dynamic optimization and control challenges. Unlike
conventional supervised learning, which depends on labelled datasets to guide decisions, RL
allows autonomous agents to learn the best strategies through direct interaction with their
environment. This process involves a feedback loop: the agent chooses actions, observes the
resulting state changes, and receives numerical rewards that encourage good behaviours and
discourage poor ones. Over time, this fosters adaptive learning, enabling RL agents to operate
effectively in complex, uncertain systems and improve their performance through experience
(Cardo-Miota et al., 2025).
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In this research, RL is used to optimize battery dispatch in PV integration. The agent learns to
manage energy flows-charging, discharging, and curtailment-based on hourly PV and wind
generation and load demand. The problem is modelled as a Markov Decision Process (MDP),
where the agent observes the current battery state, renewable supply, and load, then selects a
continuous action representing the dispatch decision. The environment updates the battery state
and calculates the reward, reflecting the balance between served load, curtailment, and energy
losses.

The goal of the RL agent is to maximize the total reward over time, which aligns with
increasing energy delivery efficiency while reducing curtailment and unmet demand. This
approach enables the agent to develop a control policy that adapts to changing supply and
demand, thereby enhancing system reliability and increasing the penetration of renewable
energy. This well-established RL algorithm was customized, as shown in Fig. 3.7, to meet the
specific design requirements of the new methodological approach presented in Section 3.1, and
then applied to validate it.

" RL agent
Action: A,
SaSte Reward (charge/discharge)
t R,
t

1

:_ R, Environment
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1 e Battery SoC
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Fig. 3.7. Reinforcement learning system optimization algorithm

59



4. RESULTS AND DISCUSSION

This chapter presents the detailed results of the newly developed methodological framework
for integrating large-scale PV, which aligns with the thesis objective. It highlights the insights
gained through the application of the novel algorithm and the new performance indices
introduced in the study, emphasizing their role in revealing the complex interdependencies
among key system parameters. Particular attention is also given to the contribution of
residential PV systems in enhancing large-scale PV integration, supported by results generated
from a dedicated algorithm designed for this purpose. Furthermore, the chapter examines the
significance of PV power forecasting and optimization. Each section offers findings that
directly or indirectly contributes to increasing the penetration of PV in modern power systems.
Finally, the chapter concludes with a summary of the key scientific findings from this thesis.

4.1. Large-scale PV integration

This section examines the impact of the various enabling technologies on system performance
by creating various solar and wind mix, from which PV ratio of 0%, 50%, and 100% of the
total renewable generation, representing wind-only, 50-50 PV-wind, and solar-only scenarios,
respectively, were selected to represent the extreme and median conditions of their
complementarity.

4.1.1. Generation and load variability

Solar energy in Eritrea demonstrates consistent availability throughout the year, making it a
highly reliable resource for power generation, as depicted in Fig. 4.1. In contrast, wind energy
exhibits strong seasonal variation due to the influence of two dominant monsoon winds: the
Northeast Monsoon (November—March), which affects the southern coastal regions, and the
Southwest Monsoon (May-September), impacting the entire length of the Red Sea (Rosen et
al., 1999). The spatial and temporal complementarity between solar and wind resources
presents a strategic opportunity for hybrid renewable systems. Deploying wind farms across
geographically diverse locations-such as the central highlands and northern coastline-can
complement each other, thereby smoothing overall power generation. Moreover, integrating
wind with PV significantly reduces the dependence on large-scale energy storage. A detailed
analysis of the data reveals that the correlation between solar PV and wind increases (becomes
more negative) as the temporal resolution shifts from hourly to daily, further supporting their
complementary relationship in hybrid system design.

Fig. 4.1 illustrates the daily averages and full data distribution (with the shaded region
representing the minimum to maximum range) for solar PV, wind (as normalized to peak
hourly values), and electricity demand (normalized to total demand). At the daily time scale,
wind generation exhibits significant variability, peaking in June at a level approximately 6.5
times higher than its minimum in November. However, the aggregated wind output never drops
to zero due to the combined contribution of multiple geographically dispersed wind sites. In
contrast, solar generation in Eritrea displays a relatively steady daily pattern with minor
seasonal fluctuations. The central highlands, in particular, maintain stable solar potential year-
round, with only a modest dip in output during the rainy months of July and August. Electricity
demand, meanwhile, exhibits less variability and remains more stable compared to both solar
and wind generation.
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Fig. 4.1. Aggregated national generation profiles of solar PV, wind, and load

The diurnal profile of solar PV generation, depicted in Fig. 4.2, aligns closely with the natural
daylight cycle. In contrast, wind generation demonstrates the most significant variability over
the course of the day when compared to both solar PV output and electricity demand. While
the daily demand pattern is smoother than the fluctuations in solar PV and wind (represented
by the light coral shading in Fig. 4.2), it still exhibits a broadly similar trend with solar PV and
wind generation. Demand steadily increases from early morning to midday, experiences a
slight dip in the afternoon, and then peaks around 7 p.m., a period when wind output remains
relatively strong. This pattern indicates that residential consumption is the primary contributor
to overall electricity demand. Notably, the figure demonstrates that solar PV generation, wind
power, and demand generally exhibit similar diurnal trends. Such synchronicity is
advantageous, as it underscores the potential of renewable resources to substitute fuel-based
power generation. However, uncertainties associated with the use of proxy datasets cannot be
fully avoided. According to Negash et al. (2021), actual measured wind speeds are higher than
those provided by the GWA dataset, with the discrepancy being more pronounced over rough
surface topographies. Consequently, the results reported in this study can be considered
conservative, as measured values would yield higher estimates than GWA-based data.
Similarly, measured and PVGIS-derived solar radiation profiles show consistent patterns and
magnitudes (Ghebrezgabher et al., 2016). Likewise, although the use of Ethiopian data is
justified by its close similarity to Eritrea in terms of climate, cultural practices, and seasonal
weather and consumption patterns, some degree of uncertainty may still arise from regional
and contextual disparities.

Evaluating a range of scenarios and technology combinations could help identify practical
solutions to meet electricity needs. However, given the mismatch between renewable output
and demand, significant solar PV and wind capacity must be installed, often leading to some
level of surplus generation.
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Fig. 4.2. Diurnal variability of aggregated generation (PV and wind) and demand

The figure displays the full data distribution (min-max), InterQuartileRank (25" to 75™
percentile of the data), and median values (wind and PV normalized to peak generation and
demand normalized to annual values).

Understanding the mismatch between VRE generation and demand across different time scales
is a fundamental requirement for designing and sizing energy storage solutions. Several studies
have used net load to model storage requirements, highlighting its role in balancing grid
operations (Ardenas et al., 2021; Dujardin et al., 2017a; Heide et al., 2011b). In a similar
approach, the analysis begins with understanding the mismatch between different PV-wind
mixes and demand. This analysis provides insights into net load variability and structural
patterns under different mixing ratios. Fig. 4.3a illustrates how mismatch power varies with
changes in the PV fraction when RE-to-load ratio of 1 is applied. The vertical axis represents
the frequency, indicating the number of hours within each 100 MW mismatch interval. The
frequency of positive mismatch (VRE greater than load) increases with decreasing PV fraction.
However, the magnitude of the mismatch capacity decreases with the decreasing PV fraction.
In contrast, both the magnitude and frequency of the negative mismatch (VRE less than load)
increase with increasing PV fraction. The optimal system should have a maximum frequency
at a minimum mismatch capacity (MW); however, as shown in Figure 4.3a, the optimal
mismatch has a lower frequency as depicted by the valley between the two peaks, particularly
at solar-dominated mixes.
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Fig. 4.3. Variable generation mismatch as a function: a) PV fraction and frequency,
b) diurnal-hourly average values

Fig. 4.3a does not give the complete picture of the netload variability in terms of time scale;
therefore, understanding the time series and its time distribution in diurnal and seasonal scales
is crucial for balancing supply and demand. Fig. 4.3b illustrates the diurnal variability of the
net load (mismatch) for the 50-50 PV-wind scenario. As shown in Fig. 4.3a, the mismatch is
positive during the daytime, specifically from 8:00 AM to 7:00 PM, due to the diurnal cycle of
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solar generation. Although the RE-to-load ratio is 1, there is an hourly mismatch between
generation and demand. Furthermore, there is a complete absence of solar PV at night, resulting
in a negative mismatch. Solar-dominated mixes experience higher positive mismatch during
the daytime and face shortages at night. In contrast, the mismatch in wind-only and wind-
dominated mixes is lower and randomly distributed throughout the daytime. Such a daily
mismatch can be addressed using short-term battery storage, which can store and deliver energy
at high density for a few hours. Even though the daily mismatch is resolved, a seasonal
variability issue may remain unaddressed. With the same RE-to-load ratio 1, overgeneration
occurs during the summer, characterized by spikes in net load in June and July (Fig. A6).
Conversely, significant generation deficits are observed throughout much of the spring. In the
remaining seasons, however, variability tends to fluctuate on a monthly basis rather than across
entire seasons. Therefore, understanding these variabilities is crucial for designing a system
that addresses all the uncertainties of a VRE-dominated grid. Our approach utilizes various
enabling tools, including diurnal storage, seasonal storage, curtailment, and balancing
generators, to balance year-round hourly supply and demand. The following section explores
how different PV-wind mixes align with electricity demand and their influence on achieving
high levels of VRE penetration.

Table 5 outlines the key components of selected renewable energy scenarios designed to study
system design issues and associated performance. Though results for a number of storage hours
are produced, due to the similarity of the results and the performance superiority observed at
6h, the discussion is made mainly using 6h of storage.

Table 5. Description of the different scenarios analysed

Scenarios Names | Solar share (%) | Wind share (%) | Hours of storage | Storage
technology
Solar only 100 0 1,2,4,6,8,10 Li-ion battery
50-50 scenario 50 50 1,2,4,6,8,10 Li-ion battery
Wind only 0 100 1,2,4,6,8,10 Li-ion battery

4.1.2. Renewable use without storage

Fig. 4.4a illustrates the required no-dump capacity across the full range of PV-wind mix ratios
under a strict no-curtailment condition. As shown, the lowest no-dump capacity occurs in the
wind-only scenario (100% wind), while the highest is observed in the 100% PV ratio (solar-
only scenario). This variation is primarily driven by differences in resource profiles, total
energy output, and their alignment with electricity demand. The associated no-dump
penetration results, presented in Fig.4.4b, highlight that penetration levels depend on both the
resource quality and capacity. Wind energy, characterized by more evenly distributed
generation over time and a higher full load hour, achieves greater penetration than solar, even
with a smaller capacity. As the share of solar energy increases, the complementarity between
solar and wind energy also increases, consequently enhancing their matching with demand and
overall penetration, which peaks at around a 30% PV mix. Beyond this point, penetration
begins to decline due to the increasing lesser time distribution of solar generation. Overall,
these findings suggest that maximizing renewable energy use with minimal curtailment and
storage is feasible when complementarity between sources is optimized. However, accurately
quantifying the extent of this benefit remains difficult due to the interplay of multiple
influencing factors. The data so far reveals three key insights:
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1) asignificant increase in RE penetration is only possible when supported by curtailment
and storage strategies, as seen in other studies (Solomon et al., 2010).

2) resource complementarity can mitigate reliance on both tools, aligning with findings in
(Heide et al., 20114, 2010); and

3) Eritrea’s strong renewable resource potential may offer a more favourable outcome
compared to regions with similar conditions (Shaner et al., 2018; Solomon et al., 2016).
To better understand the role of curtailment and other enabling tools, | examine the
scenario of higher penetration using curtailment as the sole mechanism.
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Fig. 4.4. No dump: a) capacity, b) penetration as function of PV ratio

Note that all discussions, including figures in the following sections, refer to scenarios where
penetration exceeds no-dump capacity, requiring either curtailment, storage, or a combination
of both. Fig. 4.5 shows the penetration and curtailment for different PV-wind mix when no
storage is employed. As can be seen from the figure, for all PV ratios increase in system size
leads to a simultaneous increase of VRE penetration and curtailment. But the magnitude of the
impact depends on the mix. Wind dominated mix have achieved higher penetration for all RE
to load ratios and thus experienced lower curtailment. However, as the PV ratio increases the
corresponding VRE penetration gradually decreases and the curtailment starts to dominate,
showing that role of curtailment is dependent on the PV-wind mix. The change in the observed
penetration and curtailment remains insignificant when PV ratio was lower than 40% share,
the amount above which pronounced difference emerges as the ratio increases to 100%. For
example, at (RE to load ratio value of 1.1) a penetration of 79% and 47% is achieved for wind
and solar only scenarios, respectively, where the corresponding curtailment were 28% and
58%, respectively. The maximum penetration, even though the gain over the wind only
scenario was small, is reached at around 20 to 25 % of PV ratio when the curtailment remains
less than 30%. The above result clearly shows the impact of time-distribution of the solar PV
and wind output in matching the local electricity demand. Wind only and wind dominated
scenarios enjoys high use of RE at lower curtailment for almost all cases of system size
increase. However, pushing to higher penetration will need massive curtailment even for the
wind dominated system, indicating the need for storage under all PV-wind mix condition. For
example, a penetration of 90% can be achieved by dumping around 50% of the generation at
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high RE to load ratio of about 1.87. Note that previous studies show that neither massive nor
low curtailment leads to technoeconomic benefit (Perez et al., 2019) , thus the best solution is
to understand the interlink between various factors to estimate the acceptable range during
system design.
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Fig. 4.6a illustrates the relationship between penetration, curtailment, and resource mix in no
storage condition. As depicted in the figure, there is a rapid increase in penetration with a slight
initial curtailment rise, which gradually slows as curtailment increases. As depicted in Fig.4.6b,
the impact of curtailment on penetration is significantly affected by the resource mix. In wind-
dominated mix with a small solar share of about 0.2, the highest penetration is achieved.
However, in a solar-dominated mix, particularly in a solar-only scenario, the increase in
penetration with curtailment is negligible. This is because the diurnal (day — night) cycle of
solar generation limits the matching capability more severely and thus requires energy storage
for the dark hours of the day as a result the penetration is seen to be much lower than the wind
dominated mix. The above discussion shows that maximizing renewable use requires an
optimal use of various enabling tools, a subject to be explored later with more details.
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Fig. 4.6. Renewable energy: a) penetration and curtailment as function of PV ratio,
b) curtailment versus penetration
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4.1.3. Renewable use with energy storage application

Let’s examine the impact of different storage technologies and types on increasing renewable
penetration.

4.1.3.1. Diurnal storage application

Let us examine what happen when some storage size is applied as RE system size increases
same way as for Fig. 4.5. Fig. 4.7. shows how the penetration and curtailment varies with
varying PV-wind mixes at fixed storage capacity of 0.41 average daily demand — equivalent
to 18 GWh which is small storage capacity when compared to Eritrea’s average daily demand
of 43.8 GWh. It is worth noting that even the largest storage that we considered in this study
remains smaller than the average daily demand. At smaller system size, the storage removes
curtailment (compared to the corresponding no storage condition of Fig. 4.5) observed at higher
PV share in order to increase penetration. Consequently, the change in penetration and
curtailment become relatively negligible, regardless of the wind-solar mix. In response to
modest increase in RE system size (RE to load ratio of 0.47 to 0.78), low solar share scenarios
already result insignificant curtailment difference while penetration shows some favor for
wind-solar mix, particularly for solar dominated mix. Interestingly, the trend showed a marked
difference as RE to load ratio increases to 1.1 (at storage 0.41 average daily demand) where we
already observe approximately 96% penetration for only 9% curtailment at 80% PV mix. In
Fig.4.5, a 90% penetration is achieved by building a significantly larger system size (with an
RE-to-load ratio of 1.87) and curtailing more than 50% of the energy in wind-dominated mixes.
However, with the addition of storage at the same RE to load ratio of 1.87, 100% renewable
energy penetration is attained for certain solar mixes (ranging from 20% to 80% solar share).
This is because the storage partially reduces curtailment, leading to increased penetration
compared to scenarios without storage. The data corresponding to RE to load ratio of 1.4 shows
that 100% RE could be achieved without increasing the system to an RE to load ratio of 1.87.
My extensive data shows that, for other storage size, 100% RE could be achieved at even lower
curtailment than observed in this case. Theoretically, with unlimited ideal energy storage,
variable electricity demand could be met with complete reliability using only wind and solar
power, without the need for excess generation capacity.
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The above result shows that while wind appears to achieve higher penetration as curtailment
increases due to time distribution of its generation, solar penetration improves significantly
with addition of small storage due to the day-and-night cycle of solar generation profile. The
mixture of the two combines these characteristics to achieve higher penetration at lower loss
and storage capacity need. However, the overarching question is how one can design and build
a more effective system in a system that bears much complexity as any choice may involve
disregarding some technical benefit that cannot be seen in economic based decision making.

Fig. 4.8 presents the dependence of VRE penetration on curtailment for the storage size applied
in Fig. 4.7. Penetration increases with a slight rise in curtailment, but the rate of penetration
growth diminishes as curtailment continues to increase, depending on the resource mix. This
demonstrates that controlled curtailment can be beneficial for optimizing system performance.
In the following subtopic, we will examine other scenarios to understand the broader
perspective.

00— [

90 7 i .
T |
2 / o
E o
< 80 P |
§ ,'/// ————— PV ratio ratio: 0
S ; g ———— PV ratio ratio: 0.2
5 70 [ 4 PV ratio ratio: 0.4|
X .'i'," ——e PV ratio ratio: 0.7
g j/ PV ratio ratio: 1
§ 60 :L —
g i
€

50 - -

40 ! ! ! ! !

0 10 20 30 40 50 60

Curtailment [% of renewable generation]

Fig. 4.8. Penetration as a function of curtailment for varying PV ratios at storage capacity of
0.41 of average daily demand

The interaction between VRE penetration, storage capacity, and curtailment related to wind-
only, 50-50 wind-solar mix, and solar-only scenarios is given in Fig. 4.9, Fig. 4.10 and Fig.
4.11, respectively.

As shown in Fig. 4.9 penetration increases with increase in storage size. At fixed storage size,
increase in renewable generation increases penetration and curtailment simultaneously. The
increase in penetration is much faster when renewable generation is low and slowly level off
with further increase in renewable generation. By comparison, the increase in VRE penetration
for wind dominated scenarios are mainly driven by the effect of curtailment than storage
capacity. There exists a trade-off relationship between storage capacity and curtailment,
whereby a decrease in storage capacity results in an increase in curtailment and vice versa. The
increase in penetration is driven by both storage and curtailment, with curtailment having a
more significant impact in this particular scenario.

68



4. Results

100

100 - ,.,,.,,,_,,_,,,_,,_,

90

80 80 L

60 70 -

------RE to load ratio:1.4121
RE to load ratio:1.8701

Penetration [% of annual demand)

------RE to load ratio:0.46752
e RE to load ratio:0.78238
60 - RE to load ratio:1.0972 | 4

Penetration [% annual enenrgy demand)]

. . . . . . .
0 5 10 15 20 25 30 35
Storage [GWh]

a b

Fig. 4.9. Wind-only scenario with 6 hours storage, interaction between: a) Penetration,
curtailment, and storage capacity, b) Storage capacity and penetration

At low generation level (RE to load ratio 0.48 to 0.78) the penetration remains almost constant
regardless of the storage size. This is because mismatch between wind generation and load can
be accommodated even with the smallest storage capacity allocated and further increase in
storage have no benefit to the system. At such low generation level storage has little impact on
the system performance. But as the generation increases beyond RE to load ratio of 0.78
penetration increases and curtailment decreases with increase in storage capacity. In the
absence of storage (as depicted in Fig. 4.6), the trend differs, as every increase in penetration
is coupled with a corresponding rise in curtailment. The impact of curtailment is more
significant in a wind-only scenario when compared to the effects of storage. As depicted in the
Figure 4.9b, penetration exhibits a noticeable increase within the first few GWh of capacity.
However, this increase gradually tapers off, with only marginal gains observed when exceeds
approximately 10-15 GWh and beyond this point, further increase in storage capacity do not
yield significant benefits to the system.

Fig. 4.10a shows the penetration and curtailment as function of storage capacity for the 50%-
50% PV-wind scenario. This Scenario behaves similar to the wind only scenario as in both
scenarios; penetration increases with storage capacity and curtailment. However, the impact of
storage has some differences mostly at small storage capacity. Comparing Fig.4 9b and 4.10b,
at low storage capacity the wind-only scenario outperforms in achieving higher penetration.
This can be attributed to the nature of wind generation, which is less dependent on storage due
to its inherent randomness; instead, it is primarily affected by curtailment. From this trend, it
is evident that a configuration featuring a small storage capacity and significant curtailment
provides more benefits to the system compared to constructing a large storage facility at a lower
curtailment rate, in wind only scenario. In contrast, the 50-50 scenario depends significantly
on storage due to the 50% solar share, which is influenced by the day-night cycle of solar
radiation, necessitating storage solutions. The increase in penetration in the 50-50 PV-wind
scenario is therefore, the combined effect of both storage capacity and curtailment. However,
increasing curtailment beyond 20% offers negligible benefits to the system. At this level,
penetration levels off for all cases as curtailment increases. The 50-50 PV-wind scenario
demonstrates a significant improvement in achieving higher penetration when employing both
enabling tools.
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The solar-only scenario shown in Fig. 4.11 shows a different pattern from the previous two
scenarios. Regardless of the generation capacity (RE-to-load ratio), the penetration remains
low at lower storage capacities, with significant curtailment (Fig.4.11a). This relates to the
natural cycle of solar generation, which requires adequate storage solutions to address the
diurnal mismatch. However, when small storage is added, a significant increase in penetration
is observed, reaching its peak of 100% at considerably large storage sizes and generation
capacities (Fig.4.11b). Nevertheless, it is possible to attain a solar penetration of 90% with a
20% curtailment, with a storage capacity of less than average daily demand. Achieving this
penetration level would necessitate a substantially higher curtailment in a wind-only scenario.

The study’s design highlights the complex relationships among various factors, offering
multiple options for selecting combinations of storage and curtailment to achieve a specific
penetration level that aligns with individual objectives and policy priorities. The most effective
approach involves determining the ideal size for both storage and curtailment, finding a balance
that maximizes penetration while ensuring both technical and economic feasibility.
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Fig. 4.11 Solar-only scenario with 6 hours storage, interaction between, a) Penetration,
curtailment, and storage capacity, b) Storage capacity and penetration
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The design employed in this study builds a complex relationship between various factors that
offers multiple options for choosing combinations of storage and curtailment to achieve a
specific penetration (including 100%), tailored to individual priorities and policy preferences.
The optimal approach, however, lies in determining the approximate optimal size for both
variables, striking a balance that maximizes penetration while ensuring technical and economic
feasibility.

Based on the aforementioned scenarios, it is evident that curtailment plays a beneficial role in
enhancing grid penetration by maximizing the utilization of storage. Attaining a penetration
target without any curtailment necessitates an oversized storage capacity alongside a large-
scale renewable generation, resulting in low storage utilization. However, moderate and
carefully managed curtailment, which is expected to become a new normal in future grids, can
effectively increase renewable penetration while reducing the required storage size by
maximizing its utilization. This finding aligns with previous research findings reported in
(Solomon et al., 2014), though they use a different approach and cover different geographic
locations represented by the corresponding resource and demand profiles.

The overall observation from Figs. 4 9, 4.10, and 4.11 revealed that, at a given generation
capacity, penetration rises as storage capacity increases, leading to a reduction in dumped
power. However, the impact of these factors differs across scenarios, the effect of curtailment
is more dominant in wind only scenario, whereas in a solar-only scenario, the impact of storage
surpasses that of curtailment. For the 50-50 PV-wind scenario however, penetration is the result
of considerable effect of both storage and curtailment. The 50-50 PV-wind scenario
demonstrates superior performance, allowing us to easily achieve a 90% penetration target of
renewables with reasonable storage capacity and curtailment. This highlights how solar-wind
complementarity can smooth out generation profiles while simultaneously increasing
penetration. Across all scenarios, the increase in penetration exhibits a rapid rise for smaller
storage capacities, but it gradually levels off after reaching a threshold value. Therefore,
increasing storage capacity beyond this value offers a negligible benefit in achieving higher
penetration. The specific threshold value depends on the generation size and storage capacity,
but in all scenarios, penetration levels off at less than 0.8 times the average daily demand
(equivalent to 35 GWHh), indicating that further increases in storage provide no additional
advantages to the system. However, the observed decrease in storage needs does not mean
storage is not necessary at all. However, it shows the change in the manner of storage
application and the suitable technology type. Before it levels off, diurnal application suitable
storages are required, but after that, the system increasingly requires seasonal services, which
use seasonal storage. This issue was discussed in (Denholm et al., 2022; Solomon et al., 2019)
for U.S. and Israel, respectively. The study on Israel is based on a systematic analysis of several
scenarios focused on solar energy, whereas the U.S. study seeks to quantify these requirements
without detailed techno-economic considerations to assess the geophysical constraints of solar
and wind generation in meeting demand. In contrast, my study explored a broader range of
scenarios — including varying PV-wind mixes, storage capacities, and curtailment levels — to
confirm that these effects are not case-dependent.

Fig. 4.12 illustrates the storage requirements necessary to achieve a penetration target of 90%
for different RE-to-load ratios as a function of PV ratio. In the figure, only RE-to-load ratios
of 1.10 and above are displayed, as these represent cases, where reaching 90% penetration is
feasible. It can be noted that when the RE-to-load ratio is below 1.1, there is insufficient energy
to reach 90% penetration.
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Fig. 4.12. Storage required to reach a penetration target of 90% using 6 hours of storage

The required storage capacity varies depending on the PV-wind ratio within these scenarios.
The wind-only scenario requires less storage capacity when compared to the solar-only
scenario, except in the case of RE-to-load ratio of 1.10. This discrepancy arises because the
wind-only scenario is predominantly influenced by the generation size and curtailment rather
than the storage size. At this specific RE-to-load ratio, the marginal increase in penetration
from excess generation is minimal due to the system’s limited capacity, making it challenging
to achieve 90% penetration with minimal storage. Due to lower effectiveness in the use of
storage, the wind-only scenario also needs higher storage capacity to reach 90% penetration at
a RE-to-ratio of 1.1. However, as depicted in the figure (Fig. 4.12), at higher RE to load ratio,
the wind-only scenario can achieve a 90% penetration target with significantly lower storage
capacity because the time distribution of wind enables higher demand matching than solar only
scenario. This is a further elaboration on how emphasizing either one of the tools (i.e., storage
or curtailment) diminishes the importance of the other for the case of wind. Though the
mechanism is not as strong, note that the storage needs decrease with more curtailment even
for a solar-dominated system.

It is important to note that the solar-dominated scenario relies heavily on storage, with even a
slight increase in storage capacity resulting in a significant enhancement in penetration. The
reason behind the lower storage requirement for the RE to load ratio of 1.10 is attributed to the
role of storage in solar energy. In the solar-only scenario, storage capacity plays a critical role,
surpassing the influence of curtailment and generation size. That is why the storage
requirement remains relatively similar regardless of the generation size, as depicted in Fig.4.12.
The minimum storage required to reach the penetration target varies across each RE to load
ratio and falls within the range of 20-30% PV ratio, except for the RE to load ratios of 1.10 and
1.87. At 1.87 RE to load ratio, the wind-dominated mix (up to 40% PV ratio) can attain the
penetration target without requiring any storage. However, as the PV ratio increases, the
storage requirement experiences a sharp rise and ultimately converges to a similar storage value
for all other RE-to-load ratios. This provides further evidence on how the resource mix impacts
the role of storage and curtailment. Thus, setting the optimal mix of various enabling tools will
be crucial to achieving both financial and technical optimality in the future system.

As previously discussed, the increase in penetration is limited by the available storage capacity.
Beyond a certain point, the rate of increase slows and eventually plateaus. At this stage,
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implementing seasonal storage capable of holding energy for several days becomes essential
to mitigate seasonal fluctuations. This will be discussed later; however, using only diurnal
storage a penetration levels of up to 80-90% can be achieved in Eritrea by addressing the daily
mismatch. When penetration exceeds this range, depending on PV-wind mix, multiday and
seasonal mismatches pose challenges that diurnal storage alone cannot overcome, making
seasonal storage necessary to meet demand. For example, in this study, achieving 96% VRE
penetration with diurnal storage (e.g., at a 1.1 RE-to-load ratio in the 50-50 scenario) would
require approximately 75% of the allocated storage capacity to contribute for the last 6% of the
demand. Similarly, Fig.4.13 shows that a substantial portion of capacity is required to satisfy
only a small fraction of the total demand. For instance, satisfying the last 10% of the demand
in the 50-50 scenario requires nearly 46% of the deployed capacity. The situation is worst in
the solar-only scenarios as every increase in penetration is accompanied by a large capacity
requirement, specifically when exceeding 80% penetration. In both cases, satisfying the final
10% demand requires significantly increased installed capacity and storage. This is not feasible
from a practical perspective, so alternative technologies that can function as seasonal storage
should be considered at such high penetration levels (see below).

Compared to previous studies, the present work employs a unique and transparent simulation
model, providing an alternative perspective with a more comprehensive analysis. It explores
various interacting factors, including the PV-wind mix, curtailment, storage, and balancing
needs, offering deeper insights into the complexities of renewable energy integration. The
study presents a broader scenario-based approach to confirm that the phenomenon occurs under
all conditions of the VRE mix. More importantly, the agreement with other studies’ findinds
produced using different datasets and models studying other locations (Denholm et al., 2022;
Guerra et al., 2021) actually presents evidence that a common physical mechanism drives the
interaction between VRE resources and their matching to electricity demand. Thus, developing
a common theoretical framework to guide the designing and operation of the future system
could enhance our ability to tackle the associated challenges better than the present approaches.
But such an effort requires more studies of this kind.
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Fig. 4.13 illustrates the behaviour of penetration with increasing renewable energy deployment
at a constant diurnal storage capacity of 0.41 times the average daily demand.

Now, let us return to studying the interaction between the different parameters when the hours
of storage change from 6 to 1, 2, 4, 8, and 10. The pattern observed for these hours of storage
closely resembles the relationship between penetration, curtailment and storage capacity
presented in Figs 4.9a, 4.10a and 4.11a for wind only, 50-50 PV-wind and solar only scenarios,
respectively. Regardless of the storage design and its effectiveness, the simultaneous increase
of the three is a general trend. For example, the interaction between the three parameters for 2h
and 6h of storage corresponding to a 50-50 wind-solar mix shows a similar trend (see
Appendix, A6). However, the close resemblance does not mean all options are equally
effective. This will be clarified in the next section by applying an appropriate tool devised to
enable comparison of system performance for each combination of parameters.

Economic analysis of the proposed approach

A simplified, unit-cost economic analysis is presented to offer useful insights into the
financial performance of the various system configurations discussed above.

Even though the focus of this study is not to perform a detailed economic analysis, one may
question whether the demonstrated technical feasibility is linked to some economic viability.
Here, a simplified unit cost-based economic analysis is presented to offer valuable insights into
the financial performance of the various system configurations discussed so far. For this, we
use the specific example of 18 GWh storage mentioned above. Based on current market trends
(Table 6), achieving 100% penetration in the case of Eritrea through overbuilding and
curtailment (PV and wind) as shown in Fig. 4.5, requires about 14.32 billion USD, accounting
for the large RE generation requirement at a higher penetration level. In contrast, adding 18
GWh (0.41 average daily demand) of battery storage to the system (Fig. 4.7) reduces the overall
cost to approximately 13.41 billion USD, while also accounting for battery replacements over
the 30-year lifetime of PV and wind plants. However, balancing both enabling technologies,
storage, and curtailment at the optimum mix (80% PV and 20% wind) offers a better benefit to
the system in gaining techno-economic benefits and costs around 12.96 billion USD to reach
100% RE penetration. The cost reduction from USD 14.31 billion to USD 12.96 billion is
mainly driven by several key system factors. Lower curtailment and/or overgeneration,
combined with storage and the corresponding renewable-to-load ratio, as well as an optimized
PV — wind mix those better matches varying demand conditions, are the primary contributors
to reducing the overall system cost. Although a more detailed analysis is required to examine
the technoeconomic benefits of the different configurations, unit cost analysis of the results
highlights the importance of balancing the various enabling technologies in RE-dominated
grids. This preliminary analysis shows that the optimized results are not only technically sound
but also economically viable.

Table 6. Techno-economic data of different technologies used

Data Technology Source
PV Wind | Storage (Li-
system system | ion battery)
Cost (2023) 758 1160 139 (Bloomberg, 2023; Fernandez,
2023; IRENA, 2023)
unit $/kWp | $/kWp $/kWh
Life (calendar 30 30 15 (Aghaei et al., 2022; Zucker and
years) Hinchliffe, 2014)
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4.1.3.2. Storage utilization and system-use index

Fig. 4.14a shows storage utilization as a function of storage capacity and corresponding
curtailment for a wind-only scenario. The figure shows that storage utilization is significantly
high at low storage capacity, particularly for some suitable curtailment ranges. However, the
utilization index decreases as the storage capacity increases. This observation suggests that
deploying large storage for diurnal applications with wind energy may not be advisable due to
the risk of underutilization, as seasonal storage may be a more suitable option for such
conditions.

300 _—

System use index

Fig. 4.14. System performance indicators: a) Storage utilisation, b) System-use index for
wind-only scenario at 6 hours of storage

The higher storage utilization index observed at lower storage capacities can be linked to the
storage's frequent daily charging and discharging cycles. However, it should be noted that
achieving a high utilization index does not necessarily translate into maximum system benefit,
as the storage capacity is small and its contribution to overall energy coverage is limited. Thus,
storage utilization has limitations in fully conveying the complete picture of its system benefits,
which depend on various other factors. To address these limitations, we introduced a new index
called the system-use index (SUI). This index provides a more comprehensive evaluation of
system performance by linking storage utilization and RE consumption and generation with
other factors, such as storage charging/discharging, and energy and power capacity. Unlike
storage utilization, which primarily measures the extent of storage use, the system-use index
offers deeper insights into how effectively storage is integrated within the broader energy
system and its role in enhancing the system’s ability to manage variability and optimize
resource deployment.

Fig.4.14b illustrates the system-use index for the wind-only scenario. The figure presents
various combinations of storage and curtailment, along with their corresponding system-use
index values. As depicted in the figure, the system-use index initially increases with both
storage and curtailment until it reaches its peak value, and then it starts to decline. The storage
and curtailment combination that leads to the top plateau region of the system-use index
represents the optimal values that effectively maximize the overall system performance. Due
to the ability of the system to also play some role of seasonal storage at such a high penetration,
focus on the top peak point may be less relevant than the overall plateau region. Thus,
depending on the generation size, several storage and curtailment combinations can benefit the
system. For example, the maximum system-use index value (selected for ease of identification)
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4. Results

occurs at 7.5 GWh storage capacity and 27% curtailment at RE-to-load ratio of 1.4. Referring
back to Fig.4.9a, this storage and curtailment combination enables achieving a penetration of
90%. However, this combination is associated with excessive dumping of renewable energy
generation. The storage utilization achieved in this scenario is somewhat reasonable but still
falls short of the optimal value. Fortunately, one can opt for optimal storage and curtailment,
considering their unique goals and policy priorities while maintaining a reasonable system-use
index.

Fig. 4.15a illustrates the storage utilization for the 50-50 wind-solar scenario. Like in the wind-
only scenario, the highest storage utilization index is observed at relatively lower storage
capacity values. However, the storage utilization is significantly higher than that of the wind-
only scenario.
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Fig. 4.15. System performance indicators: a) Storage utilisation, b) System-use index for 50-
50 wind-solar scenario at 6 hours of storage

The storage utilization gradually decreases as the storage capacity increases. At a given smaller
storage value, the utilization index rises from zero to maximum as the generation size and
curtailment increase. As depicted in the figure (Fig. 4.15a), a small curtailment rise
significantly increases storage utilization index. However, with a further increase in
curtailment, the storage utilization index increment slows down.

Fig. 4.15b presents the system-use index for the 50-50 wind-solar scenario. This scenario's SUI
is significantly higher than the wind-only scenario. The SUI shows an increasing trend as both
storage capacity and curtailment increase until it reaches its peak value (typically forms a hill
with several comparable peak values), after which it starts to decline. The maximum SUI value
occurs at 8.9 GWh and 16% of storage capacity and curtailment, respectively. Referring to Fig.
4.10a, this combination results in a penetration of 90% of renewables. In this scenario, storage
utilization has seen a remarkable increase compared to the wind-only scenario. The maximum
SUl is also achieved at a lower generation capacity (RE-to-load ratio of 1.10) compared to the
wind-only scenario of 1.40. It is worth noting how complementarity enhances system
performance by increasing storage utilization. Overall, it is worth noting that the graph in these
figures builds a hill with a plateau top, showing several combinations with almost equal system
benefits as shown in the contour plot Fig. 4.16.

76

o



4. Results

35

5.76
30

5.04

25 ¢

432
=
—_ =
= %)
B 20 § ”
360 55
G <
S 5
2 z
2]
=
g F288
w 15 2
w
>
v
216

1.44

0.72

0 10 20 30 40 50
Curtailment (% of RE generation)

Fig. 4.16. Contour plot of the System Use Index (SUI) across a range of storage capacities
and curtailment levels for 50-50 PVV—wind Scenario

Based on these results, we can conclude that well-utilized storage capacity of approximately
0.2 of average daily demand, coupled with a reasonable curtailment of 16%, can effectively
achieve a penetration target of 90%.

Fig. 4.17a illustrates storage utilization for solar-only scenarios where both storage utilization
and curtailment increase with renewable generation at a fixed storage capacity, indicating that
curtailment plays a crucial role in enhancing storage utilization.

The solar-only scenario exhibits highly efficient storage utilization, as the figure depicts. This
efficiency can be attributed to the predictable day-night cycle of solar radiation, which provides
a consistent pattern for charging and discharging the storage on a daily basis. As shown in Fig.
4.17a at very small storage sizes, the storage utilization is maximum because the storage fully
charges and discharges almost every day, but the utilization decreases with an increase in
storage size. Compared with the previous two scenarios, the solar-only scenario demonstrates
a significantly higher energy contribution from storage. As illustrated in Fig. 4.17b, the SUI
increases as curtailment and storage increase. However, once a peak point is reached, the SUI
starts to decline with further increase in storage. This decline occurs because the storage
becomes oversized, resulting in distorted daily charging and discharging patterns, and the
storage remains full for several days.

77



4. Results

b oo
(=] S
/

—
[==]

Storage ulilization
System use index

T80

N
(S VL;C\‘?"UOU '
o gent

e — 20
e v = o, of
/e I’VJI/ v o e
(e

a b

Fig. 4.17. System performance indicators: a) Storage utilisation, b) System-use index for
solar-only scenario at 6 hours of storage

Nevertheless, as depicted in the figure (Fig. 4. 17), a combination of reasonable curtailment
and storage size can significantly benefit the system with a sufficiently high SUI. In this
specific scenario, multiple combinations of storage and curtailment positioned on the plateau
of the system-use index graph show a high storage utilization value. For instance, at 22 GWh
and 13% curtailment, very high storage utilization can be attained while achieving a 90%
renewable penetration. It is important to note that the solar-only scenario necessitates a larger
storage capacity than the other two scenarios to achieve the same penetration level.

The above result discusses the case 6 hour of storage, the data for other hours present an
interesting case regarding the effect of the energy-to-power ratio (storage duration) on system
performance. The observed SUI value increases (discussed in reference to the peak plateau
region of each plot) when we increase hours of storage from 1h to 6h showing that hours of
storage value impacts system role of the storage. Beyond 6h, SUI gradually decreases. The
small decrease may be because the high storage hours (like 10 h) allow the system some
seasonal role in combination with curtailment. Fig. 4.18 presents SUI values for 2h, 6h and 10h
storage for 50-50 PV-wind scenario. It is clear that SUI is an arbitrary index, but it carries an
irreplaceable role in raising our understanding of the future system. In short, the relationship
between these parameters, namely curtailment, penetration, wind-solar mix, storage capacity,
and hours of storage, and its link to SUI indicates that an optimal range of these parameters
that ensures an optimal system efficiency exists, which directly addresses the core objective of
the thesis. This forms a multidimensional constraint that is difficult to implement in any
technoeconomic modelling tool. This may explain why some techno-economically optimal
scenario results were found to have low net energy production capability (Solomon et al.,
2024).
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System use index

Fig. 4.18. System—use index for different storage durations: a) 2 hours, b) 6 hours,
c) 10 hours

The overall results indicate that simulating large quantities of data across various scenarios
enables me to identify the optimal combination of storage size, RE capacity, and curtailment
tailored to a specific resource mix and diversity. The interesting lesson of this study is that the
optimality of future systems can be compromised if careful designing is not followed during
system development. The possibility of overcoming the impact of poor system design by
achieving optimal system operation can even be limited in some cases of system designs,
exposing the industry to losses. In other words, this study excels by showing that, despite
numerous system design and modelling options, considering certain physical requirements
such as system-use index (proxy of system efficiency) sets the boundary conditions from which
economic models should choose. However, enforcing such requirements in the present
modelling is not possible because such constraints are naturally multidimensional.

Fig. 4.19 illustrates the impact of diurnal storage on penetration and storage utilization for a
system with a RE-to-load ratio of 1 across three scenarios. In all cases, penetration increases
sharply at lower storage levels. However, it gradually slows and stabilizes beyond a certain
threshold, typically 7.5 GWh for wind only, 10 GWh for 50-50 PV-wind, and 25 GWh for
solar-only scenarios. Beyond this point, additional storage yields minimal gains, as small
increases in penetration demand disproportionately require large diurnal storage. The rate at
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which penetration increases with storage varies significantly across the scenarios. Adding
storage initially cuts curtailment, but further capacity has little effect, as storage often stays
full, causing excess generation to be curtailed and reducing overall utilization.

In the solar-only scenario, the diurnal cycle restricts penetration, necessitating significant
storage to match supply with demand. Conversely, the wind-only case requires only a small
storage capacity of 7 GWh (0.16 of average demand) to address the temporal mismatch, thanks
to the smoother output from various locations. In the 50-50 PV-wind mix, penetration is
realized through a combination of storage and curtailment. This finding is consistent with a
study conducted on larger geographical scales in the U.S. (Shaner et al., 2018), where
reanalysis datasets (MERRA-2) with a RE-to-load ratio of 1 were applied. The penetration
achieved without storage, 48% and 78% for solar and wind-only scenarios, respectively, aligns
with our findings.
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Fig. 4.19. Impact of storage on penetration and storage utilization across different scenarios
for a system with a RE-to-load ratio of 1.0

While the rate varies across scenarios, the initial few GWh of storage capacity leads to a rapid
increase in penetration, which then slows with further expansion. For instance, as shown in
Fig. 4.19, in the 50-50 PV-wind scenario with a RE-to-load ratio of 1.0, approximately 33% of
the installed 35 GWh storage capacity is effectively utilized to achieve 90% penetration.
However, adding storage beyond this has minimal impact, contributing only a marginal
increase in penetration. The wind-only scenario shares characteristics similar to the 50-50 PV-
wind scenario. The solar-only scenario, however, exhibits a distinct pattern; it utilizes about
71% of the installed storage effectively with a storage utilization index exceeding 300 cycles
per year.

The parameters discussed so far, storage, penetration, curtailment, and storage utilization,
interact in complex ways and offer valuable insights into system performance. However, these
metrics alone may not reflect the full system dynamics. For example, a high storage utilization
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index might indicate frequent cycling, but if the storage size is small, its actual contribution to
improving system outcomes, such as boosting renewable penetration, can be minimal. Thus,
high utilization does not always translate to greater system benefit.

The SUI shown in Fig. 4.15b provides an in-depth system performance assessment by
connecting storage utilization and RE consumption with other factors. SUI increases with
storage and curtailment, reaching a peak before declining as both parameters continue to rise,
clearly identifying the near-optimal system parameters that enhance overall system
performance. In the 50-50 PVV-wind scenario, the highest SUI, representing the most efficient
utilization of storage and curtailment trade-offs, is achieved at a storage of 8.9 GWh (0.2
average demand) and a curtailment of 16%. Notably, this aligns well with the observed suitable
range in Fig. 4.19, reinforcing the validity of the SUI as a meaningful metric. While it is not
inherently guaranteed that the maximum SUI corresponds to an optimal system configuration,
its alignment with Fig. 4.19 suggests that it effectively identifies near-optimal operating
conditions. This connection strengthens the argument that the SUI is a reliable indicator for
balancing storage capacity and curtailment in large-scale renewable integration, depending on
priorities set, whether curtailment or storage is emphasized to achieve specific penetration
targets. The near-optimal system parameters required to achieve 90% renewable penetration
were derived from the newly introduced approaches, as summarized in Table 7. The peak
demand is 2.7 GW.

Table 7. Optimal parameters that maximize system benefits at 90% RE penetration level

Penetration RE Storage Balancing Curtailment PV | Wind
Scenario | (% annual = generation | (GWh) capacity (% RE (GW) | (GW)
demand) (GW) (GW) generation)
Solar only 90 9.9 22 2.46 13 9.9 0
50 - 50 90 6.5 8.9 2.16 16 325 | 3.25
wind-solar
Wind only 90 6.1 7.5 2.19 27 0 6.1

In the final remarks, when only diurnal storage is deployed, based on my newly developed
methodological approach, it is evident that a well-balanced system design can be attained by
integrating various system parameters, as outlined in Table 7. For instance, in the case of a 50-
50 system configuration with an 8.9 GWh storage capacity, the system needs to generate 6500
MW to achieve a penetration target of 90%. This allocation necessitates 3250 MW for wind
energy, which translates to approximately 950 wind turbines, and another 3250 MW for solar
photovoltaic (PV) energy, requiring approximately 81 km? of land. Conversely, when we
distribute this PV generation across 1 million households, constituting residential PV systems,
each home would receive an allocation of 3.25 kW of PV capacity, which is a reasonable
amount for individual households. Likewise, a storage capacity of 8.9 GWh for 1 million
households implies 8.9 kWh battery per household, a practical and reasonable house battery
size.

When focusing on PV, the results highlight promising opportunities for both utility-scale solar
farms and distributed residential PV+ battery systems. Meeting 45% of the demand (45% PV
penetration), which is half of the total 90% target shown in Table 7 above, would require
approximately 81 km? of land for utility-scale deployment. This could be expensive and
compete with other valuable land uses, such as agriculture or economic activities. This
challenge underscores the importance of exploring residential PV as an alternative pathway.
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Distributing the required capacity across households not only reduces land-use pressure but
also enhances energy self-sufficiency at the community level. Accordingly, Section 4.2
investigates strategies to maximize the share of residential PV in achieving the overall
renewable energy penetration target.

4.1.3.3. Seasonal storage application for seasonal mismatch

Revisiting Fig. 4.13, renewable energy utilization changes significantly with increasing
penetration levels. At lower penetration levels, renewables primarily displace conventional
generators with minimal or without storage or grid readjustments. The figure illustrates how
renewable energy requirements vary across different penetration levels for various PV-wind
mixes. It highlights key characteristics of these variables beyond the no-dump capacity, the
threshold beyond which the system necessitates storage, curtailment, or both. While this no-
dump capacity varies depending on the PV-wind mix, the minimum penetration achievable
without storage or curtailment is approximately 23.6%, a condition observed in the solar-only
scenario where Fig.4.13 begins. Any increase in renewable generation beyond this level
requires storage/curtailment or both to manage fluctuations, enabling penetration up to 80%.
Beyond 80% penetration, renewable deployment rises sharply, even with only a slight increase
in penetration. While the RE requirement for a given penetration target varies across PV-wind
mixes, this variation remains relatively minor until 80% penetration. However, beyond this
point, the differences in RE requirements become more significant.

Up to 80% RE penetration, diurnal storage plays a key role in balancing short-term fluctuations.
However, meeting the last 20% of the demand presents a unique challenge. Fig.4.13 illustrates
this challenge; RE deployment surges dramatically in this range, with a substantial increase in
capacity required for even a small rise in penetration. This large generation/capacity
requirement is attributed mainly to seasonal and peak demand imbalances, meaning that much
of the additional renewable capacity remains underutilized for most of the year and is only
effective during specific seasons of peak demand or low RE generation periods, or a
combination of both. This challenge becomes even more demanding when attempting to meet
the demand with PV, as it requires an impractically large generation capacity and extensive
storage. The marginal returns from such capacity expansion are minimal. As shown in Fig.
4.13, complementarity helps mitigate the steep rise in capacity additions required for higher
penetration levels. However, regardless of the PV-wind mix, meeting the final 20% of the
demand necessitates a substantial increase in capacity and/or significant storage deployment,
as also illustrated in Fig. 4.19.

Diurnal storage manages short-term fluctuations and facilitates a high renewable penetration
of 80-90%, but its limitations become evident beyond this range. The ability of diurnal storage
to handle daily fluctuations depends on the mix ratio and other factors. Still, longer-duration
mismatches spanning multiple days to weeks necessitate the deployment of seasonal storage.
Numerous studies indicate that achieving very high VRE penetration requires longer-duration
storage beyond diurnal storage (Frazier et al., 2021; Shaner et al., 2018; Solomon et al., 2019).
Though not yet widely deployed, seasonal storage solutions such as hydrogen and other fuels
are recognized as key technologies that could help future grids achieve nearly 100% renewable
penetration. Implementing seasonal storage enhances power system stability by reducing
seasonal intermittency and significantly lowering curtailment, thereby maximizing renewable
energy utilization.

Various conditions were examined for different configurations by adjusting the energy and
power capacity of the diurnal storage to assess the impact of seasonal storage. Near-optimal
parameters obtained from Figs. 4.19 and 4.15b were the upper limit for diurnal storage, after
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which seasonal storage was introduced. Fig. 4.20 illustrates the penetration levels achieved
when seasonal storage, along with diurnal storage with a 6-hour duration, is applied across the
three scenarios analysed at a RE-to-load ratio of 1.3. Diurnal storage is used for lower
penetration levels (< 80%). In comparison, seasonal storage is utilized at higher penetration
levels, reaching approximately 100% and 98% at 180 GWh (equivalent to 4 average daily
demand) for the 50-50 and wind-only scenarios, respectively. In contrast, the solar-only
scenario requires a larger storage capacity to achieve the same penetration level. In this
scenario, increasing diurnal storage from 0.16 to 0.5 average daily demand (Fig. 4.20b) enables
100% penetration at significantly reduced seasonal storage, unlike Fig. 4.20a, where 100%
penetration is not achieved even at the maximum seasonal storage size. This pattern is also
demonstrated in Fig. 4.19, where efficient storage utilization is observed across a wide range
of diurnal storage capacities. Regardless of the PVV-wind mix, seasonal storage plays a crucial
role in enabling higher renewable penetration by mitigating seasonal mismatches.
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Fig. 4.20. RE penetration using seasonal storage combined with diurnal storage of capacities:
a) 0.16, b) 0.5 times the average daily demand

Since seasonal storage is mainly used during periods of low generation, peak demand, or both,
its utilization is expected to be limited to a few days each year. However, analysing the SU and
SUI, the new indices introduced in this study (refer to section 4.1.3.2) offer valuable insights
into how effectively the allocated storage is used, ensuring it is not underutilized.

Fig. 4.21 presents how the storage is utilized in the 50-50 scenario, demonstrating various
combinations of storage and curtailment that maximize its utilization. For instance, achieving
100% renewable penetration requires 180 GWh of hydrogen storage, with storage utilization
of 20 full days with minimal curtailment of approximately 7%. However, as storage capacity
decreases, utilization improves. While storage utilization provides critical insights into how
deployed storage is utilized, it does not capture the complete system dynamics, as it is limited
to storage parameters without integrating broader system variables. To address this limitation,
the SUI discussed in Section 4.1.3.2 and illustrated in Fig. 4.22 offers a more comprehensive
measure by integrating all key design parameters, such as annual discharge, energy to pawer
ratio, total storage capacity, and net renewable energy generation and consumption, into a
single metric that captures system dynamics and performance within the context of broader
energy infrastructure considerations.
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Fig. 4.21. Seasonal storage utilization for 50-50 scenario, diurnal storage 0.16 average daily
demand with 6 hours duration

As shown in Fig. 4.22, SUl initially increases with storage and curtailment but declines beyond
a certain threshold. The optimal combination lies within the plateau, where various storage and
curtailment pairs contribute to an efficient balance. For example, in the 50-50 PV-wind
scenario, a storage capacity of 67% GWh, combined with a curtailment level of 10%, falls
within this plateau and enables a renewable penetration of approximately 95%. In the wind-
only scenario, a similar storage capacity with slightly higher curtailment achieves around 94%
penetration. The results indicate that the optimal SUI varies slightly between scenarios: the
wind-only scenario benefits more from curtailment, whereas the 50-50 PV-wind scenario
favours increased storage, as the 50% solar share benefits more from energy retention.
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Fig. 4.22. System use index: a) wind only, b) 50-50 scenario

SUI behaves differently in the solar-only scenario (Fig.4.23). Unlike the wind-only and 50-50
scenarios, the index in the solar-only case continues to increase with both storage and
curtailment. The (near) optimal balance is reached at approximately 200 GWh of storage with
15% curtailment. Regardless of the generation mix, increasing seasonal storage beyond 250
GWh yields minimal additional benefits. Similarly, curtailment is advantageous at lower
storage sizes, but its benefits decrease beyond a certain threshold, which varies depending on
storage size.
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Fig. 4.23. System-use index for solar-only scenario

The impact of diurnal storage on seasonal storage requirements is then examined by changing
the hours of diurnal storage to 1 hour. Short storage hours are well-suited for short-term, high-
intensity power delivery with short but high renewable generation peaks. With a 1-hour
duration, penetration slightly improves but demands more seasonal storage and balancing
capacity. The near-optimal system parameters identified using the SUI and the maximum
penetration achieved are presented in Table 8. The abbreviations for penetration (Pen),
Curtailment (Cur), and Seasonal Storage (S.S.) are used only in this table to include them
efficiently.

Table 8. Near-optimum system parameters for the three scenarios

Diurnal storage 1hr duration Diurnal storage 6 hr duration
Scenario | Pen | Cur |S.S(av.daily | Max.Pen | Pen | Cur | S.S.(av. | Max.
(%) | (%) | demand) (%) (%) | (%) daily Pen
demand
Solaronly | 83 | 13.6 4.9 99 80 | 145 4.7 99
50-50 93 | 113 2.3 100 925 | 13 2.2 100
Windonly | 92.2 | 17 2.1 100 91 18 1.9 100

In the solar-only scenario, diurnal storage of 0.16 average daily demand with 1-hour duration
reaches 63% penetration with significant curtailment. This configuration requires a slightly
larger seasonal storage capacity of approximately 10 average daily demand to raise the
penetration to 98%. In contrast, for the same diurnal storage, the 50-50 PV-wind scenario
achieves 80% penetration with negligible curtailment, requiring considerably lower seasonal
storage (5 average daily demand) to achieve a 100% RE penetration. A moderate increase in
diurnal storage to 0.5 average daily demand with a 6-hour duration requires lower seasonal
storage to reach near-optimal level. A trade-off relationship exists between increasing the
diurnal storage and the seasonal storage requirement.

4.1.4. Dispatchable balancing requirements

In the preceding discussions, we demonstrated that all levels of renewables can be matched
with PV-wind mix at reasonable diurnal and seasonal storage and curtailment levels.
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Integrating such a large scale of renewables necessitates a form of conventional balancing
capacity to address shortfalls in both renewables and storage to ensure a reliable supply of
demand. Quantifying the required magnitude of this capacity mandates a comprehensive study
of year-round hourly generation and demand profiles. Such analysis is crucial to determine the
need for a conventional generator capable of balancing even in worst-case scenarios such as
periods of high demand and low renewable output.

Fig. 4.24 illustrates the interplay between curtailment and balancing capacity requirements for
different diurnal storage sizes in wind-only, 50-50 PV-wind, and solar-only scenarios,
respectively. The unit of storage used in the figure is a fraction of the average daily demand.
With varying degrees, the balancing requirement is observed to decrease as curtailment
increases across all scenarios. Furthermore, the reduction in balancing requirement becomes
more significant with an increase in storage capacities. Therefore, controlled curtailment has a
significant advantage for system performance improvement by increasing penetration and
decreasing conventional back-up requirements.
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Fig. 4.24. The interaction between balancing capacity and curtailment: a) Wind-only
scenario, b) 50-50 wind-solar scenario, (c) Solar-only scenario
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Comparing the three scenarios, the 50-50 PV-wind scenario performs better in reducing
balancing requirements by leveraging the advantage of resource complementarity. However,
at very low curtailment levels, the wind-only scenario requires less balancing capacity
compared to the other two scenarios. The reduction in balancing requirements occurs more
rapidly in the 50-50 PV-wind scenario, while the solar-only scenario exhibits the highest

balancing demand. This is due to the diurnal cycle of solar generation and the lack of storage
dispatch optimization.

As illustrated in the Fig. 24, the balancing requirement exhibits a high magnitude, representing
the maximum theoretical capacity needed. This is attributed to the fact that the model did not
adhere to any storage dispatch strategy. The employed storage model in this study does not
follow a structured dispatch strategy; rather, instead it is based on a use-as-available approach,
which results in higher balancing needs when facing challenging weather conditions. This is
particularly evident when consecutive cloudy days collide with a lack of wind. However, a

flexible storage dispatch strategy is expected to reduce the need for higher balancing capacity
substantially.

Fig. 4.25 shows the contribution of all system input variables, including balancing (back-up)
generators and curtailed energy, over the first week of January (50-50 PVV-wind scenario, with
a 1.1 RE-to-load ratio and storage capacity equal to 0.41 times the average daily demand).
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Fig. 4.25. Contribution of all deployed technologies in meeting the demand

Balancing generators account for a significant portion of the system's capacity yet contribute
only a small fraction to the demand, as illustrated in Fig. 4.25. Consequently, their capacity
factors are low, leading to higher costs than the system’s average cost, as these generators must
recover their expenses with limited generation. Therefore, generators in this role should have
lower capital costs, regardless of operating expenses, to enhance their economic viability for
such tasks. Depending on the amount of penetration and system mix, overcoming such
challenges are possible by coupling its dispatch with flexible storage operation, which could
further reduce balancing capacity need and increase its capacity factor while also maintaining
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reliable power output, even at critical time of scarcity, via implementation of forecasting and
postponing stored energy use for such critical time.

Fig. 4.26 illustrates the balancing capacity required under varying storage and curtailment
levels for the 50-50 PVV—wind scenario, where seasonal storage is deployed alongside diurnal
storage. Let’s examine the different conditions by applying seasonal storage of a maximum of
10 average daily demands. At all storage levels, curtailment lowers balancing capacity. For
example, with seasonal storage equal to 5 average daily demand and RE-to-load ratio of 1, a
balancing capacity of 79 % is required with 2.1% curtailment. The highest balancing need
occurred on May 21 at 8 PM, when demand was at its peak, solar was absent, and wind was
minimal. Raising the RE-to-load ratio to 1.2 reduces balancing capacity to 74%, shifting the
peak to the morning of December 6, but at the expense of increased curtailment. Increasing the
generation to 1.4 RE-to-load ratio, balancing capacity drops to 28% (December 6, 7 AM),
achieving 99.7% penetration.

At a RE-to-load ratio of 1.2, 100% penetration is achieved, without balancing capacity when
seasonal storage of about 8 average daily demands is deployed. At this generation and storage
size, no balancing is required for mixes of 0.3 to 0.8 PV ratio. However, outside this range,
significant balancing capacity is required, especially in wind-only and solar-only scenarios,
even with generation and storage are at their maximum values of 1.4 and 10, respectively.

In the wind-only scenario, when renewable generation is set to 1.2 times the load and storage
capacity is equivalent to 8 average daily demand, the system requires approximately 77.5%
balancing capacity at 10% curtailment, achieving 99.1% penetration. Under the same
renewable generation and storage conditions, the solar-only scenario requires around 85%
balancing capacity.
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Fig. 4.26. Impact of storage and curtailment combinations on reducing balancing
requirements
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The unit of storage in the figures is a fraction of the average daily demand. In all evaluated
scenarios, except the wind-only case with zero solar share, night-time hours present the biggest
challenge for meeting demand, even with seasonal storage. In the wind-only scenario, some
hours also see significant unmet demand due to the high variability of wind generation, causing
mismatches with peak demand in some seasons.

The matching capability of load and generation profiles and resource diversity greatly
influences the reduction in balancing requirements. Despite limited control over VRE
generation, power operators can reduce balancing capacity needs by partially managing VRE
output in response to demand fluctuations. Effective storage dispatch and management further
enhance this capability, as a more controlled and gradual discharge strategy — rather than
rapidly depleting storage — helps distribute stored energy evenly over time, reducing reliance
on balancing capacity during peak periods. This approach not only improves operational
efficiency and renewable penetration but also yields economic benefits by minimizing the need
for large-scale balancing capacity, which is often required only on a few critical days each year.
Although more detailed and flexible storage dispatch strategies and an expanded set of
simulations/optimisation are required to accurately determine balancing capacity requirements,
the methodological approach developed in this study provides valuable insights into how
balancing needs depend on storage, curtailment, and resource mix. These findings underscore
the importance of careful future system design to avoid risks to society while optimizing system
reliability and cost-effectiveness.

The preceding analysis demonstrated that the synergy between PV and wind through
complementarity is pivotal in achieving higher renewable penetration, reducing reliance on
conventional backup resources, minimizing storage needs, and smoothing generation profiles
to better match demand. Consequently, the system becomes more efficient in utilizing
renewable resources and optimizing their contribution to the overall energy mix. Therefore,
designing an efficient grid with large-scale renewables requires optimizing the combination of
all the above-discussed parameters.

From an international outlook, the consistency of my findings with those from diverse studies,
conducted using various approaches and across different geographical locations, suggests that
similar underlying physical mechanisms govern the matching of supply and demand. This calls
for developing a unified framework that can be applied across various contexts. For example,
research on large-scale renewable energy integration in regions like Europe (Gils et al., 2017),
North America (Denholm et al., 2022; Guerra et al., 2021) and Israel (Solomon et al., 2019b)
has revealed comparable challenges in balancing supply and demand, further supporting the
need for a common strategy to optimize storage, curtailment, and resource mix. Specifically,
Solomon et al. (2019b) showed that storage capacities below the average daily electricity
demand, together with roughly 20% curtailment, can enable around 90% annual renewable
penetration, beyond which seasonal storage becomes necessary. Their conclusions are derived
using a linear-optimization-based LUT energy system transition framework applied to the
Israeli grid. Although this modelling approach differs from the custom methodology developed
in the present study, both analyses share important contextual features — most notably similar
climatic conditions and the characteristics of an isolated grid system. These parallels make the
insights from Solomon et al. particularly relevant for supporting and strengthening the
objectives and findings of the current work. In relation to this, the newly proposed system-use
index offers more profound insights into the effectiveness of storage integration within the
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broader energy infrastructure, enhancing the system's capacity to manage variability and
optimize resource utilization. Therefore, these studies' findings are highly relevant, as they can
be a foundation for a common theoretical framework to address shared challenges in energy
transition studies. It is also important to note that despite the overall similarity in trends and
mechanisms that govern the interaction of various parameters, there is also a location-
dependent difference that can affect system efficiency in a different way. Thus, expanded
efforts that produce more of such data, using improved methodology and unified/standardized
parameters, could lead to a unified framework while also clarifying the effect of locational
dependent system differences.

Furthermore, the approach applied in this thesis yielded relevant outcomes that align with other
studies that follow different approaches, for example, the one for U.S. (Shaner et al., 2018),
that utilized a reanalysis dataset at a renewable-to-load ratio of 1, reported penetration levels
of 48% for solar-only and 78% for wind-only scenarios without storage, closely reflecting the
outcomes observed in my analysis. A related study for Switzerland (Dujardin et al., 2017),
which employed hydropower as a storage solution, found that PVV-dominated mixes (with a PV
ratio above 0.6) require greater storage capacity to balance the system, consistent with my
findings.

The Eritrean context offers distinct advantages due to its unique resource potential and resource
complementarity. Considering the available resources, this study proposes a strategic
expansion plan for various levels of renewable integration. The results indicate that wind and
wind-dominated mixes with small diurnal storage are more effective at penetration levels
below 60% ignoring the potential cost of high uncertainty, while solar-dominated mixes
become more favourable at penetration levels above 60%. However, the current national action
plan prioritizes the expansion of solar farms, aiming for a short-term renewable penetration of
up to 23% and beyond. In this context, Eritrea needs decision-making that is tailored to its
specific conditions, ensuring that renewable energy expansion aligns with its unique resources,
challenges, and development priorities.

Limitations

This study explored the intricate relationships between key system design parameters using a
novel methodological approach specifically designed for this purpose. The proposed empirical
relationship effectively maps multiple pathways that enhance system performance across
varying penetration, storage, and curtailment levels. However, using these various (multiple)
options as boundaries, further optimization using advanced optimization tools could help in
estimating the optimal range of various techno-economic parameters under different
conditions. Furthermore, although the preliminary economic analysis conducted aligns well
with the model's recommended best results, a more detailed economic analysis is recommended
to mitigate any unfavourable scenarios and determine the most cost-effective system
configuration that meets the techno-economic requirements. Additionally, some parameters,
such as balancing (back-up) capacity, can be further optimized if an advanced and flexible
storage dispatch strategy is followed.

The idealized assumptions, such as the copper plate (no transmission constraints) and fully
flexible balancing generators, were intentionally adopted to simplify the system boundaries
and isolate the core technical interactions among key design parameters. While incorporating
transmission constraints and generator flexibility limits would indeed enhance the robustness
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and realism of the findings, such additions would also substantially increase model complexity
and computational requirements. Furthermore, integrating demand-side measures could
provide additional system flexibility and improve the overall efficiency of renewable
integration; however, this aspect lies beyond the current study’s scope. With these limitations,
the methodological approach introduced in this study demonstrated its ability to identify
multiple options that significantly improve the performance of future renewable-dominated
grids.

4.2. Evaluating the potential of residential PV integration

In this subsection, the contribution of residential PV to overall renewable integration is
quantified by evaluating its share in meeting national electricity demand under varying feed-in
limits. The analysis further explores how integrating battery storage can enhance the effective
utilization of residential PV by mitigating excess generation and reducing curtailment.
Particular attention is given to the interaction between storage capacity, injection limits,
penetration levels, curtailment, and storage utilization, highlighting the role of residential PV
as a complementary component within a large-scale renewable system.

4.2.1. Effect of feed-in limit on annual PV generation

Fig. 4.27 illustrates the annual PV generation and corresponding losses as the feed-in limit
varies. The annual generated power increases with the feed-in limit, peaking when all generated
energy is directly injected into the grid at a limit of 0.8 kW/kWp and above.
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Fig. 4.27. Annual average energy generation and energy loss for varying feed-in limit for
1 kWp PV system

Allowing a high feed-in limit increases penetration and decreases losses; however, it can lead
to an excess of generation over consumption in the local network, resulting in reverse power
flow with severe consequences for the distribution network. To fix this issue, a feed-in limit
should be imposed on the injected PV to ensure compliance with the requirements of the local
network. By allowing a feed-in limit of above 0.8 kW/kWp, the system virtually experiences
no energy loss. However, if we impose a feed-in limit of 0.1 kW/kWp, approximately 1400
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kWh/kWp (77%) of the generated energy is lost. However, this represents the maximum loss
that could occur if all residential PV systems were installed at optimal tilt and azimuth angles.
In practice, this is unlikely, as the increasing adoption of residential PV will lead to panels
being installed at various orientations different from the optimal angle, which could impact
total generation and consequently the losses.

As shown in the figure, a feed-in limit above 0.7 kW/kWp demonstrates a negligible impact.
This is because the AC output is approximately 86% even at peak generation due to assumed
losses. Moreover, the solar irradiation profile rarely reaches its peak, diminishing the benefits
of larger inverter capacity. Conversely, implementing a lower feed-in limit inevitably increases
the curtailment of useful energy, underscoring the need for storage solutions to capture and
utilize the surplus energy effectively. This highlights the trade-off between maximizing usage
and adhering to grid requirements across different feed-in limits.

4.2.2. PV-battery deployment with feed-in limit constraint

Fig. 4.28 shows the penetration as a percentage of the total consumption. The penetration is
computed for specific PV sizes and the corresponding feed-in limits, as a function of battery
size. The base case scenario (PV capacity of 100MWp) shows a constant penetration rate
regardless of the storage size, as shown in Fig. 4.28. This ensures seamless integration of all
generated energy into the grid without storage or curtailment. As shown in the figure, at lower
PV capacities, the increase in penetration with storage is marginal because all generated
electricity is directly injected into the local network, making the battery ineffective. However,
for larger PV capacities, penetration is seen to increase with increase in storage size. This is
expected, as more PV is deployed, the feed-in limit is decreased to keep the LV grid safe,
resulting in a significant amount of generated energy being stored for night injection that leads
to higher penetration.
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Fig. 4.28. PV penetration, as a function of battery capacity for different PV/battery feed-in
limits
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The increase in penetration reaches a threshold where the effect of battery storage becomes
insignificant, indicating a limit beyond which storage has a diminishing effect. When PV
capacity exceeds 300 MWp, adding battery storage significantly increases penetration. As the
feed-in limit decreases with increase in PV capacity, storage becomes necessary to avoid
wasting excess energy. For example, at 550 MWop, increasing battery capacity from 0 to 4.5
kWh/kWp boosts penetration by 20%. Thus, for larger PV capacities with small feed-in limits,
larger batteries could further significantly improve penetration. However, for PV capacities
below 232 MWp, increasing battery size from 0 to 4.5 kWh/kWp marginally raises penetration
by less than 3.4%.

The analysis shows that residential PV can supply around 32% of annual electricity demand, a
remarkable contribution achieved without competing for scarce arable land, unlike ground-
mounted utility-scale PV farms. By utilizing rooftops, residential PV not only preserves
valuable land for agriculture but also lays the groundwork for broader renewable energy
adoption. In fact, integrating residential PV supports and enables the expansion of large-scale
PV by reducing land-use conflicts, diversifying generation sites, and improving public
acceptance. Moreover, when combined with approximately 120 MWp of wind capacity, the
penetration level increases to about 46% of annual demand. This synergy demonstrates how
distributed rooftop PV, alongside wind power, can accelerate and facilitate the integration of
large-scale solar PV into the grid while ensuring sustainable land use.

Fig. 4.29 illustrates the characteristics of curtailment as a function of battery storage;
curtailment decreases as battery capacity increases. However, with rising PV capacity,
curtailment also increases due to the imposed feed-in limits which results in excess energy
being rejected from the grid. At the maximum PV capacity of 550 MWop, curtailment reaches
up to 43%, dropping to 0% when a 4 kWh/kWp battery storage is installed (with wind 120
MWp is added in the HV network as enabler). This demonstrates the significant advantage of
deploying storage in large-scale PV systems. Without storage, curtailment remains below 12%
for PV capacities up to 232 MWp, such a curtailment is acceptable if contributes to increased
use of renewable. Incorporating 2 kWh/kWp (464 MWh) battery storage at this level reduces
curtailment from 12% to 0 and increases penetration from 24.6% to 27.8%. Technically, to
achieve the total penetration 27.8% or to rise the penetration by 3.2% compared to the reference
penetration at 232MWp without storage, there are two options:

1) increase PV installed capacity to 277 MWp (45MWp+232MWp) along with marginal
battery storage of 1 KWh/kWp (277 MWHh), albeit at the cost of increased curtailment of
around 10% or

2) incorporate 2 KWh/kWp (464 MWHh) of battery storage for the 232MWp, to eliminate
curtailment. Other options could also be possible.
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Fig. 4.29. Total curtailment as a function of battery capacity for different
PV/feed-in limits

In quantitative terms, option one requires an additional 45 MWp, along with 277 MWh of
battery storage, compared to option two's requirement for 187 MWh (187 MWh + 277 MWh)
of battery storage. Based on current market trends (Table 5), adding 45 MWp of PV costs
$39.42 million, making it more cost-effective than adding 187 MWh of battery storage, which
costs $60.2 million. The increased cost of batteries in relation to the PV system is associated
with a shorter battery life span. It is noted that we are comparing incremental costs, not total
system costs.

The first option, though accompanied by some curtailment, is technically and economically
viable. Therefore, for specific capacities of PV installations, curtailment may be preferable
over storage from both economic and technical standpoints. Curtailment has recently emerged
as a cost-effective tool for enhancing renewable utilization, especially when combined with
optimal storage (Perez et al., 2019; Solomon et al., 2016). Additionally, demand-side
management, electric vehicles, and space heating practices can help utilize a portion of the
curtailed energy to enhance cost-effectiveness.

Although this thesis is designed to offer a technical perspective, the results highlight the need
for a thorough economic assessment to avoid unfavourable scenarios. It has been concluded
that careful technical and economic assessments are necessary, as surplus generation
(curtailment) may outweigh storage benefits. The optimal design should balance storage and
curtailment.

Based on the above discussion, the next section will look for the best system configuration that
maximizes the overall performance.

4.2.3. Enhancing system performance through strategic parameter tuning

In this setup, an ideal feed-in limit for each PV capacity and its corresponding battery size is
identified using simulation methods to maximize penetration and minimize losses. At this ideal
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limit, almost all energy rejected from the grid due to feed-in constraints is stored in the battery
for night-time use. Consequently, battery storage below 2 kWh/kWp is found sufficient enough
to maximize the overall system performance when fitted with this ideal feed-in limit. This
configuration supports up to 550 MWp of PV capacity without power curtailment during night
time battery injection. In this section, the hosting capacity is slightly increased to align with
the anticipated near-future grid expansion and reinforcement measures in Eritrea, and to
accommodate the increased integration of residential and utility-scale PV plants over time. All
simulations are based on the energy balance of aggregated solar and wind with aggregated
demand

Fig. 4.30 shows penetration as a function of feed-in limits. Based on the simulation results
shown in the figure, Table 9 presents the ideal combination of parameters to achieve the
balance. Technically, if the network has a hosting capacity of 150 MW, installing a PV capacity
below 232 MW)p with marginal battery storage of less than 0.58 kWh/kWp at a feed-in limit of
0.65 KW/kWp is safe for the local network. For constant PV capacity, increasing the hosting
capacity of the network may eliminate the need for storage.
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Fig. 4.30. Penetration as function of Feed-in limit for different pairs of PV capacity and
battery sizes

Table 9. Ideal value of system variables that maximize the performance of the setup

| PV capacity (MWp) |
System variables 100 163 232 322 436 550
Hosting capacity (MW) 87 130 150 193 231 237
Feed-in limit (KW/kWp) 0.87 0.73 0.65 0.6 0.53 0.43
Battery (KWh/kWp) 0 0.28 0.58 1 1.5 2
Penetration (%) 20 24 28 33 40 46
Curtailment (%) 0 0 0 0 0 0.11

Additionally, Fig. 4.30 shows the impact of the feed-in limit on penetration for various PV-
battery storage combinations. The figure illustrates that with larger PV capacity, there is an
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initial rise in penetration as the feed-in limit increases; however, this upward trend gradually
decelerates and eventually reverses with further increments in the feed-in limit. For PV
capacities of above 323MWp, the penetration is shown to decrease after reaching their peak
values at around 0.48-0.6 kW/kWp. The feed-in limit, which corresponds to the point of
maximum penetration, is the threshold that avoids curtailment. The maximum penetration,
equating approximately 46%, is achieved at a feed-in limit of 0.43 kW/kWp, with negligible
curtailment. Beyond this threshold, directly injected energy increases, while energy to storage
and penetration decreases. The decline in penetration is attributed to increased wind curtailment
when more PV is directly injected into the local grid at higher feed-in limits during the day.
This creates a scenario with excess generation during the day, where the energy intended for
storage at low feed-in limits is instead directly injected into the grid, ultimately resulting in
wind curtailment.

As illustrated in the Fig. 4.30, for PV capacities below 323 MWp, penetration rises until
reaching a particular feed-in limit, which varies depending on PV capacity. Beyond this
threshold, increasing the feed-in limit does not increase the penetration; instead, it remains
constant. The threshold feed-in limit is the point at which all rejected energy is stored in the
storage system without any curtailment. Further increase in the feed-in limit results in more
energy being directly injected into the grid, leaving less excess energy to partially fill the
storage. At higher feed-in limits, even if all the generated PV energy is directly injected into
the grid, it never surpasses consumption, resulting in no curtailment and constant penetration.
The key observation highlights the vital link between battery storage and PV capacity, stressing
the need for proportional deployment to maximize renewable energy utilization at an ideal
feed-in limit.

In the context of renewable energy integration, the paramount concern lies in efficiently
optimizing resources to maximize utilization and minimize losses. Figs. 4.28 and 4.29
underscore this challenge, revealing that achieving a penetration of 37% demands a curtailment
of roughly 18% of the useful generated energy, necessitating a battery storage capacity of
around 2 KWh/kWp. The excessive curtailment is due to the predetermined feed-in limit that
constrains the system to reach an optimum point. In contrast, Figs. 4.30 and 4.31 present a
notable improvement, showcasing a significant reduction in curtailment to negligible levels.
This is because the ideal feed-in limit for a specific PV/battery capacity is identified by
simulating feed-in limit over a wide range of possible values. In this scenario, where PV
capacity was below 232 MWp, significant curtailment is observed at lower feed-in limits, but
gradually diminishes as the feed-in limit increases and eventually disappears. This curtailment
is entirely linked to PV generation and is a result of the imposed feed-in limit. However, for
larger PV capacities exceeding 323 MWop, the system is shown to experience a loss from both
PV and wind. At specific feed-in limits, both PV and wind curtailment reached their minimum
levels, and during the same interval, the share of total renewable energy consumed is also at its
maximum.
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Total Curtailment (% TRE)

Fig. 4.31. Curtailment as a function of feed-in limit for different PV capacities and battery

The system parameter curtailment as a function of feed-in limit and battery storage is shown in
Fig. 4.32. This figure illustrates how total curtailment varies with both storage and feed-in
limits. Curtailment is considerable at both low and high feed-in limits, as indicated by the
double peak and grooved section of the 3D curve. The two peaks are related to PV and wind
curtailment, respectively. However, at specific combinations of storage and feed-in limits, the
energy loss suddenly decreased to its minimum point. Evidently, this minimum curtailment
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The best configuration of the system should maximize renewable utilization by minimizing
losses. This involves ensuring that all system variables, such as PV capacity, storage capacity,
wind capacity, and feed-in limit, fall within a reasonable range. Therefore, feed-in limits
ranging from 0.35 to 0.55 kW/kWp, coupled with 2 kWh/kWp of battery storage, emerge as
the most suitable combination for minimizing curtailment and maximizing penetration. The
red asterisk in Fig. 4.32 marks the point of maximum penetration and minimum curtailment.

To place my results in a broader context, | compared them with international experiences.
Studies from Belgium (Flanders) (Meuris et al., 2019). and Germany (Zeh and Witzmann,
2014) show that feed-in limits —70% and 60% of installed capacity, respectively — are used to
protect low-voltage networks. These examples highlight how controlled feed-in can ease
distribution-level constraints. Unlike these cases from well-developed grids, my work focuses
on renewable integration in a developing-country setting and proposes grid management and
expansion options suited to such conditions. This comparison helps situate my findings within
the wider landscape of renewable integration challenges and solutions

To wrap up, the contribution of residential PV to the energy mix is increasing with the growing
adoption of roof-mounted residential PV systems, driven by the continuous decline in the cost
of home battery storage and PV components. Contributing to around 32% of the penetration,
residential PV can significantly reduce households’ carbon footprint, as households that were
once energy consumers have recently become energy producers. The contribution of residential
is expected to rise considerably with the continuous evolution of the conventional grid,
allowing for the consumption of residential PV at the local network, unlike conventional ones.
However, it is worth noting that with increasing distributed generation (residential PV), a
proper quality is compromised if proper measures are not taken.

4.2.4. Power quality issues in grid-connected PV systems

To support and validate the theoretical framework, an experimental analysis was conducted at
one of the PV installations on the Szent Istvan Campus, whose size and capacity closely align
with the system specifications recommended in this dissertation. The various power quality
indicators were measured at different time scales, from the minimum 200 milliseconds (ms) to
2-hour (h) intervals. In this study, special emphasis is placed on selected parameters — active
power output, current total harmonic distortion (Thdl), voltage total harmonic distortion
(ThdV), and voltage deviation — measured at 3-second intervals to examine the impact of the
temporal variability of weather conditions on PV power output and its quality.

Fig. 4.33 presents the active power output normalized to its peak capacity of 3.3 kW. The figure
shows a gradual increase in power output from morning until noon, followed by a decline in
the afternoon, and remains zero in the night hours. The maximum PV output recorded was
approximately 0.72 kW/kWp, corresponding to the normalized peak capacity (P/Prated). This
shows that there are a few hours in the year when power generation is above 0.72 kW/kWp and
this offers insignificant benefit to the system in increasing the aggregate annual generation.
This aligns closely with the findings in subsection 4.2.1, which indicate that applying a feed-
in limit above 0.7 kW/kWp vyields negligible gains in annual energy generation.
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Fig. 3.33. The active PV power output as normalized to its peak capacity 3.3 kWp

The current waveform is more sensitive to irradiation than the voltage waveform. Fig. 3.34
shows the current (blue line) and voltage waveform at sunny and cloudy hours. Under sunny
conditions, the phase difference is essentially zero; however, as shown in the figure, during
cloudy conditions, a small phase deviation can appear due to rapid irradiance fluctuations and
inverter control response (note the reference offset between V and I).
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Fig. 3.34. Voltage and current waveform distortion at different operating conditions

To investigate the total harmonic characteristics of the PV inverter at various operating
conditions of power generation, the generated power relative to its rated capacity (P/Prated) IS
categorized into three regions: lightly loaded inverter (0-0.3), medium loaded inverter
(0.31- 0.5), and heavily loaded inverter (0.51-0.74). The analysis shows that the current total
harmonic distortion (Thdl) is high at low power generation conditions but decays with
increasing power generation. At a low generation level, the MPPT and power factor control of
the system are deactivated, but the control system is activated at higher generation conditions.
At such higher operating conditions, the measurements indicate that current THD (Thdl)
remains mostly within the optimum standard range of < 5%, which will be discussed further in
subsequent paragraphs. The current harmonic distortion exhibits a strong correlation with
inverter loading; however, the data provides limited evidence on how voltage harmonic
distortion is affected by inverter loading. This is primarily because voltage total harmonic
distortion is influenced not only by the inverter switching frequency but also by external factors
such as grid impedance and the presence of non-linear loads. Consequently, the two major
power quality indicators (Thdl and ThdV) show limited mutual correlation, as their behaviour
depends on multiple underlying factors. Nevertheless, quantifying their influence on voltage
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deviation (V_Dev) is crucial for understanding the origin of voltage deviation, which has
significant implications for system balance and grid stability. The analysis reveals that while
Thdl shows no meaningful correlation with VV_Dev, there is a clear positive correlation exists
between ThdV and V_Dev. Fig. 3.35 illustrates the variation of ThdV and V_Dev under
different inverter operating conditions, along with their corresponding regression trends.

Inverter laoding Condition and polynomial fit
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Light Polynomial Fit
Medium Polynomial Fit
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Voltage THD (ThdV) [%]

Fig. 3.35. The correlation and regression trend of ThdV and VV_Dev under various loading
conditions

The measurements show that the correlation between ThdV and V_Dev varies significantly
with inverter loading conditions. The Pearson correlation coefficient between the two power
quality indicators is 0.553 for the lightly loaded inverter, 0.495 for medium medium-loaded
inverter, and 0.582 for the heavily loaded inverter.

As shown in the scatter plot and fitted polynomial curves, the relationship between ThdV and
V_Dev is nonlinear. A fourth-order polynomial regression curve was identified as the most
suitable model to capture the relationship between ThdV and VV_Dev across the observed load
conditions. These regression trends predict about 41% of the voltage deviation with some
variation based on inverter loading conditions. This suggested that voltage deviation is driven
more by grid-side conditions and loads than by inverter harmonics. Analysing the regression
trend between ThdV and VV_Dev under different loading conditions, however, helps reveal how
inverter stress and grid interaction affect power quality.

Fig. 4.36 illustrates the relationship between current total harmonic distortion (Thdl) and active
power. The figure shows a strong correlation between the two parameters. This indicates that
inverter loading has a greater impact on Thdl than on the other power quality indicators, such
as ThdV and VV_Dev. Under heavily loaded inverters, Thdl remains relatively low, with only a
few points exceeding the permissible limit of 5%. However, as the inverter load decreases,
Thdl gradually exceeds this limit and rises further, reaching values of around 10%. The change
in Thdl becomes more pronounced under lightly loaded conditions. This suggests that inverter
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loading plays a decisive role in the injection of current harmonics into the grid, with a strong
caution that lightly loaded (underutilized) inverters contribute significant harmonic distortion.

A cubic polynomial function fits the curve well, achieving an R? value of 0.926. This indicates
that inverter loading exhibits a structurally measurable relationship with Thdl. At higher
loading levels, inverter behaviour becomes more stable, likely because MPPT and control
mechanisms operate more actively and consistently when PV generation is higher. These
results highlight the importance of designing inverters that maintain robust control and
predictable power-quality performance across a wide range of loading conditions.

Accordingly, the total current harmonic distortion (y) as a function of active power (x) for the

three inverter loading categories (conditions) can be reliably estimated using a single cubic
polynomial model:

y = 1.3546 + (—0.2973) x + (0.0239) x2 +(-0.00063) x3
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Fig. 4. 36. Active power versus total harmonic distortion under different loading conditions

The greater variation in Thdl observed in lightly loaded inverters implies that they are more
sensitive to harmonic distortion when underutilized. Lightly and medium-loaded inverters
exhibit higher variability per unit change in active power, whereas heavily loaded inverters
show less variability. By associating these distinct regression behaviours with specific sites,

utilities can tailor inverter deployment strategies and better anticipate grid stress based on
localized loading profiles.

This suggests that inverter behaviour becomes more stable at higher loading levels, likely due
to more effective control operation under these conditions. Consequently, oversizing an
inverter for a given design can negatively impact power quality — not only cost — because an
oversized inverter tends to operate predominantly under medium or light loading, where
harmonic distortion is more pronounced. These findings highlight the need for inverter designs
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that ensure stronger control capability and more predictable interactions among power-quality
parameters across varying load conditions.

4.3. Advancing large-scale PV integration with accurate forecasting

This section presents the benefits of accurate PV generation forecasting and Al-based
optimization in supporting the integration of large-scale PV systems. It underscores the
importance of different forecasting horizons and addresses the persistent challenge of data
scarcity in PV prediction. In addition, it discusses how integrating forecasting results across
multiple horizons can significantly enhance operational performance and improve overall
system reliability.

Designing and modelling a renewable-based power system is inherently complex due to the
dynamic and uncertain nature of weather patterns. System design typically relies on historical
weather data, yet past conditions may differ significantly from future ones. As a result, a single,
static system design cannot guarantee optimal performance under all future scenarios. To
address these challenges, | propose that design limitations be mitigated through advanced
operational forecasting techniques. By combining robust system design with accurate, real-
time forecasting, power operators can dynamically adjust system operation, reduce risks
associated with variability, and enhance the reliability and efficiency of renewable energy
integration. This approach ensures that the energy transition is not only technically feasible but
also resilient and adaptive to the uncertainties of future climate and demand conditions.
Advanced forecasting can be effectively integrated into real-time operation, providing the
flexibility to optimize system performance by strategically dispatching storage and allocating
balancing generators. This ensures that the system operates efficiently and reliably under all
weather conditions.

More importantly, an advanced optimization tool based on a deep reinforcement learning
algorithm is applied at the end of the section to optimize the system, using the same input
variables presented in Section 4.1. This deep RL-based approach, a well-established and widely
used method, helps validate the accuracy and reliability of the new methodology introduced in
this dissertation. These advanced forecasting and optimization tools are key enablers of large-
scale renewable integration, aligning closely with my core objective of applying machine
learning-based forecasting to improve real-time PV system management.

4.3.1. PV generation forecasting without data limitation

Fig. 4.37 compares the accuracy of three models (LSTM, GRU, and LSTM-GRU) in predicting
uni-step and multi-step PV generation. This represents scenario 1, where sufficient satellite
data is available for training and testing the models. In this experiment, 17 years of satellite-
based meteorological data are used for accurate PV prediction. The results are encouraging,
demonstrating the potential of PV power generation forecasting in regions with adequate data
for model training and testing. However, real-world measurements from operational plants are
often limited to only a few years and are typically difficult to access publicly. Section 4.3.2
addresses this challenge by proposing a data-driven empirical relationship between satellite-
derived and measured data.
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Fig. 4.37. Forecasting result on overall data sets: a) 1-step prediction, b) 6-step prediction

The forecasting experiment is conducted using several advanced, traditional, and hybrid
models to identify the best architecture that effectively captures the inherent variability of PV
generation. Moreover, the impact of the time distribution of solar generation has been analysed
by dividing the dataset into corresponding seasons to better understand the effect of seasonal
weather variability on PV forecasting.

Fig. 4.37a shows that the 1-step prediction accuracy of the hybrid model consistently
outperforms that of the other models (LSTM and GRU), as also demonstrated in Table 10. 1-
step denotes one hour ahead PV generation forecasting. The results show the proposed hybrid
model (LSTM-GRU) predicts PV generation with high accuracy, demonstrating its capability
in capturing the temporal pattern of weather variability. Such short-term forecasting is vital for
enhancing PV performance by allowing the power operator to strategically dispatch units and
storage facilities flexibly. An intra-hour short-term forecast can be applied to predict short-
term power ramps and voltage flicker, enabling power operators to better control the real-time
marketing and dispatching.

Table 10. Error metrics for different models separated into seasons (1- step forecasting)

Season Model RMSE (kW) | MBE (kW) | MAE (kW) R?
LSTM 0.0716 0.0022 0.0439 0.8999

Fall GRU 0.0735 0.0063 0.0467 0.8946
LSTM-GRU | 0.0813 0.0026 0.0625 0.9039

_ LSTM 0.0558 0.0035 0.0290 0.9448
Winter  FGRG 0.0600 0.0035 0.0329 0.9361
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LSTM-GRU | 0.0548 0.0134 0.0280 0.9468
LSTM 0.0625 0.0021 0.0358 0.9194
Spring GRU 0.0650 0.0093 0.0404 0.8946
LSTM-GRU | 0.0617 0.0083 0.0332 0.9216
LSTM 0.1051 0.0006 0.0774 0.6668
Summer GRU 0.1074 0.0019 0.0776 0.6525
LSTM-GRU | 0.0702 0.0033 0.0391 0.6685
LSTM 0.0745 0.0002 0.0450 0.8729
Overall GRU 0.0748 0.0021 0.0455 0.8532
LSTM-GRU | 0.0737 0.0083 0.0420 0.9004

In the subsequent experiment, with multi-step (6 and 12-step) prediction, the results follow a
similar pattern as one step but with only one distinct characteristic of diverging prediction error,
as shown in Fig. 4.37b. This is expected and reasonable; as the number of prediction steps
increases, so does error propagation. In multi-step prediction, accuracy decreases due to error
propagation as the prediction horizon grows. The inherent variability in PV power generation
further amplifies the challenge. The proposed hybrid model (LSTM-GRU) still exceeds the
performance of individual models, providing a closer alignment between actual and predicted
values. Forecasting several hours ahead of PV production allows grid operators to schedule
dispatchable generators and storage more effectively for optimal dispatch and grid
management. This approach reduces dependence on costly balancing generators and supports
smoother, larger integration of PV.

Fig. 3.38 presents the MAE for the three models, LSTM, GRU, and LSTM-GRU, over the
entire year (overall) dataset. The results show that the MAE increases with longer forecasting
horizons, which can be attributed to the accumulation of prediction errors as the time step
increases.
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Fig. 4.38. Trendlines of MAE for 1-, 6-, and 12-step forecasts across the combined annual
dataset for each model

4.3.2. Addressing data scarcity challenges in PV forecasting

The preceding discussions highlighted that accurate PV generation forecasting is vital for
enabling large-scale PV to the power grid by offering flexibility to power operators to dispatch,
schedule, and optimize storage, balancing generators and other grid enablers effectively. This
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section presents the Z-score transformation-based results and demonstrates a significant
improvement compared to those obtained without transformation.

Fig. 4.39 shows the result of one-step PV prediction. In this experiment, all three models show
similar performance regardless of season, as indicated by their RMSE values. However, LSTM
has very nearly outperformed the other two models in RMSE, MBE and MAE while GRU
performed slightly well in R2. Regarding prediction accuracy, the newly introduced approach
achieved good results in forecasting actual PV generation, which are almost comparable to the
corresponding values obtained when pure satellite-derived data was used as the training and
testing dataset, as shown in Table 9.

Winter - Season Summer - Season

z 0.6 =z 0.5
= 5
% %’ 0.4
e 203
S S
= S 0.2
2021 —— 2 £ gy
2 — sm | 2 0.1 7St LSTM
=) -== GRU ~ --- GRU

0l ,' | v ———  Hybrid 0.0 y & | ¥~ ——— Hybrid

0 10 20 30 40 0 10 20 30 40
Time Step (1 hour ahead) Time Step (1 hour ahead)
Spring - Season Fall - Season
0.6

Z z
= =
204 2
2 £ 04
o o
2 A
S S
202 E P
= U = 0.2 7
% i —— Actuals g \ \'-‘—'- A
= | Y\ | =N\.Jg 0 Nl W\ --- LSTM = Wit Lst™
A S --- GRU A~ --= GRU

0.0 ---  Hybrid 0.01 -=~ Hybrid

0 10 20 30 40 0 10 20 30 40
Time Step (1 hour ahead) Time Step (1 hour ahead)

Fig. 4.39. Performance comparison of the three models' prediction of actual PV generation
across four seasons in 1-step prediction

As shown in Fig. 4.39, the models satisfactorily forecast the actual PV generation with
comparable performance. The proposed approach demonstrates superior performance, with
accurate predictions providing power operators with 1-hour to 12-hour ahead PV generation
forecasts. This enables effective scheduling and dispatching of generation units and storage
facilities, enhancing grid efficiency and stability. Further improvement is needed in multistep
predictions as errors become significant, particularly for 12-hour-ahead forecasts. Several
hours-ahead PV power predictions is crucial in addressing intermittency-related integration
challenges, offering operators more time to prepare for fluctuations and optimize grid
operations. Notably, the analysis focuses exclusively on daytime hours, as night data is omitted
by assuming zero PV generation. While further model enhancement and the incorporation of
improved statistical tools for approximating satellite-derived data with measured data are
necessary, the results of this study lay a strong foundation for predicting actual generation from
satellite-derived data. The proposed methodology offers several key advantages. First, machine
learning prediction models require large datasets for effective training and validation, often
unavailable from measured data alone. Satellite and reanalysis datasets, with their extensive
and long-term data coverage, bridge this gap by providing extensive historical data for trend
analysis and model training, improving the accuracy and robustness of prediction models.
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Furthermore, leveraging these datasets ensures the broader applicability of the methodology
across regions lacking robust measurement infrastructure, making it a versatile solution for
global energy transition efforts.

Table 11 presents a performance summary of the various investigated machine learning
models, both with (v') and without (x) transformation. These correspond to scenarios 3 and 2:
in scenario 2, satellite data are used without transformation for actual PV prediction, while in
scenario 3, transformed data are applied for actual PV prediction.

The proposed approach (scenario 3) is evaluated against advanced deep learning models such
as CNN-LSTM, TCN-GRU, and Informer. The performance of these models was assessed for
different forecasting time steps, revealing higher performance in multi-step forecasting.
However, their performance was similar to that of the LSTM-GRU hybrid model in one-step
prediction. This indicates that the architecture of these advanced models enabled them to
capture long-term sequences and predict better for medium-duration tasks. For instance, in six-
step forecasting, Informer outperforms the others, followed by TCN-LSTM in RMSE and R?,
while LSTM-GRU was shown to have good performance in terms of MBE, preceded by CNN-
LSTM.

Table 11. Performance comparison of conventional and advanced deep learning (with and
without data transformation-scenario

Model Transformation | RMSE (kW) | MBE (kW) | MAE (kW) | R2
LSTM x 0.2472 0.1900 0.2073 -0.3924
LSTM v 0.1731 0.0029 0.1409 0.5359
GRU x 0.2410 0.1889 0.2032 -0.3236
GRU v 0.1675 0.0015 0.1343 0.5821
LSTM-GRU X 0.2254 0.1760 0.1876 -0.1579
LSTM-GRU v 0.1714 0.0002 0.1378 0.6024
CNN-LSTM x 0.2519 0.2099 0.2165 -0.4458
CNN-LSTM v 0.1654 0.0011 0.1339 0.6043
CNN-GRU x 0.2545 0.2123 0.2180 -0.4758
CNN-GRU v 0.1786 0.0411 0.1422 0.5385
TCN-LSTM x 0.2461 0.1989 0.2069 -0.3808
TCN-LSTM v 0.1589 0.0009 0.1276 0.6345
INFORMER x 0.2245 0.1812 0.1886 -0.1482
INFORMER v 0.1585 0.0152 0.1273 0.6365

The performance of the other two traditional models, SARIMAX and XGBoost, is
unsatisfactory (Appendix, A15). However, their performance improves significantly when the
data transformation is incorporated. This suggests that traditional models are ineffective but
can be substantially improved when data transformation is applied.

Within this context, deep learning algorithms with transformation are the most accurate choices
for solar power forecasting; traditional models without transformation are not satisfactory.
Nevertheless, traditional models such as XGBoost become viable alternatives when
transformation is employed. SARIMAX has an R? value of -1.368, which indicates that the
model performs poorly in predicting the PV generation. Even when data transformation is
applied, the enhancement is marginal (0.0431).
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For quantitative comparison, scenario 3, when data transformation is applied, the XGBoost and
SARIMAX RMSE values are about 1.5 and 2.37 times higher than those of the hybrid (LSTM-
GRU) model. This suggests that deep learning models are naturally better suited for complex
forecasting tasks, such as solar energy prediction, while traditional methods show a lower
performance in predicting PV generation. Similarly, when comparing the prediction accuracy
of the hybrid model (LSTM-GRU) in terms of R?, with and without transformation in 1-step
prediction, the prediction accuracy increases by 43%, further demonstrating the superiority of
the proposed approach. The findings further reveal that the proposed transformation improves
forecasting accuracy by up to 24% in LSTM-GRU and 29.4% for Informer in six-step
prediction, based on RMSE. Such improved forecasting enhances grid stability, optimizes
energy dispatch, and offers a scalable solution for regions with limited measurement
infrastructure, highlighting the importance of satellite-based forecasting in renewable energy
policy development.

To highlight the overall system performance, Fig. 4.40 presents the RMSE values for each
model (LSTM, GRU, and LSTM-GRU) across four seasons, Fall, Winter, Spring, and Summer,
as well as the overall annual performance. Results are shown for forecasting horizons of 1, 6,
and 12 hours, illustrating seasonal variability and the impact of longer prediction steps on
model accuracy. The marked increase in error metrics with increasing horizon length (from 1
to 6 and then 12-step-ahead) reflects the error accumulation in multi-step-ahead time series
forecasting. In a 1-step-ahead forecast, predictions are conditioned on the most recent observed
data, minimizing input uncertainty. By contrast, in 6 and 12-step-ahead forecast using a
recursive strategy, each step relies on previously forecasted values, introducing propagated
errors and compounding model bias and variance over time.
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Fig. 4.40. Seasonal and overall RMSE for the models at 1, 6, and 12-hour forecasting
horizons

A growing body of work has examined how different meteorological datasets — such as
satellite-derived products, ground-based measurements, reanalysis data, and Numerical
Weather Prediction (NWP) outputs — affect the performance of data-driven PV forecasting
models. For example, Hajjaj et al. (2023) compared satellite-derived and ground-based datasets
and found that forecasts built using ground-based observations consistently achieved higher
accuracy, whereas satellite data led to noticeably poorer performance across all models.
Likewise, Brester et al. (2023) evaluated NWP datasets, observational data, and their combined
use against actual PV output, concluding that NWP inputs alone provided better generalization
and achieved up to 25% lower RMSE than the combined dataset.
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The findings highlight the critical role of accounting for weather variability in reliable
forecasting, particularly for multi-step predictions essential to long-term renewable energy
planning. These insights support grid and operational stability, optimize storage dispatch, and
underscore the value of satellite-derived models for renewable integration, ensuring the energy
transition remains technically feasible, resilient, and adaptable to future climate and demand
uncertainties. Short-term PV forecasts are particularly important for managing intermittency,
giving operators time to adjust and optimize grid operations. Furthermore, as discussed in
Section 4.1, accurate forecasting allows for strategic and flexible scheduling of storage and
generation units, which can substantially reduce balancing capacity requirements, improve
capacity factors, and ensure reliable power output.

4.3.3. Optimizing system configuration using deep RL model

Section 4.1 introduced a novel methodological framework for integrating large-scale PV
systems, centred around the ‘System Use Index (SUI)’, a newly developed metric designed to
identify optimal and near-optimal parameter configurations that enhance overall system
performance. While the results using this index demonstrated promising outcomes, establishing
the credibility and robustness of the framework requires rigorous validation against widely
recognized and proven modelling approaches. To this end, the current section employs a well-
established machine learning technique-Deep Reinforcement Learning (DRL), to optimize
system performance using one full year of PV generation and demand data. This DRL-based
model serves as a benchmark, enabling direct comparison with the results obtained from the
proposed rule-based methodology. Such comparative analysis not only highlights the strengths
of the RL approach but also affirms the reliability and practical relevance of the newly
introduced framework.

An RL-based battery dispatch model using the Proximal Policy Optimization (PPO) algorithm
was implemented. The agent interacts with a custom environment simulating hourly renewable
generation and load demand. The action space is continuous, representing charge/discharge
decisions, and the reward function penalizes curtailment and unmet demand while
incentivizing energy delivery (served load). The model was trained over a one-year horizon
using PV and load data, with battery parameters reflecting realistic operational constraints.

To assess system behaviour under varying configurations, the model was evaluated across
multiple values of diurnal storage. This allowed for a deeper understanding of how key system
parameters interact under different design conditions. Fig. 4. 41 presents the temporal dynamics
of these parameters over a representative one-week period in May, focusing on a 50-50 PV-
wind scenario. The simulations were conducted using consistent input parameters as outlined
in Section 4.1, with diurnal storage capacities below 0.5 times the average daily demand, a
fixed storage duration of 6 hours, and a renewable-to-load ratio of 1.04. Notably, at a diurnal
storage level of 0.25 times the average daily demand, the RL-based model achieved a
renewable energy penetration of 89.1% with only 12.9% curtailment.

For comparison, the newly introduced rule-based framework—using the same PV-wind mix
and diurnal storage size—achieved a penetration of 90% with 16% curtailment at a slightly
higher RE-to-load ratio of 1.10, as measured by the SUI index. This close alignment in
performance demonstrates that while the RL model exhibits marginally superior efficiency
(achieving similar penetration at a lower RE-to-load ratio), the rule-based approach remains
highly competitive. The dimensional consistency across both models, particularly in terms of
energy flows (MWh), storage capacity (MWh), and hourly resolution (h), further reinforces the
robustness of the comparison. The strong agreement between the RL model and the proposed
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framework validates the reliability of the new methodology and its underlying indices,
positioning it as a promising alternative for energy system optimization.
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Fig. 4.41. Hourly dynamics of system performance metrics for the RL-optimized configuration
over the one week of May

These advanced forecasting and optimization tools are key enablers of large-scale renewable
integration, aligning closely with my core objective of applying machine learning-based
forecasting to improve real-time PV system management.

An alternative approach was investigated by training the RL model using similar datasets and
system parameters to those in the case above. The only difference is the testing condition. The
model was trained to develop a charging /discharging policy using one year of full PVV+wind
data and load demand. The trained model was then evaluated against another new dataset. The
testing data set was created by injecting random noise into the training dataset of about +10%
for generation and +£5% for load. This represents a measure of uncertainty introduced by
variations in renewable generation and electricity demand across different years. In this
scenario, the model performs based on its learned policy and achieves penetration of 91.41%
and curtailment of 9.46% which is better than the previous results displayed in Fig. 4.40. This
shows that models trained and evaluated on the same data sets sometimes run to overfit instead
of generalizing the pattern.
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This section presents the new scientific findings from this research work as follows:
1. A methodological approach for integrating large-scale PV

I have introduced a novel methodological framework aimed at maximizing PV penetration in
the power grid. This approach systematically examines the interplay between key system
design parameters and overall efficiency by varying these parameters to generate diverse
operational scenarios and assess their sensitivities. For the first time, it explicitly incorporates
the interactions among critical factors—such as PV-wind mix, storage capacity, storage
duration, penetration level, curtailment, and balancing capacity needs—across a wide range of
scenarios, thereby providing deeper insights into system design and performance.

The methodological framework | developed, which is the basis for designing and modelling
the system with all its interacting system parameters, is presented as follows:

The different mixes of solar PV and wind-generated power can be computed by:
Brew(t) = Pog a(r) (r ppy(t) + (1 = 7) Pyina(t)),
a(r) is a factor that is determined from a requirement that:
Yea@)(r ppy(t) + (1 —7) puina(t)) = const,
and that «(0.5) = 1.
The no-dump capacity is, consequently, determined according to:

Pload(t)
(r ppv()+(1-7) Pyina(t)) ’

P,4 = min
The mismatch energy between renewable generation and load can be computed as:

Pmix(t) = ,8 Pnd CZ(T) (T‘ pPV(t) + (1 - T) pwind(t)) - Pload(t):

where £ is a multiplier that enables oversizing the generation. Based on the values extracted
from these empirical relationships, the model computes the optimal range of various parameters
to ensure an optimal system efficiency that ultimately maximizes PV integration.

2. Storage utilisation and system-use index

| have introduced new and novel indices that identify the optimal system design parameters,
and an optimal range of these parameters yields an optimal system performance. These indices
provide deeper insights into the effectiveness of curtailment and storage integration within the
broader energy infrastructure, enhancing the system's capacity to manage variability and
optimize resource utilization.

The empirical relationship developed for defining the system boundaries is:
= 2(8(6) - S(t—Ar)

Smax

SU =

if S(t) < S(t—At)
The system-use index (SUI) is computed as follows:

SUl=SUkmu

where k, m and u are calculated by dividing annual energy discharge by the total consumed
RE, average charging power by power capacity (PC), and total consumed RE by total RE
generation, respectively:
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P (0 —S(t—At)’ if (S(t) <S(t—At)
Zpuseful
m = ESO-60 if (S(t) > S(t — Ab)
— Smax
where PC = “max/ Atgy,
— ZPuserul
u - ZPTEW ’

This approach enables me to create a novel and improved 3D visualization of the intricate
relationships among these various interactive factors, providing a more comprehensive
understanding of their interactions to improve PV integration.

3. Storage optimisation and its link to penetration

| have established clear boundaries of renewable penetration by linking them with storage type
and application, resolving longstanding ambiguities in the literature. Through systematic
analysis, | structured storage use into three distinct configurations, defined by their application
and degree of penetration. This optimized categorization simplifies system design and
modelling and provides actionable boundaries that overcome previous inconsistencies in
renewable—dominated grid studies:

i.  First configuration: This represents the no-dump capacity range-the threshold below
which the system operates without requiring any form of storage or curtailment. While
the exact no-dump capacity varies with the PV-wind mix, the maximum penetration
achievable without storage or curtailment in the solar-only (PV) scenario is about 23.6%.

ii.  Second configuration: Any increase in renewable penetration beyond this level
necessitates storage and/or curtailment to manage fluctuations, enabling penetration up
to 80%. Within this range, diurnal storage plays the key role in balancing short-term
variability.

iii.  Third configuration: Beyond 80% penetration, renewable deployment rises sharply even
with slight increases in penetration. Thus, meeting the final 20% of demand presents a
distinct challenge, which | addressed through seasonal storage capable of resolving long-
term seasonal mismatches.

4. Maximizing the direct consumption of residential PV by imposing feed-in constraints

| have explored strategies for maximizing direct consumption of PV power in the low-voltage
network. | have introduced a distinctive approach that proposes tailored grid-expansion and
management solutions to enhance local network PV consumption. Building on this analysis, |
have identified remarkably effective strategies that maximize the direct use of generated PV.
The most efficient configuration combines a feed-in limit of 0.4-0.5 kW/kWp with battery
storage capacities below 2 kWh/kWp, a setup that sharply reduces curtailment and achieves
the highest levels of direct PV utilization.

Using the new approach — supported and validated with laboratory experiment — | have
demonstrated that feed-in limits above 0.7 kW/kWp offer only negligible improvements in
annual energy output. This confirms that the common practice of sizing inverters at 80—-90%
of the PV array capacity is not only economically inefficient but can also degrade system
operation and power quality.
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5. New scientific results

5. Addressing the data scarcity challenge in PV power forecasting

| found a practical solution to the data scarcity challenge in PV generation forecasting by
developing a method that bridges satellite-derived and ground-measured data. Using a
modified Z-score transformation, | have approximated satellite data to measured data based on
their respective means and standard deviations. This approach enables the integration of widely
available satellite data with the reliability of ground-based measurements by establishing a
transparent empirical relationship, using transformation formulas derived from observed
correlations. The resulting adjusted dataset is used to train the forecasting model. At the same
time, testing is conducted on actual measured PV output, ensuring both accuracy and
applicability in regions with limited monitoring infrastructure.

For each value in satellite-derived data, | found the standard normal form using the Z-score
transformation (z):

P P—
7 = sat,i— Msat and

Osat

the rescaled satellite value (P, ;) is determined to match the distribution of the measured data
using:

’ —
Psat,i = Z Omeas T Wmeas

where, Psq; i, Wsqe @and o4, are the hourly PV generation, mean, and standard deviation of the
satellite-derived data, whereas, ,eqs aNd 05,045 are the mean and standard deviation of the
measured data.

The proposed transformation has been rigorously validated against various well-established
forecasting models. It demonstrates significant improvements in forecasting accuracy,
achieving up to 24% in the LSTM-GRU model and 29.4% in the Informer model for six-step
forecasts, based on RMSE metrics. For one-step predictions, the hybrid LSTM-GRU model
yields a 43% increase in accuracy using the R? coefficient, confirming the effectiveness of the
transformation approach. The method offers a scalable solution for regions with limited
measurement infrastructure, reinforcing the role of satellite-based forecasting in advancing PV
integration and shaping renewable energy policy development. Moreover, these forecasting
improvements contribute to enhanced grid stability, optimize storage dispatch, and improve
load balancing by offering flexibility to system operators.

The newly introduced methodological framework was validated against a well-established RL-
based machine learning algorithm, showing negligible disparities. This strong agreement
confirms the reliability of the framework and its underlying indices, reinforcing its accuracy
and positioning it as a promising alternative for energy system optimization.

6. Impact of inverter loading on power quality

I have investigated the total harmonic characteristics of the PV inverter at various inverter
loading conditions and I identified that inverter loading has a greater impact on the current total
harmonic distortion (Thdl) than on the other power quality indicators. In heavily loaded
inverters, Thdl remains relatively low, with only a few points exceeding the permissible limit
of 5%. However, as the inverter load decreases, Thdl gradually exceeds this limit and rises
further, reaching values of around 10%. The change in Thdl becomes more pronounced under
lightly loaded conditions.
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5. New scientific results

Accordingly, I have shown that the total current harmonic distortion (y) as a function of active
power (P/Prated) (x) for the three inverter loading conditions can be reliably estimated using a
cubic polynomial model, achieving an R? value of 0.926.

y = 1.3546 + (—0.2973) x + (0.0239) x2 +(-0.00063) x3

The greater variation in Thdl observed in lightly loaded inverters implies that they are more
sensitive to harmonic distortion when underutilized. Lightly and medium-loaded inverters
exhibit higher variability per unit change in active power, whereas in heavily loaded conditions,
inverter behaviour becomes more stable, likely because MPPT and control mechanisms operate
more actively and consistently when PV generation is higher. By associating these distinct
regression behaviours with specific sites, utilities can tailor inverter deployment strategies and
better anticipate grid stress based on localized loading profiles.

This suggests oversizing an inverter for a given design can negatively impact power quality —
not only cost — because an oversized inverter tends to operate predominantly under medium or
light loading, where harmonic distortion is more pronounced. These findings highlight the need
for inverter designs that ensure stronger control capability and more predictable interactions
among power-quality parameters across varying load conditions.
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6. CONCLUSION AND RECOMMENDATION

In this thesis, strategies have been investigated for maximizing PV integration into the power
grid through three complementary approaches: large-scale PV deployment, residential PV
integration, and PV generation forecasting and optimization.

To support large - scale PV integration, a novel methodological framework has been developed
that flexibly captures the interactions between key system design parameters, such as storage
capacity, storage duration, penetration, curtailment, wind-solar mix, and balancing
requirements, while linking these parameters to a newly developed System-use index (SUI),
which serves as a proxy of system efficiency. Various scenarios have been evaluated by fixing
the PV share at 0%, 50%, and 100% of total RE capacity and applying different storage
durations. Results show that penetration, curtailment, and storage all increase simultaneously;
however, penetration gains diminish once storage or curtailment exceeds certain thresholds.
Nevertheless, reaching 80-90% penetration is feasible with diurnal storage below 0.5 average
daily demand with 6 hours of storage, alongside moderate curtailment. Achieving 100%
renewable penetration is, however, challenging in the last 10-20% of the transition due to
seasonal mismatches. Incorporating seasonal storage, about 8 average daily demand with a RE-
to-load ratio of 1.2, enables complete decarbonization without balancing (back-up) needs.
These findings highlight that an optimal mix of curtailment, storage, and wind-solar mix is
essential for maximizing system efficiency, forming multidimensional constraints that are
difficult to implement in existing techno-economic tools but critical for guiding policy
development and regulation.

The role of residential PV in large-scale PV integration has been investigated by introducing a
new concept of direct PV injection into low-voltage networks, overcoming the limitations of
conventional self-sufficiency models. Findings reveal that imposing a feed-in limit and
integrating battery storage significantly reduce curtailment, with a feed-in limit of 0.4 to 0.5
KW/KkWp and battery storage below 2 kWh/kWp. This setup maximizes photovoltaic
integration and enables renewable energy penetration of up to 30%. The study further examined
the impact of inverter loading on power quality and found that highly loaded inverters operate
more stably, while underutilized inverters exhibit significant distortion.

Machine learning based forecasting and optimization models have been proposed to maximize
PV integration. To achieve this, a modified Z-score transformation and an RL model have been
applied to align satellite-derived data with measured values to improve generation forecasting
and optimize the system configuration. The findings reveal that the proposed transformation
improves forecasting accuracy by up to 43%, demonstrating the effectiveness of the approach
in providing a scalable solution for regions in regions with limited measurement infrastructure.

These approaches collectively establish a comprehensive framework for addressing both
system design and operational challenges in maximizing PV integration. By combining
optimized PV-wind-storage configurations, effective residential PV deployment, and
enhanced forecasting, the study provides valuable insights for achieving high levels of PV
penetration in future renewable-dominated grids. Adopting, technical-first perspective, the
study outlines multiple transition pathways by defining boundary conditions that can guide
more detailed economic analyses and policy development. Furthermore, improved
transmission planning and demand-side management will be essential for achieving more
optimal system configurations and understanding parameter interactions. Incorporating more
fine-tuned household data in residential PV analysis could further improve accuracy. This study
emphasizes the importance of understanding the future renewable energy grid, using Eritrea as
a case study; nevertheless, the methodology employed can be applied to a broader range of
applications in a global perspective.
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7. SUMMARY

MODELLING AND OPTIMIZATION OF LARGE-SCALE GRID-CONNECTED
PHOTOVOLTAIC SYSTEMS WITH ENABLING TECHNOLOGIES

A holistic and innovative multifunctional simulation model is developed to maximize PV
integration and offer a broader perspective on system design under interacting factors. Using
hourly weather data from PVGIS and GWA, geographically distributed solar and wind sites in
Eritrea were analysed to explore scenarios achieving 90% and beyond renewable penetration
with and without storage. The results offer important insights of global importance by linking
parameters in a uniquely broad way, while also addressing the context-specific requirements.

The analysis focuses on enabling large-scale PV integration through resource complementarity,
energy storage, curtailment strategies, balancing capacity and improved forecasting,
recognising that PV alone cannot capture full system complexity. Two new indicators, Storage
Utilisation (SU) and System Use Index (SUI) are introduced to reveal the interactions between
these variables. Results show that variable renewable penetration, curtailment and storage
capacity increase simultaneously across all scenarios. The framework provides multiple
options for combining storage and curtailment to achieve specific penetrations (including
100%), tailored to individual priorities and policy preferences, with the optimal approach lying
in determining approximate optimal sizes to balance technical and economic feasibility.

Findings show that with a storage capacity below 0.5 of average daily demand, grid penetration
exceeding 90% can be achieved while keeping curtailment under 20%, except in wind-only
scenarios, which require higher curtailment. Diurnal storage manages short-term fluctuations
and facilitates high renewable penetration of 80-90%, but its limitations become evident
beyond this range. Meeting the final 10-20% of demand requires solutions beyond diurnal
storage, as seasonal mismatches necessitate large storage and generation capacities.
Incorporating seasonal storage of about 8 average daily demand with a RE-to-load ratio of 1.2
enables complete decarbonisation without balancing back-up needs. Overall, the study
highlights that an optimal mix of curtailment, storage and wind-solar complementarity is
essential for maximising system efficiency and for shaping policies and regulations that support
deep decarbonisation.

Two additional approaches are introduced to maximise PV integration into the grid: expanding
rooftop PV adoption (residential PV) and applying advanced PV generation forecasting. Using
simulation techniques, the study examined the optimal deployment of residential PV and
battery storage to boost PV penetration while minimising curtailment, applying a simple
algorithm for PV injection, battery charging, and discharging. Key results show that imposing
a feed-in limit and adding battery storage markedly cut curtailment, with limits of 0.4-0.5
kKW/kWp and storage below 2 kWh/kWp giving the best outcomes. The study reveals that the
power quality of grid-connected PV systems is strongly influenced by loading conditions,
showing that highly loaded inverters maintain stable operation, while lightly loaded
(underutilized) inverters exhibit increased distortion. The advantage of Effective PV
forecasting for increasing renewable energy integration is studied, as it allows better
management of generation and system operations. The new PV forecasting approach raises
accuracy by up to 43%, enhancing generation management. When combined with resource
complementarity and storage adoption, this improved forecasting strengthens grid stability,
optimises scheduling, improves storage dispatch, reduces balancing needs, and boosts overall
system efficiency, ultimately maximising renewable energy integration.
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8. OSSZEFOGLALAS (SUMMARY IN HUNGARIAN)

NAGYMERETU, HALOZATRA KAPCSOLT FOTOVILLAMOS RENDSZEREK
MODELLEZESET ES OPTIMALIZALASAT TAMOGATO TECHNOLOGIAK

Egy holisztikus, innovativ tobbfunkcids szimulacios modell keriilt kifejlesztésre a napelemek
integracidjanak maximalizdldsdra ¢€s a rendszertervezés szélesebb perspektivajanak
biztositdsara a kolcsonhatdsban 1évo tényezdk figyelembevételével. A PVGIS ¢és GWA
orankénti adatait felhasznalva eritreai helyszineken késziilt elemzés olyan forgatokonyveket
vizsgal, amelyekben a nap- és szélenergia kombinacidjaval — tarolassal és anélkiil — 90% feletti
megujuloenergia elterjedés érhetd el. Bar az eredmények helyspecifikusak, globalis

jelentdségiik is van a paraméterek széles kort 6sszekapcsolasanak koszonhetden.

Az elemzés a nagy léptékli napelemes integracidé megvalosithatosagara Gsszpontosit az
er6forrasok kiegészitd jellege, az energiatarolds, a betaplalasi korlatozasok, a kiegyenlitd
kapacitas és az eldrejelzés szerepének vizsgdlatdval. Két 0j mutatd, a tarolaskihasznalas (SU)
¢s a rendszerhasznalati index (SUI) keriilt bevezetésre. Az eredmények szerint a
megujuldenergia elterjedés, a korlatozas és a tarolasi kapacitds minden forgatokonyvben egytitt
novekszik. A keretrendszer tobb lehetdséget kinal a tarolas és a korlatozas kombindalasara,
kiilonboz6 prioritdsokhoz és menetrendekhez igazodva, meghatarozott elterjedés (akar 100%)
elérése érdekében. Az optimalis megkdzelités a muszaki és gazdasidgi megvaldsithatosag
egyensulyat biztositd paraméterek meghatarozasaban rejlik.

A napi energiaigény 50%-anal kisebb tarolasi kapacitas mellett 90% feletti halozati elterjedés
érhetd el, mikozben a betaplalasi korlatozas 20% alatt marad — kivéve a kizardlag szélenergiat
alkalmazo forgatokonyveket. A napi tarolas hatékonyan kezeli a rovid tdva ingadozasokat és
80-90%-0s megujuldenergia részaranyt tesz lehetové, de ezen szint felett korlatjai
jelentkeznek. A maradék 10-20% fedezéséhez szezonalis tarolds sziikséges nagyobb
kapacitassal és termelési potencidllal. A napi atlagos kereslet koriilbeliil nyolcszorosanak
megfeleld szezonalis tarolas 1,2-es megujuld energia terhelés arannyal teljes dekarbonizaciot
tesz lehetdveé kiegyenlitd tartalék nélkiil. A dolgozat kiemeli, hogy a rendszerhatékonysag
maximalizalasdhoz — a dekarbonizaciot tdmogatd politikai és szabalyozasi hattér mellett —
kulcsfontossagli a betaplalasi korlatozés, a tarolds és a nap- és szélenergia optimalis
kombinacioja.

szerelt (lakossdgi) napelemes rendszerek elterjesztése és a fejlett napenergia eldrejelzés
alkalmazasa. Szimulaciok vizsgaltdk a lakossagi napelemek és akkumulatoros tarolok
optimalis telepitését a fotovillamos energiaforrasok terjedésének eldsegitése €s a betaplalasi
korlatozasok csokkentése érdekében, orankénti iitemezesii algoritmust alkalmazva a betaplalas,
toltés és kistités iranyitasara. Az eredmények szerint a betaplalasi korlat bevezetése és az
akkumulatoros tarolas egylittesen jelentdsen mérsékli a korlatozast, a legjobb eredmények 0,4—
0,5 kW/kWp betaplalasi korlat és 2 kWh/kWp alatti tarolas mellett érhetdk el. A hatékony
javitja a termelés és a rendszeriranyitas hatékonysagat. Az 0j eldrejelzési megkdozelités akar
43%-kal noveli a pontossagot, javitva a haldzat stabilitasat, az akkumulatorok kihasznaltsagat
¢s a rendszer altalanos hatékonysagat.
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A3. Power curve for 3.45 MW Vestas wind Turbine

Turbine specification V117 - 3.45MW (rated speed=12.5 m/s) and V136-3.45MW (rated
speed =11.5 m/s)

V117 - 3.45MW (cut-in 3 m/s, cut-out 25 | V136-3.45MW (cut-in 3 m/s, cut-out
m/s) 22.5 m/s)

Windspeed Power Cp Wind speed | Power Cp
(m/s) (kW) (m/s) (kW)

3 22.00 0.124 3.00 49.00 0.204
35 78.00 0.276 3.50 127.00 0.333
4 150.00 0.356 4.00 224.00 0.393
4.5 237.00 0.395 4.50 339.00 0.418
5 340.00 0.413 5.00 480.00 0.432
55 466.00 0.425 5.50 651.00 0.440
6 617.00 0.434 6.00 857.00 0.446
6.5 796.00 0.44 6.50 1099.00 0.450
7 1 006.00 0.445 7.00 1382.00 0.453
7.5 1247.00 0.449 7.50 1705.00 0.454
8 1522.00 0.451 8.00 2067.00 0.454
8.5 1831.00 0.453 8.50 2460.00 0.450
9 2178.00 0.454 9.00 2849.00 0.439
9.5 2 544.00 0.451 9.50 3174.00 0.416
10 2 905.00 0.441 10.00 3369.00 0.379
10.5 3201.00 0.42 10.50 3434.00 0.333
11 3374.00 0.385 11.00 3449.00 0.291
11.5 3435.00 0.343 11.50 3450.00 0.255
12 3448.00 0.303 12.00 3450.00 0.224
12.5 3450.00 0.268 12.50 3450.00 0.199
13 3450.00 0.238 13.00 3450.00 0.176
25 3450.00 0.034 22.5 3450.00 0.034
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A4: Hourly Kandall’s rank correlation matrix

Kendall’s (1) rank correlation between different hourly generation profiles.NA. wind stands
for National average wind and NA. solar PV for National average solar PV
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A6. Seasonal power generation mismatch
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A7. Specifications of PV module and inverter

A{Jg S(I:p dct Né)v chc

PV module Inverter
Type of the SolarWatt Inverter type SE 3500-ER-01-1TA
collector Vision
modules 36M Glass
Technology Monocrystalline Phases Single-phase
Covering material | Partly tempered Operating 270 — 500 Vdc
high transparent voltage range
float glass, 4
mm
Transparency 20% Maximum input | 13.5 Adc
current
Open Circuit 23.4V Maximum 3500 VAac
Voltage output power
Short Circuit 9A Operating 220/230 Vac
Current voltage
Nominal Voltage | 19.2V Maximum 19.5 Aac
(under STC) output current
Nominal current 8.7A AC Nominal 50/60 Hz
(under STC) frequency
Nominal power 165 Wp Power factor +/-09to1
range
Total system 3.3 kWp Transformerless | Yes
capacity ungrounded
Maximal system 1000 V Maximum 97.6%
voltage inverter
efficiency
European 97.5%
weighted
efficiency
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A8. Error metrics for the different models

Error metrics showing four seasons (1-step actual PV Generation forecasting)

Season Model RMSE (kW) | MBE (kW) MAE (kW) R?
LSTM 0.0721 0.0033 0.05673 0.8161
Fall GRU 0.0722 0.0008 0.0555 0.8258
LSTM-GRU | 0.0740 0.0186 0.0595 0.8199
LSTM 0.0778 0.0102 0.05951 0.7931
Winter GRU 0.0803 0.0058 0.0600 0.7886
LSTM-GRU | 0.0820 0.0327 0.0664 0.7967
LSTM 0.0707 0.0031 0.0570 0.8210
Spring GRU 0.0718 0.0001 0.0568 0.8256
LSTM-GRU | 0.0720 0.0198 0.0595 0.8132
LSTM 0.0742 0.0005 0.0572 0.7833
Summer GRU 0.0764 0.0001 0.0584 0.7764
LSTM-GRU | 0.0769 0.0154 0.0599 0.7624
LSTM 0.0721 0.0033 0.0567 0.8054
Overall GRU 0.0722 0.0008 0.0555 0.8072
LSTM-GRU | 0.0740 0.0186 0.0595 0.7999

A9. Performance comparison of the three models

Prediction of actual PV generation across four seasons for a 12-step prediction
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A10: Performance evaluation of RMSE error metrics across different seasons
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A13: Six-step forecasting error distribution
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Al4: Error metrics for different models separated into seasons

Deviations showing for the 6-step for actual PV generation forecasting
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Season Model RMSE (kW) | MBE (kW) MAE (kW) | R?
LSTM 0.1663 0.0112 0.1351 0.5792
Fall GRU 0.1620 0.0054 0.1302 0.6124
LSTM-GRU 0.1601 0.0127 0.1288 0.6410
LSTM 0.1847 0.0346 0.1464 0.4290
Winter GRU 0.1846 0.0294 0.1451 0.4775
LSTM-GRU 0.1644 0.0403 0.1306 0.6194
LSTM 0.1326 0.0130 0.1638 0.5747
Spring GRU 0.1223 0.0210 0.1549 0.6355
LSTM-GRU 0.1672 0.0218 0.1333 0.6245
LSTM 0.1781 0.0164 0.1500 0.5283
Summer GRU 0.1693 0.0156 0.1407 0.5717
LSTM-GRU 0.1908 0.0260 0.1573 0.5103
LSTM 0.1731 0.0029 0.1409 0.5359
Overall GRU 0.1675 0.0015 0.1343 0.5821
LSTM-GRU 0.1714 0.0002 0.1378 0.6024
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A15. Performance of models with and without data transformation

(Performance comparison of traditional and deep learning models (with and without data
transformation), for 1-step-ahead forecasting over the full-year dataset)

Model Z-score RMSE (kW) MBE (kW) MAE (kW) R2
LSTM e x 0.1964 0.1394 0.1548 0.1210
LSTM v 0.0721 0.0033 0.0567 0.8054
GRU x 0.1417 0.0943 0.1115 0.5422
GRU v 0.0722 0.0008 0.0555 0.8072
LSTM-GRU x 0.1553 0.1033 0.1220 0.4505
LSTM-GRU v 0.0740 0.0186 0.0595 0.7999
XGBOOST 0.1826 0.1468 0.1525 -0.0395
XGBOOST v 0.1120 0.0684 0.0906 0.6089
SARIMAX 0.2756 0.2134 0.2194 -1.3682
SARIMAX v 0.1752 0.1143 0.1320 0.0431
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