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NOMENCLATURE AND ABBREVIATION 

a-Si Amorphous silicon module 

AC Alternating current (A) 

BES Battery energy storage (MWh) 

CC Correlation coefficient (-1,1) 

CdS Cadmium sulfide 

CdTe Cadmium telluride 

𝐶ℎlose_S Charging loss (MW) 

CIGS Copper-indium-gallium-selenide solar cells 

DC Direct current (A) 

𝐷𝑖𝑠𝑐ℎlose_S Discharging loss (MW) 

Ep Hourly curtailed power with diurnal storage (MW) 

GaAs Gallium arsenide 

Li-ion Lithium-ion battery 

MAE Mean Absolute error (kW) 

MBE Mean bias error (kW) 

MSE Root mean squared error (kW) 

N Number of hours in a normal year (8760) 

n Total number of observations 

P Penetration (% of annual demand) 

P'sat,i Rescaled satellite-derived PV power (kW) 

Pcos Hourly consumed RE (MW) 

Pdem Demand (MWh) 

Pdpf Final hourly unmet demand (MW) 

Pnd No-dump power generation (MWp) 

Pexcess Excess generation (MW) 

Pgen Generated Power (MW) 

Pinj Direct injected power (MW) 

Plimit Injection limit (MW) 

Pmean Mean value (kW) 

Pmeas,i Measured value (kW) 

Ppred,i Predicted value (kW) 

PPV,cur Curtail PV power 

Proom Hourly remaining capacity (MW) 

Proom_S Hourly remaining capacity-seasonal storage (MW) 

Psat,i Satellite-derived PV power (kW) 

Pstd Standard power curve (MW) 

Pused Power integrated to the local network (MW) 

Pu Hourly unmet power with diurnal storage (MW) 

Pwind Wind generation (MW) 

pc-Si Poly-crystalline module 

Pmix Mismatch between generation and demand (net-load) (MW) 

ppv Photovoltaic generation (MW) 
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r PV ratio (0 -1) 

R2 Coefficient of determination (0 -1) 

S Stored energy (MWh) 

Sh Seasonal storage stored energy (MWh) 

Smaxh Maximum capacity of seasonal storage (10-average daily demand) 

Smax Maximum energy capacity of diurnal storage (0.8 average daily 

demand) 

SU Storage utilization (fraction of max storage capacity) 

SUI System-use index 

T Time (1 - 8760) 

TRE Total renewable energy generation Rayleigh number (-) 

V 

V_Dev 

wind speed (m/s) 

Voltage deviation 

Xmax Maximum of the observed data 

Xmin Minimum of the observed data 

Xn Min-max scaler (0 – 1) 

z Z-score transformation 

z0 Roughness length(m) 

Δ𝑡 Change in time (hr) 

𝛥𝑡full  Minimum time required to charge or discharge the storage (hrs) 

𝛥𝑡full_disch Minimum time required to charge the seasonal storage (72 hrs) 

𝛥𝑡full_ch  Minimum time required to discharge the seasonal storage (96 hrs) 

τ  The Kendall correlation coefficient (-1,1)  

 

Greek symbols  

𝜌 Air density (kg/m3)  

𝛼(𝑟) Unifying factor 

𝛽 

𝜂𝑐ℎ 

Over generation factor (2 – 6 𝑃nd) 

Charging efficiency (%) 

𝜂𝑑𝑖𝑠 Discharging efficiency (%) 

𝜂ch_s  Electrolyser efficiency (%) 

𝜂dis_s Fuel cell efficiency (%) 

µ𝑠𝑎𝑡 Mean of satellite-derived power (kW)) 

𝜎𝑠𝑎𝑡 Standard deviation of satellite-derived power (kW) 

µ𝑚𝑒𝑎𝑠 Mean of measured PV power (kW) 

𝜎𝑚𝑒𝑎𝑠 Standard deviation of measured PV power (kW) 

 

Subscripts  

ch Charging 

dis Discharging 

𝑚𝑒𝑎𝑠 Measured value 

pred 

sat 

Predicted value 

Satellite value 
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Abbreviations  

CNN 

DRF 

Convolutional neural network 

Deep Reinforcement learning 

GRU Gated recurrent network 

GWA Global wind atlas 

IRENA International Renewable Energy Agency 

LSTM Long and short-term memory 

MPPT Maximum power point tracking  

PPO Proximal Policy Optimization  

PV Photovoltaics 

PVGIS Photovoltaic Geographic Information System 

RE Renewable Energy 

RF Reinforcement Learning 

VRE Variable Renewable Energy 

SARIMAX 

 

Seasonal AutoRegressive Integrated Moving Average with 

eXogenous regressors 

TCN 

THD 

ThdI 

ThdV 

Temporal convolutional network 

Total Harmonic Distortion 

Current total harmonic distortion 

Voltage total harmonic distortion 

VRE Variable Renewable Energy 

XGBoost Extreme gradient boosting  
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1. INTRODUCTION, OBJECTIVES 

This chapter outlines the significance of the research topic and presents the study's objectives. 

1.1. Introduction 

Global electricity demand is growing rapidly, driven by population growth, industrial 

expansion, and the surging energy needs of data centers (IEA, 2025). In response, a global shift 

toward renewable energy (RE) has become a top priority globally.  In 2023, renewable capacity 

expanded by 570 GW, a 50% increase from 2022, with a major growth coming from solar PV 

(IEA, 2024). Furthermore, forecasts show that utility-scale PV installations will account for 

approximately 66.7% of the global energy mix by 2050. Similarly, the adoption and utilization 

of residential PV are skyrocketing, as buildings, once primary energy consumers, have become 

energy producers (Silva and Hendrick, 2017a). Declining costs of home batteries and PV 

components are driving consumers to generate their own power locally, reducing their grid 

reliance  (Teklebrhan et al., 2025). However, extensive deployment of these resources 

challenges the grid, as large-scale integration requires complex system adaptations. Key issues 

include intermittency, matching, forecast uncertainty, adequacy, and grid stability (Solomon, 

2019).  To overcome these challenges, various solutions have been proposed in the literature, 

including energy storage (Denholm and Mai, 2019) resource complementarity, curtailment, 

resource diversity and advanced forecasting (Limouni et al., 2023), (Perez et al., 2019), 

(Simoes et al., 2017). 

In the context of large-scale PV integration, it is crucial to evaluate the combined impact of 

multiple enabling tools, including the PV-wind mix, storage capacity and duration, curtailment 

strategies, and balancing requirements. Considering these factors together provides a more 

comprehensive understanding of system design and operation, as focusing on PV alone fails to 

capture the full complexity and interdependencies inherent in modern power system dynamics. 

A well-balanced PV-wind mix can increase RE penetration while reducing storage and 

curtailment compared to standalone PV systems.  Integrating large-scale PV requires diverse 

energy storage solutions, which are essential for enhancing grid flexibility, increasing 

renewable penetration, and accelerating the transition to 100% RE (Bullich-Massagué et al., 

2020). Energy storage technologies can be classified as long-term storage, such as hydrogen, 

which can be utilized for extended durations ranging from weeks up to months (Breunig et al., 

2024), and short-term storage, such as lithium-ion batteries, which are more suitable for daily 

cycling or even sub-daily (hourly) balancing needs  (Javed et al., 2019).  Other enabling tools, 

such as curtailment (intentional dumping of RE output), offer technical advantages by lowering 

storage and balancing capacity requirements. Studies show that adopting curtailment policies 

can enhance the cost-effectiveness and feasibility of integrating high shares of RE into the grid 

(Perez et al., 2019). Curtailing a portion of Variable Renewable Energy (VRE) generation can 

enhance the balance between supply and demand, thereby reducing storage requirements and 

enabling higher renewable penetration (Solomon et al., 2019). This illustrates part of the 

required paradigm shift in operating the future renewable-dominated grids as compared to the 

current traditional practices (Teklebrhan et al., 2023).  

In the context of RE integration, identifying the potential optimized solutions aligned with a 

specific country or regional scale is essential for advancing the transition toward RE-dominated 

power systems (Oyewo et al., 2021). However, there are critical challenges that require close 

examination. First, the inherent variability of renewable resources complicates the 

development of clear system design principles for achieving 100% RE systems. Traditional 

approaches–such as screening curves and load duration curves–are increasingly inadequate in 

a landscape dominated by large-scale PV and wind, and diverse storage technologies (Jean-
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Michel, 2021). Second, the development of future energy markets that prioritize efficiency and 

societal welfare requires a clear understanding of evolving system needs and analytical tools 

capable of visualizing system boundaries over time (Jean-Michel, 2021). Notably, scenarios 

that appear techno-economically viable may still result in reduced net energy output, 

underscoring the risks associated with multidimensional pricing structures and operational 

uncertainties (Solomon et al., 2024). These considerations, coupled with location-specific 

climatological conditions, underscore the necessity of a comprehensive understanding of the 

interplay among various physical parameters to determine sustainable design options and their 

complementary operational requirements. In addition, the adoption of advanced, innovative 

technologies and AI-based tools for power generation forecasting (Limouni et al., 2023) and 

grid management and optimization is crucial for enabling the large-scale integration of 

renewable energy sources (Cardo-Miota et al., 2025).  

1.2. Objectives 

Understanding how penetration, storage capacity and duration, curtailment, PV-wind mix, and 

balancing requirements interact provides key insights for managing the transition to a 

renewable-dominated grid and anticipating its operational requirements. However, empirical 

data showing the interaction between these parameters with sufficient detail does not exist. The 

majority of the current energy transition studies are primarily driven by least-cost optimization 

(techno-economic) models, often overlooking these critical technical factors in favour of 

extensive economic data. This work, therefore, aims to develop a flexible modelling framework 

that assesses interactions among key system design parameters and supports optimized PV 

integration while leveraging the benefits of residential PV and advanced PV generation 

forecasting and optimization.  

The primary objectives of this research are to:  

• Maximize the share of PV in the electricity grid with high reliability and operational 

efficiency, contributing to a sustainable energy system; 

• Investigate the complex interaction among the various system design parameters, such 

as PV-wind mix, storage capacity and duration, curtailment strategies, and balancing 

requirements, and their impact on system design and performance;  

• Formulate a relationship among the major design parameters and system efficiency, 

supported by robust empirical data, to develop practical guidelines for achieving high 

levels of renewable integration. 

• Enhance the contribution of residential PV on the power mix by exploring the impact 

of feed-in constraints on promoting higher local consumption of residential PV in low-

voltage local networks; 

• Leverage machine learning-based PV generation forecasting to enhance real-time 

operational management and optimization of PV systems, mitigating uncertainties and 

limitations inherent in the design phase of PV integration.  

By addressing these objectives, this study aims to deepen the understanding of the design and 

operational strategies of future renewable-dominated grids through the application of a clear 

and transparent model that accounts for varying system parameters. Ultimately, it contributes 

to the broader effort to unify related studies under a more coherent theoretical foundation. 
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2. LITERATURE REVIEW 

This chapter offers a comprehensive overview of large-scale renewable energy (RE) integration 

and its related technical requirements. It discusses fundamental concepts of various 

components, focusing on PV, and other technologies that enable large-scale PV integration, 

including wind, storage, curtailment, forecasting, and balancing requirements. This chapter 

digests the literature that defines the interactions among the system design parameters required 

for large-scale PV integration. It also discusses recent methodologies, approaches, and models 

for large-scale RE integration and identifies the existing gaps that motivate this study. 

2.1. Photovoltaics Technology  

Photovoltaic is a combination of two words: photo, which refers to light, and volta, derived 

from the name of an Italian physicist, Alessandro Volta, the unit of voltage (Quaschning, 2016). 

Photovoltaic energy directly converts sunlight into electricity through the photoelectric effect. 

When photons of solar irradiance strike a free electron in the p-n junction of a semiconductor 

device, they excite the free electrons, generating an electric current (Miles et al., 2005).  

2.1.1. PV principle, operation, and characterization 

Photovoltaic cells or solar cells are the building block of the photovoltaic system that converts 

the energy of photons into electricity (DC current) through the photovoltaic effect (Shubbak, 

2019). Their working principle is based solely on the behavioural architecture of semiconductor 

materials. When two semiconductor regions with different charge concentrations are 

combined, an effect is created that results in special charge mobility along the edges of the 

semiconductor devices. When these two (positively charged plates called p-type and the 

negatively charged zone called n-type) semiconductor devices are placed together a charge 

transfer effect is produced, which ultimately leads to the production of an electric field 

(Luceño-Sánchez et al., 2019). The phenomenon of the photoelectric effect had been known 

for nearly a century, the milestone widely recognized as the beginning of the modern era of PV 

power generation was the production of around 6% efficient crystalline silicon solar cell in 

1954 (Ali et al., 2025). From that time, the efficiency of silicon cells has been increasing 

continuously, with lab efficiency currently exceeding 20%. Although a significant leap has 

been recorded in PV efficiency enhancement, several research studies are ongoing to enhance 

efficiency further and decrease the overall cost of PV-generated electricity (NREL, 2025).  

As shown in Fig. 2.1 silicon cells are made up of two layers, p-junctions (layers of holes) and 

n-junctions (layers of electrons). Due to the unique properties of the semiconductor material, 

only a small amount of energy is required to excite an electron from the valence band to the 

conduction band, creating a free-moving electron and enabling electric current flow 

(Abdelhady et al., 2017).  

During the 1960s, photovoltaic cells were produced manually, which made them very costly 

and limited their use to space applications. By the late 1980s, mass production methods were 

introduced, significantly lowering costs and broadening their applications to include standalone 

and remote devices, as well as grid-connected systems. Since the first discovery of solar PV in 

1839, advancements have been made in manufacturing costs, efficiency, and capacity. 

Furthermore, the technology has been experiencing significant growth and innovations in 

various technical fields, including materials, chemistry, physics, electronics, and mechanics.   
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Fig. 2.1. Energy band model showing how solar cell works  (Quaschning, 2016) 

There are different solar PV technologies, such as thin film, amorphous silicon (a-Si), cadmium 

telluride (CdTe), poly-crystalline (pc-Si) modules, and perovskite. The efficiency, temperature 

coefficients, and spectral response of these technologies vary widely due to the intrinsic 

structure (Cañete et al., 2014). Moreover, the technological maturity and market penetration of 

these technologies vary widely. Modules such as conventional mono-si and poly-si are at their 

higher technological maturity, and the dominant technology of solar PV compared to thin film 

technologies (Schmela et al., 2022) 

 

Fig. 2.2. Share of different solar PV technologies in manufacturing capacity (Schmela et al., 

2022) 

According to their development stages, solar photovoltaics can also be categorized into 

different parts: 

• The first generation includes crystalline silicon technologies, such as monocrystalline, 

polycrystalline, and gallium arsenide (GaAs). 

• The second generation includes technologies tied to amorphous silicon (a-Si), 

microcrystalline silicon, cadmium telluride/cadmium sulfide (CdTe/CdS), thin-film 

technologies, and copper-indium-gallium-selenide (CIGS) solar cells.   

• The third generation encompasses technologies utilizing new compounds, including 

nanocrystalline films, active quantum dots, organic (polymer-based) solar cells, and 

tandem or stacked multilayers made from inorganic materials like GaAs/GaInP. It also 

includes dye-sensitized solar cells, among others.  
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• The fourth generation comprises innovative inorganic nanostructures like metal 

nanotubes and metal oxides, commonly referred to as ‘inorganic. 

The different PV generation technologies and their respective commercial and lab efficiencies 

are given in Fig. 2.3.  

 

Fig. 2.3. Solar PV generations and their efficiency (Dhankar et al., 2025) 

First-generation PV cells are the most efficient and mature technology with efficiency ranging 

from 15-22%; however, their large-scale deployment is hindered due to their higher cost. In 

response to the high cost of the first generation, research is being initiated to address this in the 

second generation (Nayak et al., 2019). Although the second generation shows material 

effectiveness, they still have concerns about toxicity, instability, and low efficiency, and their 

large-scale deployment has not been realized. The third generation that covers a wide range of 

design variations has several advantages, such as working in dim light and being cheaper to 

manufacture as they can be manufactured from inexpensive materials, but they are still prone 

to the environment as technologies such as perovskites are sensitive to humidity and heat. The 

need for more efficient, eco-friendly, and stable solar cells necessitates the latest research in 

fourth-generation solar cells. This generation combines all the benefits of previous generations 

and features a cost-effective, flexible structure with stable nanomaterials. It also introduces 

various advanced materials, including 2D solar cells, and holds great promise for future PV 

advancements. (Rehman et al., 2023) .  

Atsu et al., (2021) conducted a performance evaluation of different grid-connected PV 

technologies, namely, pc-Si) and a-Si modules. The authors use different performance 

indicators to assess and compare the performance of the different PV technologies installed at 

the lab of the Hungarian University of Agriculture and Life Sciences. They found that Hungary 

has relatively high solar energy potential compared to other neighbouring European countries, 

but it has not yet been fully exploited.  

2.1.2. Modelling of solar cells  

A solar cell can be defined as an electrical circuit that contains a p-n junction (acting as a 

diode), a resistor, and the main component, called the photocurrent generator.  A circuit that 

contains such a component is referred to as a single diode solar cell model  (Vinod et al., 2018). 
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A PV model is a mathematical expression that enables us to assess the electrical behavior and 

performance of PV panels under varying operating conditions, as the output power of PV is 

influenced by environmental factors such as incident radiation, temperature, irradiance, and 

material properties (Olayiwola et al., 2024).  An effectively designed PV cell model can assist 

in:   

• Understand the electrical characteristics of a PV cell 

• Improve the overall performance and efficiency of the PV system 

• Enhance the control system by assisting in optimization of the maximum power point 

tracking system (MPPT) 

Modelling the electrical behaviour of PV cells is typically categorized into three main types: 

circuit models, analytical models, and empirical models. Accurate modelling of solar cells is 

essential for the design and optimization of PV systems. The best model should accurately 

determine the electrical behaviour of the PV cell with simplicity. However, there is always a 

trade-off between accuracy and complexity. The circuit model – shown in Fig. 2.4 – is the most 

widely used approach for representing the electrical behaviour of PV cells. However, due to 

the nonlinear nature of the current-voltage (I-V) characteristics, parameter estimation remains 

a challenging task in achieving efficient solar system design (Jordehi, 2016). In the figure, Iph, 

ID, and Ip represent the photocurrent, diode current, and parallel current, respectively. Whereas 

Rs and RP are the series and parallel resistances.  

 
Fig. 2.4. Single diode equivalent circuit of the real model of solar cell (Quaschning, 2016) 

Traditional modelling approaches, such as the analytical methods, face challenges in accurately 

determining the various parameters due to the non-linear and complex, multimodal features of 

the models.  

Zheng et al. (2022) utilize a powerful tool, an advanced optimization modelling tool, called the 

Peafowl Optimization Algorithm from the recently developed meta-heuristic algorithm for 

solar cell parameter identification. The authors validated the proposed approach using two 

types of PV cell models, the double diode model and the triple diode model. The results showed 

that the Peafowl optimization Algorithm can determine and identify unknown solar cell 

parameters accurately compared to other algorithms at a higher convergence speed.  

Precise modelling of PV cells is crucial for enhancing the performance of photovoltaic systems, 

as it enables the accurate identification of key parameters. Cutting-edge optimization methods, 

such as the Peafowl Optimization Algorithm, have significantly improved the accuracy and 

speed of parameter estimation, thereby enhancing the reliability of PV modelling. As research 

progresses, the integration of artificial intelligence, hybrid optimization techniques, and data-
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driven models is expected to further enhance predictive accuracy, adaptability, and 

computational efficiency. 

Looking forward, enhanced PV modelling will facilitate the seamless integration of large-scale 

renewable energy. It will boost system reliability, minimize inefficiencies, and optimize 

storage while interacting with the grid. This is especially crucial for maintaining stable 

operations when renewable energy penetration is high. A well-designed PV system model 

serves as the foundation for both standalone and grid-connected applications.  

The modular feature of photovoltaics offers a wide range of applications, from small milliwatt 

devices, such as watches, to large gigawatt utility power plants (Quaschning, 2016).  This 

scalability enables PV systems to be implemented in various forms, including standalone units 

that supply energy in isolated locations and grid-connected setups that enhance grid stability, 

facilitating the transition toward sustainable energy. A grid-connected PV system can be either 

a utility-scale PV installation or a residential PV system. The following section examines these 

configurations, with a focus on the grid-connected PV system.  

2.1.3. Stand-alone photovoltaic 

Photovoltaic technologies that operate independently of the grid are called stand-alone systems. 

These systems comprise a photovoltaic generator, batteries for storage, AC and DC loads, and 

various power conditioning components, as shown in Fig. 2.5. A photovoltaic generator is 

composed of multiple arrays connected in a systematic manner to meet the load requirements. 

Each array contains several modules connected in series and parallel configurations. The 

storage system stores electricity when production exceeds the load and releases it when 

production is low or insufficient. Stand-alone systems can supply power to both AC loads, such 

as heaters and motors, as well as DC loads, such as lighting. The power conditioning system, 

including charge controllers, DC to AC inverters, and blocking diodes, provides the necessary 

protection and interface among the components of the PV system (Hansen et al., 2000).  

 

 

Fig. 2.5. Stand-alone PV system components (Hansen et al., 2000) 

2.1.4. Grid-connected photovoltaic system 

The integration of renewable energy into the utility network is showing substantial interest by 

utilities and governments for its numerous advantages. Among various renewable energy 

sources, the integration of solar PV into transmission and distribution networks remains a key 

focus, with significant future growth potential. Compared to standalone systems, grid-

connected PV systems offer several advantages, including higher energy harvesting efficiency 

and better utilization of generated power. Notably, grid-connected PV installations account for 
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more than 99% of the total installed capacity worldwide. In the case of residential grid-

connected PV, the need for energy storage is reduced or eliminated, depending on the design 

and grid standards of the specific region. Consequently, all or part of the generated electricity 

is injected into the grid without requiring excessive storage, particularly during periods of 

surplus generation around noon (Kouro et al., 2015).  Additionally, these systems support the 

grid by supplying power to local consumers and feeding excess electricity into the grid during 

peak solar hours, thereby reducing transmission and distribution losses (Obi and Bass, 2016).  

However, the seamless integration of PV systems into the utility grid needs to satisfy a set of 

technical guidelines and standards from both the PV system side and the utility side. Strict 

implementation of these technical guidelines and standards is compulsory for safe and efficient 

integration of PV to the utility grid. The rapid increase of PV installation has also called for 

evolutionary conversion technologies. The development of converter along with the other 

semiconductor interfaces brings several advantages in grid-connected PV systems such as ease 

of integration, efficiency enhancement, and reduction in cost. The technology of PV 

inverter/converter is evolving rapidly and reaches at a level of efficiency of about 98%. 

Moreover, modern PV converters are extremely reliable, efficient and compact (Kouro et al., 

2015). Inverters are devices that convert the DC power output of PV arrays to AC power that 

can be used in ordinary power systems and are compatible with the grid standard frequency. 

The power output of PV plants fluctuates over time due to the stochastic nature of solar 

radiation. Therefore, any drop in power generation from a solar plant must be compensated for 

by increased generation from another plant to meet customer demand. This presents a 

significant challenge for power operators, particularly when the penetration of PV increases, 

as sufficient reserves with rapid ramping capabilities must always be available to dampen 

sudden fluctuations. A proper understanding of the temporal and spatial characteristics of PV 

power output can partially solve this (Femin et al., 2016). 

Fig. 2.6 shows the components of the conventional grid-connected PV system. As shown in 

the figure, the DC current generated in the PV array is transformed and transferred via various 

interfacing devices to the grid. Optional components, such as a DC/DC converter, boost the 

voltage to a certain level if required and decouple the PV from the grid-connected inverter. The 

low-frequency transformer is an optional device that is integrated into the system depending 

on the system topology and regulation. Other elements such as grid connection filter and grid 

monitoring unit are also incorporated to the system to provide safety features such as 

synchronization and anti-islanding detection (Kouro et al., 2015). 

 
Fig. 2.6. Schematic representation of a grid-connected PV system (Soham et.al., 2017) 
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In contrast to small, distributed PV generators, large-scale grid-connected PV systems 

necessitate careful configuration and design to maximize energy extraction. The output current 

and voltage of PV modules are significantly lower than the grid's voltage and current. 

Therefore, modules are connected in series and parallel to enhance voltage and current, 

respectively. Additionally, the quantity and placement of converters introduce various 

configuration options. The configuration of the grid-connected PV system is shown in Fig. 2.7. 

 

Fig. 2.7. Inclusive representation of a grid-connected PV system (Zeb et al., 2018) 

In a centralized configuration system depicted in Fig. 2.8a, modules connect in both series and 

parallel to supply power to the commutated inverter. In the string topology represented in Fig. 

2.8b, each string channels power to the grid via an inverter. Likewise, the multi-string setup, 

shown in Fig. 2.8c, includes a DC-DC converter for each string, designed for maximum power 

point tracking. Ultimately, the strings transmit their power output through a DC link to an 

inverter. A more reliable and efficient system emerges when multiple low-power parallel 

inverters are used instead of a single centralized inverter. The fourth generation, illustrated in 

Fig. 2.8d, offers several advantages such as improved expandability and simplified installation, 

utilizing a complex power electronic interface for each module (Mirhassani et al., 2015). 

 

Fig. 2.8. Different topologies for a grid-connected PV system: a) Centralized approach, b) 

String approach, c) Multi-string approach, d) AC-module approach (Mirhassani et al., 2015) 
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2.1.5. Grid-connected residential photovoltaic system 

Residential PV has become a crucial aspect of distributed generation, transforming buildings 

from mere electricity consumers into significant contributors due to their increasing 

implementation (de Oliveira e Silva and Hendrick, 2017a).  This trend has considerable 

potential to lower the carbon footprint of residential buildings (Chandel et al., 2024).  

Additionally, the falling prices of residential PV systems and home battery storage encourage 

consumers to produce energy locally, thereby diminishing their reliance on the grid  (Procopiou 

et al., 2019). Nevertheless, the rise in PV energy from homes might surpass local demand. Such 

uncontrolled integration of PV systems can disrupt load patterns, potentially threaten grid 

stability  (Ruf, 2018a), violate dispatch margins, and elevate the overall operational costs of 

the power system (Dierckxsens et al., 2015; Kenneth and Folly, 2014). Utilizing AI 

technologies like machine learning, blockchain, and the Internet of Things (IoT) (Tajjour and 

Singh Chandel, 2023), alongside grid management strategies, such as feed-in limits, can 

effectively manage unpredictable renewable energy generation.  

Numerous studies indicate that a considerable portion of a household's electricity demand can 

be satisfied by combining PV with battery storage at the residential level (Camilo et al., 2017; 

Gudmunds et al., 2020; Li et al., 2018). In an effort to attain self-sufficiency in household 

energy consumption through affordable methods, several nations have enacted support policies 

and incentives to promote the installation of residential PV-battery storage systems (Held et 

al., 2020; Zeh and Witzmann, 2014).  However, there is a lack of research explicitly examining 

developing countries, such as Eritrea, which has a less stable energy system.  

In Ruf. (2018b) a comprehensive grid planning strategy in Germany is discussed, along with 

its implications for inducing technical constraints. Germany is the leading nation in renewable 

energy utilization and adoption in Europe, credited to its cutting-edge research and 

development initiatives. The authors indicate that the current grid planning strategy is not 

encouraging large-scale PV integration at all levels, particularly in the low-voltage work, as 

such feed-in from PV at the low-voltage network was not considered during the design stage 

of the existing grid. However, new technologies can increase the hosting capacity of the low-

voltage distribution network.  

Another study that deals with the Belgian electricity grid evaluates different combinations of 

residential PV, storage, and fixed wind capacity with the sole aim of increasing the direct 

consumption of PV and wind generation in the electricity grid (Meuris et al., 2019). The model 

utilizes hourly historical data to simulate the case study, selecting the scenario that maximizes 

the directly injected generation from PV and wind sources. Increasing PV and wind requires 

some curtailment of generated electricity, and adding a battery at this stage increases the overall 

effectiveness of the system. However, they identified an upper limit above which any additional 

battery storage does not return benefits to the system. They also found that minimum 

curtailment, along with optimal storage, could be cost-effective in the future grid dominated 

by renewables. Another study, conducted by Teklebrhan et al. (2025), examined the effect of 

the feed-in limit in low-voltage networks using historical data from Eritrea. The study indicates 

that residential PV can contribute up to 32% of total demand when combined with a battery 

and an optimal feed-in limit. They developed a transparent and easy-to-follow algorithm to 

determine injection limits, battery sizing, and PV configuration, maximizing the total injected 

PV and wind power into the low-voltage network. Feed-in limits between 0.4 and 0.5 kW/kWp, 

combined with home battery storage of less than 2 kWh/kWp, yield the most favourable 
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outcomes. A schematic illustration of a grid-connected residential PV system with an energy 

storage device is given in Fig. 2.9.  

 
Fig. 2.9. Illustrate diagram how the Residential PV works (Silva and Hendrick, 2017) 

2.1.6.  Grid inverter technologies 

The grid-inverter is the essential element of a distributed generation system; it serves as a 

crucial interface for distributed renewable energy resources. A PV inverter's primary function 

is to maximize energy capture from the solar PV system through Maximum Power Point 

Tracking (MPPT) technology and effectively convert it into a utility-compatible power source. 

It ensures efficient power conversion from DC to AC, aligns with the grid frequency, and 

facilitates the smooth integration of solar electricity into the desired distribution or transmission 

network. Furthermore, contemporary inverters enhance system reliability, improve power 

quality, and contribute to grid stability by regulating voltage fluctuations and reactive power. 

Grid-connected inverters can be classified into four categories based on their configuration 

(Kabalcı, 2020; Zeb et al., 2018): 

a. Central inverters 

b. String inverters 

c. Multi-string inverters and 

d. AC Module inverters or microinverters 

Each configuration has its own advantages and drawbacks. The topography of each category 

is shown in Fig. 2. 10. 
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Fig. 2. 10. Configuration of grid-connected PV inverters (Zeb et al., 2018)  

Inverters are responsible for detecting islanding and protecting human life and equipment from 

damage by disconnecting the PV system in a very short time. Islanding is the condition when 

the inverter continues to supply power to the grid when the utility side is stopped or 

disconnected due to different reasons, such as maintenance, damage, or accident  (Kjaer et al., 

2005). Such a situation is critical since utility operators may engage in different activities, 

assuming the grid is safe (not operating), but due to the grid-tied PV system, the grid can be 

energized, posing dangers to personnel working on the feeders. For this reason, inverters are 

equipped with anti-islanding protection features to quickly stop feeding power to the utility 

when the utility is disconnected. 

2.1.7.  Power quality issues in distributed generation 

Renewable energy-based distributed generation systems are reaching a record high level of 

integration in the distribution network for their remarkable environmental, technical, and 

economic advantages.  The main contributor of distributed generation is residential PV, as 

buildings once primarily electricity consumers are now contributing significantly to generation 

via residential PV installation (Silva and Hendrick, 2017a).   In this context, the power system 

behaves differently as it changes from unidirectional, in conversational systems, to 

bidirectional power flow with distributed generation units. When the penetration level of solar 

PV in the distribution network increases, it creates several challenges in the distribution 

network, including reverse power flow, increased power losses, voltage unbalance, transformer 

and cable rating, and malfunction of on-load tap chargers (OLTC), and this ultimately affects 

the control, operation, and security of the traditional distribution feeders. The most critical 

power quality issues related to grid-connected PV systems are power fluctuation, voltage 

deviation, flicker, and harmonics (Hossain et al., 2018).  

2.2. Enabling technologies supporting large-scale photovoltaic integration 

Integrating large-scale renewable energy sources has proven to have numerous environmental 

and economic benefits. Specifically, integrating large-scale PV as the fastest-growing 

technology with a remarkable increase in capacity presents both opportunities and challenges 

(Mansouri et al., 2019). Extensive PV integration provides several benefits in addition to 

covering a significant share of demand.  They help decrease emissions, promote energy 

independence, provide a cleaner energy mix, and improve grid stability. Additionally, these 

plants provide ancillary services, such as frequency control. Nonetheless, integrating large-

scale PV presents various challenges, including system complexity, generation 
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unpredictability, technical constraints, voltage regulation issues, the need for coordination with 

traditional power plants, and the implementation of sophisticated control strategies to comply 

with grid code requirements, particularly during periods of peak generation (Rakhshani et al., 

2019). The literature proposes various enabling tools that maximize their reliable and efficient 

integration.    

Solomon et al. (2019) discussed several supply-side enabling technologies, including resource 

complementarities, energy storage, transmission interconnection, improved forecasting, and 

curtailment that facilitate large-scale PV integration. Utilizing these enabling technologies can 

facilitate large-scale PV integration by addressing challenges like variability, uncertainty, and 

system adequacy. However, a solid theoretical framework is necessary for designing a secure 

system, as the significance of one technology may differ based on PV share (penetration) and 

the role of other enabling technologies. Enabling technologies, such as demand response, can 

help adjust consumption in relation to PV generation by shifting loads to different times, 

thereby enhancing grid stability. In Zubi et al. (2025), the importance of energy storage 

solutions in managing variability and uncertainty, as well as balancing supply and demand, is 

presented and discussed, along with their impact on grid operation and economic viability.   

A time series simulation was conducted on the Texas grid to examine the impact of variable 

generation, with varying ratios of PV, concentrating solar power, and wind designed to provide 

approximately 80% of the total demand (Denholm, 2011). The author examined various 

enabling technologies, including energy storage, conventional generator flexibility, demand 

response, and load shifting. Different combinations of these enabling technologies create a 

better energy mix at a specific level of renewable penetration by minimizing surplus curtailed 

solar and wind energy.  

The renowned renewable energy report from IRENA indicates that the innovation landscape 

for integrating large-scale renewable energy necessitates synergies among various enabling 

technologies to achieve a viable solution (IRENA, 2019). The report classified the solution for 

the significant uptake of solar and wind energy into four major categories: innovation, enabling 

technologies, market design, business model, and system operation. The most significant 

enabling technologies that facilitate large-scale PV integration have been identified, including 

electric vehicles, smart charging, utility-scale batteries, Internet of Things, behind-the-meter 

batteries, artificial intelligence, big data, and blockchain.  

Mansouri et al. (2020) investigate the importance of enabling technologies in facilitating the 

integration of large-scale photovoltaic (PV) systems into the power grid.  The technologies 

investigated include energy storage, active power curtailment, advanced inverters, and 

innovative grid technologies that help mitigate power quality issues such as harmonics, voltage 

fluctuation and imbalance. Several challenges created by PV integration are resolved using 

these supporting technologies, including power quality, system stability, and reliability. The 

study identifies the primary issues arising from the large-scale integration of PV in the public 

network. It quantifies the impact of various enabling technologies on large-scale PV 

integration.  

In Denholm and Margolis (2007a) a detailed analysis of technologies that enable the integration 

of 50% of PV power into the utility grid was conducted by simulating hourly solar insolation 

and load data to address the limitations of conventional generators on PV integration. Various 

enabling techniques, such as increased flexibility, energy storage, and load shifting, were 
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explored to reduce the curtailed PV that occurs at high penetration levels. Increasing system 

flexibility by lowering the system minimum can facilitate greater absorption of PV, while 

shifting loads to times of higher PV generation can enhance the usability of the generated PV 

power.  

Solar PV is among the most promising variable renewable energy sources, anticipated to make 

a significant contribution to the power mix. However, its increased deployment is accompanied 

by numerous challenges. In  Mateo et al. (2017), technical solutions that can overcome the 

barriers that hinder the integration of large-scale PV into the electricity network were proposed.  

The solutions are grouped into three big categories: distribution system operator solutions, 

prosumer solutions, and interactive solutions. Among the various proposed solutions, PV 

curtailment enhanced PV hosting capacity and eliminated unnecessary PV-driven network 

investments.  

Although the aforementioned studies differ in the scenarios considered and the geographical 

locations analysed, they all share the common goal of identifying the optimal combination of 

enabling technologies to support large-scale PV integration. This thesis identifies four key 

enabling technologies that support higher PV penetration: resource complementarity, energy 

storage, curtailment strategies, and advanced forecasting. Each of these plays a crucial role in 

facilitating the integration of large-scale PV. These technologies will be reviewed in detail in 

the following sections.  

2.2.1. Complementarity of solar PV with wind  

Renewable energy resources such as solar and wind are naturally intermittent and 

unpredictable. Large-scale integration of these resources could result in various technical 

challenges, as the existing grid is not designed for variable supply but for variable load demand. 

Specifically, the integration of variable renewables in weak grids without a proper or sufficient 

storage system could severely affect the reliability of the power system. The variability and 

intermittency of renewables can be partially solved by mixing two renewables into an optimum 

combination, improving overall system reliability and adequacy (Badwawi et al., 2016).  

The concept of complementarity in renewables basically refers to how different renewables, 

such as solar and wind (variable renewables) or hydropower and geothermal (non-variable 

renewables), complement each other’s variability in time (diurnal or seasonal), or space 

(geographically diverse resources), or both in time and space. Fig. 2.11 shows the seasonal 

variability of solar, wind, and electricity demand. 

Jurasz et al. (2020) grouped complementarity into three main categories: 

1) Spatial complementarity: In this category, one or more renewable energy resources can 

complement each other in a certain region. For example, a resource deficit in region A 

can be complemented by a resource of its kind in region B. By doing so, we can improve 

the smoothing level of distributed resources. 

2) Temporal complementarity: In this category, two or more VRE resources complement 

each other in the time domain. For example, at the seasonal level, limited solar energy 

during the winter is complemented by stronger wind generation in the same season, 

while in summer, higher solar output can offset lower wind availability. A comparable 

analogy exists for daily changes in solar and wind energy production; diminished or 

absent solar output at night can be offset by robust wind generation during the night.  
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3)  Spatio-temporal complementarity: Refers to the ability of different renewable energy 

sources to compensate for each other's variability across time and space. When single 

or multiple VRE resources are investigated for complementarity simultaneously in time 

and space domains.  

 

Fig. 2.11. Time-based variation in solar, wind, and electricity demand (Shaner et al., 2018) 

Resource complementarity is defined as the ability of a mix of renewable generation resources, 

spread across space and time, to enhance electricity supply conditions. Thanks to the better 

alignment of output with demand profiles, this improvement occurs with fewer operational 

challenges and a reduced reliance on enabling technologies. Resource complementarity offers 

significant benefits to the power grid by smoothing generation profiles, particularly wind-PV 

complementarity, providing multi-dimensional benefits such as increasing penetration, 

reducing curtailment, improving energy storage requirements, and improving overall system 

reliability. Compared to stand-alone PV or wind, complementarity significantly increases grid 

penetration without energy storage; however, as capacity increases, the benefit of 

complementarity on increasing the grid penetration decreases due to the mismatch between 

generation and demand (Solomon et al., 2020).  

Different metrics and indices, such as the correlation coefficient (CC) and standard deviation, 

are used to assess the local complementarity of renewable resources at various time scales 

(Miglietta et al., 2017). Other studies, such as in Naeem et al. (2019) utilize generation profiles 

to maximize the economic benefits by exploiting the PV and wind complementarity across 

different time steps.  

The study indicated that anticorrelated PV and wind sites present the best-case scenario for 

meeting demand without storage and curtailment. In this context, a negative correlation 

(CC=-1) is ideal for smoothing generation profiles and enhancing the penetration of PV and 

wind without requiring additional enabling technologies.  

Although several studies have been conducted to analyse the benefits of PV and wind 

complementarity, most focus on examining correlations and other statistical indicators of 

renewable resources over time and/or space. Studies based on data collected from actual utility 

plants are rare. Such studies could provide valuable insights into how a future grid dominated 

by renewables might be sustained. However, because of the current low share of renewables, 
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comprehensive information cannot be obtained to address the challenges that may arise for 

future grids due to the integration of large-scale renewables. Some studies use actual generation 

profiles from utilities to examine the complementarity benefits in the power system. In Couto 

and Estanqueiro, (2021) correlation and energy metrics are used to assess the hourly and daily 

complementarity potential of actual wind parks with solar PV plants in Portugal. They found a 

high correlation between PV and wind, allowing the integration of a higher share of variable 

renewables at reduced excess generation. Fig. 2.12 shows the concept of complementarity 

using a sine signal.  

 

Fig. 2.12. The complementary concept is explained by means of a sine signal. CC – 

coefficient of correlation (Jurasz et al., 2020) 

Transitioning to clean energy requires integrating large-scale VRE resources, such as PV and 

wind, which in turn raises several uncertainties in grid reliability and operational requirements. 

The current grid has strict standards, such as planning supply that meets peak load with an 

additional 15% reserve margins (Cauley and Cook, 2011). However, unlike the existing grid, 

which has uncertainty only from the demand side, the future grid dominated by renewables will 

pose uncertainty challenges from both the supply and demand sides. Thus, a future grid will 

behave differently, as it will require significant energy curtailment accompanied by subtly used 

large conventional balancing capacity and large storage facilities. Though hybrid systems are 

believed to relieve such grid stress to some extent, demand response is also thought to help 
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maintain such a new grid infrastructure by leveraging loads with generation. A study by 

Solomon et al. (2016) conducted a deeper and comprehensive analysis to understand the 

characteristics of a high-renewable California electricity grid by closely examining the year-

round generation and demand profiles and dispatch patterns. The authors explore the supply-

side reliability issues and the impact of complementarity on system design and operation. They 

reported that PV-wind complementarity offers several benefits, such as increased penetration 

and reliability.  Further, they noted that at a particular curtailment level of 20%, their optimal 

mix enables higher penetration at reduced storage and balancing capacity requirements.     

While these studies may vary in scope, geography, metrics, methodologies, and the variables 

used, their ultimate goal is to quantify the ideal combination of renewable sources and the 

accompanying enabling technologies. Most of these studies demonstrate that PV-wind 

complementarity is the most promising approach to achieving a future grid with a high share 

of renewables, as it offers several benefits to this grid. Comparison between studies is still not 

possible as these studies consider different scenarios, resource potential, and locations. 

However, they may share common performance indicators and system parameters such as 

penetration (% annual demand met by renewables), resource mix, storage size, and curtailment.  

To wrap up, the benefits of resource complementarity (in our context PV-wind) to the grid can 

be generalized into three main categories: improving reliability, reducing balancing 

requirement and storage capacity, and improving grid penetration.  

2.2.2. Electrical Energy Storage  

The existing power system would undergo a transformative paradigm shift if energy storage 

operations reached a high efficiency level with better economic viability. Intermittent 

renewables, such as PV and wind, could be widely deployed to transition the energy mix to a 

eco-friendlier and more sustainable model. Technologically mature and efficient energy 

storage could improve the stability and reliability of a power system. The most important 

feature of energy storage is that it can be used both during deficit and excess generation. When 

intermittent renewables generate excess power, energy storage can shift the high generation to 

off-peak hours or deficit times. This allows the system to run more efficiently in balanced mode 

without disturbance. Moreover, energy storage can encourage distributed generation by 

enabling the use of residential PV and wind systems. Energy storage offers several benefits to 

the power system such as operational flexibility and intermittency mitigation (Rahman et al., 

2020).  

Energy storage is a device that converts energy from one form to another, depending on the 

purpose, in our context, to electricity, after being kept for some specific duration. Energy 

storage can be characterized by its response time, storage duration, and function. However, it 

can also be more effectively classified into mechanical, electrochemical, electrical, and 

chemical categories, based on the type of energy stored (Rahman et al., 2020). Based on how 

energy is converted back, storage devices can also be divided into power-to-power, power-to-

thermal, power-to-liquid, and power-to-gas. If excess renewable electricity is stored in 

electrical energy storage and converted back to electricity, it is called a power-to-power system. 

This system is the most promising energy storage system and is widely used for several 

applications. Its advantages include, but are not limited to, time-shifting power dispatch, 

smoothing mismatch, consequently allowing a higher level of RE integration, encouraging 

distributed generation, decreasing curtailment, enhancing electricity value chain, increasing 

overall system efficiency, and maintaining system frequency and voltage fluctuation that 

ultimately improves grid reliability and security (Gallo et al., 2016).  
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Fig. 2.13 depicts the finer classification of the various categories of energy storage systems. 

These technologies are at different levels of technological maturity and market penetration. 

Recently, energy storage systems have evolved rapidly with swift technological advancement 

and cost decline. Electro-chemical batteries such as Vanadium-redox, lithium ion (Li-ion), 

sodium-sulfur and lead-acid batteries are extensively used in different applications, with Li-

ion having emerged as a transformative breakthrough in storage applications. With advances 

in technology and cost reductions, large-scale grid-integrated battery storage systems have 

become increasingly necessary in modern power systems (Rahman et al., 2020). Specifically, 

ambitious renewable integration targets, increasing electronic energy conversion devices 

(allowing bidirectional flow), and Electric Vehicles make such diversity and increasing use of 

battery services imperative for the next-generation power system. However, optimal technical 

and economic operation and performance will remain a primary concern in the future (Zhao et 

al., 2023).  

 

Fig. 2.13. Different types of Energy Storage technologies and their interaction (Amir et al., 

2023) 

The literature discusses various aspects of the grid-connected storage system, including 

performance evaluation, techno-economic assessment, and technological advancements. In 

Noyanbayev et al. (2018) a simulation model was developed to investigate the efficiency 

performance of a system installed at the University of Manchester. They identified the optimum 

operation mode by accounting for the state of charge and the rate of battery storage charging 
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and discharging. They reported that the developed simulation model was well aligned with 

hardware performance, with a difference of approximately 2%. Another study was performed 

on modelling, simulation, and performance evaluation of grid-integrated PV with battery 

storage. They introduced a control method to manage and enhance the battery storage's state of 

charge, charging, and discharging, providing a benefit for regulating DC bus voltage (Daud et 

al., 2012).  

Engineering design must ensure technical feasibility and economic viability of options. Studies 

show that PV plus storage offers a significant economic advantage by utilizing energy that 

would otherwise be wasted. As study by Denholm et al. (2017) conducted a case study in 

southern California, using their engineered metric called Benefit/cost ratio. They evaluated the 

trade-off of using PV plus storage with the shared inverter. At a low PV penetration of 6%, 

they found that the Benefit/cost ratio for PV without storage is higher than that of PV with 

storage. However, the trend changes as the PV penetration increases. The results suggest that 

decreasing PV values can be offset by incorporating storage, facilitating cost-effective large-

scale PV integration.  

When the VRE penetration level is low, integration, operation, and performance improvement 

are manageable; however, as penetration increases, unforeseen issues arise due to the mismatch 

between generation and demand. Diurnal and seasonal weather variability strongly affect 

storage operation and overall system performance. A study by Twitchell et al. (2023) evaluates 

the depth and breadth of future decarbonized grid energy mismatches and identifies that two 

types of long-term energy storage are required for a fully decarbonized grid: 20-hour storage 

for diurnal cycles and longer-lasting weeks or months for seasonal mismatches. 

Other studies examined various energy storage technologies suitable for solar and wind hybrid 

systems, each designed with unique characteristics that optimize them for specific time scales 

and applications. These technologies comprise batteries (Javed et al., 2019), hydrogen storage 

(Gabrielli et al., 2020), pumped hydro storage (Guezgouz et al., 2019), compressed air energy 

storage (CAES) (Torreglosa et al., 2015), and hybrid storage systems, such as battery-hydrogen 

(Li et al., 2023).  

Energy storage technologies are deployed at various levels of renewable penetration to mitigate 

diurnal and seasonal weather-induced generation fluctuations. Therefore, integrating both 

diurnal and seasonal storage is essential for addressing the weather-driven variability of daily 

and seasonal cycles in a renewable-dominated grid. 

Fig. 2.14 shows the energy and power components of the major energy storage technologies 

widely deployed at scale.  
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Fig. 2.14. Different energy storage technologies show both energy and power components 

(Denholm et al., 2021) 

2.2.2.1. Diurnal storage for daily cycles 

Renewable energy deployment has been shown to be beneficial in creating a carbon-free and 

eco-friendly energy system. However, their introduction necessitates additional weather-

derived informed decision-making to ensure a secure and reliable power system (Bloomfield 

et al., 2018). A thorough understanding of the meteorological drivers that cause the fluctuation 

in renewable generation is imperative. Moreover, understanding these variables' cyclic pattern 

and time step or frequency of occurrence is crucial in designing a secure system, as local 

weather patterns could affect the short-term (diurnal) or long-term (seasonal) system 

performance (Bloomfield et al., 2022).  

Solar and wind energy show variations over different timescales, from minutes to seasons, 

influenced by elements like atmospheric conditions, Earth's rotation, orbital position, and axial 

tilt.  The daily cycle of solar radiation leads to considerable fluctuations in PV generation, 

peaking between noon and 3 pm, then declining until it approaches zero in the late evening. 

Similarly, wind patterns exhibit a distinct diurnal variation, influenced by surface temperature 
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caused by solar radiation. Wind speeds generally reach their peak in the afternoon after the 

maximum surface heating and dip to their lowest in the early morning, about 12 hours earlier 

(Mulder, 2014).  Such diurnal variation leads to generation fluctuation, consequently affecting 

the matching ability of renewable generation and load.  

The net load, which results from subtracting variable renewable generation from total load, 

needs to be balanced throughout the year using a dispatchable power supply unit. This can 

include non-variable renewables like hydropower or geothermal, or energy storage solutions 

(Graabak and Korpås, 2016).  

The choice of a storage technology is influenced by factors such as storage capacity, response 

time, cost-effectiveness, energy losses, and its effectiveness for short-term or long-term energy 

shifting. For short-term (intraday) energy storage batteries, such as Li-ion and flow batteries, 

are ideal due to their high, rapid response, round-trip efficiency, and relatively low energy loss. 

They effectively handle daily intermittency in PV and wind-generated electricity by storing 

excess electricity produced during peak generation hours and supplying it at a generation 

deficit. Due to their special features in modularity and scalability, they can be used in both 

large-scale grid-connected systems and in small-scale distributed generation (which may be 

stand-alone or grid-connected) applications. However, the limited storage duration and 

associated high capital expenditure make them unsuitable for long-term seasonal energy 

storage (Denholm et al., 2023).  

The literature presents a range of storage solutions, along with detailed evaluations of their 

performance and techno-economic viability (Child and Breyer, 2016; Cole and Frazier, 2023; 

Denholm et al., 2022), In a study conducted for Texas grid, Denholm and Mai. (2019) analysed 

storage duration required to integrate large-scale renewable energy to the grid with reasonable 

curtailment. The study revealed that the addition of a storage capacity of about 8.5 GW with a 

four-hour duration could drastically reduce curtailment from 11-16% (without storage) to 8-

10%. The technical feasibility and the cost become challenging when RE penetration exceeds 

80-90% as shown in Fig. 2.15. 

 

Fig. 2.15. The increasing difficulty and cost of RE deployment with balance challenges 

(Denholm et al., 2021a) 

Recently, there has been a growing interest in utilizing energy storage systems with a capacity 

lasting more than four hours, owing to their crucial role in integrating large-scale renewables 

and transitioning to a decarbonized grid. A diurnal storage range of 6-10 hours has shown 



2. Literature review 

 

30 

 

economic opportunities for hundreds of Gigawatts of storage, even with existing policies for 

reducing carbon emissions. The potential and role of diurnal storage in decarbonizing and 

integrating large-scale renewable energy are tremendous. Studies in the US grid show that the 

capability of diurnal storage (4-hour storage) to meet peak demand in summer can be enhanced 

by deploying large-scale solar generation (Denholm et al., 2023).  

However, the role of diurnal storage is reduced as the penetration of renewables increases. 

After a certain penetration threshold, any addition of diurnal storage offers negligible benefits 

in increasing penetration, as clearly elaborated in (Solomon et al., 2017). Therefore, long-term 

storage that offsets the seasonal mismatch is required at high levels of renewable penetration.   

2.2.2.2.  Long-term seasonal mismatches 

Understanding storage behaviour at different time scales and penetration levels gives a strong 

foundation for modelling and designing a reliable power system dominated by renewables. 

Short-term energy storage technologies, as discussed above, are suitable for satisfying the daily 

generation fluctuations. However, solar and wind exhibit seasonal fluctuations driven by 

different factors such as the axial tilt and orbital position. The amount of solar radiation 

reaching the Earth's surface varies considerably depending on the season and the latitude of the 

specific location (Quaschning, 2016). The seasonal variation in solar radiation is more 

pronounced at higher latitudes, where a difference of about a factor of 6 in solar insolation 

between summer and winter is observed. In contrast, the difference in insolation at lower 

latitudes, such as the Western Sahara, shows less seasonal variation, with the difference 

between summer and winter varying by a factor of about 1.5.  This suggests that PV generation 

output can vary by a factor of approximately 1.5 to 6, depending on the geographical location 

of the plant, although this range may be slightly influenced by power conversion efficiency and 

other system-specific factors. Likewise, wind speed shows seasonal fluctuations, generally 

peaking in winter compared to summer. This seasonal variation can be as much as twofold in 

numerous areas, with winter wind speeds nearly double those during summer. This difference 

is crucial for assessing the seasonal potential of wind energy and for the strategic planning of 

renewable energy systems (Mulder, 2014). Such fluctuations present a significant technical 

challenge for a renewable-dominated grid in ensuring a reliable supply to meet demand, where 

a greater flexibility in system design and operation is required. Identifying the necessary 

storage solution that fulfils the requirements is highly effective for balancing supply and 

demand, as it offers operational reserves (Zakeri and Syri, 2015).   

Diurnal storage, such as Li-ion batteries, has been proven to increase the share of renewables 

significantly; however, their role and significance decrease as renewable penetration increases, 

typically above 80%. In contrast, seasonal storage technologies such as hydrogen storage and 

pumped hydro storage (PHS) offer a better fit for long-term energy storage. With an efficiency 

of 70-85% and a long lifespan, PHS is the most mature and widely used long-term storage 

technology (Dujardin et al., 2017a). Recently, hydrogen storage has emerged as the most 

flexible and scalable storage solution, promising a bright future for balancing seasonal 

fluctuations caused by weather variability. Hydrogen storage utilizes an electrolyser in 

combination with a fuel cell or gas turbine. Excess renewable energy is stored as hydrogen 

produced through electrolysis, and this stored hydrogen is converted back into electricity via a 

fuel cell or gas turbine when there is a need for generation deficit (Ourya et al., 2023). For 

long-term applications, hydrogen storage provides significant advantages, including high 

energy density and the ability to store energy with minimal losses (Breunig et al., 2024). 

Additional advantages, such as application in transportation and aviation, make it a cost-
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effective solution (Denholm et al., 2022). Its lower round-trip efficiency makes it better suited 

for seasonal applications instead of frequent (daily) charging and discharging. Fig. 2.16 shows 

the seasonal challenge for a very high RE penetration (nearly 100% RE)  for the ERCOT grid.  

 

Fig. 2.16. Seasonal challenge for a nearly 100% renewable energy system in the ERCOT grid 

(Mai et al., 2022)  

Other studies also explore the benefits of hybrid storage, including short-term battery storage 

combined with long-term hydrogen storage. This combination provides unique advantages by 

leveraging the strengths of both short-term and long-term storage. In these configurations, 

batteries are used to balance short-term fluctuations, typically lasting 4 to 8 hours, while 

hydrogen addresses the long-term seasonal mismatch of over 12 hours. This combined strategy 

boosts system reliability, reduces curtailment, and maximizes the utilization of renewable 

resources (Guerra et al., 2020a; Qiu et al., 2024).  

Several studies agree on the necessity of various flexibility options, including seasonal and 

diurnal storage, balancing capacity, and curtailment, to achieve a high renewable penetration, 

typically exceeding 80% (Guerra et al., 2020a). Denholm et al. (2022) demonstrated that a 

penetration of approximately 90% can be achieved by deploying wind, PV, diurnal storage, 

advanced transmission, and other technologies currently used extensively at scale at minimal 

incremental cost. However, satisfying the remaining 10% of the demand remains uncertain as 

the technologies that lead to complete decarbonization, such as low-carbon fuels and hydrogen, 

are still not yet utilized at scale. Mai et al. (2022) proposed multiple solutions to tackle the 

difficulties in meeting the last 10% of demand while ensuring 100% renewable energy 

integration. Some of the suggested pathways are uncertain as they depend on various emerging 

technologies that are in their initial phase of development. Various types of seasonal storage 

are among the proposed solutions that have the potential to satisfy the last 10% of the demand. 

Seasonal storage can mitigate the seasonal mismatch that occurs in peak summer and winter, 

as deploying short-term diurnal storage and installing additional VRE capacity at this stage 

might provide minimal benefits to the system (Denholm et al., 2021a).  

Therefore, efforts to achieve a high penetration level require deploying various technologies 

currently utilized at scale, such as PV, wind, and diurnal storage, to attain approximately 90% 
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of the penetration. However, the remaining 10% of the demand can be satisfied by seasonal 

storage, such as hydrogen storage, and other non-variable dispatchable renewable resources, 

such as geothermal and hydropower.  

2.2.3. Renewable curtailment 

In recent decades, the integration of renewable energy resources, especially PV and wind, has 

substantially increased, driven by policy incentives and cost reductions. However, their 

increased penetration raises concerns about their integration into the power system due to a 

mismatch between generation, demand, and transmission or operational constraints. Such 

circumstances require power operators to act to maintain system operation in a safer mode by 

utilizing various techniques. One such technique involves accepting a limited portion of 

renewable generation while dumping the excess, which is curtailment. Curtailment can be 

taken for different reasons, such as transmission congestion, lack of transmission, constraints 

to local networks, and balancing challenges (Gu and Xie, 2014). Although the definition of 

curtailment may vary, in this context, it refers to producing a limited portion of the available 

potential of PV and wind power at a specific time. Curtailment due to over-generation during 

periods of low demand can happen when must-run plants produce more power than the load 

and desired exports (Golden and Paulos, 2015). Curtailment in wind power plants can be 

associated with two main circumstances: transmission and system balancing issues, as wind 

energy is more available during the night when loads are at their minimum. Similarly, for solar 

generation, curtailment occurs in the distribution network when there is more energy at the 

feeders than is consumed, which can cause reverse flow (Bird et al., 2016). If protective 

mechanisms and other safeguards are not designed in advance, reverse flow can cause serious 

problems to connected devices. In Henriot. (2015) The advantages of economic/optimum 

curtailment in VRE were discussed. The study highlighted that in a power system with a large 

share of VRE and inflexible thermal generators, curtailment of intermittent renewables could 

lead to system efficiency gains. The penetration of intermittent renewables increases with 

modest curtailment; however, the gain in penetration beyond 20% of renewable curtailment is 

minimal (Negash et al., 2023).  

The interaction between storage, penetration, and curtailment is complex, therefore, 

understanding how these parameters interact is essential for identifying safer design options 

and their operational requirements. Specifically, when designing a power system with a 

significant share of intermittent renewables, a clear understanding of the interaction between 

renewable penetration, energy storage requirements, curtailment, PV-wind mix ratio, and 

balancing capacity requirements has paramount importance in foreseeing its operational 

requirements (Negash et al., 2023).  Several studies have examined the relationship between 

these parameters to some extent, (Ardenas et al., 2021; Denholm and Margolis, 2007b; Perez 

et al., 2019).  Remarkably, the authors in (Frew et al., 2021; Kroposki et al., 2017; Perez et al., 

2019) challenge the common sense that curtailment is a waste of energy by clearly 

demonstrating its economic and technical advantages. These studies demonstrate the benefits 

of curtailment and indicate its trajectory toward becoming the new normal in future grids.  

While the literature provides numerous studies on energy transition pathways, most of these 

studies emphasize economic aspects by utilizing techno-economic models (Bogdanov et al., 

2021; Cole et al., 2021; Denholm et al., 2022; Guerra et al., 2020; Jacobson et al., 2019; Teske, 

2022). Because the studies primarily focus on economic aspects, the physical interaction 
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among these parameters and their impact are inadequately explored. However, some studies, 

such as those in Israel (Solomon et al., 2019), North America (Guerra et al., 2021) and Europe 

(Gils et al., 2017),  have attempted to formulate and reveal the link between these system 

parameters. Due to the difference in their approach and the difference in scenarios and details 

explored, a comparison between these studies is challenging. However, when comparable 

methodologies are applied, consistent trends emerge in how physical parameters interact, 

though location-specific climatological and demand-related factors still introduce differences. 

This highlights the need for more studies that generate comparable data through improved 

methodologies and standardized parameters, thereby supporting a unified framework that 

captures location-independent parameter interactions while also clarifying the influence of 

location-specific system differences.   

This underscores the need for approaches that not only capture the complex interactions among 

key system design parameters but also translate these interactions into quantifiable 

relationships that can inform system efficiency and practical integration strategies. By 

developing such a framework, it becomes possible to interpret how curtailment, storage, and 

penetration collectively influence performance across different scenarios, providing a bridge 

between generalizable trends and location-specific characteristics. For example, in Solomon et 

al. (2019), when only solar PV is deployed, a conventional generator capacity of about 0.5% is 

required at a 20% curtailment level. In contrast, Gils et al. (2017) show that the system requires 

conventional generation equivalent to approximately 1% and 8% of demand at a 30% 

curtailment level even while benefiting from PV-wind complementarity. Both studies 

underline the necessity of seasonal storage after penetration of renewables exceeds 80%. In all 

these papers, the three system parameters- curtailment, storage, and penetration- increase 

simultaneously.  

The common argument of the aforementioned studies is to show the need for an optimal 

economic curtailment as a means of flexibility in integrating large-scale intermittent 

renewables. This could potentially lead to a paradigm shift in how future grids operate in 

renewable-dominated systems. Despite significant research progress in energy transition 

concepts (100% renewable grids), empirical data demonstrating the complex interactions 

between key design parameters–curtailment, storage, penetration, and the PV-wind mix–

remains lacking, a gap that this thesis aims to address. 

2.2.4. Balancing capacity requirement 

Both solar PV and wind are implemented across various system scales due to their scalability. 

Therefore, the increasing share of their integration into the power system necessitates re-

evaluating the existing power infrastructure to accommodate the new requirements posed by 

the recently added intermittent renewables. Due to the intermittency and variability of solar PV 

and wind power, balancing supply and demand is the most challenging task (Eltawil and Zhao, 

2010). With the increasing share of intermittent renewables, the risk of structural imbalances 

in the power system intensifies. The widespread adoption of decentralized sources, such as 

residential PV systems and prosumer participation, further exacerbates this challenge. 

Consequently, maintaining key operational parameters of the electricity system within defined 

limits becomes essential for stable and reliable grid performance. The two widely adopted 

mechanisms for this purpose are curtailment (Gils et al., 2017)  and storage (Budischak et al., 

2013).  The current policy utilizes curtailment as a tool to prevent surplus and balances or back-
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up facilities (which can include non-variable renewables or fast-ramping generators, 

dispatchable units) during deficits. This strategy supports the existing grid in achieving the 

higher renewable penetration. However, a future renewable-dominated grid requires further 

policy improvements beyond these limited enablers. The deployment of various storage 

technologies has demonstrated their critical role in facilitating the energy transition by helping 

to balance supply and demand. However, the potential of electrical energy storage to perform 

this function has an upper limit, beyond which additional solutions are necessary to address the 

remaining imbalances (Hirth and Ziegenhagen, 2015). In this context, balancing generators 

(conventional power plants) are required to serve as backup when deployed RE storage fails to 

balance supply and demand (Solomon, et al., 2012).  

Conventional balancing generators must sustain frequent on-off cycles throughout the year. 

They should possess fast ramping capabilities and a quick start, which are suitable for providing 

peak loads whenever they are called up (Solomon et al., 2012). Energy dumping, specifically 

up to 20%, significantly improves system performance by increasing storage utilization, 

increasing penetration, and reducing the balancing requirements. Heuberger & Mac Dowell. 

(2018) examine system reliability and operability during the transition to 100% renewable 

energy, highlighting real-world challenges that may emerge in the process of rapid 

decarbonization. For example, at about 30% curtailment, the system requires conventional 

power plants to cover between 1% and 8% of the demand (Gils et al., 2017).  

Understanding the complex interactions among various system design parameters, such as 

balancing capacity, storage, curtailment, and the PV-wind mix, and their impacts is essential 

for designing systems that can effectively address the weather-driven uncertainties.  

2.2.5. PV generation forecasting 

Several factors, such as resource potential (Quaschning, 2016),  cost reduction (Kavlak et al., 

2018), efficiency enhancement, and improvements in manufacturing motivates the adoption of 

solar PV more than any other renewable option. However, its dynamic, intermittent, and 

variable nature is a bottleneck for large-scale deployment aimed at transitioning to 

decarbonized grids (Hansen et al., 2019). The increased deployment of electronic devices in 

response to the large-scale deployment of renewables brings a new challenge to the existing 

grid, which is designed without accounting for such features. Advanced forecasting is among 

the several solutions proposed to address such challenges. Such strategies allow for balancing 

and managing the supply and demand, ultimately enhancing grid stability, optimizing storage 

dispatch, reducing backup capacity, and increasing overall system performance (Voyant et al., 

2017).  

The indeterministic nature of solar and wind generation, along with the underlying factors 

affecting their output, makes accurate forecasting challenging. While solar PV and wind energy 

present significant forecasting challenges, solar forecasting is particularly complex due to its 

dependence on various weather variables such as cloud cover, rainfall, and temperature (Abdel-

Nasser and Mahmoud, 2019). These parameters vary widely across all time scales, from 

seconds to seasons, and forecasting should also address such time scales to provide a practical 

solution for grid operational management.   

Depending on the time horizon, forecasting of PV generation can be grouped into four broad 

categories: ultra-short-term, short-term, medium-term, and long-term horizon predictions, 

(Limouni et al., 2022). Predicting solar PV on different time scales addresses various 

challenges encountered at the system management level. For example, intra-hour forecasting 
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can help mitigate power fluctuations and rapid changes (flicker and power ramps), enabling 

power operators to manage real-time dispatch and marketing operations more effectively. 

While intraday and day-ahead forecasting, which is mid-term forecasting, can improve 

transmission scheduling and optimize balancing reserves (Pierro et al., 2017). Predictions that 

address long-term horizons are important for long-term policy planning and decision-making, 

transmission expansion, distribution expansion, and infrastructure development (Limouni et 

al., 2022).  

Based on the modelling approach, PV forecasting can also be divided into physical, statistical, 

and artificial intelligence (AI) (Antonanzas et al., 2016).  Physical forecasting techniques 

utilize weather variables to build models that predict future PV generation based on physical 

properties (Ye et al., 2022). The simplest method for physical forecasting involves creating a 

model that transforms solar irradiance into PV power output (Huang et al., 2010). The most 

widely recognized physical model, the Numerical Weather Prediction (NWP) model, employs 

various thermodynamic and other differential equations to characterize the physical state and 

dynamics of the atmosphere (Limouni et al., 2022).  

In contrast, statistical forecasting methods do not require detailed knowledge of the complex 

physical processes involved in photoelectric conversion within PV systems. Instead, they rely 

on large volumes of historical data to establish functional relationships between inputs and 

outputs through techniques like curve fitting and parameter estimation. The most common 

models include regression analysis and autoregressive moving average (ARIMA). Formulating 

a model that generalizes across various regions is relatively simple in this approach. 

Nevertheless, it requires a considerable amount of historical data from weather prediction 

models and significant computational power, especially for short-term forecasts (Dai et al., 

2023). In (Li et al., 2016). a different approach to day-ahead PV power forecasting was 

introduced, utilizing a nonlinear regression technique called Multivariate Adaptive Regression 

Splines (MARS). The study found MARS to be more straightforward and deliver more reliable 

results compared to other nonlinear models like k-nearest neighbors (KNN) and Artificial 

Neural Networks (ANN). Fig. 2.17 illustrates the various stages of a machine learning-based 

forecasting model.   

 

Fig. 2.17. General layout of forecasting model (Dolara et al., 2018) 

Recently, sophisticated forecasting methods utilizing Artificial Intelligence (AI) have become 

increasingly popular because of their remarkable capacity to learn patterns from intricate, non-

linear inputs-patterns that traditional modelling techniques often struggle to capture (Inman et 
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al., 2013). AI-based forecasting has a broader impact on various sectors, and solar PV 

forecasting is no different. The rapidly growing interest in the field reflects promising results 

and is expected to enhance the share of PV in the energy mix. Several researchers are using the 

most notable methods, such as Artificial Neural Network (ANN), Long-Short-Term Memory 

(LSTM), Support Vector Machines (SVM), and other hybrid models to predict solar PV 

generation on different time scales (Limouni et al., 2023). These models can be implemented 

using straightforward approaches, such as Artificial Neural Networks (ANN), to achieve 

reasonable accuracy in PV generation forecasting, as demonstrated in (Mellit et al., 2014) for 

a 1 MW grid-connected plant in southern Italy. In that study, solar irradiance and module 

temperature were used as input parameters, classified into three distinct daily conditions to 

improve forecasting accuracy. Other studies, such as those conducted in (Abdel-Nasser and 

Mahmoud, 2019), propose a more complicated hybrid model to forecast PV output in Aswan 

and Cairo, Egypt. The LSTM's unique memory unit capability in extracting temporal patterns 

was used to reduce the prediction error. Limouni et al. (2023) introduced an innovative hybrid 

forecasting method that combines Long Short-Term Memory (LSTM) with Temporal 

Convolutional Networks (TCN) to forecast photovoltaic (PV) power generation. This method 

utilizes publicly available historical data from Alice Springs, Australia. The model takes 

advantage of LSTM's strength in capturing temporal dependencies within the input data while 

integrating TCN to effectively correlate input features with output results. The authors assessed 

the hybrid model’s performance against standalone LSTM and TCN models across various 

seasons and daytime conditions, including cloudy, clear, and intermittent scenarios. The 

findings indicated that the hybrid model consistently surpassed both individual models 

regarding standard error metrics. 

LSTM is widely used for PV generation forecasting over different time frames, thanks to its 

effective management of complex sequences and errors through its memory structure 

(Hochreiter and Schmidhuber, 1997). Recently, there has been a growing emphasis on 

integrating LSTM with other models, such as GRU, which provide complementary advantages 

to improve forecasting accuracy and computational efficiency by addressing the shortcomings 

of individual models (Negash et al., 2025). This hybrid strategy leverages LSTM’s capabilities 

in recognizing temporal patterns and controlling errors. Models such as reinforcement learning 

(RL) are used for grid management and optimization of storage charge and discharge(Cardo-

Miota et al., 2025).  

However, a significant challenge with AI forecasting methods is the necessity for substantial 

amounts of high-quality historical data. This section addresses this challenge by establishing 

an empirical relationship between satellite and real data measurements.   

2.3. Modelling large–scale renewable integration 

The concept of achieving a 100% renewable electricity system has recently evolved from an 

idealistic vision into a serious topic of scientific inquiry in the research community (Palmintier 

and Webster, 2016). Extensive assessments have been carried out at the continental scale, 

including North America (Becker et al., 2014), Europe (Heide et al., 2011, 2010), and Australia 

(Elliston et al., 2016). Additionally, numerous national-level analyses have been performed for 

countries such as Sweden (Zhong et al., 2021), Switzerland (Dujardin et al., 2017b), UK 

(Ardenas et al., 2021),  US (Denholm et al., 2022), South Africa (Oyewo et al., 2019), and 

China (Ren et al., 2022).  
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Energy modelling or planning to achieve 100% clean energy considers various resource 

potential to reach an optimal resource mix that balances supply and demand. The most 

commonly deployed renewables are solar and wind, along with other enabling technologies 

(Denholm et al., 2022). Different approaches, such as simulation, optimization, and 

commercial and open energy modelling tools, combine various renewables to quantitatively 

meet demand. The advantages and disadvantages, as well as the suitability of each model for 

generation expansion planning, were outlined in (Fattahi et al., 2020).  

Renewable energy integration requires several approaches to analyse the technical 

requirements and their impact on the energy system. Although different methods are employed, 

computer tools remain the most commonly used for modelling energy systems. Notable 

examples include EnergyPLAN, NEMS, MARKAL, MESSAGE, TIMES, and RETScreen, 

which are among the most popular computer tools (Connolly et al., 2010). These low-carbon 

energy system models aim to provide policymakers with actionable insights as they make long-

term energy transition decisions.  

Although numerous energy system models have been developed, they often lack consistency 

in reaching similar conclusions. For instance, as noted in (Fattahi et al., 2020)  regarding the 

goal of achieving 100% renewable electricity in the EU by 2050, studies vary significantly in 

their estimates of the additional annual costs required for a carbon-free energy system. Some 

even conclude that achieving 100% renewable power is unfeasible. These discrepancies likely 

stem from differences in underlying assumptions, the selection of parameters, the level of 

technological detail, and the degree of system flexibility considered in each model. 

Therefore, developing an energy transition model at the national level is strongly 

recommended. Such an approach offers several advantages, including access to high-resolution 

data, the use of context-specific and logical assumptions, and the creation of an open and 

transparent framework that ensures reproducibility and clarity of results. In this context, the 

present study aims to develop an innovative modelling approach, using Eritrea as a case study 

centred on solar PV and wind technologies, integrated with essential enabling technologies. 

Although the data used in this study is specific to Eritrea, the developed methodology is generic 

and can be quantitatively applied on a global scale.  

2.4. Summary of literature review 

The current literature review provides a comprehensive assessment of the technical feasibility 

of large-scale PV grid integration, along with the supporting technologies that facilitate this 

process. To analyse the existing knowledge advancements and highlight the opportunities and 

challenges of large-scale integration, the review investigates state-of-the-art research articles, 

review papers, and International Energy Agency reports. The main research activities and 

directions in this topic can be categorized into the following points:  

• It reviews the fundamentals of PV technology and its evolution in terms of materials 

and performance, providing a detailed analysis of its modelling approaches and 

technical characterization. Furthermore, it highlights how advancements in PV cell 

materials and performance will play a critical role in enabling the stability, efficiency, 

and scalability of future renewable-dominated power grids.  

• It provides a comprehensive examination of various PV system types, including 

standalone, grid-connected, and residential systems, critically analysing their 
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configurations, development trajectories, and technological progress and control 

strategies. The discussion also underscores the pivotal role each system plays in shaping 

the next-generation energy landscape and accelerating the decarbonization of power 

grids. 

• It reviews the most up–to–date research on energy transition concepts, encompassing 

methodologies such as modelling, optimization, and simulation. The studies are 

critically categorized to identify patterns and formulate emerging relationships, aiming 

to lay the groundwork for unified theories that can guide the development of future 

high-renewable energy grids. 

• It critically reviews the various enabling technologies utilized to support large-scale PV 

integration, examining their individual roles, complex interdependencies, and overall 

impact on system stability, flexibility, and performance. The review highlights how 

these technologies, such as storage, curtailment, balancing needs, and AI based 

forecasting and optimisation, collectively facilitate high-penetration PV systems' 

reliable and efficient operation. 

After a comprehensive analysis of the broadly categorized research topics and more detailed 

aspects within each category related to this thesis's objectives, the following gaps were 

identified. 

• Most existing approaches depend on complex optimization algorithms or proprietary 

commercial tools that lack public accessibility, limiting transparency and 

reproducibility of their findings. Furthermore, a key challenge in achieving 100% 

renewable energy penetration lies in the uncertainty surrounding the identification of 

an optimal (least-cost) technology mix, an issue that remains insufficiently addressed 

in current literature. Moreover, due to the inherent variability of renewable resources 

and system configurations, clear design principles for achieving full (100%) RE 

integration are still lacking.    

• Most energy transition models – models that allow large-scale RE integration – rely 

heavily on techno-economic models, which typically yield a limited set of optimal 

solutions aligned with predefined economic objectives. However, the physical 

interactions among key design parameters, such as PV-wind mix, curtailment, storage 

requirements, renewable penetration, and balancing needs, are often overshadowed by 

dominant economic datasets. Thus, the need to design a modelling approach that 

captures the complex interactions among the critical system design parameters, such as 

curtailment, storage, penetration, and generation mix, is clearly identified.  

• The review highlights a critical gap in establishing a unified theoretical framework for 

future renewable-dominated grids, particularly one supported by data-driven empirical 

evidence that explores the complex interaction among key system design parameters.  

• While the literature provides numerous studies on energy transition pathways, due to 

the differences in their approach and the differences in scenarios and details explored, 

a comparison between these studies is challenging. However, when comparable 

methodologies are applied, consistent trends emerge in how physical parameters 

interact, though location-specific climatological and demand-related factors still 

introduce differences. This highlights the need for more studies that generate 

comparable data through improved methodologies and standardized parameters, 
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thereby supporting a unified framework that captures location-independent parameter 

interactions while also clarifying the influence of location-specific system differences.   

• Though residential PV integration represents a paradigm shift, with its contribution 

expected to increase as conventional grids evolve to support local consumption. The 

typical method used in residential PV integration is based on a customer-led control 

strategy–charging home batteries during PV surplus and discharging them during 

supply deficits. However, this approach presents challenges for LV networks: limited 

night-time demand prevents full battery discharge, reducing available capacity for the 

next day's PV surplus and causing early saturation before peak generation. This 

undermines the batteries’ role in mitigating reverse power flow. Despite increasing 

adoption, there is still a lack of data-driven insights on how to optimize residential PV 

integration without compromising LV network power quality. 

• The literature clearly articulates the significance of AI-based PV generation forecasting 

and system optimization on maximizing PV integration; it also highlights a critical 

challenge for extensive historical measurement data to ensure accurate predictions. 

However, there is no significant progress in data pre-processing techniques to bridge 

the gap.  

By addressing these gaps and limitations, this study seeks to develop a distinctive approach 

that establishes a functional relationship between key design parameters, facilitating the 

integration of large-scale PV in the power system.  
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3. MATERIALS AND METHODS 

This chapter provides a comprehensive explanation of the materials, techniques, and equipment 

utilized. It presents a detailed account of both the numerical and empirical formulations 

underlying the novel methodology and indicators introduced. Additionally, the scientific 

methods employed for data collection and pre-processing are thoroughly described, ensuring 

alignment with the thesis's overall objectives. The methods section is divided into three major 

sections – large-scale PV integration, Residential PV, and PV forecasting – while providing all 

necessary methodological approaches, such as experimental data collection and geographical 

descriptions of study sites for each section.  

3.1. PV integration modelling 

In this section, all possible ways to maximize the integration of large–scale PV into the utility 

grid will be explored. 

3.1.1. Site description and data collection approach  

The study is conducted in Eritrea, North East Africa, located in the arid and semi-arid regions 

of the Sahel region in Africa. Eritrea is a small country with one time zone, located on the 

western side of the Red Sea at a latitude between 12 ° 22′ and 18° 02′ N and a longitude between 

36° 26′ and 43° 13′ E (Ghebrezgabher et al., 2016). Its strategic location features a lengthy 

coastline of more than 1,200 kilometres along the Red Sea, stretching from the northern border 

with Sudan to the southern border with Djibouti. The country's topographical orientation is 

broadly divided into three regions: the central highlands, the eastern coastal areas, and the 

Western lowlands.  

Eritrea possesses rich renewable energy resources, particularly in solar and wind, with 

considerable technical potential (Negash et al., 2020)  as shown in Fig. 3.1. In the southern 

coastal regions, wind speeds can reach up to 9.5 m/s at a 10-meter height, while additional 

promising wind sites exist in the central highlands (Rosen et al., 1999).  Solar energy 

availability is also high, with irradiance levels ranging from 5.28 to 6.55 kWh/m²/day (Kbret, 

2006). By harnessing the complementary nature of these resources, Eritrea can address its 

energy demands with reduced reliance on extensive storage and balancing infrastructure. 

 

Fig. 3.1. Geographical location of studied sites and spatial distribution: a) daily solar 

radiation, b) wind speed resources in Eritrea 

                                        a                                                                                         b                                                                             
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Data for this study were sourced from multiple databases. Historical solar irradiation and wind 

speed data for 25 sites were obtained from Eritrea’s Ministry of Energy and Mines but were 

not used for modelling due to outdated measurements, technical gaps, and limited national 

coverage. Instead, these data served as a benchmark to evaluate online datasets. A 

comprehensive analysis was conducted to identify the most reliable databases that accurately 

represent ground measurement data. The Photovoltaic Geographical Information System 

(PVGIS) and the Global Wind Atlas (GWA) were selected as the most reliable sources to 

represent actual conditions. 

Potential sites for solar and wind energy were then chosen after a thorough analysis of their 

complementarity and resource potential using PVGIS and GWA. Demonstrating self-balancing 

through a suitable mix of geographically diverse VRE sources and various enabling tools will 

create a vital foundation for designing a renewable-dominated grid. Tables 1 and 2 provide the 

geographical information for the chosen sites.  

Table 1. Solar sites (actual sites may be located near the listed towns and cities) 

Site  Map 

No. 

Geographical location  Altitude 

(m) 

Annual AC 

electricity kWh/kWp 

Araeta 1 14.69N, 40.64E 23 1687 

Areza  2 14.92N, 38.57E 1949 1752 

Dekemhare 3 15.07N, 39.05E 2015 1800 

Digsa 4 14.99N, 39.23E 2143 1770 

Himbrti 5 15.27N, 38.72E 2161 1769 

Kerkebet 6 16.28N, 37.36E 384 1801 

Table 2. Wind sites (actual sites may be located near the listed towns and cities) 

 

Site  

Map 

No. 

Geographical 

location  

Altitude    

(m) 

Roughnes

s length 

(𝑧𝑜) 

Average 

wind 

speed 

(10 m) 

Full load 

hours 

AdiTekelezan 7 15.68N, 38.75E 2539 0.05 6 3106 

Gizgiza 8 16.04N, 38.45E 1180 0.3 6.3 3626 

Nakfa 9 16.81N,38.29E 1724 0.3 6.2 3607 

Teseney 10 15.37N, 36.68E      950 0.1 9 4787 

Qarora 11 17.28N, 38.54E 413 0.005 5 3575 

Qohaito 12 14.94N, 39.42E 2671 0.2 6.4 3188 

3.1.2. Solar PV and wind generation modelling  

The year–long hourly time series data for solar PV generation profiles and wind speed utilized 

in this study were obtained from the open-source database PVGIS, which offers comprehensive 

global information on solar radiation and other weather parameters. From the various options 

provided on the platform, a non-tracking, freestanding crystalline silicon PV system with 

optimized slope and azimuth angles and an overall system loss of approximately 14% in the 

AC power generation was selected (Huld et al., 2012).  

Based on the pattern and magnitude of the measured data, estimating the wind speed for each 

site is done in two steps. The wind speed obtained from PVGIS showed a similar pattern to the 

measured data, whereas the magnitude resembles the GWA data. Therefore, the hourly wind 
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speed from PVGIS was scaled using the mean wind speed from GWA (Davis et al., 2023).  The 

scaled wind speed (𝑣th) was then extrapolated to the 80 m turbine hub height using the log-law 

equation as follows: 

 𝑣th = 𝑣𝑟

𝑙𝑛(𝑧 𝑧𝑜⁄ )

ln(
𝑧𝑟

𝑧𝑜
⁄ )

, (3.1) 

where: 𝑣𝑟 is the wind speed at the reference height 𝑧𝑟 and 𝑧𝑜 is the roughness length. 

In estimating wind power, roughness length (commonly represented as 𝑧𝑜) is an essential 

parameter that describes how surface features, such as vegetation, buildings, and terrain, affect 

wind flow near the ground. In this work 𝑧𝑜 was estimated through a combination of on-site 

visual inspection and GWA to characterize barriers. However, for the sites that are not easily 

accessible, GWA was the only tool used to estimate the roughness value.    

Air density plays a crucial role in wind power generation, with higher density enabling more 

air mass to flow through the turbine, thus boosting energy output. As air density reduces with 

altitude, turbines situated at higher elevations may generate less power than those positioned 

lower, even in similar wind conditions.  A density correction was implemented to account for 

these discrepancies, as there is a significant elevation difference between the selected sites.  

The local density (ρ) of each site depends on temperature and altitude, and is given by: 

 ρ = 3.4837
101.29−𝑧∙0.011837+z2∙4.793∙10−7

𝑇
,  (3.2) 

where:   𝑇 is temperature in kelvin, and 

 𝑧 is altitude above sea level in meters.  

The manufacturer-provided standard power curve 𝑃std(𝑣), applicable at standard air density, 

was adjusted by scaling the input wind speed based on the following formula: 

 𝑃𝑣th
(𝑡) = 𝑃std (𝑣th  (

𝜌

𝜌0
)
1/3

), (3.3) 

where:   𝜌𝑜=1.225 kg/m3 is the standard air density.  

The wind generation capacity is evenly distributed between the six locations, with the total 

generation normalized to a peak capacity of 1 MW. Similarly, the solar PV generation, 

distributed equally across six sites, is normalized to a peak capacity of 1 MW, while the 

annual load normalizes the load profile. 

The load data for Eritrea used in this study were collected from three sources. One year of 

hourly electricity consumption data was obtained from the Ministry of Energy and Mines, 

Eritrea, but it was unsuitable for detailed analysis and used only as a benchmark. The main 

limitations are its age (2004) and the lack of evidence that it represents actual demand without 

load shedding. In the presence of load shedding, the data may reflect generator capacity rather 

than true consumption patterns. Next, two additional options were explored.  The second option 

involved identifying publicly available load data for developed countries, for which Greece 

and Denmark were chosen to represent the consumption patterns of Eritrea’s highlands and 

lowlands, respectively.  As a third option, a relevant hourly time series data from Ethiopia, a 

neighbouring country with similar climatic and cultural characteristics to Eritrea, was obtained 

for the full year. After comparing the three profiles, the Ethiopian dataset was chosen for the 

analysis, as it best captured Eritrea's seasonal variability and consumption patterns.  

The load time series from Ethiopia is then scaled to a near-future scenario in Eritrea, where per 
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capita power consumption is projected to reach 2000 kWh, resulting in a total demand of about 

16 TWh. 

3.1.3. Assessing complementarity 

Initially, solar PV and wind generation profiles were collected for several sites across the 

country. Criteria were set to identify the potential sites to be included in the modelling. The 

criteria considered were the potential of complementarity between spatially distributed sites 

(PV with wind or wind with wind), proximity to load centres, and cross-border energy 

exchange potential, a key for enhancing system flexibility and resilience.  

The Kendall correlation coefficient (𝜏), the one adopted in this study is considered the most 

suitable statistical measure to assess resource complementarity among RE sources (Ren et al., 

2019).  

Let’s say (𝑃𝑠(𝑡1), 𝑃𝑤(𝑡1)), and (𝑃𝑠(𝑡2), 𝑃𝑤(𝑡2)) are two pairs of independent generation 

profiles of solar PV 𝑃𝑠(𝑡) and wind power 𝑃𝑤(𝑡). The Kendall correlation coefficient is 

computed according to 

𝜏 = 𝑃{(𝑃𝑤(𝑡1) − 𝑃𝑤(𝑡2)) − (𝑃𝑠(𝑡1) − 𝑃𝑠(𝑡2)) > 0} − {{(𝑃𝑤(𝑡1) − 𝑃𝑤(𝑡2)) − (𝑃𝑠(𝑡1) −

𝑃𝑠(𝑡2)) < 0}}  (3.4) 

where:   {𝑃} is a probability of the occurrence of an event, 

 {(𝑃𝑤(𝑡1) − 𝑃𝑤(𝑡2)) − (𝑃𝑠(𝑡1) − 𝑃𝑠(𝑡2)) > 0} is concordance, and 

{(𝑃𝑤(𝑡1) − 𝑃𝑤(𝑡2)) − (𝑃𝑠(𝑡1) − 𝑃𝑠(𝑡2)) < 0} is discordance 

The values of 𝜏 varies between 1 and -1. When the value 𝜏 is positive, solar PV and wind 

generation profiles exhibit similar temporal patterns. In this condition, PV and wind do not 

complement each other. However, if the value 𝜏 is negative, PV and wind power generation 

are predominantly opposite temporally, allowing them to complement each other at times. The 

MATLAB function corr is used to compute the correlation coefficient.  

3.1.4. Mathematical modelling of PV-Wind mix and energy balance 

 In this thesis, a novel and transparent simulation model is developed, specifically designed to 

account for several interacting parameters in a MATLAB computing environment on a high-

performance PC equipped with a Core i7 processor and 32 GB of RAM. The modelling requires 

high-resolution datasets with a minimum of hourly generation profiles. Thus, all inputs, both 

generation profiles (PV and wind) and the load profile, are provided at a 1-hour resolution for 

the whole year. Using the hourly generation profiles and load data, a forward-running 

simulation was carried out to evaluate how different combinations of solar PV and wind 

generation could meet the hourly load demand.  

The following assumptions were adopted in conducting the energy transition modelling, which 

evaluates the technical feasibility of achieving 100% renewable energy (RE) penetration: 

• No transmission constraints: Following the "copper plate" assumption, all solar PV and 

wind generation sites are assumed to be connected to the main grid without any 

transmission or distribution constraints. 
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• Fully flexible balancing capacity: All conventional generators used for balancing 

supply-demand are assumed to be fully flexible, with fast ramping capabilities. 

• Worst-case scenario focus: The analysis focuses solely on supply-side options, without 

incorporating demand-side management measures, which could otherwise enhance 

system performance. 

Based on these assumptions and by exploring various critical scenarios and sensitivities, this 

modelling identifies multiple pathways and options to achieve a user-specified penetration 

level by quantitatively adjusting the PV/wind mix while balancing storage needs and managing 

curtailment levels. However, the main target is to identify the pathway with the optimum 

combination of the different parameters to achieve 100% RE penetration with a high share of 

PV, compatible with my stated objective of maximizing the share of PV in the electricity grid.  

The modelling adopts a hierarchical approach, progressing from broader system-level analyses 

to more detailed evaluations. 

• By iteratively mixing various PV and wind generation ratios, it creates a search space. 

This approach aids in identifying the ideal ratios of solar PV and wind power that 

minimize the gap between generation and demand.  

• Assessing different technical scenarios to facilitate the integration of large-scale RE. 

These scenarios primarily concentrate on analysing the resource mix required to fulfil 

electricity demand, along with the corresponding design requirements, which include a 

storage model, curtailment, and balancing capacity aspects.        

The generation mix at each hour of the year that quantitatively combines different mixes of 

solar PV and wind power (in MW) is calculated according to: 

 𝑃rew(𝑡) = 𝑝 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)), (3.5) 

where:   𝑡 -  is a time step, 

 𝑝PV(𝑡) -  is PV generation at hour 𝑡 relative to its peak capacity (MW/MWp), 

𝑝wind(𝑡) -  is the wind turbine generation at time 𝑡 relative to its peak capacity 

(MW/MWp), 

𝑟 -  is the PV ratio ranges from 0 to 1 in increments of 0.1, whereas 

𝑟 = 0  corresponds to 100% wind (hereafter called wind-only scenario) 

𝑟 = 1 corresponds to 100% solar (hereafter called solar-only scenario) 

𝑟 = 0.5  correspond to 50 PV and 50 wind (hereafter called 50-50 PV- 

wind scenario), 

𝑝 -  is the minimum of the no-dump capacity (𝑃𝑛𝑑) (in MWp). It is the maximal 

power generated by renewables without necessitating power dumping. In 

other words, the generated power is fully integrated into the grid without 

any curtailment or storage requirement. 

𝛼(𝑟) –  is a factor that is determined from a requirement that:  

 ∑ 𝛼(𝑟)(𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡))𝑡 = const  ,  (3.6) 
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and that 𝛼(0.5) = 1. By this construction, a variation of the PV ratios (𝑟) leaves the annually 

generated electric energy from renewables unchanged. This is reasonable, since a comparison 

of different mixes is only relevant when the annual generation is the same for the mixes.  

The two equations below determine the no-dump capacity (in MWp): 

 𝑃𝑁𝐷 =
𝑃load(𝑡)

 (𝑟 𝑝PV(𝑡)+(1−𝑟) 𝑝wind(𝑡))
 , (3.7) 

𝑃𝑁𝐷 is a matrix of 8760 ×11. Then the minimum no-dump capacity (𝑃𝑛𝑑) is consequently 

determined according to  

 𝑃𝑛𝑑 = 𝑚𝑖𝑛

[
 
 
 
 

𝑃𝑖,𝑗
𝑁𝐷 𝑃𝑖,𝑗+1

𝑁𝐷 … 𝑃𝑖,11
𝑁𝐷

𝑃𝑖+1,𝑗
𝑁𝐷 𝑃𝑖+1,𝑗+1

𝑁𝐷 … 𝑃𝑖+1,11
𝑁𝐷

⋮ ⋮ … ⋮
𝑃8760,𝑗

𝑁𝐷 𝑃8760,𝑗+1
𝑁𝐷 … 𝑃8760,11

𝑁𝐷
]
 
 
 
 

 (3.8) 

where 𝑃load(𝑡) is the hourly load demand, and the minimum is taken first with respect to 𝑡, then 

to 𝑟. This ensures that the generation 𝑃rew(𝑡) is always lower than the consumption 𝑃load(𝑡).  

 The net load (𝑃mix), the mismatch between renewable generation and load can be computed 

as: 

 𝑃mix(𝑡) = 𝛽 𝑃nd 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)) − 𝑃load(𝑡), (3.9) 

where 𝛽 is a multiplier that enables oversizing the generation. Each multiplier 𝛽 represents a 

renewable-to-load energy ratio, calculated by dividing the total renewable generation by the 

total load. The model generates various mismatch values (𝑃mix): positive when renewable 

generation exceeds the load, zero when generation exactly matches the load, and negative when 

generation falls short. This is achieved by iteratively oversizing the generation capacity-up to 

8 times the minimum no-dump capacity-while allowing unrestricted energy dumping. 

A range of individual generation profiles is developed by varying the share of PV (𝑟) from 0 

to 1 in steps of 0.1, while adjusting the wind share to 1-𝑟, to maintain a constant total renewable 

capacity. Each PV-wind combination was evaluated against hourly electricity demand over the 

course of a year to assess compatibility and derive the corresponding net load profile (𝑃mix). 

This net load profile was then used to inform the design and dispatch strategy for the proposed 

energy storage system. The aim is to examine the resource and technical limitations of 

achieving a high-renewable electricity system.  

3.1.5. Storage modelling  

When the mismatch is positive (𝑃𝑚𝑖𝑥 > 0), it indicates that the renewable energy generation 

exceeds the electricity demand at that hour. In this case, the surplus energy is first stored in the 

storage system, taking into account a charging efficiency (𝜂𝑐ℎ). If the storage system reaches 

its maximum capacity, any additional surplus energy that cannot be stored is curtailed, meaning 

it is intentionally discarded to maintain system balance. Conversely, when the mismatch is 

negative (𝑃𝑚𝑖𝑥 < 0), the renewable generation is insufficient to meet the electricity demand. 

In such instances, the model attempts to supply the deficit by discharging energy from the 

storage system, considering a discharging efficiency (𝜂𝑑𝑖𝑠). If the available stored energy is 

inadequate to fully cover the shortfall, it is assumed that the remaining unmet demand is 

supplied by a balancing capacity reserve (such as back-up from dispatchable generators). The 
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energy losses associated with storage, such as self-discharge and inefficiencies during charging 

and discharging, are equally incorporated into the model by embedding them into the charging 

(𝜂𝑐ℎ) and discharging (𝜂𝑑𝑖𝑠) efficiencies. 

3.1.5.1. Diurnal storage modelling 

In this study, diurnal storage is modelled using a battery with a round-trip efficiency of 90%, 

meaning that the combined charging and discharging processes retain 90% of the stored energy. 

To represent this, the model assumes equal charging and discharging efficiencies, with each 

efficiency set to the square root of the round-trip efficiency (η𝑐ℎ = η𝑑𝑖𝑠 = √0.9) (Zucker and 

Hinchliffe, 2014). While there are different storage technologies, each offers distinct 

advantages and limitations, Li-ion batteries are particularly favoured in this analysis due to 

their high scalability, allowing them to be easily adjusted to meet a wide range of storage 

capacity needs. Furthermore, batteries can help reduce transmission and distribution losses 

because they can be strategically deployed close to major load centres, thereby minimizing the 

distance electricity must travel and enhancing overall system efficiency. 

This study focuses on Li-ion as short-term storage.  As a mature and widely adopted technology 

(Technology Readiness Level 8-9), Li-ion technology offers high energy and power density, 

making it ideal for both transportation and stationary uses. Competing technologies include 

Lead-acid batteries, known for low cost and moderate efficiency; flow batteries, valued for 

long service life, low self-discharge and fast response; and emerging options like Sodium 

Sulphide (NaS), which offer high specific energy for specific applications (Kebede et al., 

2022).  However, these alternatives struggle to match Li-ion’s dominance, driven by ongoing 

cost reductions and scalability. In fact, the successor to short-duration Li-ion storage may 

simply be longer-duration Li-ion systems. Emerging technologies face significant challenges 

in competing with Li-ion’s established market presence. Rapid growth in electric vehicle 

adoption continues to accelerate innovation and cost declines, which will likely benefit 

stationary applications as well. For newer technologies to achieve cost parity, large-scale 

deployment is essential (Denholm et al., 2023).    

The storage model can be represented by 

 𝑆(𝑡) = {
𝑆(𝑡 − Δ𝑡) +  min ( 𝜂ch 𝑃mix(𝑡), 𝑃room_d(t))  Δ𝑡,        if 𝑃mix ≥ 0

𝑆(𝑡 − Δ𝑡) +  min (
𝑃mix(𝑡)

𝜂dis
, 𝑃room_d(t))Δ𝑡 ,                 if 𝑃mix < 0

 (3.10) 

 ∀t ∈  |1, 𝑁|  

 S(0) = 0 

where:   S(𝑡) –   is the stored energy (MWh) at time 𝑡, Δ 𝑡 = 1 h is the time step, 

 𝑁 –  is the number of hours in a normal year, 8760, and 

 𝑃room_dΔ𝑡 –  is the hourly remaining capacity of storage during charging and      

discharging (MWh), and 

 𝑃room_d(𝑡) = {
min (𝑆max − 𝑆(𝑡 − 1),

𝑆max

Δ𝑡full  
) ,      if 𝑃mix ≥ 0

−min (𝑆(𝑡 − 1),
𝑆max

Δ𝑡full
 ) ,                   if 𝑃mix < 0

 (3.11) 
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where:  𝑆max –   represents the maximum energy capacity of the storage system, and varies 

from 0.01 to 0.8 times the average daily demand, and 

Δ𝑡full–  denotes the minimum time needed to charge or discharge the storage fully.  This is 

equivalent to the energy-to-power ratio, or inversely, the maximum C-rate. 

The storage model relies on the storage system's energy and power capacity.  In this study, the 

storage's charging and discharging capabilities are constrained by its minimum charging time 

up to the full state, set at Δ𝑡full. The value of Δ𝑡full was changing between 1h, 2h, 4h, 6h, 8 h 

and 10h, according to the scenario. But we use Δ𝑡full value of 6 hours (h) as a focus of my 

reporting due to reasons to be clarified in the result, and literature data that considers 6h storage   

is most effective in resolving the timing mismatch between midday solar PV generation and 

peak electricity demand in the evening, thereby enhancing system adequacy and flexibility 

(Denholm et al., 2022). Perhaps such predetermined constraints are expected to impose some 

limitations on the flexibility of the model's performance. The storage model, however, was 

devised to conduct simulations by iteratively adjusting the storage capacity from its minimum 

to a maximum of 0.8 times the average daily demand. 

3.1.5.2. Seasonal storage modelling 

The effectiveness of diurnal storage decreases as the penetration increases. Typically, 

penetration levels above 80-90% the role of diurnal storage diminishes as longer duration 

mismatch requires another application other than diurnal storage. Seasonal storage (hydrogen) 

is introduced to complement the limitations and drawbacks of diurnal storage. Hydrogen 

storage is considered due to its suitability for seasonal energy shifting, high energy density, 

and ability to complement large-scale PV generation. Although its technology readiness level 

(TRL) ranges from 3–7 depending on the application, mature components such as electrolysers 

and fuel cells are increasingly demonstrated at pilot and commercial scales, making it a viable 

option for modelling long-term storage scenarios (Sebastian et al., 2023).  

First, the behaviour of the excess generation after diurnal storage is studied. 

The excess power (𝐸p) at any time 𝑡, after the diurnal storage has reached full capacity can be 

calculated as follows: 

 𝐸p(𝑡) = 𝑃mix(𝑡) − min (𝑃mix(𝑡),
𝑃room_d(𝑡)

𝜂ch
),     (3.12) 

The deficit power 𝑃𝑢 (unmet demand) after deploying diurnal storage is (𝑃mix < 0) 

 𝑃𝑢(𝑡) = −𝑃mix(𝑡) − min(−𝑃mix(𝑡) , −𝜂dis𝑃room_d(𝑡)), (3.13) 

Seasonal storage is introduced only when the following two conditions are met after the 

deployment of diurnal storage.  

i. when the renewable energy penetration surpasses 80% and  

ii. Excess generation or curtailment (𝐸p) is greater or equal to 5%.  

Above this threshold, further increases in penetration would require a disproportionately large 

expansion of diurnal storage, which would minimize its overall effectiveness, which calls for 

seasonal applications. Below these thresholds, seasonal storage is not required, as diurnal 

storage alone effectively manages the system with high storage utilization. 

Seasonal storage 𝑆ℎ at each hour of the year is computed according to 
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 𝑆ℎ(𝑡) = {
𝑆ℎ(𝑡 − Δ𝑡) +  min ( 𝜂ch_s 𝐸p(𝑡), 𝑃room_s(t))  Δ𝑡,   if 𝑃mix ≥ 0

𝑆ℎ(𝑡 − Δ𝑡) −  min (
𝑃u(𝑡)

𝜂dis_s
, −𝑃room_s(t))Δ𝑡 ,                 if 𝑃mix < 0

 (3.14) 

where:   𝑆maxh – is the maximum capacity of the hydrogen storage (seasonal storage), 

 𝜂ch_s – is the electrolyser efficiency, 

 𝜂dis_s –  is fuel cell efficiency, and 

𝑃room_s – is the available capacity at each hour and is computed according to: 

 𝑃room_s(𝑡) = {
min (𝑆maxh − 𝑆ℎ(𝑡 − 1),

𝑆maxh

Δ𝑡full_ch  
) ,      if 𝑃mix ≥ 0

−min (𝑆ℎ(𝑡 − 1),
𝑆maxh

Δ𝑡full_disch
 ) ,                if 𝑃mix < 0

 (3.15) 

where:  Δ𝑡full_ch– denotes the charging hours for the electrolyser  

 Δ𝑡full_disch- denotes the discharging hours of the fuel cell, respectively. 

The curtailed power after both storage technologies are deployed (𝑃dpf)  at time 𝑡  is computed 

according:  

   𝑃dpf(𝑡) = 𝐸p(𝑡) − min (𝐸p(𝑡),
𝑃room_s(𝑡)

𝜂ch_s

) ,    if 𝑃mix ≥ 0 (3.16) 

The unmet demand (𝑃uf) 

The charging (𝐶ℎlose_S) and discharging(𝐷𝑖𝑠𝑐ℎlose_S)  loss is computed according to  

 𝐶ℎlose_S(𝑡) = (1 − 𝜂ch_s) min (𝐸p(𝑡),
𝑃room_s(𝑡)

𝜂ch_s

),  (3.17) 

The unmet demand (𝑃uf) 

 𝑃uf(𝑡) = 𝑃𝑢(𝑡) − min(𝑃u(𝑡) , −𝜂dis_s𝑃room_s(𝑡)),      if 𝑃mix < 0 (3.18) 

 𝐷𝑖𝑠𝑐ℎlose_S(𝑡) = (
1

𝜂dis_s
− 1)(min (

𝑃u(𝑡)

𝜂dis_s
, 𝑃room_s(t))) (3.19) 

Table 3 presents the detailed specification and the parameters used in each storage technology. 

Table 3. Technical properties of storage technologies  

Storage 

application 

Storage 

technology 

Storage 

(average daily 

demand*) 

Charging/ 

discharging 

hours (hrs) 

Roundtrip 

efficiency 

(%) 

Lifetime 

(calendar 

years) 

Source 

Short-term  

(Diurnal 

storage) 

Li-ion 0.16 6 90 15 (Zucker 

and 

Hinchliffe, 

2014) 

Long-term 

(Seasonal 

storage) 

Hydrogen  10 72/96 40 18 (Guerra et 

al., 2020b) 

*1 average daily demand is equivalent to 43.8 GWh 
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3.1.6. System performance indicators  

This study explores the interrelated dynamics of future renewable energy systems by assessing 

various system parameters, including renewable penetration, curtailment, PV-wind mix and 

balancing capacity requirements by linking with newly introduced system used index (a proxy 

of system efficiency). Through this analysis, the study offers valuable insights into how varying 

energy mixes influence overall system performance, operational resilience, and the integration 

of variable renewable resources. By quantifying the complex interaction between the various 

design parameters, the study addresses the main objective of the thesis.  

Renewable penetration (P) represents the net fraction of total electricity demand met by solar 

PV and wind, accounting for storage losses and curtailed energy.  

 P =
∑𝑃con Δ𝑡

∑𝑃load Δ𝑡
, (3.20) 

where:  𝑃con(𝑡) – is the total consumed RE that is supplied to the grid after removing the 

losses and dumped part: 

 𝑃𝑐𝑜𝑛(t) = 𝑃rew(t) − (𝑃dpf(𝑡) + 𝐶ℎlose_S(𝑡) + 𝐷𝑖𝑠𝑐ℎlose_S(𝑡)), (3.21) 

This parameter includes both energy losses resulting from storage inefficiencies and power that 

is directly wasted due to excess generation. 

The unmet demand (𝑃um) can be computed:  

 𝑃um(𝑡) = −𝑃mix(𝑡) − min(−𝑃mix(𝑡) , −𝜂dis𝑃room(𝑡)), (3.22) 

The balancing capacity is then computed as the maximum of the unmet demand divided by 

peak load. The model is designed to allocate the hourly balancing capacity required to meet the 

year-round hourly power deficit. Quantifying the requirement for balancing capacity holds 

immense importance in the design of such a system. While storage technologies provide 

balancing in both negative and positive power mismatches, balancing generators are utilized 

only in the case of negative power mismatches.  

This study presents a novel multi-functional approach to optimize the use of RE across various 

mixing ratios. It is designed with an innovative framework aimed at achieving a more thorough 

understanding of interactions among these factors. New metrics, such as storage utilization and 

the system use index (a proxy for system efficiency), are introduced to assess the impact of 

different tools. Storage utilization (SU) is defined as the ratio of annual energy delivered by 

storage to the total storage capacity. SU can be interpreted as a number of full battery cycles 

per year.   

                     𝑆𝑈 =
−∑(𝑆(𝑡)−𝑆(𝑡−Δ𝑡))

𝑆𝑚𝑎𝑥
,                if   𝑆(𝑡) < 𝑆(𝑡 − Δ𝑡)  (3.23) 

System-use index (SUI) is computed as:    

        SUI = SU ×  𝑘 × 𝑚 × 𝑢       (3.24) 

where:  𝑘,𝑚 𝑎𝑛𝑑 𝑢 – are calculated by dividing annual energy discharge by the total consumed 

RE, average charging power by power capacity (PC), and total consumed RE by total 

RE generation, respectively: 

                              𝑘 =
−∑(𝑆(𝑡)−𝑆(𝑡−Δ𝑡)

∑𝑃𝑢𝑠𝑒𝑓𝑢𝑙
,                       if  (𝑆(𝑡) < 𝑆(𝑡 − Δ𝑡) (3.25) 
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                          𝑚 =
∑𝑆(𝑡)−(𝑆(𝑡−Δ𝑡)

𝑃𝐶
,                            if (𝑆(𝑡) > 𝑆(𝑡 − Δ𝑡)                                (3.26) 

where:    𝑃𝐶 =
Smax

Δ𝑡full
⁄  

 𝑢 =
∑𝑃𝑢𝑠𝑒𝑓𝑢𝑙

∑𝑃𝑟𝑒𝑤
. (3.27)

  

The proposed approach enables me to create a novel and improved 3D visualization of the 

intricate relationships among these various interactive factors, providing a more 

comprehensive understanding of their interactions. The created index gives an arbitrary index 

that can compare the system performance in relation to used storage characteristics, curtailment 

and storage energy delivery.  

This study examines the impact of complementarity on system performance by creating various 

solar and wind mixes, from which PV ratios of 0%, 50%, and 100% of the total renewable 

generation, representing wind-only, 50-50 wind-solar, and solar-only scenarios, respectively, 

were selected to represent the extreme and median conditions of their complementarity 

Technoeconomic analysis 

In this study preliminary economic analysis based on unit cost analysis is conducted to validate 

the techno-economic suitability of the proposed approach. The economic requirements of three 

conditions were investigated: first, satisfying demand with over generation and curtailment 

without storage, second, satisfying demand with storage and over generation/curtailment, and 

third, the optimal mix scenario. Based on recent literature data (Bloomberg, 2023), the 

difference in lifetimes between the batteries and the PV–wind systems was accounted by 

assuming the battery lifetime to be roughly half that of the PV and wind plants. Over the 30-

year project horizon, this results in one full battery replacement. This approach allows the 

preliminary unit-cost estimates to incorporate the effect of replacement cycles and provide 

indicative cost values for the configurations. Although a fully annualized cost (i.e., spreading 

the total cost evenly over each year of operation) was not calculated, the inclusion of 

replacement cycles ensures that our cost estimates are more realistic than using a single 

installation cost for each technology (PV, wind, and storage). The main objective of the 

economic analysis is to demonstrate the general applicability and techno-economic viability of 

the proposed approach. Some assumptions, such as land availability under government 

ownership (as in Eritrea), were made. The study primarily focuses on exploring the complex 

technical interactions among design parameters, forming a foundation for future 

comprehensive modeling that will integrate detailed economic, transmission, and policy 

constraints. 

3.2. Residential PV integration 

Large-scale PV integration requires coordinated efforts across utility-scale PV plants and 

distributed residential PV systems. Residential PV has become a vital part of distributed 

generation, as buildings, which were once mainly consumers of electricity, now also generate 

significant power due to the adoption of rooftop PV systems.  

The data sets employed in the study are detailed in Table 1. The simulation begins by selecting 

100 MWp of residential PV and 120 MWp of wind that can be integrated to the grid without 

storage or curtailment requirements, with the ultimate goal of maximizing the direct use of the 

generated electricity.  
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3.2.1. PV feed-in limit 

PV injection is managed by installing inverters with capacities smaller than the PV peak output. 

Fig. 3.2 shows the simplified algorithm employed, which applies feed-in limit after a certain 

PV injection level to avoid grid congestion during high PV generation. When PV output is 

below this limit, all generated electricity is fed into the distribution network for local use. If 

PV output exceeds the limit, the surplus is stored in a battery, and any excess beyond the 

battery’s capacity is curtailed. 

 
Fig. 3.2. An illustrative diagram showing the PV-battery dispatch strategy in the proposed 

method, with a feed-in limit applied (for June 1st) 

3.2.2. PV-battery dispatch strategy 

In the simulation, a fixed battery capacity (kWh) is installed behind the meter for each installed 

PV unit (kWp). Placing the battery behind the meter provides two main benefits: 

1) it avoids the need for a separate DC/AC inverter and 

2)  reduces network congestion by storing energy on the consumer side. 

In practice, residential loads are also behind the meter, and the difference between local PV 

generation and local demand is typically subject to the feed-in limit. However, we only have 

aggregated load data and lack information on individual residential loads, which can also differ 

greatly from one house to another. Moreover, during peak PV production periods, residential 

load tends to be low, so analysing the scenario shown in Fig. 3.3 is justified. 

The battery storage is charged when PV generation is above the predetermined feed-in limit. 

The storage is then discharged to the LV network during night hours equally at constant rate 

and a fresh storage is ready every morning. This strategy solves the limitations discussed in 

(Procopiou et al., 2019; Ruf, 2018) which are based on customer-let control strategy, that is 

charging home batteries during PV surplus periods and discharging them during supply 

deficits. These limitations arise because home batteries cannot fully discharge overnight due to 

lower night-time residential demand. Consequently, there is less storage available to store 
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surplus PV generation for the next day and reach their full state of charge early, before high 

PV generation occurs, when batteries are most needed to reduce reverse power flow.  

 

 

Fig. 3.3. Simplified schematic illustration detailing the employed energy flow mechanism 

In accordance with thesis objective of enhancing residential PV in the power mix, the following 

dispatch algorithms are computed at each time step, at the distribution side of the network. 

The power that is directly fed (𝑃inj) to the grid at a time, 𝑡 is: 

 𝑃inj(𝑡) =  min (  𝑃gen(𝑡), 𝑃limit),  (3.28) 

where:   𝑃gen – is the generated PV power at time 𝑡 and 

   𝑃limit – is the injection limit.  

Based on the generated PV ( 𝑃gen) the battery energy storage (BES) is charged at that particular 

hour until it reaches its maximum capacity. Here, the battery round-trip efficiency is assumed 

to be 90% (Zucker and Hinchliffe, 2014b), with equal charging and discharging efficiencies 

(𝜂ch = 𝜂dis = √0.9).  

 BES(𝑡) = BES(𝑡 − 1) + min ( 𝜂ch (𝑃excess(𝑡), 𝑃room(t))) Δ𝑡 − 𝑃bat,inj(𝑡), (3.29) 

where: 𝑃excess – is the excess generation above the feed-in limit 

 𝑃excess(𝑡) =  𝑃gen(𝑡) − 𝑃limit , (3.30) 

and 

 𝑃room(𝑡) =
(BESmax− BES(𝑡−1))

Δ𝑡
 (3.31) 

 Δ𝑡 – is time step of the simulation, 

 𝑃bat,inj–  denotes the constant night-time battery discharge (battery injection to the 

grid) from  18:00 to 7:00, calculated by dividing the total daily stored 

energy by total night-time hours, accounting for 𝜂dis, and 
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 BESmax – is battery rated capacity. 

Consequently, curtailed part of the PV becomes   

 𝑃PV,cur(𝑡) = 𝑃excess(𝑡) −
𝑃room(t)

𝜂ch
⁄  (3.32) 

After integrating and managing the PV generation in distribution side of the network wind 

energy is added in the HV side of the network. The total renewable energy generation (TRE) 

in the  power system is then determined by: 

 TRE(𝑡) = 𝑃inj(t) + 𝑃bat,inj(𝑡) + 𝑃wind(𝑡) (3.33) 

Finally, the energy balance between generation and demand (𝑃dem) is checked at each time 

step (hour). When  TRE exceeds demand at that specific hour the excess energy is curtailed 

from wind generation  

   𝑃wind,cur(𝑡) = TRE(𝑡) − 𝑃dem(𝑡), if      TRE(𝑡) > 𝑃dem(𝑡) (3.34) 

and if 𝑇𝑅𝐸 is less than demand the deficit is met by balancing gen sets (𝑃𝐵𝐶). 

 𝑃𝐵𝐶(𝑡) = 𝑃𝑐𝑜𝑛(𝑡) − 𝑇𝑅𝐸(𝑡),    if     𝑇𝑅𝐸(𝑡) < 𝑃𝑑𝑒𝑚(𝑡) (3.35) 

The system performance is then accessed using two distinct performance indicators called 

penetration (Pen) and curtailment:  

 Pen =
∑ 𝑃𝑢𝑠𝑒𝑑𝑖 (𝑡𝑖)

∑ 𝑃dem(𝑡𝑖)𝑖
 (3.36) 

where: 

  𝑃used(𝑡) = 𝑃dem(𝑡) − 𝑃BC  (3.37) 

The total curtailed energy is then computed by 

 
∑ 𝑃PV,cur𝑖 (𝑡𝑖)+𝑃wind,cur(𝑡𝑖)

∑ TRE𝑖 (𝑡𝑖)
, (3.38) 

3.2.3. Experimental setup for power quality analysis 

The experiment was conducted at the Hungarian University of Agriculture and Life Sciences,  

Szent István Campus (coordinates 47°35ʹ40.7ʺN and 19°21ʹ42.3ʺE), at the grid-connected PV 

system located in front of the Aula building. Measurements were taken at the point of common 

coupling, where the transparent glass modules of the monocrystalline Si connected to the grid 

through the SolarEdge inverter. Connectors were installed to safely facilitate measurements 

using a standard power quality analyser, the Wally ‘A’ Power Quality Analyzer. The PV 

system, with a total capacity of 3.3 kW, is installed at an inclination of 40° and an azimuth of 

10°, west to south. The specification of the PV system and inverter is given in Appendix A7. 

Fig. 3.4 and Fig. 3.5 show the complete set of measurement setups. The power quality 

measurement analyser records various power quality parameters, including current and voltage 

total harmonic distortion (ThdI and ThdV), interharmonic distortion, voltage deviation, and 

voltage unbalance, and special events for voltage and current. Measurements were taken at 

various time scales from milliseconds to hours.  
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Fig. 3.4. A 3.3 kW transparent glass PV module at the entrance of the Aula building 

Measurements were conducted on October 12 and 13, 2025, under partly sunny conditions. 

These dates were deliberately selected to assess the impact of varying weather conditions on 

power quality. On October 12, data collection occurred between 10:30 a.m. and 5:40 p.m., 

while on October 13, measurements were taken from 7:30 a.m. to 5:15 p.m. 

 

Fig. 3.5. Power quality analyser measurement setup 

3.3.  PV power generation forecasting 

Designing a power system with a high share of renewables is inherently challenging due to the 

variability and uncertainty of weather conditions. System design typically relies on historical 

weather data, which can differ significantly across timescales, ranging from minutes to seasons 

and even across years. As a result, systems optimized on past data may underperform under 

actual operating conditions. To mitigate this, system design based on historical data should be 

complemented by real-time control and forecasting strategies. However, accurate forecasting 

remains difficult due to the stochastic nature of key influencing factors. Weather variables such 

as cloud cover, temperature, and rainfall have complex, non-linear impacts on PV output, 
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complicating the prediction process. Fig. 3.6 provides the general schematic diagram of the 

methodological approach followed in this section.  

 

Fig. 3.6. Graphical abstract of the proposed methodological approach followed  

3.3.1. Data collection and reprocessing techniques 

Full-year measured data were collected from the Areza site (see Table 1 for details), 

complemented by satellite-based PVGIS data, which are readily available online. Areza is a 

site where a 1.25 MWp PV plant is installed. The PV-based microgrid is powered by 1.25 

MWp of PV, battery storage, and diesel generators with a sophisticated SCADA-based control 

system. The microgrid generates sufficient power to serve the local rural villagers’ energy 

needs. The study utilizes 17 years of hourly weather data from the PVGIS data assimilation 

platform, along with one year of measured data from the actual plant, to develop a forecasting 

model for predicting hours ahead of PV power generation. The PVGIS dataset offers extensive 

data with multiple features, including historical PV generation, reflected irradiance, direct 

irradiance, diffuse irradiance, temperature, wind speed, and sun angle.  However, the measured 

data is limited to one year and consists of only two features (historical PV generation, global 

solar irradiation), which restricts the forecasting to the available features in the measured data. 

Two engineered features were introduced to help the models capture seasonal and time-related 

patterns: the sine and cosine transformations of the timestamp.  

Model accuracy largely depends on the quality of training and testing data. Outliers and missing 

values, often resulting from measurement errors or equipment failures, can significantly 

degrade forecasting accuracy. To address this, all outliers and missing values were removed. 

A key challenge was data sparsity, especially in solar generation data, where over 50% of 

values are null due to diurnal cycles. These night-time nulls distort training, so only daytime 

data was used. Additionally, since features had different units and magnitudes, normalization 

was essential to avoid bias. All features were scaled to 𝑋𝑛 in range of 0 to 1 using the MinMax 

Scaler, computed as: 

 𝑋𝑛 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (3.39) 

where:   

𝑋 – the observed value  

𝑋𝑚𝑖𝑛 – the minimum of the data  

𝑋𝑚𝑎𝑥 – is the max of the data  
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3.3.2. Model development 

This study explores several deep learning models for accurate PV power forecasting, including 

LSTM, GRU, and a hybrid LSTM-GRU network as base models. LSTM and GRU are widely 

used in time-series forecasting due to their ability to retain temporal patterns and model 

sequential dependencies. The LSTM-GRU hybrid enhances performance on complex time 

series by combining the strengths of both architectures. The forecasting accuracy of these base 

models is then evaluated against traditional approaches like Extreme Gradient Boosting 

(XGBoost) and SARIMAX, as well as advanced models such as CNN, TCN, and transformers. 

LSTM networks are particularly well-suited for time-series analysis, as they can effectively 

model the intricate dependencies between successive data points and depth-related variations. 

This capability makes them ideal for capturing complex temporal patterns in solar irradiance 

data. The model structure, key equations, and operational principles are given in  (Limouni et 

al., 2023). GRU is a streamlined version of LSTM with fewer gates and parameters. Despite 

its simpler structure, it effectively captures temporal dependencies, making it well-suited for 

time-series tasks like PV forecasting. The model architecture and its working principle, along 

with the model equations, are given in  (Elmousaid et al., 2024).  

Then, a hybrid LSTM-GRU model is developed that combines the advantages of both 

architectures to effectively learn complex temporal patterns. The model begins with three 

LSTM layers (256, 128, 64 units) for extracting high-level features, followed by reshaping. It 

then uses three GRU layers (64, 32, 16 units) to further refine the temporal information, and 

concludes with a Dense layer with linear activation for both uni-step and multi-step forecasting. 

The base case model is then evaluated against different widely used solar PV forecasting 

models, such as XGBoost and SARIAMX, due to their ability to handle missing data and non-

linear relationships efficiently, and advanced forecasting architectures such as convolutional 

neural networks (CNNs) and informer-based architectures which have significantly advanced 

time series forecasting tasks, including solar PV power prediction. Detailed descriptions of the 

model architectures and formulations can be found in (Krizhevsky et al., 2017) for CNNs, (Bai 

et al., 2018) for Temporal Convolutional Networks (TCNs), and (Zhou et al., 2021) for 

informers. Hybrid models such as CNN-LSTM, CNN-GRU, and TCN-LSTM are constructed 

to benefit from their combined features.   

3.3.3. Modified Z-score transformation 

The Z-score transformation is widely applied across disciplines such as medicine (Andrade, 

2021), (Wang et al., 2024), signal processing (Yaro et al., 2023), and time series analysis – 

especially in solar radiation studies (Chauhan, 2017) – due to its ability to highlight patterns 

and detect outliers without biasing results toward features with larger magnitudes. Forecasting 

models require a large quantity of data to predict the target variable accurately. However, in 

our case, the scarcity of high-quality and sufficiently extensive actual PV generation data limits 

prediction accuracy. Data shortages, inconsistencies, and incompleteness are among the main 

barriers to achieving high prediction accuracy. To address this, data-driven models were trained 

using 17 years of satellite data to predict actual PV generation, with one year of test data from 

the actual PV site. Since, the distribution of the two data sets were not uniform, a modified Z-

score transformation was applied to mitigate the distribution-related errors. The modified 

version of the Z-score transformation aligns satellite-derived solar data with ground-based 
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measurements by linking the mean and standard deviation of both datasets. To address the issue 

of negative values at low generation levels, the entire data set was shifted by a small positive 

constant. This modified approach is designed to reduce distribution-related error. 

For each value in satellite-derived data, we find the standard normal form using the Z-score 

transformation (z).  

 𝑧 =
𝑃𝑠𝑎𝑡,𝑖− µ𝑠𝑎𝑡

𝜎𝑠𝑎𝑡
 (3.40) 

The rescaled value (𝑃𝑠𝑎𝑡,𝑖
′ ) is computed to match the distribution of the measured data using:  

 𝑃𝑠𝑎𝑡,𝑖
′ = 𝑧 ∗ 𝜎𝑚𝑒𝑎𝑠 + µ𝑚𝑒𝑎𝑠 (3.41) 

where:  

𝑃𝑠𝑎𝑡,𝑖 – satellite-derived hourly PV generation 

 µ𝑠𝑎𝑡  –  mean of the satellite-derived data, 

 𝜎𝑠𝑎𝑡   –  standard deviation of the satellite-derived data, 

µ𝑚𝑒𝑎𝑠 – mean of the measured data, 

𝜎𝑚𝑒𝑎𝑠 – standard deviation of the measured data.  

3.3.4. Evaluation of model performance  

In this study, the forecasting model’s accuracy was evaluated using four distinct metrics: Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE), and R-

squared (R²) score, as given below. These metrics are widely utilized in PV forecasting studies 

to capture different dimensions of model accuracy and reliability.  

The equations for these metrics are given as follows: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑝𝑟𝑒𝑑,𝑖 − 𝑃𝑚𝑒𝑎𝑠,𝑖)

2𝑛
𝑖=1  (3.42) 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑝𝑟𝑒𝑑,𝑖 − 𝑃𝑚𝑒𝑎𝑠,𝑖|

𝑛
𝑖=1  (3.43) 

 𝑀𝐵𝐸 =
1

𝑛
∑ (𝑃𝑝𝑟𝑒𝑑,𝑖 − 𝑃𝑚𝑒𝑎𝑠,𝑖)

𝑛
𝑖=1  (3.44)  

 𝑅2 = 1 −
∑ (𝑃𝑝𝑟𝑒𝑑,𝑖− 𝑃𝑚𝑒𝑎𝑠,𝑖)

2𝑛
𝑖=1

∑ (𝑃𝑝𝑟𝑒𝑑,𝑖− 𝑃𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

 (3.45) 

where:  

𝑃𝑝𝑟𝑒𝑑,𝑖 is the predicted value at time I,  

𝑃𝑚𝑒𝑎𝑠,𝑖 is the measured value at time I,  

𝑛 is the total number of observations, and 

𝑃𝑚𝑒𝑎𝑛 is the mean of the measured data. 

The forecasting model was optimized using the Adam algorithm with a learning rate of 0.0005. 

A window size of 12 proved most effective during training trials, and the model was trained 

for 150 epochs to ensure comprehensive learning and convergence. Table 4 summarizes the 

performance of the different forecasting scenarios developed, along with the different input 

and output parameters utilized in each scenario.  
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Table 4. The different scenarios analysed and the corresponding meteorological variables used  

 

Scenario 

Reason/ Advantage (+) and 

disadvantage (-) 

Training data 

Input +output 

Test data 
Input +output 

Scenario 1 

(Based on 

satellite-

derived data)  

(+) Availability of sufficient 

publicly accessible satellite-

derived meteorological data 

to train models 

(+) offer long-term coverage 

(+) Help define the 

hyperparameter baseline  

(-) fail to capture 

microclimatic effects such 

as local shading, soiling, or 

aerosol  

Satellite-derived PV 

generation, Satellite-

derived 

meteorological data, 

season, and periodic 

encoding  

       +  

satellite-derived PV 

generation 

Satellite-derived 

PV generation, 

Satellite-derived 

meteorological 

data, season and 

periodic encoding  

       +  

satellite-derived PV 

generation,  

Scenario 2 

(Satellite-

derived data 

       +            

actual data) 

without data 

transformatio

n 

(+) Leverage the advantages 

of more reliable actual PV 

generation and publicly 

available satellite-derived 

meteorological and PV 

generation data  

(-) Ground-based 

meteorological and PV 

generation data are limited 

in duration and coverage 

(-) data distribution 

mismatch  

Satellite-derived PV 

generation, satellite-

derived direct 

irradiance data, 

periodic encoding 

        +  

Satellite-derived PV 

generation 

Actual PV 

generation, actual 

solar irradiance, 

periodic encoding 

     +  

actual PV 

generation 

Scenario 3 

(Satellite-

derived data 

        + 

transformed 

actual data) 

(+) Leverage the advantages 

of more reliable actual PV 

generation and publicly 

available satellite-derived 

meteorological and PV 

generation data by 

developing an empirical 

relationship 

Transformed 

satellite-derived PV 

generation and direct 

solar irradiation, 

periodic encoding  

     +  

actual PV generation 

Actual PV 

generation, actual 

solar irradiance, 

periodic encoding 

     +  

actual PV 

generation 

3.3.5. Reinforcement Learning   

Reinforcement Learning (RL) is a rapidly evolving area of machine learning that provides a 

solid framework for addressing dynamic optimization and control challenges. Unlike 

conventional supervised learning, which depends on labelled datasets to guide decisions, RL 

allows autonomous agents to learn the best strategies through direct interaction with their 

environment. This process involves a feedback loop: the agent chooses actions, observes the 

resulting state changes, and receives numerical rewards that encourage good behaviours and 

discourage poor ones. Over time, this fosters adaptive learning, enabling RL agents to operate 

effectively in complex, uncertain systems and improve their performance through experience 

(Cardo-Miota et al., 2025). 
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In this research, RL is used to optimize battery dispatch in PV integration. The agent learns to 

manage energy flows-charging, discharging, and curtailment-based on hourly PV and wind 

generation and load demand. The problem is modelled as a Markov Decision Process (MDP), 

where the agent observes the current battery state, renewable supply, and load, then selects a 

continuous action representing the dispatch decision. The environment updates the battery state 

and calculates the reward, reflecting the balance between served load, curtailment, and energy 

losses. 

The goal of the RL agent is to maximize the total reward over time, which aligns with 

increasing energy delivery efficiency while reducing curtailment and unmet demand. This 

approach enables the agent to develop a control policy that adapts to changing supply and 

demand, thereby enhancing system reliability and increasing the penetration of renewable 

energy. This well-established RL algorithm was customized, as shown in Fig. 3.7, to meet the 

specific design requirements of the new methodological approach presented in Section 3.1, and 

then applied to validate it.   

 

 

Fig. 3.7. Reinforcement learning system optimization algorithm 
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4. RESULTS AND DISCUSSION  

This chapter presents the detailed results of the newly developed methodological framework 

for integrating large-scale PV, which aligns with the thesis objective. It highlights the insights 

gained through the application of the novel algorithm and the new performance indices 

introduced in the study, emphasizing their role in revealing the complex interdependencies 

among key system parameters. Particular attention is also given to the contribution of 

residential PV systems in enhancing large-scale PV integration, supported by results generated 

from a dedicated algorithm designed for this purpose. Furthermore, the chapter examines the 

significance of PV power forecasting and optimization. Each section offers findings that 

directly or indirectly contributes to increasing the penetration of PV in modern power systems. 

Finally, the chapter concludes with a summary of the key scientific findings from this thesis. 

4.1. Large-scale PV integration 

This section examines the impact of the various enabling technologies on system performance 

by creating various solar and wind mix, from which PV ratio of 0%, 50%, and 100% of the 

total renewable generation, representing wind-only, 50-50 PV-wind, and solar-only scenarios, 

respectively, were selected to represent the extreme and median conditions of their 

complementarity.  

4.1.1. Generation and load variability 

Solar energy in Eritrea demonstrates consistent availability throughout the year, making it a 

highly reliable resource for power generation, as depicted in Fig. 4.1. In contrast, wind energy 

exhibits strong seasonal variation due to the influence of two dominant monsoon winds: the 

Northeast Monsoon (November–March), which affects the southern coastal regions, and the 

Southwest Monsoon (May–September), impacting the entire length of the Red Sea (Rosen et 

al., 1999). The spatial and temporal complementarity between solar and wind resources 

presents a strategic opportunity for hybrid renewable systems. Deploying wind farms across 

geographically diverse locations-such as the central highlands and northern coastline-can 

complement each other, thereby smoothing overall power generation. Moreover, integrating 

wind with PV significantly reduces the dependence on large-scale energy storage. A detailed 

analysis of the data reveals that the correlation between solar PV and wind increases (becomes 

more negative) as the temporal resolution shifts from hourly to daily, further supporting their 

complementary relationship in hybrid system design. 

Fig. 4.1 illustrates the daily averages and full data distribution (with the shaded region 

representing the minimum to maximum range) for solar PV, wind (as normalized to peak 

hourly values), and electricity demand (normalized to total demand). At the daily time scale, 

wind generation exhibits significant variability, peaking in June at a level approximately 6.5 

times higher than its minimum in November. However, the aggregated wind output never drops 

to zero due to the combined contribution of multiple geographically dispersed wind sites. In 

contrast, solar generation in Eritrea displays a relatively steady daily pattern with minor 

seasonal fluctuations. The central highlands, in particular, maintain stable solar potential year-

round, with only a modest dip in output during the rainy months of July and August. Electricity 

demand, meanwhile, exhibits less variability and remains more stable compared to both solar 

and wind generation. 
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Fig. 4.1.  Aggregated national generation profiles of solar PV, wind, and load 

The diurnal profile of solar PV generation, depicted in Fig. 4.2, aligns closely with the natural 

daylight cycle. In contrast, wind generation demonstrates the most significant variability over 

the course of the day when compared to both solar PV output and electricity demand. While 

the daily demand pattern is smoother than the fluctuations in solar PV and wind (represented 

by the light coral shading in Fig. 4.2), it still exhibits a broadly similar trend with solar PV and 

wind generation. Demand steadily increases from early morning to midday, experiences a 

slight dip in the afternoon, and then peaks around 7 p.m., a period when wind output remains 

relatively strong. This pattern indicates that residential consumption is the primary contributor 

to overall electricity demand. Notably, the figure demonstrates that solar PV generation, wind 

power, and demand generally exhibit similar diurnal trends. Such synchronicity is 

advantageous, as it underscores the potential of renewable resources to substitute fuel-based 

power generation. However, uncertainties associated with the use of proxy datasets cannot be 

fully avoided. According to Negash et al. (2021), actual measured wind speeds are higher than 

those provided by the GWA dataset, with the discrepancy being more pronounced over rough 

surface topographies. Consequently, the results reported in this study can be considered 

conservative, as measured values would yield higher estimates than GWA-based data. 

Similarly, measured and PVGIS-derived solar radiation profiles show consistent patterns and 

magnitudes (Ghebrezgabher et al., 2016). Likewise, although the use of Ethiopian data is 

justified by its close similarity to Eritrea in terms of climate, cultural practices, and seasonal 

weather and consumption patterns, some degree of uncertainty may still arise from regional 

and contextual disparities. 

Evaluating a range of scenarios and technology combinations could help identify practical 

solutions to meet electricity needs. However, given the mismatch between renewable output 

and demand, significant solar PV and wind capacity must be installed, often leading to some 

level of surplus generation. 
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Fig. 4.2. Diurnal variability of aggregated generation (PV and wind) and demand 

The figure displays the full data distribution (min-max), InterQuartileRank (25th to 75th 

percentile of the data), and median values (wind and PV normalized to peak generation and 

demand normalized to annual values). 

Understanding the mismatch between VRE generation and demand across different time scales 

is a fundamental requirement for designing and sizing energy storage solutions. Several studies 

have used net load to model storage requirements, highlighting its role in balancing grid 

operations (Ardenas et al., 2021; Dujardin et al., 2017a; Heide et al., 2011b). In a similar 

approach, the analysis begins with understanding the mismatch between different PV-wind 

mixes and demand. This analysis provides insights into net load variability and structural 

patterns under different mixing ratios. Fig. 4.3a illustrates how mismatch power varies with 

changes in the PV fraction when RE-to-load ratio of 1 is applied. The vertical axis represents 

the frequency, indicating the number of hours within each 100 MW mismatch interval. The 

frequency of positive mismatch (VRE greater than load) increases with decreasing PV fraction. 

However, the magnitude of the mismatch capacity decreases with the decreasing PV fraction. 

In contrast, both the magnitude and frequency of the negative mismatch (VRE less than load) 

increase with increasing PV fraction. The optimal system should have a maximum frequency 

at a minimum mismatch capacity (MW); however, as shown in Figure 4.3a, the optimal 

mismatch has a lower frequency as depicted by the valley between the two peaks, particularly 

at solar-dominated mixes.  
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(a) 

 

         (b) 

Fig. 4.3.    Variable generation mismatch as a function: a) PV fraction and frequency,  

b)  diurnal-hourly average values 

Fig. 4.3a does not give the complete picture of the netload variability in terms of time scale; 

therefore, understanding the time series and its time distribution in diurnal and seasonal scales 

is crucial for balancing supply and demand. Fig. 4.3b illustrates the diurnal variability of the 

net load (mismatch) for the 50-50 PV-wind scenario. As shown in Fig. 4.3a, the mismatch is 

positive during the daytime, specifically from 8:00 AM to 7:00 PM, due to the diurnal cycle of 
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solar generation. Although the RE-to-load ratio is 1, there is an hourly mismatch between 

generation and demand. Furthermore, there is a complete absence of solar PV at night, resulting 

in a negative mismatch. Solar-dominated mixes experience higher positive mismatch during 

the daytime and face shortages at night. In contrast, the mismatch in wind-only and wind-

dominated mixes is lower and randomly distributed throughout the daytime.  Such a daily 

mismatch can be addressed using short-term battery storage, which can store and deliver energy 

at high density for a few hours. Even though the daily mismatch is resolved, a seasonal 

variability issue may remain unaddressed. With the same RE-to-load ratio 1, overgeneration 

occurs during the summer, characterized by spikes in net load in June and July (Fig. A6). 

Conversely, significant generation deficits are observed throughout much of the spring. In the 

remaining seasons, however, variability tends to fluctuate on a monthly basis rather than across 

entire seasons. Therefore, understanding these variabilities is crucial for designing a system 

that addresses all the uncertainties of a VRE-dominated grid. Our approach utilizes various 

enabling tools, including diurnal storage, seasonal storage, curtailment, and balancing 

generators, to balance year-round hourly supply and demand. The following section explores 

how different PV-wind mixes align with electricity demand and their influence on achieving 

high levels of VRE penetration. 

Table 5 outlines the key components of selected renewable energy scenarios designed to study 

system design issues and associated performance. Though results for a number of storage hours 

are produced, due to the similarity of the results and the performance superiority observed at 

6h, the discussion is made mainly using 6h of storage. 

Table 5. Description of the different scenarios analysed  

Scenarios Names  Solar share (%) Wind share (%) Hours of storage  Storage 

technology 

Solar only 100 0 1,2,4,6,8,10 Li-ion battery 

50-50 scenario 50 50 1,2,4,6,8,10 Li-ion battery 

Wind only 0 100 1,2,4,6,8,10 Li-ion battery 

 

4.1.2. Renewable use without storage 

Fig. 4.4a illustrates the required no-dump capacity across the full range of PV-wind mix ratios 

under a strict no-curtailment condition. As shown, the lowest no-dump capacity occurs in the 

wind-only scenario (100% wind), while the highest is observed in the 100% PV ratio (solar-

only scenario). This variation is primarily driven by differences in resource profiles, total 

energy output, and their alignment with electricity demand. The associated no-dump 

penetration results, presented in Fig.4.4b, highlight that penetration levels depend on both the 

resource quality and capacity. Wind energy, characterized by more evenly distributed 

generation over time and a higher full load hour, achieves greater penetration than solar, even 

with a smaller capacity. As the share of solar energy increases, the complementarity between 

solar and wind energy also increases, consequently enhancing their matching with demand and 

overall penetration, which peaks at around a 30% PV mix. Beyond this point, penetration 

begins to decline due to the increasing lesser time distribution of solar generation. Overall, 

these findings suggest that maximizing renewable energy use with minimal curtailment and 

storage is feasible when complementarity between sources is optimized. However, accurately 

quantifying the extent of this benefit remains difficult due to the interplay of multiple 

influencing factors. The data so far reveals three key insights:  
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1) a significant increase in RE penetration is only possible when supported by curtailment 

and storage strategies, as seen in other studies (Solomon et al., 2010).  

2) resource complementarity can mitigate reliance on both tools, aligning with findings in 

(Heide et al., 2011a, 2010);  and  

3) Eritrea’s strong renewable resource potential may offer a more favourable outcome 

compared to regions with similar conditions (Shaner et al., 2018; Solomon et al., 2016). 

To better understand the role of curtailment and other enabling tools, I examine the 

scenario of higher penetration using curtailment as the sole mechanism. 

 
Fig. 4.4. No dump: a) capacity, b) penetration as function of PV ratio 

Note that all discussions, including figures in the following sections, refer to scenarios where 

penetration exceeds no-dump capacity, requiring either curtailment, storage, or a combination 

of both. Fig. 4.5 shows the penetration and curtailment for different PV-wind mix when no 

storage is employed. As can be seen from the figure, for all PV ratios increase in system size 

leads to a simultaneous increase of VRE penetration and curtailment. But the magnitude of the 

impact depends on the mix.  Wind dominated mix have achieved higher penetration for all RE 

to load ratios and thus experienced lower curtailment. However, as the PV ratio increases the 

corresponding VRE penetration gradually decreases and the curtailment starts to dominate, 

showing that role of curtailment is dependent on the PV-wind mix. The change in the observed 

penetration and curtailment remains insignificant when PV ratio was lower than 40% share, 

the amount above which pronounced difference emerges as the ratio increases to 100%. For 

example, at (RE to load ratio value of 1.1) a penetration of 79% and 47% is achieved for wind 

and solar only scenarios, respectively, where the corresponding curtailment were 28% and 

58%, respectively. The maximum penetration, even though the gain over the wind only 

scenario was small, is reached at around 20 to 25 % of PV ratio when the curtailment remains 

less than 30%. The above result clearly shows the impact of time-distribution of the solar PV 

and wind output in matching the local electricity demand. Wind only and wind dominated 

scenarios enjoys high use of RE at lower curtailment for almost all cases of system size 

increase. However, pushing to higher penetration will need massive curtailment even for the 

wind dominated system, indicating the need for storage under all PV-wind mix condition. For 

example, a penetration of 90% can be achieved by dumping around 50% of the generation at 

                   a                               b 
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high RE to load ratio of about 1.87. Note that previous studies show that neither massive nor 

low curtailment leads to technoeconomic benefit (Perez et al., 2019) , thus the best solution is 

to understand the interlink between various factors to estimate the acceptable range during 

system design.  

 
Fig. 4.5. Renewable energy a) penetration and b) curtailment as function PV ratio  

Fig. 4.6a illustrates the relationship between penetration, curtailment, and resource mix in no 

storage condition. As depicted in the figure, there is a rapid increase in penetration with a slight 

initial curtailment rise, which gradually slows as curtailment increases. As depicted in Fig.4.6b, 

the impact of curtailment on penetration is significantly affected by the resource mix. In wind-

dominated mix with a small solar share of about 0.2, the highest penetration is achieved. 

However, in a solar-dominated mix, particularly in a solar-only scenario, the increase in 

penetration with curtailment is negligible. This is because the diurnal (day – night) cycle of 

solar generation limits the matching capability more severely and thus requires energy storage 

for the dark hours of the day as a result the penetration is seen to be much lower than the wind 

dominated mix. The above discussion shows that maximizing renewable use requires an 

optimal use of various enabling tools, a subject to be explored later with more details.  

 

Fig. 4.6. Renewable energy: a) penetration and curtailment as function of PV ratio,  

             b) curtailment versus penetration 

                                        a                                                                                         b                                                                             

                                        a                                                                                         b                                                                             
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4.1.3. Renewable use with energy storage application 

Let’s examine the impact of different storage technologies and types on increasing renewable 

penetration.  

4.1.3.1. Diurnal storage application 

Let us examine what happen when some storage size is applied as RE system size increases 

same way as for Fig. 4.5. Fig. 4.7. shows how the penetration and curtailment varies with 

varying PV–wind mixes at fixed storage capacity of 0.41 average daily demand – equivalent 

to 18 GWh which is small storage capacity when compared to Eritrea’s average daily demand 

of 43.8 GWh.  It is worth noting that even the largest storage that we considered in this study 

remains smaller than the average daily demand. At smaller system size, the storage removes 

curtailment (compared to the corresponding no storage condition of Fig. 4.5) observed at higher 

PV share in order to increase penetration. Consequently, the change in penetration and 

curtailment become relatively negligible, regardless of the wind-solar mix. In response to 

modest increase in RE system size (RE to load ratio of 0.47 to 0.78), low solar share scenarios 

already result insignificant curtailment difference while penetration shows some favor for 

wind-solar mix, particularly for solar dominated mix. Interestingly, the trend showed a marked 

difference as RE to load ratio increases to 1.1 (at storage 0.41 average daily demand) where we 

already observe approximately 96% penetration for only 9% curtailment at 80% PV mix. In 

Fig.4.5, a 90% penetration is achieved by building a significantly larger system size (with an 

RE-to-load ratio of 1.87) and curtailing more than 50% of the energy in wind-dominated mixes. 

However, with the addition of storage at the same RE to load ratio of 1.87, 100% renewable 

energy penetration is attained for certain solar mixes (ranging from 20% to 80% solar share). 

This is because the storage partially reduces curtailment, leading to increased penetration 

compared to scenarios without storage. The data corresponding to RE to load ratio of 1.4 shows 

that 100% RE could be achieved without increasing the system to an RE to load ratio of 1.87. 

My extensive data shows that, for other storage size, 100% RE could be achieved at even lower 

curtailment than observed in this case. Theoretically, with unlimited ideal energy storage, 

variable electricity demand could be met with complete reliability using only wind and solar 

power, without the need for excess generation capacity.  

 
Fig. 4.7. Renewable energy:  a) Penetration, b) Curtailment as a function PV ratio, with 0.41 

of average daily demand 

                                        a                                                                                         b                                                                             
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The above result shows that while wind appears to achieve higher penetration as curtailment 

increases due to time distribution of its generation, solar penetration improves significantly 

with addition of small storage due to the day-and-night cycle of solar generation profile. The 

mixture of the two combines these characteristics to achieve higher penetration at lower loss 

and storage capacity need. However, the overarching question is how one can design and build 

a more effective system in a system that bears much complexity as any choice may involve 

disregarding some technical benefit that cannot be seen in economic based decision making.  

Fig. 4.8 presents the dependence of VRE penetration on curtailment for the storage size applied 

in Fig. 4.7. Penetration increases with a slight rise in curtailment, but the rate of penetration 

growth diminishes as curtailment continues to increase, depending on the resource mix. This 

demonstrates that controlled curtailment can be beneficial for optimizing system performance. 

In the following subtopic, we will examine other scenarios to understand the broader 

perspective. 

 

Fig. 4.8. Penetration as a function of curtailment for varying PV ratios at storage capacity of 

0.41 of average daily demand 

The interaction between VRE penetration, storage capacity, and curtailment related to wind-

only, 50-50 wind-solar mix, and solar-only scenarios is given in Fig. 4.9, Fig. 4.10 and Fig. 

4.11, respectively. 

As shown in Fig. 4.9 penetration increases with increase in storage size. At fixed storage size, 

increase in renewable generation increases penetration and curtailment simultaneously. The 

increase in penetration is much faster when renewable generation is low and slowly level off 

with further increase in renewable generation. By comparison, the increase in VRE penetration 

for wind dominated scenarios are mainly driven by the effect of curtailment than storage 

capacity. There exists a trade-off relationship between storage capacity and curtailment, 

whereby a decrease in storage capacity results in an increase in curtailment and vice versa. The 

increase in penetration is driven by both storage and curtailment, with curtailment having a 

more significant impact in this particular scenario. 
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Fig. 4.9. Wind-only scenario with 6 hours storage, interaction between: a) Penetration, 

curtailment, and storage capacity, b) Storage capacity and penetration   

At low generation level (RE to load ratio 0.48 to 0.78) the penetration remains almost constant 

regardless of the storage size. This is because mismatch between wind generation and load can 

be accommodated even with the smallest storage capacity allocated and further increase in 

storage have no benefit to the system. At such low generation level storage has little impact on 

the system performance. But as the generation increases beyond RE to load ratio of 0.78 

penetration increases and curtailment decreases with increase in storage capacity. In the 

absence of storage (as depicted in Fig. 4.6), the trend differs, as every increase in penetration 

is coupled with a corresponding rise in curtailment. The impact of curtailment is more 

significant in a wind-only scenario when compared to the effects of storage. As depicted in the 

Figure 4.9b, penetration exhibits a noticeable increase within the first few GWh of capacity. 

However, this increase gradually tapers off, with only marginal gains observed when exceeds 

approximately 10-15 GWh and beyond this point, further increase in storage capacity do not 

yield significant benefits to the system.  

Fig. 4.10a shows the penetration and curtailment as function of storage capacity for the 50%-

50% PV-wind scenario. This Scenario behaves similar to the wind only scenario as in both 

scenarios; penetration increases with storage capacity and curtailment. However, the impact of 

storage has some differences mostly at small storage capacity. Comparing Fig.4 9b and 4.10b, 

at low storage capacity the wind-only scenario outperforms in achieving higher penetration. 

This can be attributed to the nature of wind generation, which is less dependent on storage due 

to its inherent randomness; instead, it is primarily affected by curtailment. From this trend, it 

is evident that a configuration featuring a small storage capacity and significant curtailment 

provides more benefits to the system compared to constructing a large storage facility at a lower 

curtailment rate, in wind only scenario. In contrast, the 50-50 scenario depends significantly 

on storage due to the 50% solar share, which is influenced by the day-night cycle of solar 

radiation, necessitating storage solutions. The increase in penetration in the 50-50 PV-wind 

scenario is therefore, the combined effect of both storage capacity and curtailment. However, 

increasing curtailment beyond 20% offers negligible benefits to the system. At this level, 

penetration levels off for all cases as curtailment increases. The 50-50 PV-wind scenario 

demonstrates a significant improvement in achieving higher penetration when employing both 

enabling tools.  

                                        a                                                                                         b                                                                             
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Fig. 4.10. 50-50 PV-wind scenario with 6 hours storage, interaction between: a) Penetration, 

curtailment, and storage capacity, b) Storage capacity and penetration  

The solar-only scenario shown in Fig. 4.11 shows a different pattern from the previous two 

scenarios. Regardless of the generation capacity (RE-to-load ratio), the penetration remains 

low at lower storage capacities, with significant curtailment (Fig.4.11a). This relates to the 

natural cycle of solar generation, which requires adequate storage solutions to address the 

diurnal mismatch. However, when small storage is added, a significant increase in penetration 

is observed, reaching its peak of 100% at considerably large storage sizes and generation 

capacities (Fig.4.11b). Nevertheless, it is possible to attain a solar penetration of 90% with a 

20% curtailment, with a storage capacity of less than average daily demand. Achieving this 

penetration level would necessitate a substantially higher curtailment in a wind-only scenario. 

The study’s design highlights the complex relationships among various factors, offering 

multiple options for selecting combinations of storage and curtailment to achieve a specific 

penetration level that aligns with individual objectives and policy priorities. The most effective 

approach involves determining the ideal size for both storage and curtailment, finding a balance 

that maximizes penetration while ensuring both technical and economic feasibility. 

 

Fig. 4.11 Solar-only scenario with 6 hours storage, interaction between, a) Penetration, 

curtailment, and storage capacity, b) Storage capacity and penetration 

                                        a                                                                                         b                                                                             
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The design employed in this study builds a complex relationship between various factors that 

offers multiple options for choosing combinations of storage and curtailment to achieve a 

specific penetration (including 100%), tailored to individual priorities and policy preferences. 

The optimal approach, however, lies in determining the approximate optimal size for both 

variables, striking a balance that maximizes penetration while ensuring technical and economic 

feasibility.  

Based on the aforementioned scenarios, it is evident that curtailment plays a beneficial role in 

enhancing grid penetration by maximizing the utilization of storage. Attaining a penetration 

target without any curtailment necessitates an oversized storage capacity alongside a large-

scale renewable generation, resulting in low storage utilization. However, moderate and 

carefully managed curtailment, which is expected to become a new normal in future grids, can 

effectively increase renewable penetration while reducing the required storage size by 

maximizing its utilization. This finding aligns with previous research findings reported in 

(Solomon et al., 2014), though they use a different approach and cover different geographic 

locations represented by the corresponding resource and demand profiles.  

The overall observation from Figs. 4 9, 4.10, and 4.11 revealed that, at a given generation 

capacity, penetration rises as storage capacity increases, leading to a reduction in dumped 

power. However, the impact of these factors differs across scenarios, the effect of curtailment 

is more dominant in wind only scenario, whereas in a solar-only scenario, the impact of storage 

surpasses that of curtailment. For the 50-50 PV-wind scenario however, penetration is the result 

of considerable effect of both storage and curtailment. The 50-50 PV-wind scenario 

demonstrates superior performance, allowing us to easily achieve a 90% penetration target of 

renewables with reasonable storage capacity and curtailment. This highlights how solar-wind 

complementarity can smooth out generation profiles while simultaneously increasing 

penetration. Across all scenarios, the increase in penetration exhibits a rapid rise for smaller 

storage capacities, but it gradually levels off after reaching a threshold value. Therefore, 

increasing storage capacity beyond this value offers a negligible benefit in achieving higher 

penetration. The specific threshold value depends on the generation size and storage capacity, 

but in all scenarios, penetration levels off at less than 0.8 times the average daily demand 

(equivalent to 35 GWh), indicating that further increases in storage provide no additional 

advantages to the system. However, the observed decrease in storage needs does not mean 

storage is not necessary at all. However, it shows the change in the manner of storage 

application and the suitable technology type. Before it levels off, diurnal application suitable 

storages are required, but after that, the system increasingly requires seasonal services, which 

use seasonal storage. This issue was discussed in (Denholm et al., 2022; Solomon et al., 2019) 

for U.S. and Israel, respectively. The study on Israel is based on a systematic analysis of several 

scenarios focused on solar energy, whereas the U.S. study seeks to quantify these requirements 

without detailed techno-economic considerations to assess the geophysical constraints of solar 

and wind generation in meeting demand. In contrast, my study explored a broader range of 

scenarios – including varying PV-wind mixes, storage capacities, and curtailment levels – to 

confirm that these effects are not case-dependent.  

Fig. 4.12 illustrates the storage requirements necessary to achieve a penetration target of 90% 

for different RE-to-load ratios as a function of PV ratio. In the figure, only RE-to-load ratios 

of 1.10 and above are displayed, as these represent cases, where reaching 90% penetration is 

feasible. It can be noted that when the RE-to-load ratio is below 1.1, there is insufficient energy 

to reach 90% penetration. 
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Fig. 4.12. Storage required to reach a penetration target of 90% using 6 hours of storage  

The required storage capacity varies depending on the PV-wind ratio within these scenarios. 

The wind-only scenario requires less storage capacity when compared to the solar-only 

scenario, except in the case of RE-to-load ratio of 1.10. This discrepancy arises because the 

wind-only scenario is predominantly influenced by the generation size and curtailment rather 

than the storage size. At this specific RE-to-load ratio, the marginal increase in penetration 

from excess generation is minimal due to the system’s limited capacity, making it challenging 

to achieve 90% penetration with minimal storage. Due to lower effectiveness in the use of 

storage, the wind-only scenario also needs higher storage capacity to reach 90% penetration at 

a RE-to-ratio of 1.1.  However, as depicted in the figure (Fig. 4.12), at higher RE to load ratio, 

the wind-only scenario can achieve a 90% penetration target with significantly lower storage 

capacity because the time distribution of wind enables higher demand matching than solar only 

scenario. This is a further elaboration on how emphasizing either one of the tools (i.e., storage 

or curtailment) diminishes the importance of the other for the case of wind. Though the 

mechanism is not as strong, note that the storage needs decrease with more curtailment even 

for a solar-dominated system.  

It is important to note that the solar-dominated scenario relies heavily on storage, with even a 

slight increase in storage capacity resulting in a significant enhancement in penetration. The 

reason behind the lower storage requirement for the RE to load ratio of 1.10 is attributed to the 

role of storage in solar energy. In the solar-only scenario, storage capacity plays a critical role, 

surpassing the influence of curtailment and generation size. That is why the storage 

requirement remains relatively similar regardless of the generation size, as depicted in Fig.4.12. 

The minimum storage required to reach the penetration target varies across each RE to load 

ratio and falls within the range of 20-30% PV ratio, except for the RE to load ratios of 1.10 and 

1.87. At 1.87 RE to load ratio, the wind-dominated mix (up to 40% PV ratio) can attain the 

penetration target without requiring any storage. However, as the PV ratio increases, the 

storage requirement experiences a sharp rise and ultimately converges to a similar storage value 

for all other RE-to-load ratios. This provides further evidence on how the resource mix impacts 

the role of storage and curtailment. Thus, setting the optimal mix of various enabling tools will 

be crucial to achieving both financial and technical optimality in the future system. 

As previously discussed, the increase in penetration is limited by the available storage capacity. 

Beyond a certain point, the rate of increase slows and eventually plateaus. At this stage, 



4. Results 

 

73 

 

implementing seasonal storage capable of holding energy for several days becomes essential 

to mitigate seasonal fluctuations. This will be discussed later; however, using only diurnal 

storage a penetration levels of up to 80-90% can be achieved in Eritrea by addressing the daily 

mismatch. When penetration exceeds this range, depending on PV-wind mix, multiday and 

seasonal mismatches pose challenges that diurnal storage alone cannot overcome, making 

seasonal storage necessary to meet demand. For example, in this study, achieving 96% VRE 

penetration with diurnal storage (e.g., at a 1.1 RE-to-load ratio in the 50-50 scenario) would 

require approximately 75% of the allocated storage capacity to contribute for the last 6% of the 

demand. Similarly, Fig.4.13 shows that a substantial portion of capacity is required to satisfy 

only a small fraction of the total demand. For instance, satisfying the last 10% of the demand 

in the 50-50 scenario requires nearly 46% of the deployed capacity. The situation is worst in 

the solar-only scenarios as every increase in penetration is accompanied by a large capacity 

requirement, specifically when exceeding 80% penetration. In both cases, satisfying the final 

10% demand requires significantly increased installed capacity and storage. This is not feasible 

from a practical perspective, so alternative technologies that can function as seasonal storage 

should be considered at such high penetration levels (see below).  

Compared to previous studies, the present work employs a unique and transparent simulation 

model, providing an alternative perspective with a more comprehensive analysis. It explores 

various interacting factors, including the PV-wind mix, curtailment, storage, and balancing 

needs, offering deeper insights into the complexities of renewable energy integration. The 

study presents a broader scenario-based approach to confirm that the phenomenon occurs under 

all conditions of the VRE mix. More importantly, the agreement with other studies’ findinds 

produced using different datasets and models studying other locations (Denholm et al., 2022; 

Guerra et al., 2021) actually presents evidence that a common physical mechanism drives the 

interaction between VRE resources and their matching to electricity demand. Thus, developing 

a common theoretical framework to guide the designing and operation of the future system 

could enhance our ability to tackle the associated challenges better than the present approaches. 

But such an effort requires more studies of this kind.   

 

Fig. 4.13. Illustration of renewable energy requirements at different stages of renewable 

penetration 
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Fig. 4.13 illustrates the behaviour of penetration with increasing renewable energy deployment 

at a constant diurnal storage capacity of 0.41 times the average daily demand.  

Now, let us return to studying the interaction between the different parameters when the hours 

of storage change from 6 to 1, 2, 4, 8, and 10. The pattern observed for these hours of storage 

closely resembles the relationship between penetration, curtailment and storage capacity 

presented in Figs 4.9a, 4.10a and 4.11a for wind only, 50-50 PV-wind and solar only scenarios, 

respectively. Regardless of the storage design and its effectiveness, the simultaneous increase 

of the three is a general trend. For example, the interaction between the three parameters for 2h 

and 6h of storage corresponding to a 50-50 wind-solar mix shows a similar trend (see 

Appendix, A6). However, the close resemblance does not mean all options are equally 

effective. This will be clarified in the next section by applying an appropriate tool devised to 

enable comparison of system performance for each combination of parameters.   

Economic analysis of the proposed approach 

A simplified, unit-cost economic analysis is presented to offer useful insights into the 

financial performance of the various system configurations discussed above. 

Even though the focus of this study is not to perform a detailed economic analysis, one may 

question whether the demonstrated technical feasibility is linked to some economic viability.  

Here, a simplified unit cost-based economic analysis is presented to offer valuable insights into 

the financial performance of the various system configurations discussed so far. For this, we 

use the specific example of 18 GWh storage mentioned above. Based on current market trends 

(Table 6), achieving 100% penetration in the case of Eritrea through overbuilding and 

curtailment (PV and wind) as shown in Fig. 4.5, requires about 14.32 billion USD, accounting 

for the large RE generation requirement at a higher penetration level. In contrast, adding 18 

GWh (0.41 average daily demand) of battery storage to the system (Fig. 4.7) reduces the overall 

cost to approximately 13.41 billion USD, while also accounting for battery replacements over 

the 30-year lifetime of PV and wind plants.  However, balancing both enabling technologies, 

storage, and curtailment at the optimum mix (80% PV and 20% wind) offers a better benefit to 

the system in gaining techno-economic benefits and costs around 12.96 billion USD to reach 

100% RE penetration. The cost reduction from USD 14.31 billion to USD 12.96 billion is 

mainly driven by several key system factors. Lower curtailment and/or overgeneration, 

combined with storage and the corresponding renewable-to-load ratio, as well as an optimized 

PV – wind mix those better matches varying demand conditions, are the primary contributors 

to reducing the overall system cost. Although a more detailed analysis is required to examine 

the technoeconomic benefits of the different configurations, unit cost analysis of the results 

highlights the importance of balancing the various enabling technologies in RE-dominated 

grids. This preliminary analysis shows that the optimized results are not only technically sound 

but also economically viable.  

Table 6. Techno-economic data of different technologies used 

Data                                Technology Source 

PV 

system 

   Wind 

system 

Storage (Li-

ion battery) 

Cost (2023) 758 1160 139 (Bloomberg, 2023; Fernández, 

2023; IRENA, 2023) 

unit $/kWp $/kWp $/kWh   

Life (calendar 

years) 

30 30 15 (Aghaei et al., 2022; Zucker and 

Hinchliffe, 2014) 



4. Results 

 

75 

 

4.1.3.2. Storage utilization and system-use index 

Fig. 4.14a shows storage utilization as a function of storage capacity and corresponding 

curtailment for a wind-only scenario. The figure shows that storage utilization is significantly 

high at low storage capacity, particularly for some suitable curtailment ranges. However, the 

utilization index decreases as the storage capacity increases. This observation suggests that 

deploying large storage for diurnal applications with wind energy may not be advisable due to 

the risk of underutilization, as seasonal storage may be a more suitable option for such 

conditions.  

 

Fig. 4.14. System performance indicators: a) Storage utilisation, b) System-use index for 

wind-only scenario at 6 hours of storage 

The higher storage utilization index observed at lower storage capacities can be linked to the 

storage's frequent daily charging and discharging cycles. However, it should be noted that 

achieving a high utilization index does not necessarily translate into maximum system benefit, 

as the storage capacity is small and its contribution to overall energy coverage is limited. Thus, 

storage utilization has limitations in fully conveying the complete picture of its system benefits, 

which depend on various other factors. To address these limitations, we introduced a new index 

called the system-use index (SUI). This index provides a more comprehensive evaluation of 

system performance by linking storage utilization and RE consumption and generation with 

other factors, such as storage charging/discharging, and energy and power capacity. Unlike 

storage utilization, which primarily measures the extent of storage use, the system-use index 

offers deeper insights into how effectively storage is integrated within the broader energy 

system and its role in enhancing the system’s ability to manage variability and optimize 

resource deployment. 

Fig.4.14b illustrates the system-use index for the wind-only scenario. The figure presents 

various combinations of storage and curtailment, along with their corresponding system-use 

index values. As depicted in the figure, the system-use index initially increases with both 

storage and curtailment until it reaches its peak value, and then it starts to decline. The storage 

and curtailment combination that leads to the top plateau region of the system-use index 

represents the optimal values that effectively maximize the overall system performance. Due 

to the ability of the system to also play some role of seasonal storage at such a high penetration, 

focus on the top peak point may be less relevant than the overall plateau region. Thus, 

depending on the generation size, several storage and curtailment combinations can benefit the 

system. For example, the maximum system-use index value (selected for ease of identification) 

               a                                                                                           b 
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occurs at 7.5 GWh storage capacity and 27% curtailment at RE-to-load ratio of 1.4. Referring 

back to Fig.4.9a, this storage and curtailment combination enables achieving a penetration of 

90%. However, this combination is associated with excessive dumping of renewable energy 

generation. The storage utilization achieved in this scenario is somewhat reasonable but still 

falls short of the optimal value.  Fortunately, one can opt for optimal storage and curtailment, 

considering their unique goals and policy priorities while maintaining a reasonable system-use 

index.  

Fig. 4.15a illustrates the storage utilization for the 50-50 wind-solar scenario. Like in the wind-

only scenario, the highest storage utilization index is observed at relatively lower storage 

capacity values. However, the storage utilization is significantly higher than that of the wind-

only scenario.  

 
Fig. 4.15. System performance indicators: a) Storage utilisation, b) System-use index for 50-

50 wind-solar scenario at 6 hours of storage 

The storage utilization gradually decreases as the storage capacity increases. At a given smaller 

storage value, the utilization index rises from zero to maximum as the generation size and 

curtailment increase.  As depicted in the figure (Fig. 4.15a), a small curtailment rise 

significantly increases storage utilization index. However, with a further increase in 

curtailment, the storage utilization index increment slows down. 

Fig. 4.15b presents the system-use index for the 50-50 wind-solar scenario. This scenario's SUI 

is significantly higher than the wind-only scenario. The SUI shows an increasing trend as both 

storage capacity and curtailment increase until it reaches its peak value (typically forms a hill 

with several comparable peak values), after which it starts to decline.  The maximum SUI value 

occurs at 8.9 GWh and 16% of storage capacity and curtailment, respectively. Referring to Fig. 

4.10a, this combination results in a penetration of 90% of renewables. In this scenario, storage 

utilization has seen a remarkable increase compared to the wind-only scenario. The maximum 

SUI is also achieved at a lower generation capacity (RE-to-load ratio of 1.10) compared to the 

wind-only scenario of 1.40. It is worth noting how complementarity enhances system 

performance by increasing storage utilization. Overall, it is worth noting that the graph in these 

figures builds a hill with a plateau top, showing several combinations with almost equal system 

benefits as shown in the contour plot Fig. 4.16. 

               a                                                                                           b 
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Fig. 4.16. Contour plot of the System Use Index (SUI) across a range of storage capacities 

and curtailment levels for 50-50 PV–wind Scenario 

Based on these results, we can conclude that well-utilized storage capacity of approximately 

0.2 of average daily demand, coupled with a reasonable curtailment of 16%, can effectively 

achieve a penetration target of 90%.  

Fig. 4.17a illustrates storage utilization for solar-only scenarios where both storage utilization 

and curtailment increase with renewable generation at a fixed storage capacity, indicating that 

curtailment plays a crucial role in enhancing storage utilization.  

The solar-only scenario exhibits highly efficient storage utilization, as the figure depicts. This 

efficiency can be attributed to the predictable day-night cycle of solar radiation, which provides 

a consistent pattern for charging and discharging the storage on a daily basis. As shown in Fig. 

4.17a at very small storage sizes, the storage utilization is maximum because the storage fully 

charges and discharges almost every day, but the utilization decreases with an increase in 

storage size. Compared with the previous two scenarios, the solar-only scenario demonstrates 

a significantly higher energy contribution from storage. As illustrated in Fig. 4.17b, the SUI 

increases as curtailment and storage increase. However, once a peak point is reached, the SUI 

starts to decline with further increase in storage. This decline occurs because the storage 

becomes oversized, resulting in distorted daily charging and discharging patterns, and the 

storage remains full for several days.  
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Fig. 4.17. System performance indicators: a) Storage utilisation, b) System-use index for 

solar-only scenario at 6 hours of storage 

Nevertheless, as depicted in the figure (Fig. 4. 17), a combination of reasonable curtailment 

and storage size can significantly benefit the system with a sufficiently high SUI. In this 

specific scenario, multiple combinations of storage and curtailment positioned on the plateau 

of the system-use index graph show a high storage utilization value. For instance, at 22 GWh 

and 13% curtailment, very high storage utilization can be attained while achieving a 90% 

renewable penetration. It is important to note that the solar-only scenario necessitates a larger 

storage capacity than the other two scenarios to achieve the same penetration level.  

The above result discusses the case 6 hour of storage, the data for other hours present an 

interesting case regarding the effect of the energy-to-power ratio (storage duration) on system 

performance. The observed SUI value increases (discussed in reference to the peak plateau 

region of each plot) when we increase hours of storage from 1h to 6h showing that hours of 

storage value impacts system role of the storage. Beyond 6h, SUI gradually decreases. The 

small decrease may be because the high storage hours (like 10 h) allow the system some 

seasonal role in combination with curtailment. Fig. 4.18 presents SUI values for 2h, 6h and 10h 

storage for 50-50 PV-wind scenario. It is clear that SUI is an arbitrary index, but it carries an 

irreplaceable role in raising our understanding of the future system. In short, the relationship 

between these parameters, namely curtailment, penetration, wind-solar mix, storage capacity, 

and hours of storage, and its link to SUI indicates that an optimal range of these parameters 

that ensures an optimal system efficiency exists, which directly addresses the core objective of 

the thesis. This forms a multidimensional constraint that is difficult to implement in any 

technoeconomic modelling tool. This may explain why some techno-economically optimal 

scenario results were found to have low net energy production capability (Solomon et al., 

2024).  

               a                                                                                           b 
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Fig. 4.18. System–use index for different storage durations: a) 2 hours, b) 6 hours, 

 c) 10 hours 

The overall results indicate that simulating large quantities of data across various scenarios 

enables me to identify the optimal combination of storage size, RE capacity, and curtailment 

tailored to a specific resource mix and diversity.  The interesting lesson of this study is that the 

optimality of future systems can be compromised if careful designing is not followed during 

system development. The possibility of overcoming the impact of poor system design by 

achieving optimal system operation can even be limited in some cases of system designs, 

exposing the industry to losses. In other words, this study excels by showing that, despite 

numerous system design and modelling options, considering certain physical requirements 

such as system-use index (proxy of system efficiency) sets the boundary conditions from which 

economic models should choose. However, enforcing such requirements in the present 

modelling is not possible because such constraints are naturally multidimensional.  

Fig. 4.19 illustrates the impact of diurnal storage on penetration and storage utilization for a 

system with a RE-to-load ratio of 1 across three scenarios. In all cases, penetration increases 

sharply at lower storage levels. However, it gradually slows and stabilizes beyond a certain 

threshold, typically 7.5 GWh for wind only, 10 GWh for 50-50 PV-wind, and 25 GWh for 

solar-only scenarios.  Beyond this point, additional storage yields minimal gains, as small 

increases in penetration demand disproportionately require large diurnal storage. The rate at 

               a                                                                                           b 
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which penetration increases with storage varies significantly across the scenarios. Adding 

storage initially cuts curtailment, but further capacity has little effect, as storage often stays 

full, causing excess generation to be curtailed and reducing overall utilization. 

In the solar-only scenario, the diurnal cycle restricts penetration, necessitating significant 

storage to match supply with demand. Conversely, the wind-only case requires only a small 

storage capacity of 7 GWh (0.16 of average demand) to address the temporal mismatch, thanks 

to the smoother output from various locations. In the 50-50 PV-wind mix, penetration is 

realized through a combination of storage and curtailment. This finding is consistent with a 

study conducted on larger geographical scales in the U.S. (Shaner et al., 2018), where 

reanalysis datasets (MERRA-2) with a RE-to-load ratio of 1 were applied. The penetration 

achieved without storage, 48% and 78% for solar and wind-only scenarios, respectively, aligns 

with our findings.   

 

Fig. 4.19. Impact of storage on penetration and storage utilization across different scenarios 

for a system with a RE-to-load ratio of 1.0 

While the rate varies across scenarios, the initial few GWh of storage capacity leads to a rapid 

increase in penetration, which then slows with further expansion. For instance, as shown in 

Fig. 4.19, in the 50-50 PV-wind scenario with a RE-to-load ratio of 1.0, approximately 33% of 

the installed 35 GWh storage capacity is effectively utilized to achieve 90% penetration. 

However, adding storage beyond this has minimal impact, contributing only a marginal 

increase in penetration. The wind-only scenario shares characteristics similar to the 50-50 PV-

wind scenario. The solar-only scenario, however, exhibits a distinct pattern; it utilizes about 

71% of the installed storage effectively with a storage utilization index exceeding 300 cycles 

per year.  

The parameters discussed so far, storage, penetration, curtailment, and storage utilization, 

interact in complex ways and offer valuable insights into system performance. However, these 

metrics alone may not reflect the full system dynamics. For example, a high storage utilization 
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index might indicate frequent cycling, but if the storage size is small, its actual contribution to 

improving system outcomes, such as boosting renewable penetration, can be minimal. Thus, 

high utilization does not always translate to greater system benefit.  

The SUI shown in Fig. 4.15b provides an in-depth system performance assessment by 

connecting storage utilization and RE consumption with other factors. SUI increases with 

storage and curtailment, reaching a peak before declining as both parameters continue to rise, 

clearly identifying the near-optimal system parameters that enhance overall system 

performance.  In the 50-50 PV-wind scenario, the highest SUI, representing the most efficient 

utilization of storage and curtailment trade-offs, is achieved at a storage of 8.9 GWh (0.2 

average demand) and a curtailment of 16%. Notably, this aligns well with the observed suitable 

range in Fig. 4.19, reinforcing the validity of the SUI as a meaningful metric. While it is not 

inherently guaranteed that the maximum SUI corresponds to an optimal system configuration, 

its alignment with Fig. 4.19 suggests that it effectively identifies near-optimal operating 

conditions. This connection strengthens the argument that the SUI is a reliable indicator for 

balancing storage capacity and curtailment in large-scale renewable integration, depending on 

priorities set, whether curtailment or storage is emphasized to achieve specific penetration 

targets. The near-optimal system parameters required to achieve 90% renewable penetration 

were derived from the newly introduced approaches, as summarized in Table 7. The peak 

demand is 2.7 GW. 

Table 7. Optimal parameters that maximize system benefits at 90% RE penetration level 

 

Scenario 

Penetration 

(% annual 

demand) 

RE 

generation 

      (GW) 

Storage 

(GWh) 

Balancing 

capacity 

(GW) 

Curtailment 

(% RE 

generation) 

PV 

(GW) 

Wind 

(GW) 

Solar only 90 9.9 22   2.46 13  9.9 0 

50 - 50 

wind-solar 

90 6.5 8.9   2.16 16  3.25 3.25 

Wind only 90 6.1 7.5   2.19 27 0 6.1 

 

In the final remarks, when only diurnal storage is deployed, based on my newly developed 

methodological approach, it is evident that a well-balanced system design can be attained by 

integrating various system parameters, as outlined in Table 7. For instance, in the case of a 50-

50 system configuration with an 8.9 GWh storage capacity, the system needs to generate 6500 

MW to achieve a penetration target of 90%. This allocation necessitates 3250 MW for wind 

energy, which translates to approximately 950 wind turbines, and another 3250 MW for solar 

photovoltaic (PV) energy, requiring approximately 81 km² of land. Conversely, when we 

distribute this PV generation across 1 million households, constituting residential PV systems, 

each home would receive an allocation of 3.25 kW of PV capacity, which is a reasonable 

amount for individual households. Likewise, a storage capacity of 8.9 GWh for 1 million 

households implies 8.9 kWh battery per household, a practical and reasonable house battery 

size. 

When focusing on PV, the results highlight promising opportunities for both utility-scale solar 

farms and distributed residential PV+ battery systems. Meeting 45% of the demand (45% PV 

penetration), which is half of the total 90% target shown in Table 7 above, would require 

approximately 81 km² of land for utility-scale deployment. This could be expensive and 

compete with other valuable land uses, such as agriculture or economic activities. This 

challenge underscores the importance of exploring residential PV as an alternative pathway. 
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Distributing the required capacity across households not only reduces land-use pressure but 

also enhances energy self-sufficiency at the community level. Accordingly, Section 4.2 

investigates strategies to maximize the share of residential PV in achieving the overall 

renewable energy penetration target. 

4.1.3.3. Seasonal storage application for seasonal mismatch 

Revisiting Fig. 4.13, renewable energy utilization changes significantly with increasing 

penetration levels. At lower penetration levels, renewables primarily displace conventional 

generators with minimal or without storage or grid readjustments. The figure illustrates how 

renewable energy requirements vary across different penetration levels for various PV-wind 

mixes. It highlights key characteristics of these variables beyond the no-dump capacity, the 

threshold beyond which the system necessitates storage, curtailment, or both. While this no-

dump capacity varies depending on the PV-wind mix, the minimum penetration achievable 

without storage or curtailment is approximately 23.6%, a condition observed in the solar-only 

scenario where Fig.4.13 begins. Any increase in renewable generation beyond this level 

requires storage/curtailment or both to manage fluctuations, enabling penetration up to 80%. 

Beyond 80% penetration, renewable deployment rises sharply, even with only a slight increase 

in penetration. While the RE requirement for a given penetration target varies across PV-wind 

mixes, this variation remains relatively minor until 80% penetration. However, beyond this 

point, the differences in RE requirements become more significant.  

Up to 80% RE penetration, diurnal storage plays a key role in balancing short-term fluctuations. 

However, meeting the last 20% of the demand presents a unique challenge. Fig.4.13 illustrates 

this challenge; RE deployment surges dramatically in this range, with a substantial increase in 

capacity required for even a small rise in penetration. This large generation/capacity 

requirement is attributed mainly to seasonal and peak demand imbalances, meaning that much 

of the additional renewable capacity remains underutilized for most of the year and is only 

effective during specific seasons of peak demand or low RE generation periods, or a 

combination of both. This challenge becomes even more demanding when attempting to meet 

the demand with PV, as it requires an impractically large generation capacity and extensive 

storage. The marginal returns from such capacity expansion are minimal.  As shown in Fig. 

4.13, complementarity helps mitigate the steep rise in capacity additions required for higher 

penetration levels. However, regardless of the PV-wind mix, meeting the final 20% of the 

demand necessitates a substantial increase in capacity and/or significant storage deployment, 

as also illustrated in Fig. 4.19.  

Diurnal storage manages short-term fluctuations and facilitates a high renewable penetration 

of 80–90%, but its limitations become evident beyond this range.  The ability of diurnal storage 

to handle daily fluctuations depends on the mix ratio and other factors. Still, longer-duration 

mismatches spanning multiple days to weeks necessitate the deployment of seasonal storage. 

Numerous studies indicate that achieving very high VRE penetration requires longer-duration 

storage beyond diurnal storage (Frazier et al., 2021; Shaner et al., 2018; Solomon et al., 2019). 

Though not yet widely deployed, seasonal storage solutions such as hydrogen and other fuels 

are recognized as key technologies that could help future grids achieve nearly 100% renewable 

penetration. Implementing seasonal storage enhances power system stability by reducing 

seasonal intermittency and significantly lowering curtailment, thereby maximizing renewable 

energy utilization.  

Various conditions were examined for different configurations by adjusting the energy and 

power capacity of the diurnal storage to assess the impact of seasonal storage.  Near-optimal 

parameters obtained from Figs. 4.19 and 4.15b were the upper limit for diurnal storage, after 
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which seasonal storage was introduced. Fig. 4.20 illustrates the penetration levels achieved 

when seasonal storage, along with diurnal storage with a 6-hour duration, is applied across the 

three scenarios analysed at a RE-to-load ratio of 1.3. Diurnal storage is used for lower 

penetration levels (< 80%). In comparison, seasonal storage is utilized at higher penetration 

levels, reaching approximately 100% and 98% at 180 GWh (equivalent to 4 average daily 

demand) for the 50-50 and wind-only scenarios, respectively. In contrast, the solar-only 

scenario requires a larger storage capacity to achieve the same penetration level. In this 

scenario, increasing diurnal storage from 0.16 to 0.5 average daily demand (Fig. 4.20b) enables 

100% penetration at significantly reduced seasonal storage, unlike Fig. 4.20a, where 100% 

penetration is not achieved even at the maximum seasonal storage size. This pattern is also 

demonstrated in Fig. 4.19, where efficient storage utilization is observed across a wide range 

of diurnal storage capacities. Regardless of the PV-wind mix, seasonal storage plays a crucial 

role in enabling higher renewable penetration by mitigating seasonal mismatches. 

Fig. 4.20. RE penetration using seasonal storage combined with diurnal storage of capacities: 

a) 0.16, b) 0.5 times the average daily demand 

Since seasonal storage is mainly used during periods of low generation, peak demand, or both, 

its utilization is expected to be limited to a few days each year. However, analysing the SU and 

SUI, the new indices introduced in this study (refer to section 4.1.3.2) offer valuable insights 

into how effectively the allocated storage is used, ensuring it is not underutilized.  

Fig. 4.21 presents how the storage is utilized in the 50-50 scenario, demonstrating various 

combinations of storage and curtailment that maximize its utilization. For instance, achieving 

100% renewable penetration requires 180 GWh of hydrogen storage, with storage utilization 

of 20 full days with minimal curtailment of approximately 7%. However, as storage capacity 

decreases, utilization improves. While storage utilization provides critical insights into how 

deployed storage is utilized, it does not capture the complete system dynamics, as it is limited 

to storage parameters without integrating broader system variables. To address this limitation, 

the SUI discussed in Section 4.1.3.2 and illustrated in Fig. 4.22 offers a more comprehensive 

measure by integrating all key design parameters, such as annual discharge, energy to pawer 

ratio, total storage capacity, and net renewable energy generation and consumption, into a 

single metric that captures system dynamics and performance within the context of broader 

energy infrastructure considerations. 

                                        a                                                                      b 
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Fig. 4.21. Seasonal storage utilization for 50-50 scenario, diurnal storage 0.16 average daily 

demand with 6 hours duration 

As shown in Fig. 4.22, SUI initially increases with storage and curtailment but declines beyond 

a certain threshold. The optimal combination lies within the plateau, where various storage and 

curtailment pairs contribute to an efficient balance. For example, in the 50-50 PV-wind 

scenario, a storage capacity of 67% GWh, combined with a curtailment level of 10%, falls 

within this plateau and enables a renewable penetration of approximately 95%. In the wind-

only scenario, a similar storage capacity with slightly higher curtailment achieves around 94% 

penetration. The results indicate that the optimal SUI varies slightly between scenarios: the 

wind-only scenario benefits more from curtailment, whereas the 50-50 PV-wind scenario 

favours increased storage, as the 50% solar share benefits more from energy retention.  

 

Fig. 4.22. System use index: a) wind only, b) 50-50 scenario 

SUI behaves differently in the solar-only scenario (Fig.4.23).  Unlike the wind-only and 50-50 

scenarios, the index in the solar-only case continues to increase with both storage and 

curtailment. The (near) optimal balance is reached at approximately 200 GWh of storage with 

15% curtailment. Regardless of the generation mix, increasing seasonal storage beyond 250 

GWh yields minimal additional benefits. Similarly, curtailment is advantageous at lower 

storage sizes, but its benefits decrease beyond a certain threshold, which varies depending on 

storage size. 

  a                                                                       b                                                                    
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Fig. 4.23. System-use index for solar-only scenario 

The impact of diurnal storage on seasonal storage requirements is then examined by changing 

the hours of diurnal storage to 1 hour. Short storage hours are well-suited for short-term, high-

intensity power delivery with short but high renewable generation peaks. With a 1-hour 

duration, penetration slightly improves but demands more seasonal storage and balancing 

capacity. The near-optimal system parameters identified using the SUI and the maximum 

penetration achieved are presented in Table 8. The abbreviations for penetration (Pen), 

Curtailment (Cur), and Seasonal Storage (S.S.) are used only in this table to include them 

efficiently.   

Table 8. Near-optimum system parameters for the three scenarios 

 

Scenario 

Diurnal storage 1hr duration Diurnal storage 6 hr duration 

Pen 

(%) 

Cur 

(%) 

S.S (av. daily 

demand) 

Max. Pen 

(%) 

Pen 

(%) 

Cur 

(%) 

S.S. (av. 

daily 

demand 

Max. 

Pen 

Solar only 83 13.6 4.9 99 80 14.5 4.7 99 

50-50 93 11.3 2.3 100 92.5 13 2.2 100 

Wind only 92.2 17 2.1 100 91 18 1.9 100 

In the solar-only scenario, diurnal storage of 0.16 average daily demand with 1-hour duration 

reaches 63% penetration with significant curtailment. This configuration requires a slightly 

larger seasonal storage capacity of approximately 10 average daily demand to raise the 

penetration to 98%.  In contrast, for the same diurnal storage, the 50-50 PV-wind scenario 

achieves 80% penetration with negligible curtailment, requiring considerably lower seasonal 

storage (5 average daily demand) to achieve a 100% RE penetration. A moderate increase in 

diurnal storage to 0.5 average daily demand with a 6-hour duration requires lower seasonal 

storage to reach near-optimal level. A trade-off relationship exists between increasing the 

diurnal storage and the seasonal storage requirement.  

4.1.4. Dispatchable balancing requirements  

In the preceding discussions, we demonstrated that all levels of renewables can be matched 

with PV–wind mix at reasonable diurnal and seasonal storage and curtailment levels. 
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Integrating such a large scale of renewables necessitates a form of conventional balancing 

capacity to address shortfalls in both renewables and storage to ensure a reliable supply of 

demand.  Quantifying the required magnitude of this capacity mandates a comprehensive study 

of year-round hourly generation and demand profiles. Such analysis is crucial to determine the 

need for a conventional generator capable of balancing even in worst-case scenarios such as 

periods of high demand and low renewable output.  

Fig. 4.24 illustrates the interplay between curtailment and balancing capacity requirements for 

different diurnal storage sizes in wind-only, 50-50 PV-wind, and solar-only scenarios, 

respectively. The unit of storage used in the figure is a fraction of the average daily demand. 

With varying degrees, the balancing requirement is observed to decrease as curtailment 

increases across all scenarios. Furthermore, the reduction in balancing requirement becomes 

more significant with an increase in storage capacities. Therefore, controlled curtailment has a 

significant advantage for system performance improvement by increasing penetration and 

decreasing conventional back-up requirements. 

 

Fig. 4.24. The interaction between balancing capacity and curtailment: a) Wind-only 

scenario, b) 50-50 wind-solar scenario, (c) Solar-only scenario  

  a                                                                       b                                                                    

c 
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Comparing the three scenarios, the 50-50 PV–wind scenario performs better in reducing 

balancing requirements by leveraging the advantage of resource complementarity. However, 

at very low curtailment levels, the wind-only scenario requires less balancing capacity 

compared to the other two scenarios. The reduction in balancing requirements occurs more 

rapidly in the 50-50 PV-wind scenario, while the solar-only scenario exhibits the highest 

balancing demand. This is due to the diurnal cycle of solar generation and the lack of storage 

dispatch optimization.   

As illustrated in the Fig. 24, the balancing requirement exhibits a high magnitude, representing 

the maximum theoretical capacity needed. This is attributed to the fact that the model did not 

adhere to any storage dispatch strategy. The employed storage model in this study does not 

follow a structured dispatch strategy; rather, instead it is based on a use-as-available approach, 

which results in higher balancing needs when facing challenging weather conditions. This is 

particularly evident when consecutive cloudy days collide with a lack of wind. However, a 

flexible storage dispatch strategy is expected to reduce the need for higher balancing capacity 

substantially. 

Fig. 4.25 shows the contribution of all system input variables, including balancing (back-up) 

generators and curtailed energy, over the first week of January (50-50 PV–wind scenario, with 

a 1.1 RE-to-load ratio and storage capacity equal to 0.41 times the average daily demand). 

 

 
Fig. 4.25. Contribution of all deployed technologies in meeting the demand 

Balancing generators account for a significant portion of the system's capacity yet contribute 

only a small fraction to the demand, as illustrated in Fig. 4.25. Consequently, their capacity 

factors are low, leading to higher costs than the system’s average cost, as these generators must 

recover their expenses with limited generation. Therefore, generators in this role should have 

lower capital costs, regardless of operating expenses, to enhance their economic viability for 

such tasks. Depending on the amount of penetration and system mix, overcoming such 

challenges are possible by coupling its dispatch with flexible storage operation, which could 

further reduce balancing capacity need and increase its capacity factor while also maintaining 
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reliable power output, even at critical time of scarcity, via implementation of forecasting and 

postponing stored energy use for such critical time.  

Fig. 4.26 illustrates the balancing capacity required under varying storage and curtailment 

levels for the 50-50 PV–wind scenario, where seasonal storage is deployed alongside diurnal 

storage. Let’s examine the different conditions by applying seasonal storage of a maximum of 

10 average daily demands. At all storage levels, curtailment lowers balancing capacity. For 

example, with seasonal storage equal to 5 average daily demand and RE-to-load ratio of 1, a 

balancing capacity of 79 % is required with 2.1% curtailment. The highest balancing need 

occurred on May 21 at 8 PM, when demand was at its peak, solar was absent, and wind was 

minimal. Raising the RE-to-load ratio to 1.2 reduces balancing capacity to 74%, shifting the 

peak to the morning of December 6, but at the expense of increased curtailment. Increasing the 

generation to 1.4 RE-to-load ratio, balancing capacity drops to 28% (December 6, 7 AM), 

achieving 99.7% penetration. 

At a RE-to-load ratio of 1.2, 100% penetration is achieved, without balancing capacity when 

seasonal storage of about 8 average daily demands is deployed.  At this generation and storage 

size, no balancing is required for mixes of 0.3 to 0.8 PV ratio. However, outside this range, 

significant balancing capacity is required, especially in wind-only and solar-only scenarios, 

even with generation and storage are at their maximum values of 1.4 and 10, respectively.  

In the wind-only scenario, when renewable generation is set to 1.2 times the load and storage 

capacity is equivalent to 8 average daily demand, the system requires approximately 77.5% 

balancing capacity at 10% curtailment, achieving 99.1% penetration. Under the same 

renewable generation and storage conditions, the solar-only scenario requires around 85% 

balancing capacity. 

 

Fig. 4.26. Impact of storage and curtailment combinations on reducing balancing 

requirements  
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The unit of storage in the figures is a fraction of the average daily demand. In all evaluated 

scenarios, except the wind-only case with zero solar share, night-time hours present the biggest 

challenge for meeting demand, even with seasonal storage. In the wind-only scenario, some 

hours also see significant unmet demand due to the high variability of wind generation, causing 

mismatches with peak demand in some seasons.  

The matching capability of load and generation profiles and resource diversity greatly 

influences the reduction in balancing requirements. Despite limited control over VRE 

generation, power operators can reduce balancing capacity needs by partially managing VRE 

output in response to demand fluctuations. Effective storage dispatch and management further 

enhance this capability, as a more controlled and gradual discharge strategy – rather than 

rapidly depleting storage – helps distribute stored energy evenly over time, reducing reliance 

on balancing capacity during peak periods. This approach not only improves operational 

efficiency and renewable penetration but also yields economic benefits by minimizing the need 

for large-scale balancing capacity, which is often required only on a few critical days each year. 

Although more detailed and flexible storage dispatch strategies and an expanded set of 

simulations/optimisation are required to accurately determine balancing capacity requirements, 

the methodological approach developed in this study provides valuable insights into how 

balancing needs depend on storage, curtailment, and resource mix. These findings underscore 

the importance of careful future system design to avoid risks to society while optimizing system 

reliability and cost-effectiveness. 

The preceding analysis demonstrated that the synergy between PV and wind through 

complementarity is pivotal in achieving higher renewable penetration, reducing reliance on 

conventional backup resources, minimizing storage needs, and smoothing generation profiles 

to better match demand.  Consequently, the system becomes more efficient in utilizing 

renewable resources and optimizing their contribution to the overall energy mix. Therefore, 

designing an efficient grid with large-scale renewables requires optimizing the combination of 

all the above-discussed parameters.  

From an international outlook, the consistency of my findings with those from diverse studies, 

conducted using various approaches and across different geographical locations, suggests that 

similar underlying physical mechanisms govern the matching of supply and demand. This calls 

for developing a unified framework that can be applied across various contexts. For example, 

research on large-scale renewable energy integration in regions like Europe (Gils et al., 2017), 

North America (Denholm et al., 2022; Guerra et al., 2021)  and Israel (Solomon et al., 2019b) 

has revealed comparable challenges in balancing supply and demand, further supporting the 

need for a common strategy to optimize storage, curtailment, and resource mix. Specifically, 

Solomon et al. (2019b) showed that storage capacities below the average daily electricity 

demand, together with roughly 20% curtailment, can enable around 90% annual renewable 

penetration, beyond which seasonal storage becomes necessary. Their conclusions are derived 

using a linear-optimization-based LUT energy system transition framework applied to the 

Israeli grid. Although this modelling approach differs from the custom methodology developed 

in the present study, both analyses share important contextual features – most notably similar 

climatic conditions and the characteristics of an isolated grid system. These parallels make the 

insights from Solomon et al. particularly relevant for supporting and strengthening the 

objectives and findings of the current work.  In relation to this, the newly proposed system-use 

index offers more profound insights into the effectiveness of storage integration within the 
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broader energy infrastructure, enhancing the system's capacity to manage variability and 

optimize resource utilization. Therefore, these studies' findings are highly relevant, as they can 

be a foundation for a common theoretical framework to address shared challenges in energy 

transition studies. It is also important to note that despite the overall similarity in trends and 

mechanisms that govern the interaction of various parameters, there is also a location-

dependent difference that can affect system efficiency in a different way. Thus, expanded 

efforts that produce more of such data, using improved methodology and unified/standardized 

parameters, could lead to a unified framework while also clarifying the effect of locational 

dependent system differences.  

Furthermore, the approach applied in this thesis yielded relevant outcomes that align with other 

studies that follow different approaches, for example, the one for U.S. (Shaner et al., 2018), 

that utilized a reanalysis dataset at a renewable-to-load ratio of 1, reported penetration levels 

of 48% for solar-only and 78% for wind-only scenarios without storage, closely reflecting the 

outcomes observed in my analysis. A related study for Switzerland (Dujardin et al., 2017),  

which employed hydropower as a storage solution, found that PV-dominated mixes (with a PV 

ratio above 0.6) require greater storage capacity to balance the system, consistent with my 

findings. 

The Eritrean context offers distinct advantages due to its unique resource potential and resource 

complementarity. Considering the available resources, this study proposes a strategic 

expansion plan for various levels of renewable integration. The results indicate that wind and 

wind-dominated mixes with small diurnal storage are more effective at penetration levels 

below 60% ignoring the potential cost of high uncertainty, while solar-dominated mixes 

become more favourable at penetration levels above 60%. However, the current national action 

plan prioritizes the expansion of solar farms, aiming for a short-term renewable penetration of 

up to 23% and beyond. In this context, Eritrea needs decision-making that is tailored to its 

specific conditions, ensuring that renewable energy expansion aligns with its unique resources, 

challenges, and development priorities.    

Limitations  

This study explored the intricate relationships between key system design parameters using a 

novel methodological approach specifically designed for this purpose. The proposed empirical 

relationship effectively maps multiple pathways that enhance system performance across 

varying penetration, storage, and curtailment levels. However, using these various (multiple) 

options as boundaries, further optimization using advanced optimization tools could help in 

estimating the optimal range of various techno-economic parameters under different 

conditions. Furthermore, although the preliminary economic analysis conducted aligns well 

with the model's recommended best results, a more detailed economic analysis is recommended 

to mitigate any unfavourable scenarios and determine the most cost-effective system 

configuration that meets the techno-economic requirements. Additionally, some parameters, 

such as balancing (back-up) capacity, can be further optimized if an advanced and flexible 

storage dispatch strategy is followed.  

The idealized assumptions, such as the copper plate (no transmission constraints) and fully 

flexible balancing generators, were intentionally adopted to simplify the system boundaries 

and isolate the core technical interactions among key design parameters. While incorporating 

transmission constraints and generator flexibility limits would indeed enhance the robustness 
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and realism of the findings, such additions would also substantially increase model complexity 

and computational requirements. Furthermore, integrating demand-side measures could 

provide additional system flexibility and improve the overall efficiency of renewable 

integration; however, this aspect lies beyond the current study’s scope. With these limitations, 

the methodological approach introduced in this study demonstrated its ability to identify 

multiple options that significantly improve the performance of future renewable-dominated 

grids.   

4.2. Evaluating the potential of residential PV integration 

In this subsection, the contribution of residential PV to overall renewable integration is 

quantified by evaluating its share in meeting national electricity demand under varying feed-in 

limits. The analysis further explores how integrating battery storage can enhance the effective 

utilization of residential PV by mitigating excess generation and reducing curtailment. 

Particular attention is given to the interaction between storage capacity, injection limits, 

penetration levels, curtailment, and storage utilization, highlighting the role of residential PV 

as a complementary component within a large-scale renewable system. 

4.2.1. Effect of feed-in limit on annual PV generation  

Fig. 4.27 illustrates the annual PV generation and corresponding losses as the feed-in limit 

varies. The annual generated power increases with the feed-in limit, peaking when all generated 

energy is directly injected into the grid at a limit of 0.8 kW/kWp and above.  

 
Fig. 4.27. Annual average energy generation and energy loss for varying feed-in limit for 

1 kWp PV system 

Allowing a high feed-in limit increases penetration and decreases losses; however, it can lead 

to an excess of generation over consumption in the local network, resulting in reverse power 

flow with severe consequences for the distribution network. To fix this issue, a feed-in limit 

should be imposed on the injected PV to ensure compliance with the requirements of the local 

network. By allowing a feed-in limit of above 0.8 kW/kWp, the system virtually experiences 

no energy loss. However, if we impose a feed-in limit of 0.1 kW/kWp, approximately 1400 
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kWh/kWp (77%) of the generated energy is lost. However, this represents the maximum loss 

that could occur if all residential PV systems were installed at optimal tilt and azimuth angles. 

In practice, this is unlikely, as the increasing adoption of residential PV will lead to panels 

being installed at various orientations different from the optimal angle, which could impact 

total generation and consequently the losses. 

As shown in the figure, a feed-in limit above 0.7 kW/kWp demonstrates a negligible impact. 

This is because the AC output is approximately 86% even at peak generation due to assumed 

losses. Moreover, the solar irradiation profile rarely reaches its peak, diminishing the benefits 

of larger inverter capacity. Conversely, implementing a lower feed-in limit inevitably increases 

the curtailment of useful energy, underscoring the need for storage solutions to capture and 

utilize the surplus energy effectively. This highlights the trade-off between maximizing usage 

and adhering to grid requirements across different feed-in limits.  

4.2.2. PV-battery deployment with feed-in limit constraint 

Fig. 4.28 shows the penetration as a percentage of the total consumption. The penetration is 

computed for specific PV sizes and the corresponding feed-in limits, as a function of battery 

size. The base case scenario (PV capacity of 100MWp) shows a constant penetration rate 

regardless of the storage size, as shown in Fig. 4.28. This ensures seamless integration of all 

generated energy into the grid without storage or curtailment. As shown in the figure, at lower 

PV capacities, the increase in penetration with storage is marginal because all generated 

electricity is directly injected into the local network, making the battery ineffective. However, 

for larger PV capacities, penetration is seen to increase with increase in storage size. This is 

expected, as more PV is deployed, the feed-in limit is decreased to keep the LV grid safe, 

resulting in a significant amount of generated energy being stored for night injection that leads 

to higher penetration.  

 

Fig. 4.28. PV penetration, as a function of battery capacity for different PV/battery feed-in 

limits 
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The increase in penetration reaches a threshold where the effect of battery storage becomes 

insignificant, indicating a limit beyond which storage has a diminishing effect. When PV 

capacity exceeds 300 MWp, adding battery storage significantly increases penetration. As the 

feed-in limit decreases with increase in PV capacity, storage becomes necessary to avoid 

wasting excess energy. For example, at 550 MWp, increasing battery capacity from 0 to 4.5 

kWh/kWp boosts penetration by 20%. Thus, for larger PV capacities with small feed-in limits, 

larger batteries could further significantly improve penetration.  However, for PV capacities 

below 232 MWp, increasing battery size from 0 to 4.5 kWh/kWp marginally raises penetration 

by less than 3.4%.  

The analysis shows that residential PV can supply around 32% of annual electricity demand, a 

remarkable contribution achieved without competing for scarce arable land, unlike ground-

mounted utility-scale PV farms. By utilizing rooftops, residential PV not only preserves 

valuable land for agriculture but also lays the groundwork for broader renewable energy 

adoption. In fact, integrating residential PV supports and enables the expansion of large-scale 

PV by reducing land-use conflicts, diversifying generation sites, and improving public 

acceptance. Moreover, when combined with approximately 120 MWp of wind capacity, the 

penetration level increases to about 46% of annual demand. This synergy demonstrates how 

distributed rooftop PV, alongside wind power, can accelerate and facilitate the integration of 

large-scale solar PV into the grid while ensuring sustainable land use. 

Fig. 4.29 illustrates the characteristics of curtailment as a function of battery storage; 

curtailment decreases as battery capacity increases. However, with rising PV capacity, 

curtailment also increases due to the imposed feed-in limits which results in excess energy 

being rejected from the grid.  At the maximum PV capacity of 550 MWp, curtailment reaches 

up to 43%, dropping to 0% when a 4 kWh/kWp battery storage is installed (with wind 120 

MWp is added in the HV network as enabler). This demonstrates the significant advantage of 

deploying storage in large-scale PV systems. Without storage, curtailment remains below 12% 

for PV capacities up to 232 MWp, such a curtailment is acceptable if contributes to increased 

use of renewable. Incorporating 2 kWh/kWp (464 MWh) battery storage at this level reduces 

curtailment from 12% to 0 and increases penetration from 24.6% to 27.8%. Technically, to 

achieve the total penetration 27.8% or to rise the penetration by 3.2% compared to the reference 

penetration at 232MWp without storage, there are two options:  

1) increase PV installed capacity to 277 MWp (45MWp+232MWp) along with marginal 

battery storage of 1 kWh/kWp (277 MWh), albeit at the cost of increased curtailment of 

around 10% or      

2) incorporate 2 kWh/kWp (464 MWh) of battery storage for the 232MWp, to eliminate 

curtailment. Other options could also be possible.   
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Fig. 4.29. Total curtailment as a function of battery capacity for different 

PV/feed-in limits 

In quantitative terms, option one requires an additional 45 MWp, along with 277 MWh of 

battery storage, compared to option two's requirement for 187 MWh (187 MWh + 277 MWh) 

of battery storage. Based on current market trends (Table 5), adding 45 MWp of PV costs 

$39.42 million, making it more cost-effective than adding 187 MWh of battery storage, which 

costs $60.2 million. The increased cost of batteries in relation to the PV system is associated 

with a shorter battery life span. It is noted that we are comparing incremental costs, not total 

system costs.  

The first option, though accompanied by some curtailment, is technically and economically 

viable. Therefore, for specific capacities of PV installations, curtailment may be preferable 

over storage from both economic and technical standpoints. Curtailment has recently emerged 

as a cost-effective tool for enhancing renewable utilization, especially when combined with 

optimal storage (Perez et al., 2019; Solomon et al., 2016). Additionally, demand-side 

management, electric vehicles, and space heating practices can help utilize a portion of the 

curtailed energy to enhance cost-effectiveness.  

Although this thesis is designed to offer a technical perspective, the results highlight the need 

for a thorough economic assessment to avoid unfavourable scenarios. It has been concluded 

that careful technical and economic assessments are necessary, as surplus generation 

(curtailment) may outweigh storage benefits. The optimal design should balance storage and 

curtailment.  

Based on the above discussion, the next section will look for the best system configuration that 

maximizes the overall performance. 

4.2.3. Enhancing system performance through strategic parameter tuning 

In this setup, an ideal feed-in limit for each PV capacity and its corresponding battery size is 

identified using simulation methods to maximize penetration and minimize losses. At this ideal 
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limit, almost all energy rejected from the grid due to feed-in constraints is stored in the battery 

for night-time use. Consequently, battery storage below 2 kWh/kWp is found sufficient enough 

to maximize the overall system performance when fitted with this ideal feed-in limit. This 

configuration supports up to 550 MWp of PV capacity without power curtailment during night 

time battery injection. In this section, the hosting capacity is slightly increased to align with 

the anticipated near-future grid expansion and reinforcement measures in Eritrea, and to 

accommodate the increased integration of residential and utility-scale PV plants over time. All 

simulations are based on the energy balance of aggregated solar and wind with aggregated 

demand 

Fig. 4.30 shows penetration as a function of feed-in limits. Based on the simulation results 

shown in the figure, Table 9 presents the ideal combination of parameters to achieve the 

balance. Technically, if the network has a hosting capacity of 150 MW, installing a PV capacity 

below 232 MWp with marginal battery storage of less than 0.58 kWh/kWp at a feed-in limit of 

0.65 kW/kWp is safe for the local network. For constant PV capacity, increasing the hosting 

capacity of the network may eliminate the need for storage.  

  

Fig. 4.30. Penetration as function of Feed-in limit for different pairs of PV capacity and 

battery sizes 

Table 9. Ideal value of system variables that maximize the performance of the setup 

 

System variables 

PV capacity (MWp)  

100 163 232 322 436 550 

Hosting capacity (MW) 87 130 150 193 231 237 

Feed-in limit (kW/kWp) 0.87 0.73 0.65 0.6 0.53 0.43 

Battery (kWh/kWp) 0 0.28 0.58 1 1.5 2 

Penetration (%) 20 24 28 33 40 46 

Curtailment (%) 0 0 0 0 0 0.11 

Additionally, Fig. 4.30 shows the impact of the feed-in limit on penetration for various PV-

battery storage combinations. The figure illustrates that with larger PV capacity, there is an 
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initial rise in penetration as the feed-in limit increases; however, this upward trend gradually 

decelerates and eventually reverses with further increments in the feed-in limit. For PV 

capacities of above 323MWp, the penetration is shown to decrease after reaching their peak 

values at around 0.48-0.6 kW/kWp. The feed-in limit, which corresponds to the point of 

maximum penetration, is the threshold that avoids curtailment. The maximum penetration, 

equating approximately 46%, is achieved at a feed-in limit of 0.43 kW/kWp, with negligible 

curtailment. Beyond this threshold, directly injected energy increases, while energy to storage 

and penetration decreases. The decline in penetration is attributed to increased wind curtailment 

when more PV is directly injected into the local grid at higher feed-in limits during the day. 

This creates a scenario with excess generation during the day, where the energy intended for 

storage at low feed-in limits is instead directly injected into the grid, ultimately resulting in 

wind curtailment. 

As illustrated in the Fig. 4.30, for PV capacities below 323 MWp, penetration rises until 

reaching a particular feed-in limit, which varies depending on PV capacity. Beyond this 

threshold, increasing the feed-in limit does not increase the penetration; instead, it remains 

constant. The threshold feed-in limit is the point at which all rejected energy is stored in the 

storage system without any curtailment. Further increase in the feed-in limit results in more 

energy being directly injected into the grid, leaving less excess energy to partially fill the 

storage. At higher feed-in limits, even if all the generated PV energy is directly injected into 

the grid, it never surpasses consumption, resulting in no curtailment and constant penetration. 

The key observation highlights the vital link between battery storage and PV capacity, stressing 

the need for proportional deployment to maximize renewable energy utilization at an ideal 

feed-in limit. 

In the context of renewable energy integration, the paramount concern lies in efficiently 

optimizing resources to maximize utilization and minimize losses. Figs. 4.28 and 4.29 

underscore this challenge, revealing that achieving a penetration of 37% demands a curtailment 

of roughly 18% of the useful generated energy, necessitating a battery storage capacity of 

around 2 kWh/kWp. The excessive curtailment is due to the predetermined feed-in limit that 

constrains the system to reach an optimum point. In contrast, Figs. 4.30 and 4.31 present a 

notable improvement, showcasing a significant reduction in curtailment to negligible levels. 

This is because the ideal feed-in limit for a specific PV/battery capacity is identified by 

simulating feed-in limit over a wide range of possible values. In this scenario, where PV 

capacity was below 232 MWp, significant curtailment is observed at lower feed-in limits, but 

gradually diminishes as the feed-in limit increases and eventually disappears. This curtailment 

is entirely linked to PV generation and is a result of the imposed feed-in limit. However, for 

larger PV capacities exceeding 323 MWp, the system is shown to experience a loss from both 

PV and wind. At specific feed-in limits, both PV and wind curtailment reached their minimum 

levels, and during the same interval, the share of total renewable energy consumed is also at its 

maximum.  
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Fig. 4.31. Curtailment as a function of feed-in limit for different PV capacities and battery 

sizes 

The system parameter curtailment as a function of feed-in limit and battery storage is shown in 

Fig. 4.32. This figure illustrates how total curtailment varies with both storage and feed-in 

limits. Curtailment is considerable at both low and high feed-in limits, as indicated by the 

double peak and grooved section of the 3D curve. The two peaks are related to PV and wind 

curtailment, respectively. However, at specific combinations of storage and feed-in limits, the 

energy loss suddenly decreased to its minimum point. Evidently, this minimum curtailment 

point aligns with the point of maximum penetration, as illustrated in Fig. 4.30.  

 

Fig. 4.32.  Curtailment as a function of battery storage and feed-in limit 
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The best configuration of the system should maximize renewable utilization by minimizing 

losses. This involves ensuring that all system variables, such as PV capacity, storage capacity, 

wind capacity, and feed-in limit, fall within a reasonable range. Therefore, feed-in limits 

ranging from 0.35 to 0.55 kW/kWp, coupled with 2 kWh/kWp of battery storage, emerge as 

the most suitable combination for minimizing curtailment and maximizing penetration. The 

red asterisk in Fig. 4.32 marks the point of maximum penetration and minimum curtailment.  

To place my results in a broader context, I compared them with international experiences. 

Studies from Belgium (Flanders) (Meuris et al., 2019).  and Germany (Zeh and Witzmann, 

2014) show that feed-in limits –70% and 60% of installed capacity, respectively – are used to 

protect low-voltage networks. These examples highlight how controlled feed-in can ease 

distribution-level constraints. Unlike these cases from well-developed grids, my work focuses 

on renewable integration in a developing-country setting and proposes grid management and 

expansion options suited to such conditions. This comparison helps situate my findings within 

the wider landscape of renewable integration challenges and solutions 

To wrap up, the contribution of residential PV to the energy mix is increasing with the growing 

adoption of roof-mounted residential PV systems, driven by the continuous decline in the cost 

of home battery storage and PV components. Contributing to around 32% of the penetration, 

residential PV can significantly reduce households’ carbon footprint, as households that were 

once energy consumers have recently become energy producers. The contribution of residential 

is expected to rise considerably with the continuous evolution of the conventional grid, 

allowing for the consumption of residential PV at the local network, unlike conventional ones. 

However, it is worth noting that with increasing distributed generation (residential PV), a 

proper quality is compromised if proper measures are not taken.   

4.2.4. Power quality issues in grid-connected PV systems 

To support and validate the theoretical framework, an experimental analysis was conducted at 

one of the PV installations on the Szent István Campus, whose size and capacity closely align 

with the system specifications recommended in this dissertation. The various power quality 

indicators were measured at different time scales, from the minimum 200 milliseconds (ms) to 

2-hour (h) intervals. In this study, special emphasis is placed on selected parameters – active 

power output, current total harmonic distortion (ThdI), voltage total harmonic distortion 

(ThdV), and voltage deviation – measured at 3-second intervals to examine the impact of the 

temporal variability of weather conditions on PV power output and its quality.  

Fig. 4.33 presents the active power output normalized to its peak capacity of 3.3 kW. The figure 

shows a gradual increase in power output from morning until noon, followed by a decline in 

the afternoon, and remains zero in the night hours. The maximum PV output recorded was 

approximately 0.72 kW/kWp, corresponding to the normalized peak capacity (P/Prated). This 

shows that there are a few hours in the year when power generation is above 0.72 kW/kWp and 

this offers insignificant benefit to the system in increasing the aggregate annual generation. 

This aligns closely with the findings in subsection 4.2.1, which indicate that applying a feed-

in limit above 0.7 kW/kWp yields negligible gains in annual energy generation. 
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Fig. 3.33. The active PV power output as normalized to its peak capacity 3.3 kWp 

The current waveform is more sensitive to irradiation than the voltage waveform. Fig. 3.34 

shows the current (blue line) and voltage waveform at sunny and cloudy hours. Under sunny 

conditions, the phase difference is essentially zero; however, as shown in the figure, during 

cloudy conditions, a small phase deviation can appear due to rapid irradiance fluctuations and 

inverter control response (note the reference offset between V and I).  

 
 a) sunny conditions b) cloudy conditions 

Fig. 3.34. Voltage and current waveform distortion at different operating conditions 

To investigate the total harmonic characteristics of the PV inverter at various operating 

conditions of power generation, the generated power relative to its rated capacity (P/Prated) is 

categorized into three regions: lightly loaded inverter (0-0.3), medium loaded inverter 

(0.31- 0.5), and heavily loaded inverter (0.51-0.74). The analysis shows that the current total 

harmonic distortion (ThdI) is high at low power generation conditions but decays with 

increasing power generation. At a low generation level, the MPPT and power factor control of 

the system are deactivated, but the control system is activated at higher generation conditions. 

At such higher operating conditions, the measurements indicate that current THD (ThdI) 

remains mostly within the optimum standard range of < 5%, which will be discussed further in 

subsequent paragraphs. The current harmonic distortion exhibits a strong correlation with 

inverter loading; however, the data provides limited evidence on how voltage harmonic 

distortion is affected by inverter loading. This is primarily because voltage total harmonic 

distortion is influenced not only by the inverter switching frequency but also by external factors 

such as grid impedance and the presence of non-linear loads. Consequently, the two major 

power quality indicators (ThdI and ThdV) show limited mutual correlation, as their behaviour 

depends on multiple underlying factors. Nevertheless, quantifying their influence on voltage 
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deviation (V_Dev) is crucial for understanding the origin of voltage deviation, which has 

significant implications for system balance and grid stability. The analysis reveals that while 

ThdI shows no meaningful correlation with V_Dev, there is a clear positive correlation exists 

between ThdV and V_Dev. Fig. 3.35 illustrates the variation of ThdV and V_Dev under 

different inverter operating conditions, along with their corresponding regression trends. 

 

Fig. 3.35. The correlation and regression trend of ThdV and V_Dev under various loading 

conditions 

The measurements show that the correlation between ThdV and V_Dev varies significantly 

with inverter loading conditions. The Pearson correlation coefficient between the two power 

quality indicators is 0.553 for the lightly loaded inverter, 0.495 for medium medium-loaded 

inverter, and 0.582 for the heavily loaded inverter.  

As shown in the scatter plot and fitted polynomial curves, the relationship between ThdV and 

V_Dev is nonlinear. A fourth-order polynomial regression curve was identified as the most 

suitable model to capture the relationship between ThdV and V_Dev across the observed load 

conditions. These regression trends predict about 41% of the voltage deviation with some 

variation based on inverter loading conditions.  This suggested that voltage deviation is driven 

more by grid-side conditions and loads than by inverter harmonics. Analysing the regression 

trend between ThdV and V_Dev under different loading conditions, however, helps reveal how 

inverter stress and grid interaction affect power quality.  

Fig. 4.36 illustrates the relationship between current total harmonic distortion (ThdI) and active 

power. The figure shows a strong correlation between the two parameters. This indicates that 

inverter loading has a greater impact on ThdI than on the other power quality indicators, such 

as ThdV and V_Dev. Under heavily loaded inverters, ThdI remains relatively low, with only a 

few points exceeding the permissible limit of 5%. However, as the inverter load decreases, 

ThdI gradually exceeds this limit and rises further, reaching values of around 10%. The change 

in ThdI becomes more pronounced under lightly loaded conditions. This suggests that inverter 
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loading plays a decisive role in the injection of current harmonics into the grid, with a strong 

caution that lightly loaded (underutilized) inverters contribute significant harmonic distortion. 

A cubic polynomial function fits the curve well, achieving an R² value of 0.926. This indicates 

that inverter loading exhibits a structurally measurable relationship with ThdI. At higher 

loading levels, inverter behaviour becomes more stable, likely because MPPT and control 

mechanisms operate more actively and consistently when PV generation is higher. These 

results highlight the importance of designing inverters that maintain robust control and 

predictable power-quality performance across a wide range of loading conditions. 

Accordingly, the total current harmonic distortion (𝑦) as a function of active power (𝑥) for the 

three inverter loading categories (conditions) can be reliably estimated using a single cubic 

polynomial model: 

𝑦 = 1.3546 + (−0.2973) 𝑥 + (0.0239) 𝑥2 +(-0.00063) 𝑥3  

 

Fig. 4. 36. Active power versus total harmonic distortion under different loading conditions 

The greater variation in ThdI observed in lightly loaded inverters implies that they are more 

sensitive to harmonic distortion when underutilized. Lightly and medium-loaded inverters 

exhibit higher variability per unit change in active power, whereas heavily loaded inverters 

show less variability. By associating these distinct regression behaviours with specific sites, 

utilities can tailor inverter deployment strategies and better anticipate grid stress based on 

localized loading profiles. 

This suggests that inverter behaviour becomes more stable at higher loading levels, likely due 

to more effective control operation under these conditions. Consequently, oversizing an 

inverter for a given design can negatively impact power quality – not only cost – because an 

oversized inverter tends to operate predominantly under medium or light loading, where 

harmonic distortion is more pronounced. These findings highlight the need for inverter designs 
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that ensure stronger control capability and more predictable interactions among power-quality 

parameters across varying load conditions. 

4.3. Advancing large-scale PV integration with accurate forecasting 

This section presents the benefits of accurate PV generation forecasting and AI-based 

optimization in supporting the integration of large-scale PV systems. It underscores the 

importance of different forecasting horizons and addresses the persistent challenge of data 

scarcity in PV prediction. In addition, it discusses how integrating forecasting results across 

multiple horizons can significantly enhance operational performance and improve overall 

system reliability. 

Designing and modelling a renewable-based power system is inherently complex due to the 

dynamic and uncertain nature of weather patterns. System design typically relies on historical 

weather data, yet past conditions may differ significantly from future ones. As a result, a single, 

static system design cannot guarantee optimal performance under all future scenarios. To 

address these challenges, I propose that design limitations be mitigated through advanced 

operational forecasting techniques. By combining robust system design with accurate, real-

time forecasting, power operators can dynamically adjust system operation, reduce risks 

associated with variability, and enhance the reliability and efficiency of renewable energy 

integration. This approach ensures that the energy transition is not only technically feasible but 

also resilient and adaptive to the uncertainties of future climate and demand conditions. 

Advanced forecasting can be effectively integrated into real-time operation, providing the 

flexibility to optimize system performance by strategically dispatching storage and allocating 

balancing generators. This ensures that the system operates efficiently and reliably under all 

weather conditions.  

More importantly, an advanced optimization tool based on a deep reinforcement learning 

algorithm is applied at the end of the section to optimize the system, using the same input 

variables presented in Section 4.1. This deep RL-based approach, a well-established and widely 

used method, helps validate the accuracy and reliability of the new methodology introduced in 

this dissertation. These advanced forecasting and optimization tools are key enablers of large-

scale renewable integration, aligning closely with my core objective of applying machine 

learning-based forecasting to improve real-time PV system management. 

4.3.1. PV generation forecasting without data limitation 

Fig. 4.37 compares the accuracy of three models (LSTM, GRU, and LSTM-GRU) in predicting 

uni-step and multi-step PV generation. This represents scenario 1, where sufficient satellite 

data is available for training and testing the models.  In this experiment, 17 years of satellite-

based meteorological data are used for accurate PV prediction. The results are encouraging, 

demonstrating the potential of PV power generation forecasting in regions with adequate data 

for model training and testing. However, real-world measurements from operational plants are 

often limited to only a few years and are typically difficult to access publicly. Section 4.3.2 

addresses this challenge by proposing a data-driven empirical relationship between satellite-

derived and measured data. 
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Fig. 4.37. Forecasting result on overall data sets: a) 1-step prediction, b) 6-step prediction 

The forecasting experiment is conducted using several advanced, traditional, and hybrid 

models to identify the best architecture that effectively captures the inherent variability of PV 

generation. Moreover, the impact of the time distribution of solar generation has been analysed 

by dividing the dataset into corresponding seasons to better understand the effect of seasonal 

weather variability on PV forecasting. 

 Fig. 4.37a shows that the 1-step prediction accuracy of the hybrid model consistently 

outperforms that of the other models (LSTM and GRU), as also demonstrated in Table 10. 1-

step denotes one hour ahead PV generation forecasting. The results show the proposed hybrid 

model (LSTM-GRU) predicts PV generation with high accuracy, demonstrating its capability 

in capturing the temporal pattern of weather variability. Such short-term forecasting is vital for 

enhancing PV performance by allowing the power operator to strategically dispatch units and 

storage facilities flexibly. An intra-hour short-term forecast can be applied to predict short-

term power ramps and voltage flicker, enabling power operators to better control the real-time 

marketing and dispatching.  

Table 10. Error metrics for different models separated into seasons (1- step forecasting) 

Season Model RMSE (kW) MBE (kW) MAE (kW) R2 

Fall 

LSTM 0.0716 0.0022 0.0439 0.8999 

GRU  0.0735 0.0063 0.0467 0.8946 

LSTM-GRU 0.0813 0.0026 0.0625 0.9039 

Winter 
LSTM 0.0558 0.0035 0.0290 0.9448 

GRU 0.0600 0.0035 0.0329 0.9361 

       (a) 

      b 
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LSTM-GRU 0.0548 0.0134 0.0280 0.9468 

Spring 

LSTM 0.0625 0.0021 0.0358 0.9194 

GRU  0.0650 0.0093 0.0404 0.8946 

LSTM-GRU 0.0617 0.0083 0.0332 0.9216 

Summer 

LSTM 0.1051 0.0006 0.0774 0.6668 

GRU  0.1074 0.0019 0.0776 0.6525 

LSTM-GRU 0.0702 0.0033 0.0391 0.6685 

Overall 

LSTM 0.0745 0.0002 0.0450 0.8729 

GRU  0.0748 0.0021 0.0455 0.8532 

LSTM-GRU 0.0737 0.0083 0.0420 0.9004 

In the subsequent experiment, with multi-step (6 and 12-step) prediction, the results follow a 

similar pattern as one step but with only one distinct characteristic of diverging prediction error, 

as shown in Fig. 4.37b.  This is expected and reasonable; as the number of prediction steps 

increases, so does error propagation. In multi-step prediction, accuracy decreases due to error 

propagation as the prediction horizon grows. The inherent variability in PV power generation 

further amplifies the challenge.  The proposed hybrid model (LSTM–GRU) still exceeds the 

performance of individual models, providing a closer alignment between actual and predicted 

values. Forecasting several hours ahead of PV production allows grid operators to schedule 

dispatchable generators and storage more effectively for optimal dispatch and grid 

management. This approach reduces dependence on costly balancing generators and supports 

smoother, larger integration of PV.  

Fig. 3.38 presents the MAE for the three models, LSTM, GRU, and LSTM-GRU, over the 

entire year (overall) dataset. The results show that the MAE increases with longer forecasting 

horizons, which can be attributed to the accumulation of prediction errors as the time step 

increases. 

 

Fig. 4.38. Trendlines of MAE for 1-, 6-, and 12-step forecasts across the combined annual 

dataset for each model 

4.3.2. Addressing data scarcity challenges in PV forecasting 

The preceding discussions highlighted that accurate PV generation forecasting is vital for 

enabling large-scale PV to the power grid by offering flexibility to power operators to dispatch, 

schedule, and optimize storage, balancing generators and other grid enablers effectively. This 
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section presents the Z-score transformation-based results and demonstrates a significant 

improvement compared to those obtained without transformation. 

Fig. 4.39 shows the result of one-step PV prediction. In this experiment, all three models show 

similar performance regardless of season, as indicated by their RMSE values.  However, LSTM 

has very nearly outperformed the other two models in RMSE, MBE and MAE while GRU 

performed slightly well in R². Regarding prediction accuracy, the newly introduced approach 

achieved good results in forecasting actual PV generation, which are almost comparable to the 

corresponding values obtained when pure satellite-derived data was used as the training and 

testing dataset, as shown in Table 9.  

 

Fig. 4.39. Performance comparison of the three models' prediction of actual PV generation 

across four seasons in 1-step prediction 

As shown in Fig. 4.39, the models satisfactorily forecast the actual PV generation with 

comparable performance. The proposed approach demonstrates superior performance, with 

accurate predictions providing power operators with 1-hour to 12-hour ahead PV generation 

forecasts. This enables effective scheduling and dispatching of generation units and storage 

facilities, enhancing grid efficiency and stability. Further improvement is needed in multistep 

predictions as errors become significant, particularly for 12-hour-ahead forecasts. Several 

hours-ahead PV power predictions is crucial in addressing intermittency-related integration 

challenges, offering operators more time to prepare for fluctuations and optimize grid 

operations. Notably, the analysis focuses exclusively on daytime hours, as night data is omitted 

by assuming zero PV generation. While further model enhancement and the incorporation of 

improved statistical tools for approximating satellite-derived data with measured data are 

necessary, the results of this study lay a strong foundation for predicting actual generation from 

satellite-derived data. The proposed methodology offers several key advantages. First, machine 

learning prediction models require large datasets for effective training and validation, often 

unavailable from measured data alone. Satellite and reanalysis datasets, with their extensive 

and long-term data coverage, bridge this gap by providing extensive historical data for trend 

analysis and model training, improving the accuracy and robustness of prediction models. 



4. Results 

 

106 

 

Furthermore, leveraging these datasets ensures the broader applicability of the methodology 

across regions lacking robust measurement infrastructure, making it a versatile solution for 

global energy transition efforts. 

Table 11 presents a performance summary of the various investigated machine learning 

models, both with () and without () transformation. These correspond to scenarios 3 and 2: 

in scenario 2, satellite data are used without transformation for actual PV prediction, while in 

scenario 3, transformed data are applied for actual PV prediction. 

The proposed approach (scenario 3) is evaluated against advanced deep learning models such 

as CNN-LSTM, TCN-GRU, and Informer. The performance of these models was assessed for 

different forecasting time steps, revealing higher performance in multi-step forecasting. 

However, their performance was similar to that of the LSTM-GRU hybrid model in one-step 

prediction. This indicates that the architecture of these advanced models enabled them to 

capture long-term sequences and predict better for medium-duration tasks. For instance, in six-

step forecasting, Informer outperforms the others, followed by TCN-LSTM in RMSE and R2, 

while LSTM-GRU was shown to have good performance in terms of MBE, preceded by CNN-

LSTM.  

Table 11. Performance comparison of conventional and advanced deep learning (with and 

without data transformation-scenario 

Model Transformation RMSE (kW) MBE (kW) MAE (kW) R2 

LSTM  0.2472 0.1900 0.2073 -0.3924 

LSTM  0.1731 0.0029 0.1409 0.5359 

GRU  0.2410 0.1889 0.2032 -0.3236 

GRU  0.1675 0.0015 0.1343 0.5821 

LSTM-GRU  0.2254 0.1760 0.1876 -0.1579 

LSTM-GRU  0.1714 0.0002 0.1378 0.6024 

CNN-LSTM  0.2519 0.2099 0.2165 -0.4458 

CNN-LSTM  0.1654 0.0011 0.1339 0.6043 

CNN-GRU  0.2545 0.2123 0.2180 -0.4758 

CNN-GRU  0.1786 0.0411 0.1422 0.5385 

TCN-LSTM  0.2461 0.1989 0.2069 -0.3808 

TCN-LSTM  0.1589 0.0009 0.1276 0.6345 

INFORMER  0.2245 0.1812 0.1886 -0.1482 

INFORMER  0.1585 0.0152 0.1273 0.6365 

The performance of the other two traditional models, SARIMAX and XGBoost, is 

unsatisfactory (Appendix, A15). However, their performance improves significantly when the 

data transformation is incorporated.  This suggests that traditional models are ineffective but 

can be substantially improved when data transformation is applied.  

Within this context, deep learning algorithms with transformation are the most accurate choices 

for solar power forecasting; traditional models without transformation are not satisfactory. 

Nevertheless, traditional models such as XGBoost become viable alternatives when 

transformation is employed. SARIMAX has an R² value of -1.368, which indicates that the 

model performs poorly in predicting the PV generation. Even when data transformation is 

applied, the enhancement is marginal (0.0431).   
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For quantitative comparison, scenario 3, when data transformation is applied, the XGBoost and 

SARIMAX RMSE values are about 1.5 and 2.37 times higher than those of the hybrid (LSTM-

GRU) model. This suggests that deep learning models are naturally better suited for complex 

forecasting tasks, such as solar energy prediction, while traditional methods show a lower 

performance in predicting PV generation. Similarly, when comparing the prediction accuracy 

of the hybrid model (LSTM-GRU) in terms of R2, with and without transformation in 1-step 

prediction, the prediction accuracy increases by 43%, further demonstrating the superiority of 

the proposed approach.   The findings further reveal that the proposed transformation improves 

forecasting accuracy by up to 24% in LSTM-GRU and 29.4% for Informer in six-step 

prediction, based on RMSE. Such improved forecasting enhances grid stability, optimizes 

energy dispatch, and offers a scalable solution for regions with limited measurement 

infrastructure, highlighting the importance of satellite-based forecasting in renewable energy 

policy development.  

To highlight the overall system performance, Fig. 4.40 presents the RMSE values for each 

model (LSTM, GRU, and LSTM-GRU) across four seasons, Fall, Winter, Spring, and Summer, 

as well as the overall annual performance. Results are shown for forecasting horizons of 1, 6, 

and 12 hours, illustrating seasonal variability and the impact of longer prediction steps on 

model accuracy. The marked increase in error metrics with increasing horizon length (from 1 

to 6 and then 12-step-ahead) reflects the error accumulation in multi-step-ahead time series 

forecasting. In a 1-step-ahead forecast, predictions are conditioned on the most recent observed 

data, minimizing input uncertainty. By contrast, in 6 and 12-step-ahead forecast using a 

recursive strategy, each step relies on previously forecasted values, introducing propagated 

errors and compounding model bias and variance over time.  

 

Fig. 4.40. Seasonal and overall RMSE for the models at 1, 6, and 12-hour forecasting 

horizons 

A growing body of work has examined how different meteorological datasets – such as 

satellite-derived products, ground-based measurements, reanalysis data, and Numerical 

Weather Prediction (NWP) outputs – affect the performance of data-driven PV forecasting 

models. For example, Hajjaj et al. (2023) compared satellite-derived and ground-based datasets 

and found that forecasts built using ground-based observations consistently achieved higher 

accuracy, whereas satellite data led to noticeably poorer performance across all models. 

Likewise, Brester et al. (2023) evaluated NWP datasets, observational data, and their combined 

use against actual PV output, concluding that NWP inputs alone provided better generalization 

and achieved up to 25% lower RMSE than the combined dataset. 
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The findings highlight the critical role of accounting for weather variability in reliable 

forecasting, particularly for multi-step predictions essential to long-term renewable energy 

planning. These insights support grid and operational stability, optimize storage dispatch, and 

underscore the value of satellite-derived models for renewable integration, ensuring the energy 

transition remains technically feasible, resilient, and adaptable to future climate and demand 

uncertainties. Short-term PV forecasts are particularly important for managing intermittency, 

giving operators time to adjust and optimize grid operations. Furthermore, as discussed in 

Section 4.1, accurate forecasting allows for strategic and flexible scheduling of storage and 

generation units, which can substantially reduce balancing capacity requirements, improve 

capacity factors, and ensure reliable power output. 

4.3.3. Optimizing system configuration using deep RL model  

Section 4.1 introduced a novel methodological framework for integrating large-scale PV 

systems, centred around the ‘System Use Index (SUI)’, a newly developed metric designed to 

identify optimal and near-optimal parameter configurations that enhance overall system 

performance. While the results using this index demonstrated promising outcomes, establishing 

the credibility and robustness of the framework requires rigorous validation against widely 

recognized and proven modelling approaches. To this end, the current section employs a well-

established machine learning technique-Deep Reinforcement Learning (DRL), to optimize 

system performance using one full year of PV generation and demand data. This DRL-based 

model serves as a benchmark, enabling direct comparison with the results obtained from the 

proposed rule-based methodology. Such comparative analysis not only highlights the strengths 

of the RL approach but also affirms the reliability and practical relevance of the newly 

introduced framework. 

An RL-based battery dispatch model using the Proximal Policy Optimization (PPO) algorithm 

was implemented. The agent interacts with a custom environment simulating hourly renewable 

generation and load demand. The action space is continuous, representing charge/discharge 

decisions, and the reward function penalizes curtailment and unmet demand while 

incentivizing energy delivery (served load). The model was trained over a one-year horizon 

using PV and load data, with battery parameters reflecting realistic operational constraints. 

To assess system behaviour under varying configurations, the model was evaluated across 

multiple values of diurnal storage. This allowed for a deeper understanding of how key system 

parameters interact under different design conditions. Fig. 4. 41 presents the temporal dynamics 

of these parameters over a representative one-week period in May, focusing on a 50-50 PV-

wind scenario. The simulations were conducted using consistent input parameters as outlined 

in Section 4.1, with diurnal storage capacities below 0.5 times the average daily demand, a 

fixed storage duration of 6 hours, and a renewable-to-load ratio of 1.04. Notably, at a diurnal 

storage level of 0.25 times the average daily demand, the RL-based model achieved a 

renewable energy penetration of 89.1% with only 12.9% curtailment. 

For comparison, the newly introduced rule-based framework–using the same PV–wind mix 

and diurnal storage size–achieved a penetration of 90% with 16% curtailment at a slightly 

higher RE-to-load ratio of 1.10, as measured by the SUI index. This close alignment in 

performance demonstrates that while the RL model exhibits marginally superior efficiency 

(achieving similar penetration at a lower RE-to-load ratio), the rule-based approach remains 

highly competitive. The dimensional consistency across both models, particularly in terms of 

energy flows (MWh), storage capacity (MWh), and hourly resolution (h), further reinforces the 

robustness of the comparison. The strong agreement between the RL model and the proposed 



4. Results 

 

109 

 

framework validates the reliability of the new methodology and its underlying indices, 

positioning it as a promising alternative for energy system optimization. 

 

Fig. 4.41. Hourly dynamics of system performance metrics for the RL-optimized configuration 

over the one week of May 

These advanced forecasting and optimization tools are key enablers of large-scale renewable 

integration, aligning closely with my core objective of applying machine learning-based 

forecasting to improve real-time PV system management. 

An alternative approach was investigated by training the RL model using similar datasets and 

system parameters to those in the case above. The only difference is the testing condition. The 

model was trained to develop a charging /discharging policy using one year of full PV+wind 

data and load demand. The trained model was then evaluated against another new dataset. The 

testing data set was created by injecting random noise into the training dataset of about ±10% 

for generation and ±5% for load. This represents a measure of uncertainty introduced by 

variations in renewable generation and electricity demand across different years. In this 

scenario, the model performs based on its learned policy and achieves penetration of 91.41% 

and curtailment of 9.46% which is better than the previous results displayed in Fig. 4.40. This 

shows that models trained and evaluated on the same data sets sometimes run to overfit instead 

of generalizing the pattern.  
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5. NEW SCIENTIFIC RESULTS 

This section presents the new scientific findings from this research work as follows: 

1. A methodological approach for integrating large-scale PV 

I have introduced a novel methodological framework aimed at maximizing PV penetration in 

the power grid. This approach systematically examines the interplay between key system 

design parameters and overall efficiency by varying these parameters to generate diverse 

operational scenarios and assess their sensitivities. For the first time, it explicitly incorporates 

the interactions among critical factors–such as PV–wind mix, storage capacity, storage 

duration, penetration level, curtailment, and balancing capacity needs–across a wide range of 

scenarios, thereby providing deeper insights into system design and performance. 

The methodological framework I developed, which is the basis for designing and modelling 

the system with all its interacting system parameters, is presented as follows:  

The different mixes of solar PV and wind-generated power can be computed by: 

𝑃rew(𝑡) = 𝑃nd 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)),     

 𝛼(𝑟) is a factor that is determined from a requirement that:  

∑ 𝛼(𝑟)(𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡))𝑡 = const ,    

and that 𝛼(0.5) = 1.  

The no-dump capacity is, consequently, determined according to: 

𝑃nd = min
𝑃load(𝑡)

  (𝑟 𝑝PV(𝑡)+(1−𝑟) 𝑝wind(𝑡))
 ,        

The mismatch energy between renewable generation and load can be computed as: 

𝑃mix(𝑡) = 𝛽 𝑃nd 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)) − 𝑃load(𝑡),    

where 𝛽 is a multiplier that enables oversizing the generation. Based on the values extracted 

from these empirical relationships, the model computes the optimal range of various parameters 

to ensure an optimal system efficiency that ultimately maximizes PV integration.  

2. Storage utilisation and system-use index 

I have introduced new and novel indices that identify the optimal system design parameters, 

and an optimal range of these parameters yields an optimal system performance. These indices 

provide deeper insights into the effectiveness of curtailment and storage integration within the 

broader energy infrastructure, enhancing the system's capacity to manage variability and 

optimize resource utilization.  

The empirical relationship developed for defining the system boundaries is:  

𝑆𝑈 =
−∑(𝑆(𝑡) − 𝑆(𝑡−Δ𝑡))

𝑆𝑚𝑎𝑥
,    if 𝑆(𝑡) < 𝑆(𝑡 − Δ𝑡)      

The system-use index (SUI) is computed as follows:   

SUI = SU 𝑘 𝑚 𝑢       

where 𝑘,𝑚 and 𝑢  are calculated by dividing annual energy discharge by the total consumed 

RE, average charging power by power capacity (PC), and total consumed RE by total RE 

generation, respectively:  
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𝑘 =
−∑(𝑆(𝑡) − 𝑆(𝑡−Δ𝑡)

∑𝑃𝑢𝑠𝑒𝑓𝑢𝑙
,  if  (𝑆(𝑡) < 𝑆(𝑡 − Δ𝑡)    

𝑚 =
∑𝑆(𝑡) − (𝑆(𝑡−Δ𝑡)

𝑃.𝐶
,  if (𝑆(𝑡) > 𝑆(𝑡 − Δ𝑡)     

where    𝑃𝐶 =
Smax

Δ𝑡full
⁄  

𝑢 =
∑𝑃𝑢𝑠𝑒𝑓𝑢𝑙

∑𝑃𝑟𝑒𝑤
,          

This approach enables me to create a novel and improved 3D visualization of the intricate 

relationships among these various interactive factors, providing a more comprehensive 

understanding of their interactions to improve PV integration.   

3. Storage optimisation and its link to penetration   

I have established clear boundaries of renewable penetration by linking them with storage type 

and application, resolving longstanding ambiguities in the literature. Through systematic 

analysis, I structured storage use into three distinct configurations, defined by their application 

and degree of penetration. This optimized categorization simplifies system design and 

modelling and provides actionable boundaries that overcome previous inconsistencies in 

renewable–dominated grid studies: 

i. First configuration: This represents the no-dump capacity range–the threshold below 

which the system operates without requiring any form of storage or curtailment. While 

the exact no-dump capacity varies with the PV-wind mix, the maximum penetration 

achievable without storage or curtailment in the solar-only (PV) scenario is about 23.6%. 

ii. Second configuration: Any increase in renewable penetration beyond this level 

necessitates storage and/or curtailment to manage fluctuations, enabling penetration up 

to 80%. Within this range, diurnal storage plays the key role in balancing short-term 

variability. 

iii. Third configuration: Beyond 80% penetration, renewable deployment rises sharply even 

with slight increases in penetration. Thus, meeting the final 20% of demand presents a 

distinct challenge, which I addressed through seasonal storage capable of resolving long-

term seasonal mismatches. 

4. Maximizing the direct consumption of residential PV by imposing feed-in constraints  

I have explored strategies for maximizing direct consumption of PV power in the low-voltage 

network. I have introduced a distinctive approach that proposes tailored grid-expansion and 

management solutions to enhance local network PV consumption. Building on this analysis, I 

have identified remarkably effective strategies that maximize the direct use of generated PV. 

The most efficient configuration combines a feed-in limit of 0.4–0.5 kW/kWp with battery 

storage capacities below 2 kWh/kWp, a setup that sharply reduces curtailment and achieves 

the highest levels of direct PV utilization. 

Using the new approach – supported and validated with laboratory experiment – I have 

demonstrated that feed-in limits above 0.7 kW/kWp offer only negligible improvements in 

annual energy output. This confirms that the common practice of sizing inverters at 80–90% 

of the PV array capacity is not only economically inefficient but can also degrade system 

operation and power quality. 
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5. Addressing the data scarcity challenge in PV power forecasting 

I found a practical solution to the data scarcity challenge in PV generation forecasting by 

developing a method that bridges satellite-derived and ground-measured data. Using a 

modified Z-score transformation, I have approximated satellite data to measured data based on 

their respective means and standard deviations. This approach enables the integration of widely 

available satellite data with the reliability of ground-based measurements by establishing a 

transparent empirical relationship, using transformation formulas derived from observed 

correlations. The resulting adjusted dataset is used to train the forecasting model. At the same 

time, testing is conducted on actual measured PV output, ensuring both accuracy and 

applicability in regions with limited monitoring infrastructure.  

For each value in satellite-derived data, I found the standard normal form using the Z-score 

transformation (z):  

 𝑧 =
𝑃𝑠𝑎𝑡,𝑖− µ𝑠𝑎𝑡

𝜎𝑠𝑎𝑡
  and     

 the rescaled satellite value (𝑃𝑠𝑎𝑡,𝑖
′ ) is determined to match the distribution of the measured data 

using:  

 𝑃𝑠𝑎𝑡,𝑖
′ = 𝑧 𝜎𝑚𝑒𝑎𝑠 + µ𝑚𝑒𝑎𝑠      

where, 𝑃𝑠𝑎𝑡,𝑖, µ𝑠𝑎𝑡 and 𝜎𝑠𝑎𝑡  are the hourly PV generation, mean, and standard deviation of the 

satellite-derived data, whereas,  µ𝑚𝑒𝑎𝑠 and 𝜎𝑚𝑒𝑎𝑠 are the mean and standard deviation of the 

measured data.  

The proposed transformation has been rigorously validated against various well-established 

forecasting models. It demonstrates significant improvements in forecasting accuracy, 

achieving up to 24% in the LSTM-GRU model and 29.4% in the Informer model for six-step 

forecasts, based on RMSE metrics. For one-step predictions, the hybrid LSTM-GRU model 

yields a 43% increase in accuracy using the R² coefficient, confirming the effectiveness of the 

transformation approach. The method offers a scalable solution for regions with limited 

measurement infrastructure, reinforcing the role of satellite-based forecasting in advancing PV 

integration and shaping renewable energy policy development. Moreover, these forecasting 

improvements contribute to enhanced grid stability, optimize storage dispatch, and improve 

load balancing by offering flexibility to system operators.  

The newly introduced methodological framework was validated against a well-established RL-

based machine learning algorithm, showing negligible disparities. This strong agreement 

confirms the reliability of the framework and its underlying indices, reinforcing its accuracy 

and positioning it as a promising alternative for energy system optimization. 

6. Impact of inverter loading on power quality 

I have investigated the total harmonic characteristics of the PV inverter at various inverter 

loading conditions and I identified that inverter loading has a greater impact on the current total 

harmonic distortion (ThdI) than on the other power quality indicators. In heavily loaded 

inverters, ThdI remains relatively low, with only a few points exceeding the permissible limit 

of 5%. However, as the inverter load decreases, ThdI gradually exceeds this limit and rises 

further, reaching values of around 10%. The change in ThdI becomes more pronounced under 

lightly loaded conditions.  
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Accordingly, I have shown that the total current harmonic distortion (𝑦) as a function of active 

power (P/Prated) (𝑥) for the three inverter loading conditions can be reliably estimated using a 

cubic polynomial model, achieving an R² value of 0.926.  

 𝑦 = 1.3546 + (−0.2973) 𝑥 + (0.0239) 𝑥2 +(-0.00063) 𝑥3  

The greater variation in ThdI observed in lightly loaded inverters implies that they are more 

sensitive to harmonic distortion when underutilized. Lightly and medium-loaded inverters 

exhibit higher variability per unit change in active power, whereas in heavily loaded conditions, 

inverter behaviour becomes more stable, likely because MPPT and control mechanisms operate 

more actively and consistently when PV generation is higher. By associating these distinct 

regression behaviours with specific sites, utilities can tailor inverter deployment strategies and 

better anticipate grid stress based on localized loading profiles. 

This suggests oversizing an inverter for a given design can negatively impact power quality – 

not only cost – because an oversized inverter tends to operate predominantly under medium or 

light loading, where harmonic distortion is more pronounced. These findings highlight the need 

for inverter designs that ensure stronger control capability and more predictable interactions 

among power-quality parameters across varying load conditions. 

 

 



 

114 

 

6. CONCLUSION AND RECOMMENDATION 

In this thesis, strategies have been investigated for maximizing PV integration into the power 

grid through three complementary approaches: large-scale PV deployment, residential PV 

integration, and PV generation forecasting and optimization.  

To support large - scale PV integration, a novel methodological framework has been developed 

that flexibly captures the interactions between key system design parameters, such as storage 

capacity, storage duration, penetration, curtailment, wind-solar mix, and balancing 

requirements, while linking these parameters to a newly developed System–use index (SUI), 

which serves as a proxy of system efficiency. Various scenarios have been evaluated by fixing 

the PV share at 0%, 50%, and 100% of total RE capacity and applying different storage 

durations. Results show that penetration, curtailment, and storage all increase simultaneously; 

however, penetration gains diminish once storage or curtailment exceeds certain thresholds. 

Nevertheless, reaching 80–90% penetration is feasible with diurnal storage below 0.5 average 

daily demand with 6 hours of storage, alongside moderate curtailment. Achieving 100% 

renewable penetration is, however, challenging in the last 10–20% of the transition due to 

seasonal mismatches. Incorporating seasonal storage, about 8 average daily demand with a RE-

to-load ratio of 1.2, enables complete decarbonization without balancing (back-up) needs. 

These findings highlight that an optimal mix of curtailment, storage, and wind-solar mix is 

essential for maximizing system efficiency, forming multidimensional constraints that are 

difficult to implement in existing techno-economic tools but critical for guiding policy 

development and regulation.  

The role of residential PV in large-scale PV integration has been investigated by introducing a 

new concept of direct PV injection into low-voltage networks, overcoming the limitations of 

conventional self-sufficiency models. Findings reveal that imposing a feed-in limit and 

integrating battery storage significantly reduce curtailment, with a feed-in limit of 0.4 to 0.5 

kW/kWp and battery storage below 2 kWh/kWp. This setup maximizes photovoltaic 

integration and enables renewable energy penetration of up to 30%. The study further examined 

the impact of inverter loading on power quality and found that highly loaded inverters operate 

more stably, while underutilized inverters exhibit significant distortion.  

Machine learning based forecasting and optimization models have been proposed to maximize 

PV integration. To achieve this, a modified Z-score transformation and an RL model have been 

applied to align satellite-derived data with measured values to improve generation forecasting 

and optimize the system configuration. The findings reveal that the proposed transformation 

improves forecasting accuracy by up to 43%, demonstrating the effectiveness of the approach 

in providing a scalable solution for regions in regions with limited measurement infrastructure. 

These approaches collectively establish a comprehensive framework for addressing both 

system design and operational challenges in maximizing PV integration. By combining 

optimized PV–wind–storage configurations, effective residential PV deployment, and 

enhanced forecasting, the study provides valuable insights for achieving high levels of PV 

penetration in future renewable-dominated grids. Adopting, technical-first perspective, the 

study outlines multiple transition pathways by defining boundary conditions that can guide 

more detailed economic analyses and policy development. Furthermore, improved 

transmission planning and demand-side management will be essential for achieving more 

optimal system configurations and understanding parameter interactions. Incorporating more 

fine-tuned household data in residential PV analysis could further improve accuracy. This study 

emphasizes the importance of understanding the future renewable energy grid, using Eritrea as 

a case study; nevertheless, the methodology employed can be applied to a broader range of 

applications in a global perspective.  



 

115 

 

7. SUMMARY 

MODELLING AND OPTIMIZATION OF LARGE-SCALE GRID-CONNECTED 

PHOTOVOLTAIC SYSTEMS WITH ENABLING TECHNOLOGIES 

A holistic and innovative multifunctional simulation model is developed to maximize PV 

integration and offer a broader perspective on system design under interacting factors. Using 

hourly weather data from PVGIS and GWA, geographically distributed solar and wind sites in 

Eritrea were analysed to explore scenarios achieving 90% and beyond renewable penetration 

with and without storage. The results offer important insights of global importance by linking 

parameters in a uniquely broad way, while also addressing the context-specific requirements.   

The analysis focuses on enabling large-scale PV integration through resource complementarity, 

energy storage, curtailment strategies, balancing capacity and improved forecasting, 

recognising that PV alone cannot capture full system complexity. Two new indicators, Storage 

Utilisation (SU) and System Use Index (SUI) are introduced to reveal the interactions between 

these variables. Results show that variable renewable penetration, curtailment and storage 

capacity increase simultaneously across all scenarios. The framework provides multiple 

options for combining storage and curtailment to achieve specific penetrations (including 

100%), tailored to individual priorities and policy preferences, with the optimal approach lying 

in determining approximate optimal sizes to balance technical and economic feasibility. 

Findings show that with a storage capacity below 0.5 of average daily demand, grid penetration 

exceeding 90% can be achieved while keeping curtailment under 20%, except in wind-only 

scenarios, which require higher curtailment. Diurnal storage manages short-term fluctuations 

and facilitates high renewable penetration of 80-90%, but its limitations become evident 

beyond this range. Meeting the final 10–20% of demand requires solutions beyond diurnal 

storage, as seasonal mismatches necessitate large storage and generation capacities. 

Incorporating seasonal storage of about 8 average daily demand with a RE-to-load ratio of 1.2 

enables complete decarbonisation without balancing back-up needs. Overall, the study 

highlights that an optimal mix of curtailment, storage and wind–solar complementarity is 

essential for maximising system efficiency and for shaping policies and regulations that support 

deep decarbonisation. 

Two additional approaches are introduced to maximise PV integration into the grid: expanding 

rooftop PV adoption (residential PV) and applying advanced PV generation forecasting. Using 

simulation techniques, the study examined the optimal deployment of residential PV and 

battery storage to boost PV penetration while minimising curtailment, applying a simple 

algorithm for PV injection, battery charging, and discharging. Key results show that imposing 

a feed-in limit and adding battery storage markedly cut curtailment, with limits of 0.4–0.5 

kW/kWp and storage below 2 kWh/kWp giving the best outcomes. The study reveals that the 

power quality of grid-connected PV systems is strongly influenced by loading conditions, 

showing that highly loaded inverters maintain stable operation, while lightly loaded 

(underutilized) inverters exhibit increased distortion. The advantage of Effective PV 

forecasting for increasing renewable energy integration is studied, as it allows better 

management of generation and system operations. The new PV forecasting approach raises 

accuracy by up to 43%, enhancing generation management. When combined with resource 

complementarity and storage adoption, this improved forecasting strengthens grid stability, 

optimises scheduling, improves storage dispatch, reduces balancing needs, and boosts overall 

system efficiency, ultimately maximising renewable energy integration. 
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8. ÖSSZEFOGLALÁS (SUMMARY IN HUNGARIAN) 

NAGYMÉRETŰ, HÁLÓZATRA KAPCSOLT FOTOVILLAMOS RENDSZEREK 

MODELLEZÉSÉT ÉS OPTIMALIZÁLÁSÁT TÁMOGATÓ TECHNOLÓGIÁK 

Egy holisztikus, innovatív többfunkciós szimulációs modell került kifejlesztésre a napelemek 

integrációjának maximalizálására és a rendszertervezés szélesebb perspektívájának 

biztosítására a kölcsönhatásban lévő tényezők figyelembevételével. A PVGIS és GWA 

óránkénti adatait felhasználva eritreai helyszíneken készült elemzés olyan forgatókönyveket 

vizsgál, amelyekben a nap- és szélenergia kombinációjával – tárolással és anélkül – 90% feletti 

megújulóenergia elterjedés érhető el. Bár az eredmények helyspecifikusak, globális 

jelentőségük is van a paraméterek széles körű összekapcsolásának köszönhetően. 

Az elemzés a nagy léptékű napelemes integráció megvalósíthatóságára összpontosít az 

erőforrások kiegészítő jellege, az energiatárolás, a betáplálási korlátozások, a kiegyenlítő 

kapacitás és az előrejelzés szerepének vizsgálatával. Két új mutató, a tároláskihasználás (SU) 

és a rendszerhasználati index (SUI) került bevezetésre. Az eredmények szerint a 

megújulóenergia elterjedés, a korlátozás és a tárolási kapacitás minden forgatókönyvben együtt 

növekszik. A keretrendszer több lehetőséget kínál a tárolás és a korlátozás kombinálására, 

különböző prioritásokhoz és menetrendekhez igazodva, meghatározott elterjedés (akár 100%) 

elérése érdekében. Az optimális megközelítés a műszaki és gazdasági megvalósíthatóság 

egyensúlyát biztosító paraméterek meghatározásában rejlik. 

A napi energiaigény 50%-ánál kisebb tárolási kapacitás mellett 90% feletti hálózati elterjedés 

érhető el, miközben a betáplálási korlátozás 20% alatt marad – kivéve a kizárólag szélenergiát 

alkalmazó forgatókönyveket. A napi tárolás hatékonyan kezeli a rövid távú ingadozásokat és 

80–90%-os megújulóenergia részarányt tesz lehetővé, de ezen szint felett korlátjai 

jelentkeznek. A maradék 10–20% fedezéséhez szezonális tárolás szükséges nagyobb 

kapacitással és termelési potenciállal. A napi átlagos kereslet körülbelül nyolcszorosának 

megfelelő szezonális tárolás 1,2-es megújuló energia terhelés aránnyal teljes dekarbonizációt 

tesz lehetővé kiegyenlítő tartalék nélkül. A dolgozat kiemeli, hogy a rendszerhatékonyság 

maximalizálásához – a dekarbonizációt támogató politikai és szabályozási háttér mellett – 

kulcsfontosságú a betáplálási korlátozás, a tárolás és a nap- és szélenergia optimális 

kombinációja. 

További két tényező is jelentős a napelemes energia integrációjának növelésében: a tetőre 

szerelt (lakossági) napelemes rendszerek elterjesztése és a fejlett napenergia előrejelzés 

alkalmazása. Szimulációk vizsgálták a lakossági napelemek és akkumulátoros tárolók 

optimális telepítését a fotovillamos energiaforrások terjedésének elősegítése és a betáplálási 

korlátozások csökkentése érdekében, óránkénti ütemezésű algoritmust alkalmazva a betáplálás, 

töltés és kisütés irányítására. Az eredmények szerint a betáplálási korlát bevezetése és az 

akkumulátoros tárolás együttesen jelentősen mérsékli a korlátozást, a legjobb eredmények 0,4–

0,5 kW/kWp betáplálási korlát és 2 kWh/kWp alatti tárolás mellett érhetők el. A hatékony 

napenergia előrejelzés elengedhetetlen a megújuló energia integrációjának növeléséhez, mivel 

javítja a termelés és a rendszerirányítás hatékonyságát. Az új előrejelzési megközelítés akár 

43%-kal növeli a pontosságot, javítva a hálózat stabilitását, az akkumulátorok kihasználtságát 

és a rendszer általános hatékonyságát. 
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A3. Power curve for 3.45 MW Vestas wind Turbine 

Turbine specification V117 - 3.45MW (rated speed=12.5 m/s) and V136-3.45MW (rated 

speed =11.5 m/s)   

V117 - 3.45MW (cut-in 3 m/s, cut-out 25 

m/s) 

V136-3.45MW (cut-in 3 m/s, cut-out 

22.5 m/s) 

Windspeed 

(m/s) 

Power 

(kW) 

Cp Wind speed 

(m/s) 

Power 

(kW) 

Cp 

3 22.00 0.124 3.00 49.00 0.204 

3.5 78.00 0.276 3.50 127.00 0.333 

4 150.00 0.356 4.00 224.00 0.393 

4.5 237.00 0.395 4.50 339.00 0.418 

5 340.00 0.413 5.00 480.00 0.432 

5.5 466.00 0.425 5.50 651.00 0.440 

6 617.00 0.434 6.00 857.00 0.446 

6.5 796.00 0.44 6.50 1099.00 0.450 

7 1 006.00 0.445 7.00 1382.00 0.453 

7.5 1 247.00 0.449 7.50 1705.00 0.454 

8 1 522.00 0.451 8.00 2067.00 0.454 

8.5 1 831.00 0.453 8.50 2460.00 0.450 

9 2 178.00 0.454 9.00 2849.00 0.439 

9.5 2 544.00 0.451 9.50 3174.00 0.416 

10 2 905.00 0.441 10.00 3369.00 0.379 

10.5 3 201.00 0.42 10.50 3434.00 0.333 

11 3 374.00 0.385 11.00 3449.00 0.291 

11.5 3 435.00 0.343 11.50 3450.00 0.255 

12 3 448.00 0.303 12.00 3450.00 0.224 

12.5 3 450.00 0.268 12.50 3450.00 0.199 

13 3 450.00 0.238 13.00 3450.00 0.176 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

25 3 450.00 0.034 22.5 3450.00 0.034 
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A4: Hourly Kandall’s rank correlation matrix  

 Kendall’s (τ) rank correlation between different hourly generation profiles.NA. wind stands 

for National average wind and NA. solar PV for National average solar PV 

 

A5: Daily Kandall’s rank correlation matrix  

 Kendall’s (τ) rank correlation between different daily generation profiles.  
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A6. Seasonal power generation mismatch   

 

 

 

 

 

 

  

 

 

A7.  Specifications of PV module and inverter 

 PV module  Inverter   

Type of the 

collector  

modules  

SolarWatt 

Vision  

36M Glass  

 Inverter type  SE 3500-ER-01-ITA  

Technology  Monocrystalline   Phases  Single-phase  

Covering material  Partly tempered  

high transparent  

float glass, 4 

mm  

 Operating 

voltage range  

270 – 500 Vdc  

Transparency  20%  Maximum input 

current  

13.5 Adc  

Open Circuit 

Voltage  

23.4 V   Maximum 

output power  

3500 VAac  

Short Circuit 

Current  

9 A  Operating 

voltage  

220/230 Vac  

Nominal Voltage 

(under STC)  

19.2 V  

 

 Maximum 

output current  

19.5 Aac  

Nominal current 

(under STC)  

8.7 A  AC Nominal 

frequency  

50/60 Hz  

Nominal power  165 Wp   Power factor 

range  

+/- 0.9 to 1  

Total system 

capacity  

3.3 kWp  Transformerless 

ungrounded  

Yes  

Maximal system 

voltage  

1000 V  

 

 Maximum 

inverter 

efficiency  

97.6%  

   European 

weighted 

efficiency  

97.5%  
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A8. Error metrics for the different models  

Error metrics showing four seasons (1-step actual PV Generation forecasting) 

 

A9. Performance comparison of the three models 

 Prediction of actual PV generation across four seasons for a 12-step prediction 

 

Season Model RMSE (kW) MBE (kW) MAE (kW) R2 

Fall 

LSTM 0.0721 0.0033 0.05673 0.8161 

GRU  0.0722 0.0008 0.0555 0.8258 

LSTM-GRU 0.0740 0.0186 0.0595 0.8199 

Winter 

LSTM 0.0778 0.0102 0.05951 0.7931 

GRU  0.0803 0.0058 0.0600 0.7886 

LSTM-GRU 0.0820 0.0327 0.0664 0.7967 

Spring 

LSTM 0.0707 0.0031 0.0570 0.8210 

GRU  0.0718 0.0001 0.0568 0.8256 

LSTM-GRU 0.0720 0.0198 0.0595 0.8132 

Summer 

LSTM 0.0742 0.0005 0.0572 0.7833 

GRU  0.0764 0.0001 0.0584 0.7764 

LSTM-GRU 0.0769 0.0154 0.0599 0.7624 

Overall 

LSTM 0.0721 0.0033 0.0567 0.8054 

GRU  0.0722 0.0008 0.0555 0.8072 

LSTM-GRU 0.0740 0.0186 0.0595 0.7999 
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A10: Performance evaluation of RMSE error metrics across different seasons 

 

A11: LSTM learning Curve of uni-step prediction 

 

A12: GRU learning Curve of uni-step prediction 
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A13: Six-step forecasting error distribution 

 

A14: Error metrics for different models separated into seasons 

Deviations showing for the 6-step for actual PV generation forecasting 

Season Model RMSE (kW) MBE (kW) MAE (kW) R2 

Fall 

LSTM 0.1663 0.0112 0.1351 0.5792 

GRU  0.1620 0.0054 0.1302 0.6124 

LSTM-GRU 0.1601 0.0127 0.1288 0.6410 

Winter 

LSTM 0.1847 0.0346 0.1464 0.4290 

GRU 0.1846 0.0294 0.1451 0.4775 

LSTM-GRU 0.1644 0.0403 0.1306 0.6194 

Spring 

LSTM 0.1326 0.0130 0.1638 0.5747 

GRU  0.1223 0.0210 0.1549 0.6355 

LSTM-GRU 0.1672 0.0218 0.1333 0.6245 

Summer 

LSTM 0.1781 0.0164 0.1500 0.5283 

GRU  0.1693 0.0156 0.1407 0.5717 

LSTM-GRU 0.1908 0.0260 0.1573 0.5103 

Overall 

LSTM 0.1731 0.0029 0.1409 0.5359 

GRU 0.1675 0.0015 0.1343 0.5821 

LSTM-GRU 0.1714 0.0002 0.1378 0.6024 
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A15. Performance of models with and without data transformation 

(Performance comparison of traditional and deep learning models (with and without data 

transformation), for 1-step-ahead forecasting over the full-year dataset) 

Model Z-score 

Tran   

RMSE (kW) MBE (kW) MAE (kW) R2 

LSTM  0.1964 0.1394 0.1548 0.1210 

LSTM  0.0721 0.0033 0.0567 0.8054 

GRU  0.1417 0.0943 0.1115 0.5422 

GRU  0.0722 0.0008 0.0555 0.8072 

LSTM-GRU  0.1553 0.1033 0.1220 0.4505 

LSTM-GRU  0.0740 0.0186 0.0595 0.7999 

XGBOOST  0.1826 0.1468 0.1525 -0.0395 

XGBOOST  0.1120 0.0684 0.0906 0.6089 

SARIMAX  0.2756 0.2134 0.2194 -1.3682 

SARIMAX  0.1752 0.1143 0.1320 0.0431 
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