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1. INTRODUCTION 

1.1 Background 

Water management for agricultural purposes is a complex task because it depends on several 

social, environmental, and political factors such as population growth rate, change in water use 

patterns, climate change, changes in hydraulic systems of rivers and the development of water 

resources in riparian countries. Its performance can be far below its potential, especially in 

drought-prone areas, which can make the level of agricultural production and irrigation 

economically inefficient (K. Raju, 1999). Effective irrigation systems are inevitable in 

providing adequate food to the world. Agriculture consumes about 60 to 70 % of the world’s 

freshwater resources in the irrigation process, and the irrigation systems have efficiency ranging 

from 30 to 60 %. Although the available resources are mostly renewable, they have a limit for 

regeneration that cannot be exceeded (Darshana et al., 2012). 

Monitoring of soil and crop during the growing season is essential for agricultural production. 

Changes of plant characteristics occur according to the plant’s phenological stage from the 

seedling until it reaches full maturity. The optimal crop transpiration, i.e., of the crop water 

requirements is a function of this process. In the primary stages of growth, most of the 

evaporation occurs from the surface of the soil. However, as plants grow, the contribution of 

transpiration as one of the components of the evapotranspiration increases until maturity and 

gradually decreases afterwards. The collection of information about crop evapotranspiration is 

very important in the irrigation scheduling process to raise the efficiency of water use (Allen et 

al., 1998b). 

Methods for assessing the performance of irrigation using data from satellites have been 

developed since the second half of the 1980s. There is a consensus that it is difficult to gather 

reliable and continuous areal information on it. Initially, the focus was on the relationship 

between quantifying of water use and cultivated area, but later attention was given to other 

aspects such as the crop water requirements, water productivity, water stress and salinity of 

water (Akdim et al., 2014). 

With the global population explosion, there is an excessive pressure on the freshwater 

resources. Irrigated agriculture is the most stressing sector, consuming a high percentage of 

fresh water, although it is highly competitive with other sectors such as industry and domestic 

use. With the increase of population and the reduction of the amount of water available for 

agricultural purposes, the agricultural sector is facing a major challenge as it must increase food 
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production using less water, i.e., increase the crop water productivity (Zwart and Bastiaanssen, 

2004a).  

The first step in improving water use efficiency is defining the net irrigation water requirement 

(NIWR). NIWR is the water that must be supplied by irrigation to satisfy evapotranspiration, 

leaching and miscellaneous water needs/losses, which are not covered by the water stored in 

the soil and provided by precipitation. Therefore, the calculation of NIWR requires estimating 

several closely related elements. These elements are crop water requirement (CWR), soil water 

balance, and evapotranspiration (ET). In the last decades, an increasing knowledge related to 

the methods of estimating the NIWR and ET was collected. The papers published by FAO 

(Doorenboos & Pruitt, 1977 and  Doorenboos and Kassam 1979)  are among the most widely 

used references around the world to estimate the NIWR and CWR. They are also connected to 

the methods that explain the relationship between crop production and water (Calera et al., 

2017). 

Irrigation performance indicators were first introduced in the 1970s and described the hydraulic 

behaviour of irrigation systems (Bastiaanssen et al., 2001). Later, crop-oriented indicators were 

also developed. For example, overall consumed ratio quantifies the degree to which crop 

irrigation requirements are met by irrigation water in the irrigated area (Bos and Nugteren, 

1990). Crop water deficit over a period is defined as the difference between ETp and ETa of the 

cropping pattern within an area (Bastiaanssen et al., 2001). 

Remote sensing images captured by sensors on satellites or aeroplanes can be considered, 

among others, as tools to give spatial information about evapotranspiration. But the lack of 

availability of these images with sufficiently high temporal resolution and accuracy is one of 

the obstacles to using this technique. However, with the evolution of communication and 

computing technology, together with the policy changes of the national aeronautics 

administrations, like the NASA of the United States of America’s government, (i.e., they 

provided free access to satellite data), an increase was observed in the development of this 

technology (Calera et al., 2017).  

In the past decade, many models have been developed that simulate plant growth and water 

balance. These models help us understand the process of plant development and are solutions 

to control the use and distribution of water (Wang et al., 2001). Evapotranspiration is the main 

component of the water balance that consumes the largest amount of irrigation water and 

rainfall in cultivated areas. Several models have been developed for the quantification of actual 



16 

 

ET that are based on the surface energy balance such as the Surface Energy Balance Algorithm 

for Land (SEBAL) (Bastiaanssen et al., 1998), the Simplified Surface Energy Balance Index 

(S-SEBI) (Roerink, Su and Menenti, 2000), the Surface Energy Balance System (SEBS) (Su, 

2002), satellite-based energy balance for Mapping Evapotranspiration with Internalized 

Calibration (METRIC) (Allen, Tasumi and Trezza, 2007), the Operational Simplified Surface 

Energy Balance (SSEBop) (Senay et al., 2013).  

Estimating evapotranspiration (ET) on a field scale has been accomplished using high spatial 

resolution but low temporal resolution satellite data from the Landsat TM and ASTER. 

However, due to the long repeat cycle of these satellites, this method is not well-suited for 

routine ET estimation. Others have attempted to use daily or more frequent satellite data from 

AVHRR and GOES, which have a coarser spatial resolutions (1 to 5 km), resulting in ET 

estimates that represent averages over areas of 1 to 25 km2 (Senatilleke et al., 2022). 

Unfortunately, this method cannot distinguish the ET of individual fields. The MODIS offered 

pixel resolutions (ranging from 250 m to 4 km) have been used to assess land cover changes 

accurately, showing that a pixel resolution of 500 m or less is necessary. Even at the 1-km pixel 

resolution, detecting the areal extent of such changes is often unreliable. Land Surface 

Temperature (LST) is needed to monitor significant changes in surface energy balance and ET 

with land use and land cover changes. However, higher temporal frequency and coarser 

resolution thermal-infrared data is required to monitor such changes on a routine basis, which 

should be at the 50- to 100-m pixel size (Kustas et al., 2003).   

It is known that water shortage leads to the reduction of crop productivity and the purpose of 

irrigation is to reduce plant stress. There are several factors to consider in planning irrigation, 

such as crop water requirement, costs, water availability and other factors, especially in the arid 

zones. The response of crop yield to irrigation has been studied extensively. Through proper 

irrigation management, it should be possible to provide only the water that matches the crop 

ET (Wang et al., 2001). 

1.2 Problem statement 

Many parts of the world are suffering from a lack of sufficient amount of irrigation water. In 

the New Halfa scheme, Sudan, this is the case. Winter wheat is one of the primary irrigated 

crops in the New Halfa project and one of the most important economic drivers in the area. 

Continuous cotton, sorghum, and groundnut follow winter wheat as the most common 

agricultural rotations in the region. Recent water scarcity circumstances, along with increased 
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intensive agricultural production are raising major worries about the availability and 

sustainability of water resources in the future. This, as a result of the aforementioned factors, 

should give farmers with an environmental incentive to match irrigation applications to crop 

water requirements. Through well-designed irrigation management schemes, accurate 

estimation of the actual crop evapotranspiration (ETa) may increase water resource usage 

efficiency. Planning in-season irrigation management, water allocations, water supply, defining 

water demand, and water usage, as well as the impact of changes in land use and management 

of water, all depend on accurate estimates of ETa. A necessity for producers to produce crops 

with less water is being brought on by the water deficit. Utilizing more effective irrigation 

methods, like sprinkler irrigation and drip irrigation, is a possibility, but it is constrained mostly 

by their high initial cost and upkeep needs. 

Surface irrigation is one of the most common irrigation methods in the world, especially in 

developing countries, due to its low cost. This type of irrigation has many disadvantages, 

primarily due to its low efficiency of water use. The New Halfa scheme in Sudan uses this type 

of irrigation. This project is one of the most important economic and agricultural resources in 

Sudan, but it was noted that there is a sharp decline in productivity compared to the limited 

availability of water and declining soil fertility. 

The lack of knowledge on the spatial variation of evapotranspiration remains one of the main 

problems. This makes water management a hard task under conditions of data scarcity in the 

New Halfa scheme. For this reason, a method to improve water management under conditions 

of data scarcity is required. 

 

1.3 Objectives 

1.3.1 Main objective 

Develop a remote sensing-based method that supports improving the efficiency of irrigation 

water use. 

1.3.2 Specific objectives 

To achieve the main objective, the following specific objectives are set: 

1. Improve the DisTrad method of downscaling LST for large areas with complex land 

cover. 
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2. Create high spatial and temporal resolution time series of actual evapotranspiration 

maps using remote sensing to define the spatial distribution of the actual ET. 

3. Propose an optimal integration method of the optical data to overcome the cloud cover 

problem. 

4. Analyse the irrigation efficiency for the New Halfa irrigation scheme to Demonstrate 

water stress and irrigation efficiency: 

a. Evaluate the irrigation performance in the New Halfa scheme to define the spatial 

and temporal distribution of the water applied and demanded. 

b. Analyse the spatial distribution of water stress occurring with the existing irrigation 

practice to improve the irrigation schedule. 

c. Estimate the crop water productivity for wheat crop. 

5. Propose a method to optimize the irrigation schedule for wheat. 

1.4 Research questions 

1. How can we create high spatial and temporal resolution LST time series? (Objective 1) 

2.  How can we create an optimal ETa map using the high spatial and temporal resolution 

LST? (Objective 2) 

 

3. What is the optimal way of integrating the data from different optical sensors to improve 

the spatial and temporal resolution of ETa? (Objective 3) 

4. How can remote sensing data be optimally used to identify crop development and crop 

water requirement? (Objective 4) 

5. How can remote sensing be a reliable tool to identify the irrigation needs and contribute 

to improving the irrigation efficiency in case of data scarcity? (Objective 5) 
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2. LITERATURE REVIEW 

2. 1 Overview 

Evapotranspiration from agricultural lands is one of the vital issues that scientific studies and 

researchers are currently paying attention to (Lott and Hunt, 2001). This problem is enhanced 

by the diminishing quantities of renewable water sources in several regions of the world, 

especially in the arid and semi-arid regions, characterized by high temperatures that increase 

potential evapotranspiration.  

There are several methods to estimate the rates of evaporation and evapotranspiration. Practical 

methods include devices, calculations and empirical methods depending on different 

meteorological parameters based on point-like in situ measurements (Xu and Singh, 2001). 

Spatial techniques are using remote sensing images captured by sensors on satellites or 

airplanes are considered as tools to give spatial information about the actual evapotranspiration. 

Unfortunately, the lack of availability of these images with sufficiently high temporal resolution 

and accuracy is an obstacle in the operational use of the spatial methods. The purpose of the 

present chapter is to review the most common and efficient methods of calculating and 

modelling evaporation from open water bodies and evapotranspiration from agriculture using 

integrated data acquisition from remote sensing to gain special and temporal resolution for E 

and ET. ET estimation needs several parameters from meteorological stations and sometime 

the missing data and uncorrected measurement causes an increase in the error rate (Tabari et 

al., 2012). 

The accuracy and limitation of climatic data procedures for estimating ET ought to be valid at 

the regional level. this may be done for weather stations with full data sets by comparison ETo 

calculated with full and with restricted data sets (Lott and Hunt, 2001). Methods based on point-

like data (even when interpolation is made on them) provide ET information with limited 

accuracy. RS-based data provide the spatial variability of the measured parameters, thus the ET 

estimates are more representative to the observed region (Jia et al., 2009).  



20 

 

2.1.1 Evapotranspiration Concepts 

Distinctions have to be made between reference crop evapotranspiration (ET0), crop 

evapotranspiration under standard (no stress) conditions (ETc) and crop evapotranspiration 

under non-standard (stress) conditions (ETc adj) (Figure 1). ETo may be considered as a climatic 

parameter expressing the evaporation power of the atmosphere. ETc refers to the 

evapotranspiration from excellently managed, large, well-watered fields that reach full 

production underneath the given climate. In case of sub-optimal crop management and 

environmental constraints that have an effect on crop growth and limit evapotranspiration, ETc 

below non-standard conditions usually needs a correction  (Allen et al., 1998a). 

 

 

 

Figure 1. Reference crop evapotranspiration (ETo), crop evapotranspiration under standard (ETc), 

and non-standard conditions (ETc adj) (Allen et al., 1998a). 

 2.1.2 Original Penman’s Equation 

Penman in 1948 combined the energy balance with the mass transfer method and derived an 

equation to calculate the E from an open water surface from ideal climate records of temperature 

sunshine, wind speed, and humidity. This called combination method was additionally 

developed by several researchers and extended to cropped surfaces by introducing resistance 

factors. 

The resistance terminology distinguishes between surface resistance factors and aerodynamic 

resistance (Figure 2). The surface resistance parameters are usually combined into one 

parameter, the 'bulk' surface resistance parameter, which operates nonparallel with the 

aerodynamic resistance.  

The surface resistance, 𝑟𝑠, describes the resistance of vapour flow through stomata openings, 

total leaf space and soil surface. The aerodynamic resistance, 𝑟𝑎, describes the resistance from 



21 

 

the vegetation upward and involves friction from air flowing over vegetative surfaces. Although 

the exchange method during a vegetation layer is just too complicated to be totally delineated 

by the 2 resistance factors, smart correlations may be obtained between measured and calculated 

evapotranspiration rates, particularly for the same grass reference surface (Allen et al., 1998a) 

(Doorenbos and Pruitt, 1977). 

 

 

Figure 2. Simplified representation of the (bulk) surface and aerodynamic resistances for water vapour flow 

(Allen et al., 1998a) 

The Penman-Monteith form of the combination equation is 

 

𝜆𝐸𝑇 =
∆(𝑅𝑛 − 𝐺) + 𝑝𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

∆ + 𝛾 (1 +
𝑟𝑠

𝑟𝑎
)

 

 

 

                               (1) 

 

where: G is the soil heat flux; cp is the specific heat of the air; (𝑒𝑠 − 𝑒𝑎) represents the vapour 

pressure deficit of the air; ρ a is the mean air density at constant pressure; γ is the psychrometric 

constant; Rn is the net radiation; Δ represents the slope of the saturation vapour pressure 

temperature relationship; and 𝑟𝑠 and 𝑟𝑎 are the (bulk) surface and aerodynamic resistances. 

The Penman-Monteith approach includes all parameters that govern energy exchange and 

corresponding heat energy flux from unit areas of vegetation. Many of the parameters are 

measured or is calculated from meteorological data. Equation (1) is used for the direct 

calculation of any crop evapotranspiration because the surface and aerodynamic resistances are 

crop specific. 
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2.1.3 FAO considerations 

To obviate the necessity to outline distinctive ET parameters for every crop and stage of growth, 

the ideaof a reference surface was introduced. ET rates of the varied crops are associated with 

the ET rate from the reference surface (ETo) by crop coefficients (Doorenbos and Pruitt, 1977) 

(Allen et al., 1998a). 

First, the open water surface has been suggested as a reference surface. However, the variations 

in vegetation management, aerodynamic circumstances, and radiation characteristics pose a 

challenge in relating ET to measurements of free water evaporation. Relating ET0 to a selected 

crop has the advantage of incorporating the biological and physical processes concerned in ET 

from cropped surfaces (Doorenbos and Pruitt, 1977) (Allen et al., 1998a). 

Grass is a well-studied crop concerning its aerodynamic and surface characteristics and is 

accepted worldwide as a reference surface. As a result of the resistance to diffusion of vapour 

powerfully depends on crop height, ground cover, LAI and soil wetness conditions, the 

characteristics of the reference crop ought to be outlined. Changes in crop height led to 

variations in roughness and LAI. Consequently, the associated canopy resistances can vary 

appreciably with time. Moreover, water stress and (also the) degree of ground cover have a 

control on the resistances and also on the albedo (Doorenbos and Pruitt, 1977). Allen et al. 

(1998a) accepted the following unambiguous definition for the reference surface as shown in 

Figure 3. 

"A hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resistance 

of 70 s m-1 and an albedo of 0.23."  

The FAO Penman-Monteith method became a standard, because the evapotranspiration of this 

reference surface (ETo) may be unambiguously determined, and this method provides consistent 

ET0 values over various regions and climates. 
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Figure 3. Characteristics of the hypothetical reference crop (Allen et al., 1998a) 

2.1.4 ET computed from meteorological data. 

Due to the difficulty of getting correct field measurements, ET is often computed from weather 

data. A large variety of empirical or semi-empirical equations are developed for assessing crop 

or reference crop evapotranspiration from meteorological data. Several of them are solely valid 

beneath specific climatic and agronomical conditions and cannot be applied under conditions 

different from the ones they were originally developed. 

The FAO Penman-Monteith equation is recommended since it is the most often used approach 

for defining and computing the ET.This method needs air temperature, radiation, wind speed 

data and Humidity. From the initial Penman-Monteith equation (Eq. 1), FAO will be derived:  

(Allen et al., 1998a).  

 

 
𝐸𝑇𝑜 =

0.408. 𝐷. (𝑅𝑛 − 𝐺) + 900. 𝛾. 𝑈2. (𝑒𝑠 − 𝑒𝑎)/ (𝑇 + 273)

𝐷 + 𝛾. (1 + 0.34𝑈2)
 

               (2) 

 

Where: ETo: Reference evapotranspiration (mm.day-1). 

G: Soil heat flux density (MJ.m-2.day-1). 

U2: Wind speed at 2 m height (m.s-1) 

 ea: Actual vapor pressure (kPa). 

 T: Mean daily air temperature at 2 m height (°C). 

γ: Psychrometric constant (kPa. °C
-1).  

Rn: Net radiation at the crop surface (MJ.m-2.day-1). 

 es: Saturation vapor pressure (kPa). 

 D: Slope vapour pressure curve (kPa. °C
-1). 

 No weather-based evapotranspiration equation will be expected to predict evapotranspiration 

underneath each climatically scenario because of simplification in formulation and errors in 

data measurements.  

2.1.5 Crop Evapotranspiration ETc  

This is the evapotranspiration from disease free, well-fertilized crops, grownup in big fields, 

underneath optimum soil water conditions and achieving full production under the given 

weather conditions (Allen et al., 1998a). The ETc differs from the ETo according to the crop 

characteristics. Principally, the aerodynamic resistances of the crops are different from that of 
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the grass used as a reference (Allen et al., 1998a). Such distinction of characteristics between 

crops and grass are mirrored by the crop constant or coefficient, that may be single (Kc) or dual: 

basal crop coefficient (Kcb) + soil evaporation coefficient (Ke). 

The single crop coefficient approach is principally used for producing the irrigation schedule, 

and water management purposes whereas the twin crop constant approach is usually applicable 

simulating the irrigation schedule or in real time irrigation programming wherever elaborate 

evaporation knowledge are required. Crop evapotranspiration ET is calculated by multiplying 

ETo by the crop constant Kc: 

 

 𝐸𝑇𝑐 = 𝐾𝑐 × 𝐸𝑇𝑜 (3) 

2.1.6 Crop Coefficients Kc 

According to (Allen et al., 1998a), the various crop development stages are: 

- Initial stage: it starts from planting date to around 10% ground cover. 

- Development stage: it runs from 10% ground cover to effective full cover. Effective full cover 

for several crops happens at the initiation of flowering. 

- Mid-season stage: it runs from effective full cowl to the beginning of maturity. the beginning 

of maturity is commonly indicated by the start of the ageing, yellowing or senescence of leaves, 

leaf drop, or the browning of fruit to the degree that the crop evapotranspiration is reduced 

relative to the ETo. 

- Late season stage: it runs from the beginning of maturity to harvest or full senescence. 

The Penman-Monteith equation illustrate the physical and physiological factors governing the 

evapotranspiration. The crop coefficients can be calculated by dividing the crop 

evapotranspiration (ETc) with the calculated ETo, i.e., Kc = ETc/ETo. 

the crop coefficient differs from one crop to the other according to the plant morphology and 

the age of the plant, which leads to a difference in the evapotranspiration between the crops. 

Typical trends in kc throughout the growing period are diagrammatic within the crop coefficient 

curve (Figure 4). 
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Figure 4. Crop coefficient curve (Allen et al., 1998a) 

2.3 Remote sensing-based ET estimation methods 

Remote sensing data acquired by sensors on satellites or airplanes are thought to be useful for 

providing spatial evapotranspiration information. However, one of the limitations of this 

technique is the scarcity of information with sufficiently high temporal resolution and precision. 

Numerous models that simulate crop growth and hydrological cycle have been developed over 

the last ten years. These models provide strategies for managing the usage and distribution of 

water as well as improving in our understanding of the process of plant development. The 

primary factor in the water balance is evapotranspiration, which uses the majority of irrigation 

water and rainfall in agricultural regions. 

2.3.1 Energy balance approaches 

Remote sensing surface energy balance methods calculate surface energy fluxes to define the 

energy that is used for evaporating water. For this, data from several sources are required. A 

part of them, which describes the state of the surface, is derived from remote sensing.  The other 

part, which describes mostly the state of the atmosphere and the incoming energy is derived 

from in situ observations. Actual evapotranspiration is proportional to the latent heat flux, so it 

is calculated as the residual of the energy balance equation (Moran et al., 1994), (Equation 4). 

 λ𝐸𝑇𝑎 = Rn − 𝐺 − 𝐻 (4) 

 

where: λ indicates the latent heat of the vaporization of water (𝑊. 𝑚2),  ETa is the actual 

evapotranspiration, Rn is the net radiation flux (𝑊. 𝑚2), G is the soil heat flux (𝑊. 𝑚2), and H 

is the sensible heat flux (𝑊. 𝑚2),.  
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the hemispherical surface reflectance is an important factor in determining net radiation and 

radiometric surface temperature (LST) obtained from thermal band images. as all these 

processes are done to obtain sensible heat flux. 

 LST and T0 are linked, although there are distinctions between the two aspects. (Norman, 

Kustas and Humes, 1995),  

Since each of them depends on several components, their interaction is quite complex. where 

T0 depends on surface aerodynamic roughness, wind speed, soil, and canopy cover as parts of 

the atmosphere while LST depends on the temperature of many elements that used the 

radiometer view. (Roerink et al., 1997). 

2.3.1.1 Surface Energy Balance Algorithm for Land  

Remote sensing provides great and unlimited possibilities for the assessment of land cover. The 

surface energy balance algorithm for land (SEBAL) is the one of the single source SEB models 

for estimating evapotranspiration from the remote sensing. It calculates the evapotranspiration 

from the energy balance pixel by pixel (Bastiaanssen W.G.M. et al., 1998). 

The latent heat flux is computed directly from the surface energy balance at satellite over-pass, 

on a pixel-by-pixel basis.  

The SEBAL model uses remote sensing to estimate the parameters related to the surface, such 

as temperature, normalized vegetation index and then associates these elements with 

information from meteorological and agricultural stations such as wind speed and crop height 

to calculate instantaneous net radiation and soil heat flux. The model depends on the estimation 

of the difference between land surface temperature and air temperature (dT (K)), and the 

aerodynamic resistance (ra (s.m−1)) of the atmosphere for the calculation of sensible heat flux 

H. Two extreme points need to be selected within the processed image. One is the ‘cold point,’ 

where sensible heat flux is approaching 0 and the other is the ‘hot point’, where the potential 

heat flux is approaching 0. Based on these two points, a linear relationship between land surface 

temperature and dT is established. Then the energy balance equation is applied to calculate the 

instantaneous ET for the satellite overpass.  

2.3.1.2 Surface Energy Balance System 

Surface Energy Balance System (SEBS) model developed by Su (2002) to estimate 

evapotranspiration, needs two types of data: the first group includes land surface albedo, 

emissivity, temperature, fractional vegetation coverage and leaf area index, and the height of 
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the vegetation (or roughness height); these data can be retrieved from the satellite images. The 

second group comprises air pressure, temperature, humidity, and wind speed at a reference 

height, downward solar radiation, and downward longwave radiation these parameters can be 

determined from meteorological data directly or by using a model. This data can be used to 

estimate roughness length for heat transfer and evaporative fraction, The SEBS model is another 

physically based energy balance model that does not require any a priori knowledge of the 

actual turbulent heat fluxes. The model uses energy balance at wet and dry limiting conditions 

to compute instantaneous relative evaporation etc.  

SEBS model is based on the energy balance equation illustrated by equation (5).  

 𝑅𝑛 = λ𝐸𝑇𝑎 + 𝐺0 + 𝐻 (5) 

 

Where: 𝑅𝑛 is the net radiation, λE is the turbulent latent heat flux (λ is the latent heat of 

vaporization and ETa is the actual evapotranspiration), 𝐺0 is the soil heat flux (W. m−2) and H 

is the turbulent sensible heat flux (W. m−2).  

The calculation of net radiation flux on land surface, Rn (W. m−2), is given by equation (6). 

 𝑅𝑛 = (1 − α). 𝑅𝑠𝑤𝑑 + ℇ . 𝑅𝑙𝑤𝑑

− ℇ . σ . LST 

(6) 

 

Where: α is the albedo, 𝑅𝑠𝑤𝑑 is the downward solar radiation, ε is the emissivity of the surface, 

𝑅𝑙𝑤𝑑 is the downward longwave radiation, σ is the Stefan-Bolzmann constant, and LST is the 

surface temperature.  

The soil heat flux depends on land surface characteristics, soil water content, and other factors. 

The calculation of soil heat flux by SEBS model is given equation (7). 

 𝐺0 =𝑅𝑛 . (𝛤𝑐 + (1 − 𝑓𝑐). (𝛤𝑠 − 𝛤𝑐)) (7) 

 

in which it is assumed that the ratio of soil heat flux to net radiation 𝛤𝑐 = 0.05 for full vegetation 

canopy and 𝛤𝑠 = 0.315 for bare soil. An interpolation is then performed between these limiting 

cases using the fractional canopy coverage, 𝑓𝑐. 

The calculation of sensible heat flux is calculated using equation (8). 
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𝐻 = ((𝑅𝑛 − 𝐺0) −  

𝜌𝐶𝑝

𝑟𝑒𝑤
.
𝑒𝑠 − 𝑒

𝛾
) 1⁄ +

𝛥

𝛾
 

 

(8) 

 

We will use SEBS to estimate evaporation fraction by makes energy balance at limiting cases 

at dry limit and the wet limit as shown in equation (9). 

 

 
Λ𝑟 = 1 −

𝐻 − 𝐻𝑤𝑒𝑡

𝐻𝑑𝑟𝑦 − 𝐻𝑤𝑒𝑡
 

 

(9) 

 

Where: the 𝐻𝑤𝑒𝑡 is sensible heat flux at the wet limit and 𝐻𝑑𝑟𝑦sensible heat flux at the dry 

limit.                                                    

Since the ET ration Λ is a constant during a day, the daily ET24 (mm) can be estimated using 

the equations (10, 11). 

 
Λ =

λE

 𝑅𝑛 −𝐺0
=

  Λ𝑟 − λ E𝑤𝑒𝑡

𝑅𝑛 − 𝐺
 

 

(10) 

 

 
𝐸𝑑𝑎𝑖𝑙𝑦 = Λ0

24 × 8.64 × 107 ×
𝑅𝑁 − 𝐺0

λ𝜌𝑤
 

 

(11) 

 

Where:   Λ𝑟  is relative evaporation, Λ0
24daily evaporative fraction, 𝜌𝑤density of water 

measured in kilograms per cubic meter. and λ is the latent heat of vaporization. 

2.3.2 Land surface temperature downscaling 

Many scientists have been studying land surface temperature (LST) because of its significant 

importance in water management science due to its direct effect on the hydrological water cycle. 

This effect is one of the most prominent factors affecting evapotranspiration (Zakšek and Oštir, 

2012; Zhan et al., 2013; Pan et al., 2018; Li et al., 2019). deriving land surface temperature 

from thermal remote sensing is one of the most promising means of achieving the mission, 

whether at the regional or global scale (Zhang et al., 2016). The emergence of thermal sensors 

with high spatial resolution has improved and raised the quality of calculating LST (Adi 

Nugraha, Gunawan and Kamal, 2019; Bartkowiak, Castelli and Notarnicola, 2019), as these 
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sensors have a spatial resolution of 60-100 meters. However, with this high spatial resolution, 

the challenge is the poor temporal resolution, where the revisit time for these sensors is around 

16 days (Hutengs and Vohland, 2016). One of these sensors is the Landsat 8 OLI TIRS, which 

has two thermal bands with 100 m resolution (U.S. Geological Survey, 2016). On the other 

hand, several sensors with low spatial resolution produce high temporal resolution images with 

a repetition time varying  from less than an hour to three days (Hutengs and Vohland, 2016; 

Yang et al., 2017). The poor spatial resolution of the evapotranspiration retrieved from MODIS 

data is one of the most important reasons for its limited suitability for scheduling and planning 

irrigation (Bindhu, Narasimhan and Sudheer, 2013; Pu, 2021). In developing countries, the 

agricultural lands are partitioned into small fields of less than 1 square kilometre. Applying 

coarse-resolution thermal data to the small fields, one faces a problem called the thermal mixing 

effect, resulting from the differences in the thermal properties of the land cover classes within 

one pixel. Therefore, this problem needs to be addressed, e.g., by finding a relationship between 

the temporal and spatial resolutions of the thermal images (Mukherjee, Joshi and Garg, 2014). 

The downscaling process is defined as increasing spatial resolution by finding values of the 

smaller pixels as a function of the original measurement with the coarse pixel size and some 

additional information or in a simplified way, it can be described as decreasing the pixel size 

(Atkinson, 2013; Sattari, Hashim and Pour, 2018). There are many different approaches that 

have been followed for the downscaling of LST (Mukherjee, Joshi and Garg, 2014), but the 

most popular approach is the disaggregation of LST based on a co-variable. The approach 

improves the resolution of LST, whether spatially or temporally, and makes it suitable for many 

applications, e.g., with all applications that include the surface energy balance (SEB) (Zhan et 

al., 2013). Maybe the most famous of these approaches is DisTrad (disaggregation procedure 

of radiometric surface temperature). Its principle is to find a mathematical relationship between 

the radiometric surface temperature and the normalized difference vegetation index NDVI 

through the inverse relationship between the LST and the NDVI (Kustas et al., 2003; Yang et 

al., 2019). A further developed approach is TsHARP (Temperature Sharpening), which is a 

modulation of the DisTrad, based on a linear relationship between the vegetation fractional 

cover (FC) and LST (Agam et al., 2007). 

To parameterise the regression equation between the vegetation index and the surface 

temperature, Kustas has developed a process of aggregating the NDVI map and then calculating 

the coefficient of variation (CV) of the native NDVI values within each pixel in the aggregated 

map, using 25% of the aggregated pixels with the lowest coefficients of variation for defining 
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the coefficients of the regression equation (Kustas et al., 2003). This approach was successfully 

tested on homogenous areas, but when used on heterogenous areas, the problem of 

representativity occurs. Accordingly, the approach needs to be improved for heterogeneous 

areas (Mukherjee, Joshi and Garg, 2014; Ebrahimy and Azadbakht, 2019). This work aims to 

improve the DisTrad approach for downscaling LST for heterogeneous areas and improve the 

temporal and spatial distribution of the calculated high-resolution evapotranspiration maps. 

2.5 Irrigation demand and efficiency 

Water management for agricultural purposes is a complex task because it depends on several 

factors: social, environmental, and political factors such as population growth rate, change in 

water use patterns, climate changes, change in hydraulic systems of rivers and the development 

of water resources in riparian countries. it is performance still far below its potential especially 

in drought-prone areas, which has made the level of agricultural production and irrigation 

economically inefficient(Caldwell et al., 1999). Effective irrigation systems are inevitable in 

providing adequate food to the world. Agriculture consumes about 60 to 70 % of the world’s 

freshwater resources in the irrigation process, and the irrigation systems have efficiency ranging 

from 30 to 60 %. Although the available resources are mostly renewable, they have a higher 

limit for regeneration that cannot be exceeded (Darshana et al., 2012). With the global 

population explosion, there is an excessive pressure on the freshwater resources. Irrigated 

agriculture is the most stressing sector, consuming a high percentage of fresh water, although 

it is highly competitive with other sectors such as the industry and the domestic sector. With 

the increase in population and the reduction  in the amount of water available for agricultural 

purposes, the agricultural sector is facing  a major challenge as it must increase food production 

using less water, i.e., to increase the crop water productivity (Zwart and Bastiaanssen, 2004a). 

Methods for assessing the performance of irrigation using data from satellites are being 

developed since the second half of the 1980s. There is a consensus that it is difficult to gather 

reliable and continuous terrestrial information on it. Initially, the focus was on the relationship 

between quantifying of water use and cultivated area, but later attention was given to other 

aspects such as the crop water requirements, water productivity, water stress and salinity of 

water (Akdim et al., 2014).  Crop water productivity considered as one of important methods 

to evaluate the irrigation efficiency and its defined by (Zwart and Bastiaanssen, 2004a) is the 

marketing value of crop  yield divided by actual evapotranspiration. The three major steps for 

mapping process in producing water productivity map are: Crop productivity maps (CPMs; 
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kg.m-2 or  kg/pixel), Water use (actual ET) maps (WUMs; m3.m-2 or m3.pixel-1) and Water 

productivity  maps (WPMs; kg.m-3) (Thenkabail, 2008). 

Engineers and scientists must carefully clarify the efficiency keywords they use in irrigation 

research to minimize reader misunderstanding. More importantly, they should consider 

adopting terminology based on the physics of the water resource system and mass conservation 

to minimize public misconceptions. Authors must also avoid making assertions that are either 

false or misleading. 

2.5.1 Water balance 

In this cause the calculation is going to be based on a daily accounting of all ingoing and 

outgoing water in the root zone according to (Toureiro et al., 2017) 

 𝜃𝑚𝑖 = 𝜃𝑚𝑖−1 + 𝑃𝑖 + 𝐼𝑖 + 𝐶𝑅𝑖 − 𝑅𝑂𝑖 − 𝐷𝑃𝑖 − 𝐸𝑇𝑐𝑎𝑖 (12) 

 

Where: 

i= day in the calculation procedure 

𝜃𝑚 = water content within the soil root depth 

P = total rainfall  

I = the effective depth of water applied with irrigation  

CR = capillary rise from deep (free) water table 

RO= run off 

DP= deep percolation 

ETca= Actual crop evapotranspiration, crop water consumption. 

2.5.2 Irrigation efficiency 

When analysing the performance of an irrigated unit, the water balance component is commonly 

expressed as a ratio relative to the gross water supply provided to the study area. The primary 

ratio is often known as irrigation efficiency (Ei). It denotes the amount of irrigation water 

delivered to the target region that has evaporated or been used. Typically, this proportion is 

represented as a percentage as shown in equation (13). 

 
𝐸𝑖 =

𝐸𝑇𝑖

𝑊𝑔 − 𝑃𝑒
 

 

(13) 
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where ETi is the portion of irrigation water provided that was used by E and T, 𝑊𝑔 is the gross 

supply, and Pe is the effective precipitation or precipitation that decreases the quantity of 

irrigation water required. 

The other term refers to ratio of irrigation water given to water balance components that are not 

used, i.e., that stay in liquid form someplace in the system, are stored, or drain from the system 

as shown in equation (14). 

 
(1 − 𝐸𝑖) =

𝛥𝑠 + 𝑅𝑠 + 𝐷

𝑊𝑔 − 𝑃𝑒
 

 

(14) 

 

And because the amount of water changes in the root zone is small the ΔS can be ignored and 

then the equation (15) will in this format. 

                             (1 − 𝐸𝑖) =
𝑅𝑠+𝐷

𝑊𝑔−𝑃𝑒
 (15) 

 

2.6 Crop water stress 

Crop classifications, harvest management, crop yield forecasting, disease detection and 

management, crop wellness evaluation, and crop water stress detection are all examples of 

remote sensing uses in farming. Crop water stress must be detected in different growing seasons 

in order to estimate plant conditions and manage irrigation schedule. Various approaches have 

been studied to differentiate crop water stress. These approaches are based on measurements of 

soil water, plant responses, and remote sensing (Virnodkar et al., 2020). 

In situ measurements of soil water content, plant characteristics, or climatic factors to estimate 

the quantity of water lost from the plant-soil system over a specific period are traditional 

approaches for monitoring agricultural water stress. These approaches are time consuming and 

yield point data that provides inadequate indicators of the general state of the field in 

consideration (González-Dugo et al., 2006), Evapotranspiration models, on the other hand, 

assume a freely transpiring reference crop with uniform cover and soil type within a field. These 

approaches are time consuming and yield point data that provides poor indicators of the general 

state of the field. Other techniques of detecting plant water status include soil water balance 

calculations, direct and indirect detection of plant water status via stomatal conductance and 

leaf water potential, and so on. Due to soil and crop canopy heterogeneity, these procedures, 
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while reliable, are labour expensive, damaging, and unsuited for automation(Ihuoma and 

Madramootoo, 2017). 

To boost water savings and improve agricultural sustainability, optimal irrigation scheduling 

methods must be implemented, as well as early identification of water stress in crops before it 

causes permanent damage and yield loss. Recent research has concentrated on the use of 

remotely sensed data as an alternative to standard field measurements of plant stress indices, as 

this gives information regarding crop spatial and temporal distribution (Zhao et al., 2015). 

2.7 Crop water stress indicators 

Water is an important factor in determining the quality and quantity of developed harvests 

(Virnodkar et al., 2020). Crop water stress is a lack of water availability, which can be 

recognized by a decrease in soil water content or by the physiological reactions of the plant to 

a water deficit. To satisfy their evapotranspiration demands, plants consume root zone soil 

water, which depletes soil accessible water. Under restricted soil moisture circumstances, 

chemical and hydraulic signals are sent to the plant leaf via xylem pathways, resulting in 

physiological responses such as stomatal closure and photosynthetic rate decreases. 

Water stressed crops exhibit lower evapotranspiration and other signs such as leaf wilting, 

stunted development, and decreased leaf area. Furthermore, water stress has a negative impact 

on crop physiological and nutritional development, resulting in decreased biomass, yield, and 

crop quality(Ihuoma and Madramootoo, 2017). 

Water shortage is another major issue in arid and semi-arid regions. Proper water management 

is thus required in such areas where irrigation is a critical component in achieving the target 

agricultural output, crop quality, and water usage. To regulate irrigation management and 

scheduling, one must first identify the quantity and time of the water supply, which may be 

done by a good spatial evaluation of plant water stress. Table 1 provides a comparison of 

traditional and current crop water stress evaluation methodologies, which are briefly explained 

below. 

Table  1. A description of the methods for measuring plant water stress(Ihuoma and Madramootoo, 

2017). 

Methods Description Advantages Disadvantages 

1. Soil water 

measurement 
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(a) Gravimetric 

method 

Sampling of soil, 

which is weighed, 

oven-dried and 

reweighed to 

estimate the amount 

of water lost from 

the plant-soil system 

It is reliable and 

serves as a guide on 

the amount of water 

to apply during 

irrigation 

The method is labour 

intensive, 

destructive, and time 

consuming 

(b) Soil moisture 

sensors 

   

(I) Neutron probe Based on the 

emission of high 

energy neutrons by a 

radioactive source 

into the soil 

Fast, non-

destructive, and 

repetitive 

Requires adequate 

operator training, 

storage, licencing, 

and inspection, 

due to its radioactive 

source 

(II) TDR and FDR Based on the 

difference between 

the dielectric 

constant of water and 

soil 

Precise and easy to 

apply in practice . 

Estimates soil water 

levels at different 

depths along the soil 

profile. Readings can 

be logged 

automatically 

Several sensors are 

required for an 

entire field. 

Prohibitive cost of 

installation 

of sensors 

(III) Tensiometers Measures soil water 

Potential 

Easy to use for 

irrigation scheduling 

Useful in coarse 

textured soils or in 

high frequency 

irrigation only. Used 

for a narrow range of 

available soil 

water 

2. Soil water balance 

approach 

Indirect estimate of 

soil moisture status 

Good indicator of the 

amount of 

Not perfectly 

accurate and requires 

calibration with 
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based on soil water 

balance calculations 

irrigation water and 

easy to apply 

actual soil 

measurements. 

Requires estimate of 

evaporation, rainfall, 

and irrigation 

events 

3. Plant-based 

approaches 

   

(a) Stomatal 

conductance 

Indirect indicator of 

plant water stress by 

measuring the 

stomata opening 

Good measure of 

plant water status . 

Used as benchmark 

for most research 

Studies 

Labour intensive and 

unsuitable for 

automation and 

commercial 

application. Not 

exactly accurate for 

an isohydric crops 

(b) Leaf water 

potential 

Direct measurement 

of leaf water content 

Widely accepted 

reference technique 

Slow, destructive, 

and unsuitable for 

isohydric crops 

(c) Relative water 

content 

Direct measurement 

of leaf water status 

Good indicator plant 

water status, 

requiring less 

sophisticated 

equipment 

Destructive and time 

consuming 

(d) Sap flow 

measurement 

Measures the rate of 

transpiration through 

heat pulse 

Sensitive to stomatal 

closure and water 

deficits. Adapted for 

automated recording 

and control of 

irrigation systems 

Needs calibration for 

each tree and is 

difficult to replicate. 

Requires complex 

instrumentation and 

expertise 

(e) Stem and fruit 

diameter 

Measures fluctuation 

in stem and fruit 

diameters in 

Sensitive measure of 

plant water stress 

Not useful for the 

control of high 

frequency irrigation 

systems 
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response to changes 

in water content 

4. Remote sensing 

methods 

   

(a) Infrared 

thermometry 

Measures canopy 

temperature, which 

increases as a result 

of water stress 

Reliable and non-

destructive 

Based on only a few 

point measurements. 

Does not account for 

soil and crop 

heterogeneity 

(I) CWSI Uses the difference 

between canopy and 

air temperatures to 

quantify crop water 

stress 

Sensitive to stomatal 

closure and crop 

water deficit 

Influenced by cloud 

cover, requires 

different baselines 

for different crops 

(II) DANS, DACT, 

and Tc ratio 

Measure single 

canopy temperature 

for quantifying water 

stress 

Require less data 

than CWSI for 

detecting water 

stress. Tc ratio gives 

quantitative water 

stress coefficient 

(Ks) for calculating 

crop ET 

Difficult to scale up 

to large cropped 

fields. 

(b) Spectral 

vegetation indices 

   

(i) Structural indices Measures reflectance 

indices within the 

VIS and NIR  

Non-destructive with 

high temporal and 

spectral resolution 

Requisite image 

analysis is still a 

  

spectral range 

(NDVI, RDVI, 

OSAVI, TCARI) to 

 challenging task. 

Precision reduces 

from leaf scale to 

canopy scale 
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indicate canopy 

changes due to water 

stress 

(ii) Xanthophyll 

indices 

Measures PRI and 

PRInorm, which are 

sensitive to the 

epoxidation state of 

the xanthophyll cycle 

pigments 

Account for 

physiological 

changes in 

photosynthetic 

pigment changes due 

to water stress 

More work is needed 

to convert raw 

imagery to user-

friendly irrigation 

application 

(iii) Water indices Measures the 

reflectance trough in 

the near-infrared 

region (WI, SRWI, 

and NDWI) used to 

represent canopy 

moisture content 

Rapid and non-

destructive measure 

of leaf water content 

Problem of scaling 

up to canopy level 

 

2.7.1 Field observation- based indicators  

 Measurement of the soil water 

In situ observations of soil water content, plant characteristics, or climatic factors are used to 

estimate the quantity of water lost from the plant-soil system during a specific period in 

traditional agricultural water stress monitoring methods. These approaches are time-consuming 

and yield point data that provides poor indications of the field's general state(González-Dugo 

et al., 2006). Information about the soil moisture it is a key role for agronomic, hydrological, 

and meteorological processes. It can also be a good indicator for detecting water stress and 

managing irrigation(Sharma et al., 2018). 

 Plant responses 

Plant-based indicators are commonly used to monitor water stress and plan irrigation. Measures 

of soil water or atmospheric demand are equally important for irrigation scheduling, but the 

benefit of plant-based measurements is that the plant acts as a biosensor, integrating soil and 

atmospheric water status as well as the plant's physiological reaction to available water. For the 

goal of scheduling irrigation, many approaches based on the measurement of plant factors have 

been devised. The most commonly used methods are either traditional, non-automated methods 



38 

 

for measuring leaf or stem water status, stomatal conductance, or photosynthesis, or methods 

in which records are taken continuously and automatically, based on measurements of sap flow, 

trunk diameter, and leaf turgor pressure(Fernández, 2017). 

2.7.2 Remote sensing methods 

Evapotranspiration based method 

Evapotranspiration can be described as indicator of water lost to the atmosphere through the 

evaporation from the soil and transpiration from the plants. Which effect on  hydrological water 

cycle, plants water status and agricultural planning(H . L. P e n m a n, 1947). For model 

simulations or empirical equations, ET estimation requires meteorological data. However, 

because to the diversity of land cover and temporal changes in the environment, these 

methodologies are not practical for estimating ET at a regional scale. The Penman–Monteith 

equation is now the most often used technique for determining ET. Because of the point-based 

approach, this strategy is confined to the local scale and hence unsuitable for large diverse areas. 

The RS approach has to be introduced to analyse ET at the local and regional levels. RS allows 

for large area coverage with high-resolution images in an immediate perspective, and the data 

may be used to obtain metrics such as radiometric surface temperature, VI, and albedo, 

therefore, Data are more suited for estimating ET using energy balance approaches. Most 

remote sensing methods used to determine ET employ the energy balance concept and net 

radiation as the primary factors (Virnodkar et al., 2020). 

Spectral indices 

Remote sensing has created the opportunity to cover a vast field using non-invasive and 

productive approaches for detecting geographical variations in plant water status with high 

temporal resolution. Because they are non-destructive and labour- and time-intensive, remote 

sensing technologies based on spectral vegetation indices and infrared thermometry are 

commonly utilized for agricultural water stress detection. In vegetation studies that employ 

spectral reflectance of crops, the remote sensing approach is widely used. The wavelength of 

electromagnetic radiation gathered from things on Earth is measured by spectral reflectance. 

Plant biochemical and biophysical parameters, such as biomass, crop evapotranspiration, and 

canopy water content, are linked to the spectral qualities required to calculate spectral 

reflectance. Spectral indices are mathematical combinations of two or more spectral bands that 

are used to assess water stress in crops. The water index is one of many spectral water and 

vegetation indexes (WI)(Zarco-Tejada et al., 2013). 
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Land surface temperature-based technique  

Although using the derived LST from satellite data in the Idso technique for calculating CWSI 

simplifies the process, it is still essential to measure Ta in the field and do some preliminary 

calculations to determine dT, dTl, and dTu. To overcome these challenges, (Veysi et al., 2017) 

present a novel method for calculating CWSI that is entirely based on satellite data and does 

not use any simplified calculations. The CWSI was calculated by replacing dTl (for non-

transpiring crops) and dTu (for well-watered crops) with extracted values of TCold and THot 

from satellite images, respectively as Eq (16). 

 
𝐶𝑊𝑆𝐼 =

  T𝑆 −  T𝐶𝑜𝑙𝑑

𝑇𝐻𝑜𝑡 − 𝑇𝐶𝑜𝑙𝑑
 

(16) 

Where   T𝑆 is LST over the crop,  T𝐶𝑜𝑙𝑑 is temperature for the well-watered plants, 𝑇𝐶𝑜𝑙𝑑 is the 

temperature for the pixels with maximum amount of water stress. The approach for picking the 

cold pixel is almost identical to (Bastiaanssen W.G.M. et al., 1998) suggested method for 

estimating evapotranspiration using the surface energy balance algorithm for land (SEBAL). 

The strategy used in this approach for choosing the hot pixel differs from that proposed by 

(Bastiaanssen W.G.M. et al., 1998). The hot pixel in SEBAL must be chosen from the bare soil 

region, however, in this approach, the hot pixel should be a pixel covered by a plant with the 

highest level of water stress, as suggested by the CWSI. As a result, a threshold of NDVI > 0.2 

was applied to pictures to assess the area covered by vegetation before selecting the Hot pixel. 

Then, 10% of pixels with the greatest temperature were chosen, and the hot pixel was chosen 

from among them (Veysi et al., 2017). 

 

 

 

 

3. RESEARCH METHOD 

3.1 Study area 

The construction of the Aswan High Dam caused the inundation of the old town of Wadi Halfa 

by Lake Nasser. The New Halfa Agricultural Scheme was initiated in response, as Sudan's 

largest resettlement project at the time. The New Halfa Agricultural Scheme is a 185,000 ha 
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agricultural settlement scheme on the western side of Kassala State, roughly 400 km east of 

Khartoum (Laxén, 2007). The project is located on the Butana plain, along the Atbara River. 

At the time of its construction, the New Halfa Scheme was Sudan's second-largest irrigation 

project after the Gezira Scheme, which is still the world's largest irrigation scheme. Sudan's 

irrigation agency manages the water through the Khasm el Girba dam on the Atbara river 

(Wallin, 2014). Climatology the area lies in the dry climatic zone, with annual rainfall varying 

from 200- 300 mm concentrated mainly in July and August, the highest mean daily maximum 

temperature is 42 C in May, and the lowest mean daily minimum temperature is 14 C in January. 

Humidity is low most of the year and solar radiation is very high (Adam, 2002). The irrigation 

system is gravity-fed, with the main canal transporting water to the project area via a network 

of subsidiary canals and by motorized pumps in the small scheme areas. The irrigation system 

includes main canals, branch canals, minor canals, quaternary canals, and tertiary farm ditches. 

Field irrigation is done using the traditional flooding (Angaya) approach. There are significant 

water losses in the system, reducing the available freshwater supplies, like evaporation, 

conveyance losses due to infiltration, etc. (Wallin, 2014). The dam was initially intended to 

store 1.3 billion cubic meters of water. However, by 1976, the reservoir's storage capacity had 

been decreased to 0.8 billion cubic meters due to significant siltation originated from the 

upstream catchment of the river Atbara in Ethiopia's highlands (Laxén, 2007). The reservoir's 

capacity is now about 0.6 billion m3. During the growing season, water in the smaller canals 

typically flows permanently. Farmers, however, have complained that some regions receive 

less water than others. Since the reservoir's capacity is dwindling, the irrigated area is shrinking 

too. Each agricultural settler was given a 15-feddan hawasha (6.3 ha tenancy) to cultivate 

cotton, wheat, or sorghum, as well as groundnuts. Mostly cotton was chosen since it is the most 

important cash crop for the government to provide hard currency and profit for the tenants. 

Groundnuts are the scheme's second most significant cash crop, and wheat and sorghum were 

grown as food security crops (Wallin, 2014). 



41 

 

 

Figure 5. location map describes the study area. 

3.2 The framework of the research 

This research study is based on the calculation of crop water productivity, irrigation 

performance assessment and scheduling irrigation for the wheat crop in the New Halfa project. 

This study is based on several types of data and information such as evapotranspiration, water 

balance of soil, water requirement for wheat crop and methods of irrigation performance 

assessment as shown in Figure 6: 

 

 

 

 

 

 

 

Latitude 15° and 17°, Longitude 35° and 36° 
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Figure 6. Flow chart of the research 

 

3.3 Land surface temperature downscaling 

3.3.1 The DisTrad downscaling procedure for radiometric surface temperature 

For finding a mathematical relationship between the radiometric surface temperature and the 

normalized difference vegetation index, Kustas et al. (Kustas et al., 2003) suggested 

aggregating the fine-resolution NDVI map to the same coarse-resolution as of the LST map and 

then to define the regression coefficients of Equation (17) with a least square fitting using a 

second order polynomial. 

 

 𝐿𝑆𝑇𝐶𝑅
∗ = 𝑎 + 𝑏 𝑁𝐷𝑉𝐼𝐶𝑅 + 𝑐 𝑁𝐷𝑉𝐼𝐶𝑅

2  (17) 
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Where: 

𝐿𝑆𝑇𝐶𝑅
∗  : Land surface temperature at the coarser resolution (°C). 

𝑁𝐷𝑉𝐼𝐶𝑅: Aggregated normalized difference vegetation index at the coarser resolution (-). 

The LST is influenced not only by the vegetation cover but also by other factors, such as soil 

moisture (Srivastava et al., 2013). When these factors are overlooked during the downscaling 

process, the results are affected by the spatial variation of the factor values. To overcome this 

problem (Kustas et al., 2003) used the difference of the aggregated downscaled LST and the 

original one (Equation (35)) for each pixel, to estimate the error that represented the influence 

of other factors, such as soil moisture, and then used it for correction by Equation (18). 

 

 ∆𝑇̂𝐶𝑅 = 𝐿𝑆𝑇𝐶𝑅 − 𝐿𝑆𝑇̂𝐶𝑅 (18) 

 

Where: 

∆𝑇̂𝐶𝑅: residual of the land surface temperature (°C). 

𝐿𝑆𝑇𝐶𝑅: land surface temperature defined from the satellite measurement (°C). 

𝐿𝑆𝑇̂𝐶𝑅: aggregated downscaled land surface temperature (°C). 

 

 𝐿𝑆𝑇𝐹𝑅 = 𝐿𝑆𝑇𝐹𝑅
∗ + ∆𝑇̂𝐶𝑅 (19) 

 

Where: 

𝐿𝑆𝑇𝐹𝑅: Corrected, downscaled land surface temperature at the fine resolution (°C). 

𝐿𝑆𝑇𝐹𝑅
∗ : Land surface temperature calculated by Equation (34) from the original fine-resolution 

NDVI (°C). 

In practice, for defining the NDVI-LST relationship, the coarse-resolution NDVI map was 

divided into three NDVI classes and the coefficient of variation of the fine-resolution NDVI 

values within each coarse-resolution pixel was calculated. For avoiding the influence of 

heterogeneity, this map was divided into three classes: NDVI < 0.2 for the bare soil, 

0.2 < NDVI < 0.5 for the partial vegetation, and NDVI > 0.5 for the full vegetation. Finally, 
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25% of the pixels, with the lowest coefficient of variation, were selected from each group to 

obtain the correlation (Kustas et al., 2003). 

3.3.2 DisTrad modification 

The study area may be classified as a mixed landscape with a variety of distinct land cover 

types (dense vegetation, medium dense vegetation, low-density vegetation, bare soil, urban 

areas, and water). The DisTrad approach is based on the correlation between the LST and 

NDVI. The original approach uses a second-order polynomial regression, assuming a non-linear 

relationship between the two variables. However, in certain cases, outliers at the edges of the 

value range may strongly affect the second-order polynomial. To circumvent this issue, we 

tested whether a linear regression would improve the robustness of the regression equation. 

Furthermore, the original DisTrad technique recommends using 25% of the aggregated pixels 

with the lowest coefficients of variation for parameterising the regression equation. 

Nonetheless, in the case of a heterogonous area (e.g., due to small agricultural fields relative to 

the coarse pixel size), where the CV of the original NDVI values within most of the coarse-

resolution pixels is relatively high, we tested the effect of using only 10% of the aggregated 

pixels with the lowest coefficients of variation in defining the parameters of the regression 

equation. 

3.4 Evapotranspiration estimation 

Evapotranspiration is one of the largest fluxes in the water balance of arid and semi-arid regions. 

Due to the large temporal and spatial variation of ETa, there will be a need for a high spatial 

resolution for all the inputs for measuring the ETa by using earth observation, which is not 

available for the LST. Therefore, there is a need to downscale the available low spatial 

resolution data, like MODIS. 

For the period December–March 2017/2018, 67 MODIS images and 7 Landsat images were 

collected that were relatively cloud-free and relevant to the research region. The images were 

spatially registered to each other and to the Universal Transverse Mercator map projection 

(UTM zone 36N - EPSG:29636). 

In this study, the Surface Energy Balance System (SEBS) (Su, 2002) have been applied to map 

wheat ETa. The remote sensing data of Landsat-8 and Sentinel-2 have been used. The SEBS 

model also requires the meteorological data, such as wind speed and air temperature as input. 

The meteorological data obtained from the Meteorological Bureau of New Halfa.  
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The SEBS model combines the remote sensing data and the meteorological data to calculate 

the instantaneous net radiation Rn, soil heat flux G and sensible heat flux. Then the energy 

balance equation is applied to calculate the instantaneous ET when the satellite passes over the 

study area. The daily evapotranspiration is calculated from the instantaneous ET using the 

assumption of constant evaporation fraction over the day, we will use Penman-Monteith method 

to calculate ET when the satellite images are not available. The calculation of the main 

parameters by the SEBS model is given as follows Su (2002). 

3.4.2 Preparation of the input data for SEBS 

To estimate actual evapotranspiration in SEBS the following data need to be prepared. 

Normalized different vegetation index (NDVI) for Lnadsat-8 

The NDVI was derived from Landsat 8 using Equations (20).  

 𝑁𝐷𝑉𝐼 =
𝜌5 − 𝜌4

𝜌5 + 𝜌4
  

(20) 

 

Where: 𝜌5 is the reflectance in band 5, and 𝜌4 is the reflectance in band 4. 

Normalized different vegetation index (NDVI) for Sentinel-2 

The NDVI was derived from Sentinel-2 by using Equations (21).  

 

 𝑁𝐷𝑉𝐼 =
𝜌8 − 𝜌4

𝜌8 + 𝜌4
  

(21) 

Where: 𝜌8 is the reflectance in band 8, and 𝜌4 is the reflectance in band 4.  

Figure 7 Spatial and temporal variation of the NDVI for the available Landsat-8 images during 

the winter season 2017-2018. 
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Figure 7. Spatial and temporal variation of the NDVI in the New Halfa scheme  



47 

 

Fraction of vegetation cover (FVC) 

FVC can be derived from NDVI maps. In this study, FVC was estimated as proposed by 

(Jiménez-Muñoz et al., 2009) for fully vegetated cover and bare soil, as presented in Equation 

(22). 

 
𝐹𝑉𝐶 =

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠
 

 

                                        (22) 

where 𝑁𝐷𝑉𝐼𝑠 represents the NDVI of bare soil, NDVI is the value of the actual pixel, and 

𝑁𝐷𝑉𝐼𝑣  corresponds to the NDVI value of the full vegetation canopy coverage. 

Emissivity 

The broad band land surface emissivity (𝜀) is calculated based on the FCV using Equation (23), 

which was introduced by Sobrino, Jiménez-Muñoz and Paolini (2004). 

 

 𝜀 = 0.004 × 𝐹𝑉𝐶 + 0.986 (23) 

 

Albedo 

Albedo is the reflectance of a surface over a wide range of wavelengths. It indicates the reflected 

fraction of incoming radiation. Landsat 8 and Sentinel-2 are Earth observation satellite projects 

that provide useful data for a variety of purposes such as land monitoring, environmental 

assessment, agriculture, and urban planning. While their aims are similar, there are variances 

in their sensor properties and band arrangements. Despite this, attempts have been undertaken 

to achieve functional equivalence between the two satellite systems. A broad explanation of the 

substitution of comparable bands between Landsat 8 and Sentinel-2 follows:  

Number of Bands: 

Landsat 8: It has 11 spectral bands. 

Sentinel-2: It has 13 spectral bands. 

Spectral Range: 

Landsat 8: Captures data in the visible, near infrared, and short-wave infrared regions. 

Sentinel-2: Also captures data in the visible, near-infrared, and short-wave infrared regions, 

with an extended range into the coastal and the water-vapor bands. 
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Equivalent Bands: 

To achieve functional equivalence and cross-compatibility between Landsat 8 and Sentinel-2 

data, scientists and researchers have identified corresponding bands with similar spectral 

characteristics.  the equivalent bands are as follows: 

Red (Landsat 8 Band 4) ≈ Red (Sentinel-2 Band 4) 

Green (Landsat 8 Band 3) ≈ Green (Sentinel-2 Band 3) 

Blue (Landsat 8 Band 2) ≈ Blue (Sentinel-2 Band 2) 

Near-Infrared (NIR) (Landsat 8 Band 5) ≈ Red-edge (Sentinel-2 Band 5) 

Short-Wave Infrared (SWIR) (Landsat 8 Band 6) ≈ Vegetation Red-Edge (Sentinel-2 Band 5) 

The broadband albedo was calculated using the Landsat 8 (OLI sensor) algorithm at the visible 

and NIR bands 2 to 7 in this study using Equation (24) and for Sentinel-2 as in the Equation 

(25) (Liang et al., 2003). 

 

 𝛼𝑂𝐿𝐼 = 0.362𝜌2 + 0.13𝜌4 + 0.373𝜌5 + 0.085𝜌6 + 0.072𝜌7 − 0.0018        (24) 

 

Where: 𝛼𝑂𝐿𝐼 is the shortwave albedo for Landsat, and 𝜌𝑖 is the reflectance of bands i=2, 4, 5, 

6 and 7. 

 

 𝛼𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 = 0.362𝜌2 + 0.13𝜌4 + 0.373𝜌8 + 0.085𝜌11 + 0.072𝜌12 − 0.0018     (25) 

 

Where: 𝜌𝑖 is the reflectance of bands i=2, 4, 8, 11 and 12. 

Meteorological data 

ERA5 provides data on planetary boundary layer height, incoming shortwave radiation, specific 

humidity, and pressure, while the ERA interim data set provides data on sunlight hours. 

The air temperature and wind speed inputs obtained from the New Halfa meteorological station. 

These data will be considered as representative of the study area. 
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3.4.3 Data and processing 

Various data were downloaded from different open data sources as shown in Table 2. 

Table  2. Data sources. 

Data Source Spatial      

Resolution 

Temporal    

Resolution 

Landsat 8 https://espa.cr.usgs.gov/ordering/new/ 30 m 16 days 

MODIS 

MOD11A1 V6 

https://earthexplorer.usgs.gov/ 1 km Daily 

NDVI https://espa.cr.usgs.gov/ordering/new/ 30 m 16 days 

Sunshine 

Duration 

https://apps.ecmwf.int/datasets/data/ 

interim-full-daily/levtype=sfc/ 

80 km Daily 

SRTM DEM https://earthexplorer.usgs.gov/ 30 m - 

Other climatic 

Data 

https://www.ecmwf.int/en/forecasts/ 

datasets/reanalysis-datasets/era5 

9 km Daily 

 

 

Figure 8 . Flow chart for SEBS. 

3.4.4 Retrieval of actual evapotranspiration in SEBS 

Using the SEBS extension in the ILWIS software, daily evapotranspiration was calculated from 

the MODIS Terra images. For all days of coinciding with the MODIS overpass, FVC, NDVI, 

emissivity, and albedo were calculated from Landsat 8 and Sentinel-2 images. Maps of 
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evaporative fraction, daily evapotranspiration, and relative evapotranspiration were produced. 

A total of sixty-seven maps were created, for the days when LST MODIS data was available. 

3.4.5 Validation of evapotranspiration 

SEBS-derived daily evapotranspiration was verified for the research region. 

Since in situ ET data were not available in the irrigated fields, the SEBS estimate was validated 

by comparing it to potential evapotranspiration estimated using crop coefficient and reference 

ET. This was based on the assumption that under irrigated conditions the crop's actual ET is 

approximately equal to the crop's potential evapotranspiration. Potential evapotranspiration 

(ETp) was estimated in the New Halfa scheme as a product of reference evapotranspiration 

(ET0) using the Penman-Monteith method and kc values.  

The coefficient of determination (R2), mean absolute error (MAE), and root mean square error 

(RMSE) are statistical measures of accuracy used to evaluate the performance of SEBS 

estimations (Equations 26, 27 and 28). 

                          𝑅2 = 1 −
∑(𝑋𝑚,𝑖−𝑋𝑜,𝑖))2

∑(𝑋𝑚,𝑖−𝑋 )2           (26) 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑚,𝑖 − 𝑋𝑜,𝑖)
2𝑛

𝑖=1

2
 

 

(27) 

 

 
𝑀𝐴𝐸 =

∑ [𝑎𝑏𝑠(𝑋𝑚,𝑖 − 𝑋𝑜,𝑖)]𝑛
𝑖=1

𝑛
 

  (28) 

 

Where: 𝐸𝑇𝑐𝑟𝑜𝑝  is the actual ET for the crop under irrigation, 𝐾𝑐 is the crop coefficient for the 

particular crop, 𝑋𝑚,𝑖  is the modelled variable, 𝑋𝑜,𝑖   is the observed variable, and  𝑛 is the 

number of observations. 

3.4.6 Sensitivity assessment of the SEBS-derived ETa 

SEBS is sensitive to all input parameters (Van Der Kwast et al., 2009), but only the 

meteorological variables were subjected to sensitivity analysis, since the meteorological 

variables were acquired as point measurements. The sensitivity analysis sought to examine the 

uncertainty that is generated by spatial variations in the meteorological variables. 

To perform a sensitivity assessment, SEBS was initially run under normal conditions at the time 

of satellite overpass for Julian day number 45, which corresponds to January 26thto calculate 
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the daily evapotranspiration. The input was then changed at 10-percent intervals between -20 

and 20%. The following equation was used to calculate the sensitivity of SEBS generated ET. 

 
𝑆 =

±𝑋 − 𝑋0

𝑋0
. 100 

                                        (29) 

 

Where S is the sensitivity %, ±𝑋 is ETa after modifying the variables, 𝑋0 is ETa under the 

normal conditions. 

3.5 Crop coefficient estimation 

Farbrother (1973) used GRS to undertake a series of tests to determine the crop factor of several 

crops, including wheat. The evaluation was based on soil moisture depletion (gravimetrically) 

and Penman's (1948) model for estimating evaporation from exposed water surfaces. Due to 

climate change and adoption of improvements in the field of crop husbandry and varieties, the 

historical Farbrother's kc should be updated for the estimate of an adequate crop water 

requirement (CWR) for wheat required by the decision maker. The following equation (30) can 

also be used to calculate the kc: 

 
Kc =

𝐸𝑇𝑎

𝐸𝑇0
 

                                        (30) 

Where 𝐸𝑇𝑎 is actual evapotranspiration estimated by SEBS and 𝐸𝑇0 is reference 

evapotranspiration derived by Penman-Monteith formula. 

3.6 Irrigation performance 

In this study two irrigation performance indicators were used to assess the irrigation 

performance in the New Halfa scheme. 

3.6.1 Classical irrigation efficiency 

This concept was used to assess the irrigation system performance as shown in equation (31). 

 
𝐸𝑖 =

𝐸𝑇𝑖

𝑊𝑔 − 𝑃𝑒
 

 

(31) 

 

where 𝐸𝑇𝑖is the water that was used by E and T, 𝑊𝑔 is the gross supply which represents the 

water delivered by the canals, and Pe is the effective precipitation or precipitation that decreases 

the quantity of irrigation water required. Since the value of the effective precipitation during 

winter season is approximately zero that means the equation will be as Equation (32). 
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𝐸𝑖 =

𝐸𝑇𝑖

𝑊𝑔
 

 

(32) 

 

3.6.2 Water productivity 

Water productivity has been proposed as a metric for analysing water consumption and 

evaluating irrigation efficacy. WP (grain yield per unit of actual ET) was calculated in this study 

using Molden's indicator (Molden, 1997), Equation (33). 

 
WP =

𝑌

𝐸𝑇𝑐𝑠
 

 

(33) 

 

Where WP is water productivity, Y is the wheat seasonal crop yield in 𝐾𝑔. ℎ𝑎−1 and 𝐸𝑇𝑐𝑠 is 

actual seasonal evapotranspiration for wheat crop in  𝑚3.  ℎ𝑎−1. 

3.7 Scheduling irrigation for wheat crop 

3.7.1 Crop water stress 

For scheduling irrigation, the crop water stress index has been used as indicator for the crop 

water status which has a key role for applying the irrigation events. The evapotranspiration have 

been used to estimate the Crop water stress index (CWSI) where we can define the CWSI as 

the ratio between actual and potential evapotranspiration. which the crop with adequate water 

will transpire in the same rate as the potential evapotranspiration but when the water becomes 

limiting the actual evapotranspiration will fall below the potential evapotranspiration this ratio 

range from 0 to 1 where 0 it means that there is no stress and 1 is high rate of the stress. 

Several writers have hypothesized that loss of turgor and stomatal closure is caused by both a 

lack of soil water and a high evaporative demand. This is based on the idea that high evaporative 

demand necessitates a high rate of water intake and transport, resulting in a larger energy loss 

between the water in the soil and the stomates. Because evaporative demand varies diurnally 

and from day to day, methods for estimating evapotranspiration on a daily basis with high 

accuracy are required. 

The SEBS model was used to calculate the daily actual evapotranspiration. The potential 

evapotranspiration was calculated by multiplying 𝐸𝑇0 and the crop coefficient 𝑘𝑐 

 𝐸𝑇𝑐 = 𝑘𝑐 × 𝐸𝑇𝑜                                         (34) 
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Finally, the CWSI can be calculated as equation (35). 

 
CWSI = 1 −

𝐸𝑇𝑎

𝐸𝑇𝑐
 

                                        (35) 

The CWSI of the wheat crop for the growing season 2017-2018 was calculated in three different 

sites of the scheme for all the available days. 

3.7.2 Scheduling irrigation 

The calculation of the scheduling of irrigation is based on a daily accounting of all ingoing and 

outgoing water in the root zone according to Toureiro et al. (2017) In our case, the crop water 

requirement was considered to be equal to the actual evapotranspiration because the soil type 

in this area is vertosol where there is no infiltration more than one meter, and the fields in this 

scheme designed to be without considering drainage canal and that to encourage the farmers to 

use the water efficiently.  

 𝜃𝑚𝑖 = 𝜃𝑚𝑖−1 + 𝑃𝑖 + 𝐼𝑖 + 𝐶𝑅𝑖 − 𝑅𝑂𝑖 − 𝐷𝑃𝑖 − 𝐸𝑇𝑐𝑎𝑖 (36) 

                           

Where: 

i= day in the calculation procedure 

𝜃𝑚 = water content within the soil root depth 

P = total rainfall  

I = the effective depth of water applied with irrigation  

CR = capillary rise from deep (free) water table 

RO= run off 

DP= deep percolation 

ETca= Actual crop evapotranspiration, crop water consumption. 
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4. RESULTS AND DISCUSSION 

4.1 Landsat-8 LST downscaling process 

4.1.1 Relationship between land surface temperature and the vegetation cover  

The DisTrad method recommended the use of 25% of aggregated pixels with the lowest 

coefficient of variation for defining the regression equation. Still, in the case of a heterogonous 

area, like the small fields in the study region, the coefficient of determination can be low due 

to the high number of mixed pixels. To overcome these problems, 10% of the aggregated pixels 

with the lowest coefficient of variation were used to fit the correlation. To investigate the 

reliability of using 10% of the aggregate pixels to establish the regression relation, we examined 

the correlation between NDVI and LST at 1km resolution by using 10% and 25%. 

The results show that using 10% of the data with the lowest coefficient of variation gave a 

higher correlation than using 25% of the data with the lowest coefficient of variation, which R2 

was 0.75 and 0.80 for LST25% and 10%, respectively, as shown in (Figure 10). LST is inversely 

linked to NDVI (Figure 10), as was shown by, among others, Karnieli et al. (2006) and 

Jeganathan et al. (2011).  

 

(a)                                                                     (b) 

Figure 9 . (a), (b) correlation between the NDVI and LST for 25% and 10% methods, respectively. 

The relationship between the vegetation cover and land surface temperature (Landsat-8 LST 

resampled to 30m, downscaled LST10%, and downscaled LST25%) have been investigated at 

30 m resolution. (Figure. 11) shows the result of the correlation (R2) between the NDVI and 

LST. (R2) indicates that there is a strong correlation between LST and NDVI, with values 

ranging from 0.86 to 0.84, all statistically significant. As shown in (Figure 11), the results show 

an agreement when using 10% or 25% of the aggregated pixels for the downscaling process. 

Using 10% of the pixels gives a good result where R2 values of both methods, 10%, and 25% 

were (0.84, 0.86). However, it was higher than R2 between LST and NDVI for the native LST 
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(Landsat-8 LST 100m resampled to 30m) R2 (0.69). (Figure 11) shows that using 10% and 25% 

of the pixels with the lowest coefficient of variance enhances the correlation between land 

surface temperature and NDVI. We attribute that to the fact that LST is from the native Landsat 

image. It has a spatial resolution of 100 m and is resampled to 30 m resolution. As a result, the 

fields in the downscaled LST maps are more detailed as shown in figure 12. 

 

Figure 10.  (a), (b), (c) scatter plot for the relation between NDVI and LST 10%, LST 25%, and LST 

native, respectively. 

4.1.2 Effects of LST downscaling of the Landsat 8 image  

Figures 12 show native LST (LSTnative) and downscaled LST (LSTdown) images of a subset 

of the study area with a target resolution of 30 m. Lower temperatures are associated with dense 

vegetation (and water surfaces), whereas higher temperatures are associated with urban and 

bare soil regions distant from cultivated land and dry sandy riverbanks. The mixed land cover 

zones have a moderate temperature. These downscaled LST patterns are identical to the original 

in contrast, tone, and saturation Figures 12. 
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Figure 11. (a) LST Landsat10%, (b) LST Landsat 25%, and (c) LST Landsat native. 

 

However, the simulated LST is unable to determine the temperature of the water bodies, 

because of the difficulty of downscaling LST in such a class due to the sharp NDVI contrast 

between the water body and surrounding land. Which is why LST10% and LST25% are greater 

than LSTnative with a difference of 2K. Since the DisTrad method is based on the relation 

between the vegetation cover and LST, from the visual interpretation we found that the error 

percentage is greater in the water body. These results agree with the results found by Mukherjee, 

Joshi and Garg (2014). Similarly, urban landscapes show higher error rates. A minimum error 

was found in the cultivated area. According to Agam et al. (2007) and Jeganathan et al. (2011), 

homogenous vegetated areas have a lower value of downscaling error due to the accurate fitting 

of regression models over such regions. Table 3  shows Mean Absolute Error MAE, the 

minimum and maximum MAE and Root Mean Square Error RMSE, calculated from the 

difference between LSTdown and LSTnative. The minimum and maximum temperature values 

of LSTdown surfaces also agree with the LSTnative. 

Table  3. Statistical analysis for the relation between native LST, LST25%, and LST10%. 

Method Max MAE Min MAE  MAE RMSE 

LST 25% 9.37 -5.12 -0.011 0.89 

LST 10% 10.16 -5.63 -0.012 0.98 
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Figure 13. shows the correlation between LSTnative (x axis) and LST10% and LST 25% (y 

axis) for the linear regarrison. The coefficient of determination (R2) is 0.72, 0.74 respectively, 

while it was 0.61 for the polynomial regression.  This result indicates that using linear 

regression for the downscaling process gives better result than using the polynomial regression, 

where the 25% polynomial results in several extreme values. The same result was observed by 

(Agam et al., 2007). This is because of the increasing degree of subpixel variability. Based on 

this statistical analysis, this modification yields superior results since the other scientists were 

attempting to achieve coarser resolution than the goal of this research (30m). 

 

 

Figure 12. (a), (b), (c) scatter plot between native LST with LST10%, LST 25%, and LST25% 

polynomial, respectively. 

4.1.3 Effects of downscaling LST on ETa estimation 

The Surface Energy Balance System utilized the downscaled land surface temperature to 

estimate the actual evapotranspiration with high spatial resolution as described in (section 3.4). 

Concerning the effect of downscaling the land surface temperature on the evapotranspiration 

estimation, we found that the downscaling using only 10% of the pixels results in a good 

correlation between the ETa calculated from the LSTnative and ETa calculated from LST10% 

and LST25%, due to the high degree of convergence between the results from these two 

methods and the native Land Surface Temperature. Where the coefficient of determination for 

both methods 10% and 25% were R2= (84.5 and 84.1) as shown in (Figure 15), yielded an 

average RMSE (0.3 and 0.28 mm/day, respectively). The evapotranspiration maps produced 
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using downscaled land surface temperature had a higher spatial resolution than those produced 

using native land surface temperature, as the details and boundaries of small fields are more 

accurate on these maps than on the maps produced using native land surface temperature, as 

shown in Figures 14 and 15. Bindhu, Narasimhan and Sudheer (2013) produced RMSE in the 

similar range of 0.16 with TsHARP = 0.55 mm/day using the non-linear disaggregation 

approach (NL-DisTrad). 

 

 

 

Figure 13. (a), (b), and (c): ETa   for native LST, LST 10% and LST 25% respectively. 
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Figure 14. (a) and (b) scatter plots for the correlation between ETa (LST native) and ETa (LST10%), 

(LST25%) respectively. 

 

4.2 Application of the downscaling model on MODIS data 

After applying the downscaling model with both methods on the Landsat8 image, the 

downscaled surface temperature gives reasonable results at a resolution of 30 m as shown in 

(section 4.1.3). MODIS data at 1000 m spatial resolution is available with a temporal resolution 

of one day. The optical data of 250 m and 500 m are also available with temporal resolution 

every day, but the obstacle to using optical data from MODIS is that the results obtained from 

these sensors are not suitable for use in water management for small fields due to their poor 

spatial resolution. Therefore, it is preferable to use optical data from Landsat and Sentinel2 

because they have a high spatial resolution of 30 m and 10m. We find that the NDVI from a 

single Landsat8 and Sentinel2 images is suitable for the downscaling model of more than one 

MODIS image, where it is assumed that the NDVI does not change significantly during this 

period. Therefore, the NDVI produced by Landsat8 and Sentinel2 was used to model the land 

surface temperature with MODIS products. By visual interpretation of the maps resulting from 

the downscaling process, we find that the downscaling process gives the same effect that 

appeared when the model was used on the thermal image of Landsat8, where the downscaling 

led to the clarification of the small fields and the indication of their boundaries. We also find 

that the land surface temperature pattern follows the NDVI pattern in terms of intensity. The 

low temperatures are in the fields with high NDVI values, while the hot temperatures appear in 

the fields with low NDVI intensities i.e., in the bare soil and urban areas. This method was 

followed due to the lack of land surface temperature data for the surface on these days to be 

taken as a reference. As several scientists indicated, we needed data taken on the same day to 

be considered a reference and used to validate these results (Njuki, 2016; Kyalo, 2017). Some 

scientists pointed out that the difference in the sensors could also affect the results (Mukherjee, 

Joshi and Garg, 2014). On the other hand, when comparing the modifications applied to the 

Kustas method, the parameterization improves the correlation between the vegetation cover and 
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LST, as shown in Figure 16 (a) NDVI and LST25% correlation, (b) NDVI and LST10% 

correlation and Figure 17 ETa (a) derived from MODIS LST resampled and (b) downscaled, 

respectively. MODIS LST (c) resampled and (d) downscaled. However, when we tested the 

MODIS land surface temperature using Landsat 8 data, the findings revealed an average RMSE 

of 1.3 K. 
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Figure 15 . Correlation between NDVI, LST25%, and LST10% respectively. 
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Figure 16. (a) and (b) ETa from MODIS LST resampled and downscaled, respectively. (c) and (d) 

MODIS LST resampled and downscaled, respectively. 

4.3 A combination between different optical data for downscaling 

The poor temporal resolution of the Landsat 8 images limits their use in estimating daily 

evapotranspiration for water management. This poor temporal resolution prevents the use of 

the Normalized Difference Vegetation Index produced by Landsat8 for the daily LST 

downscaling process. Cloud distortion can be another limiting factor that affects the Landsat 

images' usability for evapotranspiration estimation.  

In order to fill the gap left by the Landsat images, images of Sentinel-2 with a higher spatial 

and temporal resolution were used (spatial resolution is 10-20 m and the temporal resolution is 

at least 5 days) for the days when Landsat images were not available. In this study, 6 images 

from Sentinel-2 were processed. We tested the correlation between the NDVI generated by the 

two sensors as shown in (figures 18, 19). The goal of this test was to check whether the Landsat 
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8 and Sentinel-2 images could be integrated into a consistent time series of NDVI maps with 

30 m field resolution for the LST downscaling procedure. 

 

Figure 17. scatter plot for the correlation between Landsat-8 NDVI and Sentinel- 2A. 
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Figure 18. correlation between LST-NDVI 5.1.2018 for sentinel2 and Landsat8. 

 

Vekerdy (2022) confirms the acceptability of the integration of the data from the two satellites 

by analysing an image taken on May 10, 2018. The NDVI maps were transferred to a common 

geometric basis. The scatterplot of the data (Figure 20 reveals a strong regression (R2 = 0.95). 

This is in a good agreement with the results of Mandanici and Bitelli (2016) for an Iraqi area 

with similar coverage (lake, bare surface, and agricultural plants), based on a much larger data 

set (R2 = 0.98). The discrepancy is in the same order as of the inaccuracy of the atmospheric 

correction techniques, which is 1.5 percent (Martins et al., 2017). This inaccuracy varies 

slightly depending on the applied atmospheric correction method, however, for Sen2Cor (used 

in the processing of the Sentinel image) it is around 2% in the near-infrared range.  
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Figure 19. Scatter plot for the NDVI Sentinel2 and NDVI Landsat8(Zolt, 2022). 

Moreover, the acquisition of optical remote sensing cloud-free images is one of the biggest 

challenges for using remote sensing for monitoring agricultural lands. Using DisTrad for 

downscaling LST needs accurate fitting for the correlation curve between the aggregated Land 

surface temperature and the aggregated NDVI. Therefore, any distortion that may happen to the 

data will lead to unreliable results. (Figure 21) shows two NDVI images, Landsat-8 NDVI 

effected by distortion, where the area effected by the clouds identified in the red circle, and 

Sentinel-2A NDVI free of cloud cover. The two NDVI images has been used for fitting the 

correlation with the LST at coarse resolution (1000 km) for four MODIS LST as shown in 

(Figure 22). The results show how the cloud distortion effects the fitting of the correlation when 

using NDVI calculated from Landsat-8, which will affect the downscaling quality. Therefore 

Sentinel-2 data appear as a good alternative source, this is due to it is high spatial and temporal 

resolution.   
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Figure 20 . NDVI Landsat-8 and NDVI sentinel-2A. 

 

Figure 21. correlation between LST (MODIS1000 m) - NDVI Sentinel2 free of clouds and Landsat8 

with cloud distortion. 
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The findings prove that the NDVI maps obtained from Sentinel-2 and Landsat 8 images can be 

combined into a uniform time series without alterations. 

4.4 Evapotranspiration time series estimation and validation 

Fifty-five downscaled land surface temperature maps were used to estimate the actual 

evapotranspiration of the wheat crops from December 2, 2017, to March 9, 2018. Eight pixels 

from eight different fields were chosen, and the mean calculated for these pixels was compared 

to potential evapotranspiration. Figure 23. shows the daily evapotranspiration (mm.day-1) 

calculated using SEBS, ranging from 1.5 mm d-1 at the start of the season to 5.8 mm d-1 in the 

mid-season and 1.3 mm day-1 in the end of the season. 

 

 

Figure 22 . correlation between the ETa and ETp. 

 

The result was compared to the potential evapotranspiration ETp estimated from the reference 

evapotranspiration, based on meteorological parameters and the crop coefficient, as illustrated 

in Figures 23 and 24. However, as shown in Figure 23 and 24, there was a strong correlation 

between the two products, with R2 = 76. Figure 24, on the other hand, depicts realistic trends in 

the accuracy of ETa generated from SEBS. Figure 24.  
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Figure 23. ETa and ETp curves for the winter season 2017-2018 ARC site.  

 

likewise depicts steady trends in ETa over the course of the wheat growing season. From the 

above-mentioned results, we can indicate that the LST downscaling improves the temporal 

evapotranspiration resolution. The impacts of water stress might explain the disparities between 

the two results. Due to this fact, comparing such data to point-representative approaches are 

difficult. nonetheless, Figure 24 indicates realistic trends in the accuracy of ETa produced from 

the SEBS. In the temporal domain of the wheat growing season, Figure 24 likewise 

demonstrates continuous patterns in ETa. As the evapotranspiration gradually rises from the 

beginning of the season until it reaches its maximum level in the middle of the season, then it 

begins to gradually decrease again until the end of the season, when the crop reaches maturity. 

The seasonal ETa for wheat cultivated in the New Halfa scheme was calculated. The average 

spatial ETs on a pixel basis derived by integrating daily ETa images from December 1st to 

March 9th (109 days) was around 350 mm. There are several limitations of using point 

measurement methods for calculating ETa at the regional scale, such as (a) it does not account 

for dynamic changes in vegetation; (b) it does not account for crop density and (c) it does not 

account for crop stress owing to water scarcity. The absence of field data in the New Halfa 

Scheme led to the impossibility of qualitative validation of the results. However, a quantitative 

analysis was performed by comparing the SEBS-calculated ETa with ETp obtained from 

meteorological data, where Figure24 demonstrated good agreement between SEBS and 

measured ETp patterns considering the influence of water stress, we also compared our results 
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with other researchers' results in similar areas to ours, where there was an agreement in the 

results.  

4.4.1 Sensitivity assessment 

The meteorological elements that contributed the most uncertainty to the SEBS-derived ET 

estimations were identified through sensitivity analysis of the ET estimates. 

SEBS ET estimates demonstrate high sensitivity to air temperature and incoming shortwave 

radiation, with average sensitivity values of 176.5% and 80.3%, respectively. Average 

sensitivity had been calculated by adding the absolute sum of the four sensitivity values for 

each variable and dividing it by four (Table 4). Additionally, it was shown that the estimations 

were, on average, quite sensitive to the pressure (36%), and wind speed (28.2%). On the other 

hand, it was observed that the estimations were less influenced by changes in the height of the 

planetary boundary layer and the specific humidity. 

Table 4. sensitivity assessment result for meteorological data. 

Change in variable (%) 20 10 -10 -20 Average Sensitivity 

(%) 

PBL Sensitivity (%) -2.78 0 0 0 0.7 

Radiation Sensitivity (%) 146 82.2 -35 -58 80.3 

Pressure Sensitivity (%) -25 -15 34 70 36 

Air Temperature Sensitivity 

(%) 

370 186 -63 -87 176.5 

Sp. Humidity Sensitivity (%) 0.8 0.4 -0.3 -0.6 0.5 

Sunshine Sensitivity (%) 8.0 4.2 -4.0 -8.0 6.0 

Wind Speed Sensitivity (%) -26 -14 25 48 28.2 

 

The sensitivity analysis results in Figure 25 generally correspond with the findings of van der 

Kwast et al (2009) since it was observed to be less sensitive to the majority of the factors tested 

(sensitivity 10%). It was also in accordance with the findings of Z. Su (2002), who stated that 

it is particularly sensitive to air temperature fluctuations and advised that the temperature be 

accurate to within 2 K, as illustrated in Figure 25. 
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 24. Graph showing the sensitivity of SEBS model to the meteorological variables. 

The evapotranspiration retrieval in SEBS assumed a constant value of air temperature. Given 

that SEBS is particularly sensitive to air temperature, this can cause large inaccuracies in 

predicted evapotranspiration. But in the case of the New Halfa Scheme, there is no big variation 

in the air temperature where this scheme is located in a flat area with a gentle slope to the north, 

as the elevation is considered one of the main determinants of the variation in air temperature. 

4.5 land use land cover change  

The New Halfa scheme is an agricultural scheme with a rich tapestry of land cover, showcasing 

the intricate interplay between human activities and natural elements. With its mixed land 

cover, this area presents an enchanting blend of agriculture, urbanization, bare soil, water 

bodies, and rocky formations as described in Figure 26. 
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Figure 25. Land cover 2020  

The agricultural land in the New Halfa scheme is divided into two parts, one part is managed 

by the New Halfa Agricultural Authority, where based on the crop rotation there are two season 

summer season and winter season the main crops in the summer season are cotton, groundnut, 

and sorghum, and the main crop in winter season is wheat.  The other part is managed by the 

Sudanese Sugar Company. this part is for sugar cane cultivation, as it is considered a perennial 

crop. Figure 27 shows the crop distribution for the winter season over the new Halfa Scheme.   
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Figure 26. Land use map (crops map) winter season 2017- 2018. 

4.5.1 Effects of the land cover changes on evapotranspiration. 

Mixed land cover refers to an area where different types of land uses, such as urban areas, 

forests, agricultural fields, grasslands, and water bodies, coexist within a relatively small 

geographical area. The spatial arrangement and distribution of these land cover types 

significantly impact the local evapotranspiration (ET) patterns, which is the combined process 

of evaporation from the Earth's surface (such as soil, water bodies, and vegetation) and 

transpiration from plants. 
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Factors affecting the ET in the mixed land cover area. 

Surface properties and albedo: Different land cover types have varying surface properties, 

including albedo (reflectivity). For example, urban areas typically have low albedo due to the 

prevalence of concrete and asphalt surfaces, while agricultural fields have higher albedo due to 

vegetation cover. Areas with low albedo tend to absorb more solar radiation, leading to 

increased heating and higher evaporation rates. 

Vegetation density and type: Vegetation significantly influences evapotranspiration. Forested 

areas typically have higher ET rates compared to bare soil or water bodies because of the large 

number of trees transpiring water through their leaves. In mixed land cover regions, areas with 

dense vegetation will contribute more to evapotranspiration than areas with sparse or no 

vegetation. 

Soil moisture and land management: The moisture content in the soil affects evaporation rates. 

Different land uses have different soil moisture retention capacities. For instance, agricultural 

lands with irrigation may have higher soil moisture levels, promoting higher evaporation rates. 

In contrast, urban areas with impermeable surfaces may lead to less water infiltration and lower 

soil moisture. 

Temperature variation: Different land cover types can influence the local temperature patterns 

due to variations in heat absorption and release. Urban areas tend to be warmer than vegetated 

areas, which can lead to differences in evapotranspiration rates. 

Water bodies: Presence of water bodies in mixed land cover areas can lead to increased 

evaporation from their surfaces. Additionally, nearby vegetation and land use can influence the 

humidity and wind patterns around water bodies, affecting their evaporation rates. 

Understanding the effect of mixed land cover on Evapotranspiration distribution is crucial for 

various reasons, including managing water resources and studying the local climate. Satellite 

data, remote sensing, and help scientists and policymakers analyse and predict the impacts of 

land cover changes on the water cycle and regional climate. Proper land use planning and 

sustainable management practices can help mitigate adverse effects on local ET distribution 

and maintain environmental balance. 
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4.6 Water application efficiency 

Water application efficiency is defined as the ratio of the water delivered to the farm with 

respect to the amounts of water preserved by irrigation in the soil root zone and ultimately 

consumed (via transpiration, evaporation, or both). In this study, Water Application Efficiency 

(WAE) was calculated using SEBS-estimated ETa after converting it to volume and water 

delivered to canals that measured in the field as the first attempt to analyse water application 

efficiency spatially in Sudan's NEW Halfa Scheme, for the period from December 2nd to 

February 11th, 2018. It was computed every ten days and represents the time interval between 

two irrigations, which were distributed as shown in (Table 5). The average values of WAE were 

shown in (Table 5) and (Figure 28). Obviously, in this research WAE was extremely low 

compared to the surface irrigation standard rate of 75%. The main reasons for the low WAE 

based on the information received from the management of the New Halfa Scheme can be 

attributed to the proliferation of parasitic weeds in the irrigation system in this scheme, which 

affects the distribution and flow of water in the branch channels and into the fields. Second, 

silting removal is done in an unstudied way, which increases the depth of the channels, 

obstructing the water distribution process since the water in these channels flows by gravity 

without the need for pumps to lift the water. This makes it lose through the surface runoff from 

the channels at the end of the scheme. The third reason is that the water management process 

in this scheme is done by estimating the evapotranspiration of a point measurement and using 

it to represent the entire project, and irrigation operations are performed on a fixed schedule 

without taking into account plant status or surrounding climatic conditions.  
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Table 5. Water application efficiency (WAE) 01.12.2017- 11-02-2018. 

Irrigation events ETa volume m3 Water delivered m3 WAE 

10-12-2017 37548.8 63850 
 

59% 

20-12-2017 36962.12 
 

63900 
 

58% 

30-12-2017 24713.86 
 

61975 
 

40% 

10-01-2018 40631.37 
 

66675 
 

60% 

20-01-2018 31610.862 

 

51400 

 
61% 

31-01-2018 54217.62 

 

68505 

 
79% 

11-02-2018 36483.72 59800 
 

61% 
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Figure 27. Relation between the water delivered to the system (WD) and ETa. 

Regarding solutions to improve the water application efficiency, there are two aspects: 

• The scientific aspect is concerned with using remote sensing techniques to determine 

the spatial and temporal distribution of the crop water requirement. Remote sensing is 

a tool for estimating evapotranspiration with its spatial and temporal distribution. This 

is the basis of estimating crop water requirements, where the actual need of the crop can 
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be estimated based on the condition of the plants in the field as well as the weather 

conditions.  

• The other aspect is practical where we can propose that the first step is to eliminate these 

parasitic weeds and prevent their spread. Physical control with machinery or chemical 

control with herbicides is two options for control. Furthermore, in terms of silt removal, 

the procedure must be carried out under the supervision of experts, with the proper 

depths taken into consideration to facilitate the water flow process.  

4.7 Crop water productivity 

In this work, WP was computed using predicted ETa from SEBS and crop production data 

based on in situ data in an effort to analyse WP regionally for the first time in Sudan's New 

Halfa scheme. 

The WP over the research region is displayed in Table 7. WP for the New Halfa Irrigation 

Scheme was 0.69 kg.m-3 on average. Evidently, the wheat water productivity in this 

investigation was quite low compared to the 1.7 kg.m-3 range provided by Zwart and 

Bastiaanssen (2004b). The main causes of poor WP may be attributed to the low yields of wheat 

produced under semi-arid conditions as a result of high temperatures. Liu et al. (2007)  

simulated the worldwide wheat production and WP using the Environmental Policy Integrated 

Climate (GEPIC) model, which is based on geographic information systems. According to the 

authors, Sudan's simulated WP is 0.67 kg.m-3 as opposed to 0.32 kg.m-3 as defined by Adeeb 

(2006), who, on the other hand, used point measurements to investigate the water potential of 

important food crops in the Gezira scheme. He found that wheat had a WP that varied between 

0.07 and 0.27 kg.m-3 and attributed the lower WP to poor management and low input levels 

rather than water wastage. However, in recent years, increasing tenant engagement in water 

governance, training on water management, and better levels of funding have all contributed to 

an improvement in land and water production. 

Therefore, a good yield of wheat is not always guaranteed by adding extra water. According to 

(Farah et al., 1997), sorghum generated a nonsignificant rise when two additional irrigations 

were added, but grain production tended to drop when three supplemental irrigations were 

added. 

In the New Halfa Scheme, increasing water consumption efficiency during the winter is crucial 

and urgent since, according to Adam (2005), a 10% reduction equates to two million m3 per 

day. It may also be stated that a water savings of between 21 and 53 percent in the Gezira plan, 
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which has many similar characteristics with the New Halfa scheme, can result in a daily quantity 

of 4 to 10 million m3. The irrigation of sugarcane and various pump systems along the river 

Nile will benefit greatly from this winter's water conservation efforts. The wheat variety 

cultivated in New Halfa Scheme is Bohain, which it considered one of the fast-ripening 

varieties, in order to adapt to the short winter period in arid and semi-arid regions. Table 6 

shows the field information for Bohain wheat cultivated in agricultural research corporation 

field.  

Table 6. field information for Bohain wheat variety for the winter season 2017/2018. 

Variety Bio t/ha HI No.sp/m2 No.s/sp 1000sw(g) PH(m) D H DM 

Bohain 9080.75 

 

22 

 

310 

 

27.25 

 

45.5 

 

60.5 

 

47.25 

 

77.75 

 

 

Where: 

Bio t/ha: Biomass yield, HI: harvest index, No.sp/m2: number of spike/m2, No.s/sp: number 

of seed/spike, 1000sw(g): seed weight, PH: plant height, DH: day to heading, DM: day to 

maturity. 

Table 7. Monthly ETa, ETa/ha, Yield/ha and CWP season 2017/2018. 

Month ETa mm ETa /ha mm.ha-1 Yield T.ha-1 CWP Kg.m-3 

 

December 

      

     13984.1 

   

 

January 

 

22186.17 

   

 

February 

 

27160.12 

   

 

March 

 

2413.9 

   

 

SUM 

 

65744.29 

 

2776.364 

 

1.938 

 

    

 

 

0.69 
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4.8 Crop water stress  

Crop evapotranspiration under arid and semi-arid conditions must be quantified to manage 

irrigation scheduling to reduce crop water stress and achieve optimal water productivity. A 

stress coefficient is commonly used to quantify the effect of soil water shortage on crop 

evapotranspiration. Estimating ETa is necessary to accomplish target crop water use and keep 

soil water levels within a range that reduces stress and enables the generation of acceptable 

yields. Although plant measures such as leaf water potential, stomatal resistance, or canopy 

temperature can be used to monitor current plant stress levels, ETa must be approximated to 

regulate irrigation within ranges that minimize water use without causing undue stress and yield 

loss. The CWSI (Equation 35) is used to assess the decline in ETa caused by water stress. 

The CWSI of wheat crop for the growing season of 2017-2018 was calculated in three different 

sites of the scheme (A, (B and C see appendix 5)) for all the available days as shown in (Figure 

29), including the site (A) of the Research Farm of the Agricultural Research Corporation 

(ARC).  

 

Figure 28. CWS Sites A, B and C. 

Latitude 15° and 17°, Longitude 35° and 36° 
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The CWSI is estimated as the ratio between the actual and potential evapotranspiration. The 

actual ET was calculated using the SEBS model which mean it is under the normal condition 

of the field while the potential ET estimated using the Penman-Monteith equation multiplied 

by the crop coefficient, assuming that the plant is under standard conditions where there is no 

stress. The value of the CWSI ranges from 0 to 1 where 0 means that there is no stress and 1 

means that the stress reached the highest value. The growing season has been divided into three 

phases: initial and development stage, mid-season, and late season. 

4.8.1 Initial and development stage 

The initial and development stage of the season starts from the date of the first irrigation to 

effective full cover. The water loss in this stage through the evaporation is more than 

transpiration because the irrigation process is through surface irrigation.  Where the field is 

flooded with water and because the crop is in the stage of establishment, a large part of the field 

is not covered with vegetation and this area decreases with the development and growth of the 

crop. 

Since the plants are at a young age and have an incomplete vegetative and root system, which 

affects the ability of plants to absorb water from the soil, the availability of water is the main 

influence on the differences in the percentage of water stress during the initial and development 

stage of the season, so the need for the irrigation is regular and at close intervals. 

Figure 30 shows that, while there is a difference in the water stress between the fields, there is 

also an underestimation for the CWSI values in irrigated fields, as the areas in each site are 

divided into small fields that are irrigated sequentially, the colours in the upcoming figures are 

an indication of the state of the water stress, as the red colour indicates that there is no water 

stress going gradually to the red colour, which means that the region suffers from the highest 

state of stress compared to the neighbouring fields, which also described in the legend. This can 

be attributed to the fact that when calculating the potential evapotranspiration from the 

reference evapotranspiration and the single crop coefficient, the value of evaporation from the 

soil is ignored, making the actual evapotranspiration value higher than the potential 

evapotranspiration. 
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Figure 30. crop water stress maps for the available dates December 2017 site (A). 
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4.8.2 Mid-season stage 

It extends from effective complete cowl until the start of maturity. The initiation of maturity for 

wheat is typically indicated by the commencement of aging, yellowing or senescence of leaves, 

and leaf drop, to the extent that crop evapotranspiration is lowered relative to ET0.  

This stage is considered one of the most important stages when water must be available for the 

plants, because in this stage the flowering occurs so the lack of irrigation in it leads to the 

production of lean and poor-quality grains, which negatively affects the productivity. Figure 31 

and 32 shows that there is a discrepancy in the water stress between the different sites, and also 

a difference within the same site. This discrepancy indicates poor water distribution, which 

negatively affects the regularity of the productivity. 
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Figure 31. Crop water stress maps for the available dates January 2018 site (A). 
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Figure 29. Crop water stress maps for the available dates February 2018 site (A). 
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Based on the results of monitoring crop water stress in the mid-season we can indicate that 

CWS maps can provide valuable information about the health and productivity of crops. The 

results show that crop water stress maps can estimate the difference between fields, this 

suggests that the maps can be a useful tool for farmers and agronomists to manage their crops 

more effectively. 

By identifying areas of high and low water stress, farmers can adjust irrigation schedules or 

other management practices to optimize crop growth and yield. They can irrigate more 

frequently in areas with high water stress and reduce irrigation in areas with low water stress to 

avoid overwatering and wasting resources. 

Overall, the ability to estimate the difference in crop water stress between fields using maps 

can be a valuable tool for improving crop management and productivity. By monitoring water 

stress in the mid-season, farmers, and agronomists can make informed decisions about irrigation 

and other management practices, leading to more efficient use of resources and better crop 

yields. 

The mid-season monitoring of crop water stress can yield valuable insights into the health and 

productivity of crops. The findings indicating that crop water stress maps can accurately 

estimate variations between fields can be beneficial for farmers and agronomists in managing 

their crops more effectively. 

4.8.3 Late season stage  

It runs from the beginning of maturity to harvest or full senescence. During this stage, irrigation 

should be light so that it does not cause damage to the crop and difficulty to the harvest process, 

because any intensive irrigation operation at this stage is reducing the productivity of the crop. 

Figure 33 shows how water stress moves from lower to higher until reaching the end of the 

season.  At this stage, the main purpose of monitoring water stress is to know if the crop has 

reached the stage of full maturity to start the harvest. 
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Figure 30. Crop water stress maps for the available dates March 2018 site (A). 

Based on the discussion above, we can conclude that the methodology used in this study was 

successful in evaluating crop water status in the field, where irrigation is the main determinant 

factor for crop water stress, and where the time series can show the movement of the water 

stress pattern through the field following irrigation events. According to  (Trout and DeJonge, 

2021) crop water stress is an excellent indication for quantifying the impacts of insufficient 

water on crop evapotranspiration. They conducted a six-season experiment to drive the maize 

stress coefficient and discovered that crop evapotranspiration was regulated by the effect of soil 

water deficiency on water absorption and stomatal resistance, as well as prior water stress on 

plant development. 

The CWSI was calculated by  (Gerosa, no date)  utilizing infrared thermometry, and the 

accuracy of the method for irrigation scheduling was tested using the established upper and 

lower CWSI baselines in the husk tomato crop. Due to the low canopy cover, they observed 

that it was not relevant during the early part of the growth season. They discovered that CWSI 

values close to zero were associated with treatments where there was no stress, and the irrigation 

depth was changed (between 100 and 120% of ET0 over the crop season). The CWSI value 

rose as water availability declined, peaking at 0.7 in the treatment with severe irrigation 

limitations (40% ET0).  (Marino et al., 2019) used remote-sensing-based UAV systems to 
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explore the effects of varying irrigation levels on crop physiological responses and discovered 

that the seasonal reference evapotranspiration was 252.4 mm, whereas crop evapotranspiration 

was 194.3 mm. also (Bastiaanssen et al., 2005) used SEBAL module to determine the CWS 

using remote sensing. 

In conclusion, the ability to estimate differences in crop water stress between fields through 

maps is a valuable tool for improving crop management and productivity. By monitoring water 

stress, farmers and agronomists can make informed decisions regarding irrigation and other 

management practices, leading to more efficient resource utilization and improved crop yields. 
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5.CONCLUSIONS AND RECOMMENDATIONS 

In this research, a remote sensing-based method was developed to support improving irrigation 

efficiency under in situ data scarcity conditions. To reach this goal, the following steps were 

developed:  

1. For creating a time series of land surface temperature data with high spatial (30 m) and 

high temporal (1 day) resolution, the LST downscaling process DisTrad was re-

parameterised. The study area has a variety of land cover types. These types include 

dense vegetation, medium vegetation, low vegetation, bare soil, urban areas, and water. 

They are in a strongly mosaicked pattern. All the fields are off a small area; therefore, 

it is difficult to find areas corresponding to the original LST pixels of 1 km resolution 

with a homogeneous land cover. This loads the definition of the regression parameters 

between the NDVI and the LST with a relatively high uncertainty. To decrease the 

number of course-resolution pixels with strongly mixed land cover pattern, we 

suggested to use a smaller number of pixels for the downscaling process in DisTrad. 

We also suggested to use linear regression instead of a second-order polynomial, since 

the linear regression is more robust at the edges of the value range. This method helps 

avoid the extreme values that can result from the second-order polynomial. The results 

proved that the proposed parameterisation improves downscaling process in regions 

with complex land cover, similar to the study area. The coefficient of determination of 

the linear regression for the downscaled LST was R² = 0.74 using 25% of the pixels 

and R2 = 0.72 and using 10% of the pixels in comparison to the R² = 0.61 of the 

polynomial regression. This demonstrates that the use of the modified parameters of 

the DisTrad method resulted in an improvement of the downscaling. 

2. The downscaled land surface temperature (LST) with reductions of 10% and 25%, 

characterized by the lowest coefficient of variation (CV), was employed within the 

Surface Energy Balance System to estimate actual evapotranspiration at a high spatial 

resolution. The utilization of downscaled LST resulted in root mean square errors 

(RMSE) of 0.3 mm day-1 and 0.28 mm day-1 for the downscaling with reductions of 

10% and 25% in coarse resolution pixels, respectively. In comparison with previous 

studies ((Bindhu, Narasimhan and Sudheer, 2013)and (Tan, Wu and Yan, 2019)), it is 

evident that our methodology has significantly improved both the temporal and spatial 

resolution of evapotranspiration estimation. Notably, the coefficient of determination 
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for both downscaling methods (10% and 25%) was found to be nearly identical, 

registering at 84.5 and 84.1, respectively. 

3. The next step was to create a daily ETa map time series by combining data from 

different optical sensors. We can conclude that combining data from Landsat 8 and 

Sentinel 2 is possible due to the strong correlation. This way a consistent daily ETa map 

time series can be created with high spatial and temporal resolution. Even if distortion 

occurs in the images of one of the sensors, the data of the other sensor can be used as 

an alternative data source. 

4. The crop water productivity in the New Halfa scheme was very low (0.69 kg.m-3) 

compared to the average world crop water productivity of 1.7 kg.m-3. This needs to be 

improved. The efficiency of the irrigation system performance was very low 60% 

compared to the average world irrigation efficiency of the surface irrigation systems 

(75%). 

5. The last step was to evaluate the wheat crop water status by using the crop water stress 

index. Based on the results, we can conclude that the spatial distribution map of the 

crop water stress helps to plan the spatial and temporal distribution of irrigation, so it 

contributes to an improved water management.   

Finally, we may extrapolate from the indicated findings that these changes enhanced 

and provide dependable ETa maps for irrigation scheduling and agricultural planning. 

The final recommendation is that earth observation is an optimal method for analysing irrigation 

performance under the condition of data scarcity, if the information about the water distribution 

is available, where it provides information about the water status in the field which is considered 

a key point in water management. 

In conclusion, this thesis has sought to address critical questions within the scope of its defined 

parameters. However, it is imperative to acknowledge that our findings represent a snapshot of 

the ongoing pursuit of knowledge in this field. The complexity and multifaceted nature of the 

subject matter demand a sustained and rigorous commitment to further investigation. To this 

end, I recommend that future research endeavours focus on expanding the scope, employing 

larger sample sizes, employing more varied methodologies, and considering longitudinal 

approaches where applicable. Moreover, it is essential for subsequent studies to explore the 

nuanced intricacies that this thesis may have left unexamined due to its limitations such as 

incorporating the management practices specific to the crops being cultivated. 
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6. NEW SCIENTIFIC RESULTS 

1. I have improved the downscaling of coarse spatial resolution LST by modifying the 

DisTrad method to make it more robust and reliable for areas with complex land cover. 

The modifications include the application of linear regression combined with the 

reduction of the number of sampled pixels. 

2. I created a high spatial and temporal resolution daily actual evapotranspiration time 

series of the New Halfa irrigation scheme from the data of a single satellite to cover the 

cropping season. 

3. I demonstrated that the integration of data from different optical sensors for calculating 

actual evapotranspiration can result in a homogeneous dataset, which helps to fill gaps 

in the time series, most frequently caused by cloud cover. 

4. Based on the potential and the actual evapotranspiration data I defined the spatial and 

temporal distribution of water stress and calculated water efficiency in the New Halfa 

scheme for the 2017/2018 season. 

5. I proposed a new approach for optimizing the irrigation schedule in New halfa region 

by using the crop water stress as indicator for the water status in the field under 

condition of in situ data scarcity. 
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SUMMARY 

Water management for agriculture is a complex task influenced by various factors, including 

social, environmental, and political. Effective irrigation systems are crucial for providing 

adequate food to the world, but the available water resources have limits for regeneration. 

Monitoring soil and crop during the growing season is necessary to improve agricultural 

production, and methods for assessing irrigation performance using satellite data have been 

developed since the 1980s. With an increase in the global population and a decrease in the 

amount of available water, the agricultural sector must increase food production using less 

water, which can be achieved through improving water use efficiency and defining the net 

irrigation water requirement. Remote sensing images captured by sensors on satellites or 

airplanes can be used as tools to provide spatial information about evapotranspiration. In the 

past decade, various models have been developed to simulate plant growth and water balance, 

and several models have been developed to quantify actual evapotranspiration based on surface 

energy balance. 

The New Halfa project in Sudan is experiencing water scarcity, which is affecting the 

productivity of crops such as winter wheat, cotton, sorghum, and groundnut. To ensure 

sustainable water usage, farmers need to match irrigation to crop water requirements, and 

accurate estimation of crop evapotranspiration is crucial for in-season irrigation management, 

water allocations, and long-term predictions of water supply and demand. Traditional irrigation 

methods like surface irrigation have low efficiency, and more effective methods like sprinkler 

and drip irrigation are limited by high costs and maintenance requirements. Lack of knowledge 

on evapotranspiration variation makes water management difficult, and there is a need for 

methods to improve water management under conditions of data scarcity. This study aimed to 

develop a remote sensing-based method that supports improving the efficiency of water use for 

irrigation. To achieve this goal, The DisTrad (Disaggregation of Radiometric Surface 

Temperature) method was used for the LST downscaling procedure, which is based on 

aggregating the NDVI map to the LST map resolution and then calculating the coefficient of 

variation of the native NDVI map within the aggregated pixel and classifying the aggregated 

map into three classes: NDVI less than 0.2 for the bare soil, NDVI between 0.2 to 0.5 for the 

partial vegetation, and NDVI more than 0.5 for the full vegetation. DisTrad uses 25% of the 

pixels with the lowest coefficient of variation from each class to calculate the regression 

coefficients. In this work, adjustments to the DisTrad method were implemented to enhance 

downscaling LST and to examine the impacts of that alteration on the evapotranspiration 
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estimation. The linear regression model was tested as an alternative to the original second-order 

polynomial. In using 10% of the pixels instead of the originally proposed 25% with the lowest 

coefficient of variation values, it is assumed that a group of pixels with a lower coefficient of 

variation represents a more homogeneous area, thus it gives more accurate values. Secondly, a 

high spatial and temporal resolution time series of actual evapotranspiration (ET) maps using 

remote sensing has been generated to define the spatial distribution of the actual ET that has 

been done by implanting downscaled land surface temperature in surface energy balance system 

SEBS model to estimate the actual ET. Thirdly, an optimal integration method of optical data 

has been followed to overcome the cloud cover problem, where the optical data from Landsat8 

and Sentinel-2 optical sensors were combined to fill the gap when there is distortion resulting 

from the clouds for any of the sensors. Finally, a method to optimize the irrigation schedule for 

wheat has been proposed by considering the crop water stress index as an indicator for the crop 

water status which has a key role in applying the irrigation events. where three types of 

evapotranspiration have been used to estimate the Crop water stress index (CWSI) where we 

can define the CWSI measure of the potential evapotranspiration to the actual 

evapotranspiration which the crop with adequate water will transpire at the same rate as the 

potential but when the water becomes limiting the actual evapotranspiration will fall below the 

potential evapotranspiration this ratio range from 0 to 1 where 0 it means that there is no stress 

and 1 is a high rate of the stress. 

The downscaled LST map retrieval was validated using Landsat 8 thermal maps (100 m). 

Applying the modified DisTrad approach to disaggregate Landsat LST to 30 m (NDVI 

resolution) yielded an R2 of 0.72 for the 10%, 0.74 for the 25% and 0.61 for the second-order 

polynomial lowest coefficient of variation compared to native LST Landsat, which means that 

10% can be used as an alternative. Applying the downscaled LST map to estimate ETa yielded 

R2 0.84 in both cases, compared to ETa yielded from the native Landsat LST. These results 

prove that using the robust linear regression provided better results than using polynomial 

regression. With the downscaled Land Surface Temperature data, it was possible to create 

detailed ETa maps of the small agricultural fields in the test area.The Surface Energy Balance 

System uses downscaled land surface temperature to estimate actual evapotranspiration with 

high spatial resolution. When using only 10% of the pixels for downscaling, there is a good 

correlation between ETa calculated from the downscaled LST and the native LST, with a 

coefficient of determination of 84.5 and 84.1 for 10% and 25% downscaled methods, 

respectively, and an average RMSE of 0.3 and 0.28 mm/day, respectively. The downscaled LST 
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produces more accurate evapotranspiration maps with higher spatial resolution than those 

produced using native LST. A similar RMSE of 0.16 was achieved using a non-linear 

disaggregation approach. 

The poor temporal resolution of Landsat 8 images limits their use in estimating daily 

evapotranspiration, and cloud distortion is another limiting factor. To fill this gap, higher spatial 

and temporal resolution Sentinel-2 images were used in this study for the days when Landsat 

images were not available. The correlation between the NDVI generated by the two sensors 

was tested, and the integration of data from the two satellites was found to be acceptable, with 

a strong regression (R2 = 0.95) shown in the scatterplot. This is consistent with previous results 

and the discrepancy is within the range of atmospheric correction technique inaccuracies, which 

is around 1.5-2%. 

The study used downscaled land surface temperature maps to estimate the actual 

evapotranspiration of wheat crops in the New Halfa scheme. Daily evapotranspiration 

calculated using SEBS showed a strong correlation with potential evapotranspiration estimated 

from reference evapotranspiration. The LST downscaling improved the temporal 

evapotranspiration resolution. The average spatial ETs on a pixel basis from December 1st to 

March 9th was around 350 mm. The study acknowledges limitations in using point 

measurement methods for calculating ETa at the regional scale, and water stress was identified 

as a potential cause for disparities between SEBS ETa and ETp. Nonetheless, SEBS showed 

good agreement with the ETp pattern measured from meteorological data. The study discusses 

the use of crop water stress index (CWSI) maps to monitor crop water stress during different 

stages of growth. CWSI is estimated as the ratio between actual and potential evapotranspiration 

and ranges from 0 (no stress) to 1 (highest stress). The growing season is divided into three 

stages: initial and development, mid-season, and late season. The study described the water 

stress patterns and discrepancies observed during each stage and emphasizes the importance of 

regular irrigation during the mid-season stage to avoid poor-quality grains and optimize 

productivity. The study concluded that CWSI maps can provide valuable information to farmers 

and agronomists for managing crops more effectively, leading to better yields and efficient use 

of resources. The methodology used in the study was successful in evaluating crop water status 

in the field, and CWSI was found to be an excellent indication for quantifying the impacts of 

insufficient water on crop evapotranspiration. 

In conclusion, this study aimed to enhance irrigation efficiency in arid and semi-arid regions 

with limited data availability by utilizing Earth observation techniques. Through several steps, 
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including downscaling LST data, estimating actual evapotranspiration, creating daily ETa 

maps, calculating crop water productivity, and evaluating irrigation system performance, the 

study demonstrated the potential of Earth observation in addressing these challenges. 

Specifically, the study recommends the new parameterisation of DisTrad for downscaling LST 

in areas with complex vegetation cover and the integration of data from Sentinel-2 and Landsat 

8 sensors to overcome cloud cover issues in creating ETa time series. The study also advocates 

for the use of EO-based ETa maps to plan irrigation and water management, by defining crop 

water stress. Overall, this study provides valuable insights into the use of Earth observation for 

improving irrigation efficiency and water management in arid and semi-arid regions.  
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Appendix 

Appendix1. Potential and reference evapotranspiration 

 

 

Appendix2. SEBS Climatic Data    

 

date Blh m Msdwsw

rf W m-2 

sp Pa t2m K SH kg kg-1 Win

d 

spee

d m 

s-1 

Sunshin

e h day-1 

2.12.2017 

 

750.19824 677.5306

4 

96129 302.0467

8 

0.0123134 2.1 6.25 

3.12.2017 

 

807.66815 677.562 96237.34 303.3533

6 

0.0119255 2.1 6.25  

4.12.2017 

 

691.9695 682.5317 96127.76 300.65 0.0116131 2.1 6.25 
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5.12.2017 

 

666.3584 690.0318 96037.27 300.35 0.0096419

7 

2.6 6.25 

6.12.2017 

 

959.3868 687.5940

6 

95922.41 305.0974

4 

0.0085331

6 

2.1 6.25 

12.12.201

7 

 

550.47 678.0315

6 

96097.96 304.1527

7 

0.0093419

4 

2.1 6.25 

13.12.201

7 

 

556.5914 681.5625

6 

96136.85 303.1596

4 

0.0086431

6 

2.1 6.25   

14.12.201

7 

 

612.8471 676.6557 96127.51 302.4907

5 

0.0088609

8 

2.1 6.25 

15.12.201

7 

 

794.72986 665.9999

4 

96255.18 301.8524

2 

0.0097518

1 

2.1 6.25 

16.12.201

7 

 

816.8882 661.7496

3 

96253.54 300.4739

7 

0.0112339 2.1 6.25   

18.12.201

7 

 

540.38995 667.6869

5 

96200.69

5 

302.0655 0.0098095

9 

2.6 6.25 

19.12.201

7 

 

669.62146 

m 

658.8124 96078.38 303.1027

8 

0.0094753

6 

3.1 6.25 

20.12.201

7 

 

706.94403 668.4062

5 

96116.94

5 

304.6482

5 

0.0077218

5 

2.1 6.25 
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21.12.201

7 

 

675.8566 666.0627

4 

96176.71 300.17 0.0071293

7 

2.1 6.25 

22.12.201

7 

 

654.4319 678.8750

6 

96020.08

6 

299.55 0.0046076

8 

2.1 6.25 

28.12.201

7 

 

521.988 650.4687

5 

96071.28 302.5660

7 

0.0091044

1 

2.1 6.25 

29.12.201

7 

 

521.2797 649.6880

5 

96170.73 304.4724

4 

0.0086456

9 

2.1 6.25 

30.12.201

7 

 

768.0564 645.7503 96224.94 304.0251
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0.0069487

8 

2.1 6.25 

31.12.201

7 

 

751.2227 640.2811 96176.38 302.4861
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0.0107508 2.1 6.25 

1.1.2018 

 

878.1 638.8 96296.38 300.7 .008 3.1 6.25 

3.1.2018 

 

685.9 644.1 96310.78 297.2 .007 3.1 7.5 

4.1.2018 

 

746.8 641.3 96464.01 297.9 .006 3.1 7.3 

5.1.2018 

 

812.2 643.3 96431.94

5 

297.5 0.008 2.6 7.3 

6.1.2018 

 

738.7 666.3 96359.43 296.8 0.006 3.1 7.4 
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7.1.2018 

 

750.2 668.3 96409.05 294.65 0.008 2.1 7.5 

14.1.2018 

 

644.5 664.7 96148.88 298.75 0.008 2.1 7.5 

15.1.2018 

 

720 651.3 96322.53 298.4 0.011 2.1 7.5 

16.1.2018 

 

725.1 665.4 96352.91

4 

298.1 0.01 2.1 7.5 

17.1.2018 

 

745.9 667.6 96153.85 298.9 0.009 2.1 7.5 

19.1.2018 

 

692 659.5 96284.44

5 

298.5 0.01 2.1 7.5 

20.1.2018 

 

768 660.6 96364.79 298.5 0.01 2.6 7.5 

21.1.2018 

 

535.5 650.6 96206.26 299.1 0.01 2.6 7.5 

22.1.2018 

 

665.8 655.2 96159.32 301.9 0.008 2.6 7.5 

23.1.2018 

 

719.4 660.4 96140.89 23.75 0.005 2.6 7.5 

29.1.2018 

 

719.6 689.7 96270.35 296.1 0.006 2.1 7.5 

30.1.2018 

 

899.2 680.5 96270.45 295.8 0.007 2.1 7.5 

31.1.2018 

 

716.9 681 96270.71 295.3 0.008 2.1 7.5 

1.2.2018 

 

695.58185 674.5638

4 

96270.35 297.6291 0.0095982

5 

2.1 7.5 
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2.2.2018 

 

776.6153 596.9677 96216.16 297.5798

3 

0.0116699 2.1 7.5 

4.2.2018 

 

716.9193 686.2499 96185.44 300.9575

8 

0.0115458 2.6 7.5 

5.2.2018 

 

640.7316 688.9988 96033.76 301.6556

7 

0.0089564

6 

2.6 7.5 

6.2.2018 

 

567.6793 692.6576 95983.32 302.686 0.0087925

7 

2.6 7.5 

7.2.2018 

 

541.374 693.8125 95945.45 301.4170

5 

0.0103294 2.1 7.5 

8.2.2018 

 

528.3842 699.5298

5 

95804.62 301.5143

7 

0.0094531

5 

2.1 7.5 

14.2.2018 

 

590.3606 697.3441 95910.37

5 

304.8359

4 

0.01036 3.6 7.5 

15.2.2018 

 

625.21716 695.6546

6 

95755.6 305.3823

2 

0.0105581 3.1 7.5 

16.2.2018 

 

595.1248 692.6862 95807.01

6 

303.8137 0.011 3.6 7.5 

18.2.2018 

 

850.5227 693.1253 96223.94 299.3 0.0113843 2.6 7.5 

20.2.2018 

 

586.4921 716.4369 95933.51

6 

303.1933

3 

0.0071780

6 

2.1 7.5 

21.2.2018 

 

1170.7473 723.9996 95820.49 307.3137

8 

0.0062640

2 

2.1 7.5 

22.2.2018 

 

898.8577 721.4702 95695.2 308.5672

6 

0.0077290

9 

2.1 7.5 

23.2.2018 

 

757.884 718.7817

4 

95652.30

5 

307.4416

5 

0.0099153

9 

2.1 7.5 
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24.2.2018 

 

2437.2712 726.9998 95560.42 311.0769

7 

0.0063327

1 

2.1 7.5 

2.3.2018 

 

918.49634 775.6864

6 

96078.52 300.65 0.0071386

8 

2.6 7.5 

3.3.2018 

 

665.00214 780.063 95992.35 299.15 0.0062118

2 

2.1 7.5 

4.3.2018 

 

941.3625 761.3116

5 

95964.05

5 

304.2602

8 

0.0081142 2.6 7.5 

5.3.2018 

 

1015.6607

7 

769.7488

4 

96058.66 304.3321 0.0095115

4 

2.6 7.5 

6.3.2018 

 

945.429 763.1263 96062.42 305.5792

8 

0.01085 2.6 7.5 

8.3.2018 

 

647.60254 773.4671 95971.03 307.5862 0.0088852

7 

2.1 7.5 

9.3.2018 

 

669.302 790.4394 95842.15 307.7859

5 

0.0067336

8 

2.1 7.5 

10.3.2018 

 

717.3676 784.5018 95702.13 307.7141

4 

0.0091268

8 

2.1 7.5 

 

Appendix3. Water Quantity 

Water applied m3 Date 

900 01/01/2017 

900 02/01/2017 

900 03/01/2017 

900 04/01/2017 

900 05/01/2017 
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7050 06/01/2017 

7000 07/01/2017 

7000 08/01/2017 

7000 09/01/2017 

7000 10/01/2017 

7175 11/01/2017 

7075 12/01/2017 

7175 13/01/2017 

7175 14/01/2017 

7175 15/01/2017 

7175 16/01/2017 

7175 17/01/2017 

7175 18/01/2017 

7175 19/01/2017 

6975 20/01/2017 

6975 21/01/2017 

6950 22/01/2017 

6950 23/01/2017 

6950 24/01/2017 

6950 25/01/2017 

6850 26/01/2017 

6825 27/01/2017 

6825 28/01/2017 
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6825 29/01/2017 

6825 30/01/2017 

6825 31/01/2017 

 

Water applied m3 Date 

6825 01/01/2018 

6825 02/01/2018 

6800 03/01/2018 

6825 04/01/2018 

6600 05/01/2018 

6600 06/01/2018 

6600 07/01/2018 

6600 08/01/2018 

6600 09/01/2018 

6400 10/01/2018 

6400 11/01/2018 

6400 12/01/2018 

6400 13/01/2018 

6400 14/01/2018 

6600 15/01/2018 

6400 16/01/2018 

6400 17/01/2018 

6400 18/01/2018 



114 

 

6405 19/01/2018 

6405 20/01/2018 

6405 21/01/2018 

6400 22/01/2018 

6300 23/01/2018 

6300 24/01/2018 

6300 25/01/2018 

6300 26/01/2018 

6300 27/01/2018 

6300 28/01/2018 

6050 29/01/2018 

6050 30/01/2018 

6050 31/01/2018 

 

Water applied m3 Date 

6050 01/02/2018 

6050 02/02/2018 

6050 03/02/2018 

6050 04/02/2018 

5950 05/02/2018 

5850 06/02/2018 

5850 07/02/2018 

5850 08/02/2018 
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6050 09/02/2018 

6050 10/02/2018 

6050 11/02/2018 

6050 12/02/2018 

6050 13/02/2018 

6050 14/02/2018 

6050 15/02/2018 
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Appendix 5: Crop water stress maps. 

 

Crop water stress maps for the available dates December 2018 site (B). 
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Crop water stress maps for the available dates January 2018 site (B). 
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Crop water stress maps for the available dates February 2018 site (B). 
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Crop water stress maps for the available dates March 2018 site (B). 


