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1. INTRODUCTION
1.1 Background

Fruit and vegetables are essential for a healthy diet. They support immune function and reduce the
risk of chronic diseases (Glabska et al., 2020; Lara et al., 2020). As living standards improve, people
are focusing more on the quality, taste, and nutritional value of fruits and vegetables (Mason-D’Croz
et al., 2019; Pegiou et al., 2019). However, these horticultural products can deteriorate during
storage due to temperature and time, affecting quality (Johnston et al., 2001; Ha et al., 2023). This
can reduce shelf life. There's an increasing need for efficient methods to monitor and evaluate the
quality of fruits and vegetables during postharvest storage. Traditional inspection techniques are
often invasive, destructive, time-consuming, and not suitable for continuous, real-time evaluation.
This indicates the need for rapid, nondestructive, and cost-effective methods to assess the quality
and physiological status of fruits and vegetables (Costa and Lima, 2013; Nicolai et al., 2007; Tian
and Xu, 2022).

Optical methods, such as near-infrared (NIR) spectroscopy and laser light backscattering imaging
(LLBI), have emerged as promising nondestructive techniques for postharvest quality assessment
of fruits and vegetables. NIR spectroscopy typically operates within the 700-2500 nm wavelength
range by measuring the light absorption to evaluate internal quality attributes, such as soluble solids
content (SSC), firmness, and moisture content (Nicolai et al., 2007; Tian and Xu, 2022). Conversely,
LLBI utilizes laser diodes in the visible to near-infrared range to capture backscattered light,
providing insights into tissue structure and surface properties based on scattering profiles (Qing et
al., 2008; Baranyai and Zude, 2009; Mollazade et al., 2012). The NIR spectroscopy and LLBI are
relatively low in cost and have faster acquisition times. Additionally, they have simpler hardware
setups and better adaptability for real-time and industrial applications compared to other optical
techniques such as hyperspectral imaging (HSI) (Qing et al., 2008; Baranyai and Zude, 2009;
Mollazade et al., 2012; Wieme et al., 2022). However, these techniques face challenges related to
noise, instrument limitations, and the heterogeneous nature of produce. For example, the water
content of fruits and vegetables can overlap with other spectral bands, making interpretation
difficult (Assaad, 2020; Bertran et al., 1999; Paz et al., 2008). To address these challenges, various
spectral preprocessing methods, such as Savitzky-Golay filters, Standard Normal Variate (SNV),
and derivatives, have been applied to improve signal quality (Nicolai et al., 2007). Additionally,



advanced mathematical techniques, including genetic algorithms, optimization of loading weights
in partial least squares regression (PLSR) models, and analysis of regression coefficients, have been
employed to select sensitive wavelengths, further improving the calibration of predictive models in
spectroscopic analyses (Yao et al., 2023; Zhang et al., 2018). When combined with chemometric
models like PLSR, SVM, and MARS, these methods enhance the assessment of fruit and vegetable
quality during storage (Hasanzadeh et al., 2022; Rinnan et al., 2009). Chemometric techniques are
widely applied to predict various quality attributes of fruits and vegetables (Aline et al., 2023;
Chauchard et al., 2004; Kashef, 2021). For instance, Zeb et al. (2023) applied LDA to classify the
sweetness content of different orange varieties (Blood Red, Mosambi, and Succari), achieving a
cross-validated accuracy of 56.7%. Liu et al. (2021) also applied PLSR to evaluate weight loss (R?
=0.96, RMSEP = 1.432%) and firmness (R? = 0.60, RMSEP = 2.453 N) in Chinese mini cabbage.
The least squares support vector machine (LS-SVM) model was used to predict the firmness of
pears, achieving an R? of 0.893 (Li et al., 2013). Alenazi et al. (2020) found that PLSR predicted
the firmness of fresh tomatoes with an R? of 0.69. Additionally, Radzevicius et al. (2016) reported
that simple linear regression predicted the SSC of tomatoes with an R? of 0.815.

Beyond NIR applications, laser light backscattering imaging (LLBI) has been used for the quality
assessment of fruits and vegetables. Liu et al. (2020) used LLBI to classify peaches based on storage
time with over 90% accuracy, while Daniels et al. (2021) used LLBI to classify grapes by color with
75% accuracy. LLBI has been used to detect decay in oranges due to fungal infection, achieving
high accuracy (Lorente et al., 2015). Qing et al. (2007b) demonstrated that LLBI combined with
PLSR could predict fruit firmness with R> = 0.81 and RMSEP = 5.44 N. Similarly, Romano et al.
(2012) used digital imaging and laser diodes (532 nm and 635 nm) to monitor moisture content in
bell peppers. They predicted moisture content using scattering area and light intensity, achieving R?
=0.86 and RMSEP =7.28 % for yellow peppers. The literature reports showed that non-destructive
quality assessments using NIR spectroscopy and LLBI have been conducted at different
geographical locations, using various measurement techniques, fruits and vegetables, and varying
approaches to spectral and image processing, feature extraction, and calibration models. This work
assessed the quality of popular Hungarian fruits and vegetables (i.e., asparagus, plum, and apple)

using NIR spectroscopy, LLBI, and different calibration models.



2. LITERATURE REVIEW

2.1 Production and post-harvest storage of fruits and vegetables

Global fruit and vegetable production has steadily increased over the past decade (FAO, 2025).
Similarly, in Hungary, the gross production value of fruits and vegetables has increased
significantly over the past decade (FAO, 2025; KSH, 2025). However, to meet the dietary needs of
an estimated 10 billion people by 2050, fruit and vegetable production will need to increase by 50-
150% (Mason-D'Croz et al., 2019; Stratton et al., 2021). Due to the growth in population and
increased health awareness, there has also been a rise in the consumption of fruits and vegetables
globally. These horticulture items are abundant in bioactive substances that have major health
benefits, such as flavonoids, carotenoids, anthocyanins, and phenolic compounds (Ruiz-Lopez and
Garcia-Villanova Ruiz, 2023; Yahia et al., 2019). Regular consumption of these products plays an
important role in the prevention of cardiovascular disease, diabetes, cancer, and mental disorders
(Glabska et al., 2020; Ju and Park, 2019). The World Health Organization (WHO) recommends a
daily intake of at least 400 grams of fruits and vegetables for adults and children older than 10 years
(WHO, 2025). Wang et al., (2014) also reported that higher consumption of fruits and vegetables
was related to a lower risk of cardiovascular mortality. Additionally, the production, health benefits,
and postharvest storage conditions of asparagus, plum, and apple are described in detail in the

sections below:

2.1.1 Asparagus

Asparagus is highly valued for its distinct aroma, taste, and nutritional benefits, being low in
calories, high in fiber, and rich in phytochemicals (Sergio et al., 2021). Traditionally, asparagus
extracts have been used in medicine to treat conditions such as kidney and liver diseases, asthma,
and cancer (Pegiou et al., 2019). However, post-harvest preservation remains a major challenge due
to its high perishability and rapid deterioration, which results from its high respiratory and metabolic
activity (Anastasiadi et al., 2020; Garrido et al., 2001). Storage conditions significantly impact
asparagus quality. Storing asparagus at ambient temperatures accelerates chlorophyll breakdown,
texture changes, and nutrient loss (Lipton, 2011; Villanueva et al., 2005). While storage above 10°C
causes spear toughening, temperatures below 0°C for over 10 days can result in chilling injuries,
such as loss of glossiness and wilting (An et al., 2008; Villanueva et al., 2005). Prolonged storage
also leads to weight loss due to moisture evaporation from the product. The effect is more

pronounced at higher storage temperatures. Increased temperatures not only accelerate weight loss
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but also cause discoloration and deterioration of the visual quality of the product. For instance,
‘Gijnlim’ asparagus exhibited significant discoloration at 10°C (Boonsiriwit et al., 2021; Kitazawa
etal.,2011) . In contrast, cold storage at 4°C helps preserve higher levels of chlorophyll and vitamin
C, thereby extending both nutritional quality and shelf life (Boonsiriwit et al., 2021). Storage also
affects the texture of asparagus, particularly its firmness and toughness. These changes are most
noticeable in the lower portions of the spears, where an increase in toughness is attributed to the
accumulation of lignin and other phenolic compounds in the cell walls, leading to tissue hardening
(Jaramillo et al., 2007; Rodriguez et al., 2004). In addition to physical and biochemical changes,
green asparagus is highly susceptible to microbial contamination, primarily from aerobic bacteria,
yeast, and mold, which can cause significant deterioration during storage (Wang et al., 2021). The
proliferation of these microorganisms is strongly influenced by storage temperature. The higher
temperatures accelerating microbial growth leading to faster sensory degradation and reduced shelf
life (Valero et al., 2006; Wang et al., 2021). The fresh green asparagus stored at 1-2 °C can remain
fresh for up to 14 days. To prevent moisture loss, the relative humidity (RH) should be maintained
between 92% and 99%. However, when RH drops as low as 66%, significant weight loss and
accelerated quality deterioration occurs, leading to faster degradation of both visual and textural
attributes (Fuchs et al., 2008, Villanueva,2005). In cold storage, asparagus is best kept at 0-2°C,
with 95-100% relative humidity (RH), 10-14% CO-, and oxygen levels above 10%, allowing
storage for up to 2-3 weeks (Cantwell and Suslow, 2002).

2.1.2 Plum

Plum is a widely consumed stone fruit known for its attractive appearance, flavor, and aroma.
According to the Food and Agriculture Organization (FAO, 2025), the leading plum-producing
countries include China, Romania, Serbia, and Chile. It is highly valued for its rich nutritional
content, containing phytochemicals, vitamins, minerals, and dietary fibers (Lara et al., 2020). Its
health benefits include potential roles in anti-inflammatory, memory-improving characteristics, and
chronic disease management (Igwe and Charlton, 2016; Lara et al., 2020). However, plums are
climacteric fruits with a short shelf life. The ethylene production accelerates ripening, respiration,
and senescence, leading to structural and biochemical changes (Khan, 2022; Kumar et al., 2018;
Singh and Khan, 2010). Proper storage conditions are crucial for preserving plum quality. Storage
at 0 °C to 2 °C provides the best retention of weight, firmness, soluble solids, and vitamin C, while

also reducing microbial activity (Briano et al., 2015; Feng et al., 2024; Pimienta et al., 2020). In



contrast, prolonged exposure to temperatures below 2—5°C may cause skin pitting, staining, and
flesh browning (Briano et al., 2015; Ding et al., 2010). Higher storage temperatures (above 15°C),
however, accelerate microbial growth and increase spoilage risk. For instance, plums stored at 37°C
exhibited significant quality deterioration (Cardenas et al., 2024). Fungal infections are another
major factor influencing plum decay, with their growth highly dependent on storage conditions such
as temperature, time, and humidity (He et al., 2024; Szparaga et al., 2014). Argenta et al. (2003)
stored ‘Laetitia’ plums at 1 °C and 80 + 5% relative humidity for up to 50 days, followed by ripening
at 23 °C and 75 + 8% RH for approximately 22 days, using 1-methylcyclopropene (1-MCP) to delay
ripening. Similarly, Kumar et al. (2018) reported that under cold storage conditions of 2+ 1 °C and
85-90% relative humidity, the shelf life and quality of ‘Santa Rosa’ plums were preserved for up
to 28 days. Typically, plums are stored at —1 °C to 0 °C with 90-95% RH to minimize water loss
and shriveling. For extended storage, controlled atmosphere conditions with 1-3% O. and 2—5%
CO: are used to slow respiration and ripening, maintaining quality for 2—-5 weeks (Cantwell and

Suslow, 2002).

2.1.3 Apple

Apple is among the most widely consumed fruits worldwide. The leading apple-producing countries
are China, the United State of America (USA), Turkey, Poland, and India (FAO, 2025). China and
the USA alone contribute around 50% of global apple production (Khan, 2022). Over the years,
global apple production has increased significantly, driven by the introduction of new apple varieties
and advancements in cultivation technologies (Sayin et al., 2010). It is also nutritionally rich. It
contains phytochemicals such as quercetin, catechin, and chlorogenic acid. These compounds
provide health benefits, including reducing the risk of chronic diseases (Hyson, 2011). However,
proper storage conditions are essential to maintain apple quality and extend shelf life. Storage at
0°C has been found to better maintain firmness and color and extend the storage time of fresh-cut
apples (Li et al., 2014) . In some cases, storage at 4°C may be more beneficial for certain apple
varieties, as it helps reduce peel disorders and maintain internal ethylene concentration (Yoo et al.,
2018). Additionally, low temperatures (0—4°C) preserve color, flesh hardness, and volatile
compounds, maintaining better overall quality compared to higher temperatures (Zhang et al., 2022)
. Conversely, higher storage temperatures (such as 20°C ) speed up ripening and shorten shelf life
by reducing acidity and firmness (East et al., 2008; Zhang et al., 2022 ). Cold storage is crucial for

slowing down ripening, but it can also lead to storage disorders such as flesh breakdown and



browning (Hasan et al., 2024; Lee et al., 2019). During extended storage periods, wound sites on
apples serve as entry points for microorganisms, leading to tissue breakdown and decay (Hamilton
et al., 2022; Scheper et al., 2007). The fungal infections significantly reduce apple quality and
marketable yield (Argenta et al., 2021; Leng et al., 2023). However, other literature suggests that
apples are typically stored at 0—-3°C to preserve their quality and extend shelf life. This range slows
ripening and reduces the quality loss (Biichele et al., 2024; Prange and Wright, 2023). According
to Sharma et al. (2013), ‘Royal Delicious’ apples stored under ambient conditions (22-28 °C and
52-68% RH) exhibited an extended shelf life of up to 35 days. In contrast, Lidster (1990) reported
that ‘MclIntosh’ apples stored at 3 °C in controlled atmosphere (CA) conditions for 198 to 255 days,
under varying relative humidity levels (80% to 94%). Prange and Wright (2023) reviewed global
storage recommendations for apples, suggesting optimal temperatures of 0—1 °C and RH of 90-95%
for storage durations of 5—-8 months, depending on cultivar sensitivity to chilling. Generally, apples
are stored at 0-3 °C with 90-95% RH to minimize moisture loss and maintain firmness. They
benefit significantly from CA storage, where oxygen levels are reduced to 1-3% and carbon dioxide
is maintained at 0.5-2.5%, depending on the cultivar. Under these optimized conditions, some apple

varieties can be stored for up to 9—12 months without significant quality loss (Biichele et al., 2024).

2.2 Quality assessment of fruits and vegetables

Quality assessment of fruits and vegetables is a comprehensive process that involves evaluating
both external and internal attributes to ensure that consumer preferences and market standards are
fulfilled (Kyriacou and Rouphael, 2018). While external quality is typically assessed visually,
internal quality is commonly evaluated using destructive techniques, which include chemical,
physical, and mechanical analyses (Jaywant et al., 2022; Lu, 2017). There are two techniques used
to assess the quality of fruits and vegetables: traditional and non-destructive techniques. Although
traditional techniques provide detailed and accurate results, the trend is shifting towards non-
destructive techniques, which offer rapid, efficient, and comprehensive quality assessment without
causing damage to the products (Abasi et al., 2018; Aline et al., 2023). The evaluation of quality
changes in fruits and vegetables during storage using traditional techniques is presented in detail in

the following sections: -



2.2.1 Ethylene production

Ethylene production in fruits typically increases with both temperature and storage duration,
contributing significantly to accelerated ripening and softening. For example, plums stored at higher
temperatures exhibit elevated ethylene levels. This level is driven by enhanced activities of ethylene
biosynthetic enzymes such as ACS (1-aminocyclopropane-1-carboxylate synthase) and ACO (1-
aminocyclopropane-1-carboxylate oxidase) (Khan et al., 2011). Melnyk et al. (2014) reported that
apples stored at 2 °C for 180 days, ethylene emission varies by cultivar; ‘Golden Delicious’ showed
the highest production (~60 pL-kg”'-h™ at 150 days), while ‘Idared’ remained much lower
(~4.4 uL-kg'-h™"' at 180 days). Similarly, Wang et al. (2022) demonstrated that apples stored at
20 °C released ethylene more rapidly and in higher amounts (peak ~37.62 pL-kg™'-h™" at 10 days)
compared to those stored at 0 °C (peak ~26.46 uL-kg™'-h™' at 35 days). Storage duration also plays
a critical role, with longer periods resulting in higher ethylene levels (Shafiq et al., 2011). Moreover,
cold-stored fruits often experience a spike in ethylene production when transferred to ambient
temperatures, accelerating ripening and firmness loss. Persimmons stored at 1 °C showed a sharp
ethylene surge upon warming, leading to chilling injury (Orihuel-Iranzo et al., 2010), a trend echoed
in zucchini moved from 4 °C to 20 °C. Higher storage temperatures further rise ethylene synthesis,
which has been related to increased chilling sensitivity (Liu et al., 2022; Whale and Singh, 2007,
Megias et al., 2015). Ethylene surges are a central trigger for physiological ripening processes,
including texture softening, color development, and sugar accumulation (Luo et al., 2009; Ravindra
and Goswami, 2008). Ultimately, higher ethylene levels accelerate fruit senescence, thereby

shortening shelf life (Kumar et al., 2018; Manganaris et al., 2008).

2.2.2 Respiration Rate

Respiration rate refers to the rate at which oxygen is consumed, and carbon dioxide is produced in
stored plant tissues. Higher respiration rate is closely associated with faster deterioration of produce
quality because it accelerates biochemical changes that compromise freshness and shelf life
(Ravindra and Goswami, 2008). This rate is influenced by storage temperature and enzymatic
activities, and it increases during ripening. For example, Singh and Khan (2010) found that
respiration rates rise from a minimum level to a peak as the fruit matures and then decline as it
overripens. Argenta et al. (2003) emphasized that lower storage temperatures help suppress
ethylene production, slow the ripening process, and extend the shelf life of produce. Contrary, Singh

and Khan (2010) reported that higher respiration rates lead to quicker starch depletion and softening



of the fruits. Additionally, Leokke et al. (2011) demonstrated that respiration rates can increase by
two to three times with every 10°C rise in temperature, underlining the importance of controlled
temperature in maintaining postharvest quality. However, respiration rate can be affected by cultivar
type, harvest maturity, preharvest environment, storage temperature, atmospheric composition, and
postharvest treatments (Singh and Khan, 2010). Studies on crops like tomato, pepper, cucumber,
and zucchini reveal that respiration varies significantly among cultivars (Priss et al, 2017). In
climacteric fruits such as papaya, apples, and plums, respiration rates increase over time and with
rising temperatures after harvest (Torrieri et al., 2009; Martins et al., 2014; Singh and Khan, 2010).
Furthermore, Choi and Jung (2014) observed that respiration rates increased more rapidly in ‘Fuji’
apples stored at higher temperatures. In contrast, low temperatures can slow the respiration rate
during storage (Singh and Khan, 2010). The temperature dependence of respiration is further
illustrated in specific crops. Green mature mangoes, for example, exhibit a sharp increase in CO:
production from approximately 16.5 ml CO2kg ' h™" at 5 °C to around 55 ml CO:2 kg h™* at 30 °C,
with a decline over time in closed systems due to oxygen depletion (Ravindra and Goswami, 2008).
Similarly, pomegranate fruit and arils show higher respiration at warmer temperatures: whole fruit
CO: production increases from about 5.7 ml CO2kg ' h™ at 5°C to 18.5ml CO2kg ' h™" at 15 °C,
while fresh arils range between 2.7 and 9.0 ml CO2 kg™ h™! over the same temperature range, with
cultivar differences also influencing CO: evolution (Caleb et al., 2012). In fresh-cut Annurca apples,
respiration 1s primarily driven by temperature, with CO: production rising from about
3.0ml CO2kg ' h*at5 °C to approximately 11.0 ml CO2kg ' h! at 20 °C (Torrieri et al., 2009).The
CO: production of ‘Golden’ papaya stored at 13 °C also rose from 7.62 to 33.18 mL kg ' h™! over
30 days (Martins et al., 2014). on the other hand, Plums benefit from controlled atmosphere (CA)
storage conditions typically 1-3% O: and 2-5% CO- which help sup-press respiration and delay
ripening (Cantwell and Suslow, 2002). Lu et al. (2023) developed a mathematical model for
modified atmosphere packaging (MAP) using low-density polyethylene (LDPE) film to extend the
shelf life of green asparagus. Their active MAP system maintained an internal atmosphere of 6.5%

oxygen (0O2) and 15.5% carbon dioxide (CO:) during storage at 5 °C.



2.2.3 Weight Loss

Weight loss is a critical indicator of the postharvest quality of fruits and vegetables. It affects their
appearance due to shrinkage. The rate of weight loss is influenced by storage conditions, such as
temperature and humidity, which affect respiration and water transpiration (Van Dijk et al., 2006).
Hasan et al. (2024) indicated that water loss is a factor affecting the postharvest quality and shelf
life of apples. Additionally, Kassebi et al. (2022) reported that higher storage temperatures
accelerate weight loss in ‘Golden Delicious’ apples. Tzoumaki et al. (2009) found that asparagus
stored at 4 °C for 11 days lost 7.3% of its weight, while Villanueva et al. (2005) reported an 11.8%
loss of weight at 2 °C in 14 days. Atmospheric humidity also plays a significant role in determining
weight loss, as shown by Hung et al. (2011). Guerra and Casquero (2008) reported that weight loss
is significantly affected by harvest maturity in plums. Fruit harvested earlier showed less weight
loss during storage but had low eating quality after ripening compared to later-harvested fruit. Li et
al. (2022) noted that ‘French’ plums stored at 1°C and 90 % relative humidity experienced
significant and progressive weight loss throughout the 35-day storage period. Crisosto et al. (2004)
revealed that lower metabolic activity and reduced evaporation in colder storage conditions help
preserve the structural integrity of fruits over extended periods. Wang et al. (2016) reported that
storage temperature and harvest maturity affect the development of physiological disorders in
‘Friar’ plums, with rapid disorder development at 5 °C and 15 °C, delayed or suppressed disorders
at 0 °C and 2 °C. Additionally, pectin solubilization at 5 °C and 15 °C contributed to gel-like flesh
translucency. Zhao et al. (2022) reported that low-temperature storage of fruits and vegetables helps
maintain their weight and reduces deterioration caused by the growth of spoilage microorganisms.
For instance, apples stored at 2 °C showed minimal weight loss compared to those stored at higher
temperatures (Sanad et al., 2023). Similarly, weight loss in tomatoes was significantly affected by

transportation distance, storage temperature, and storage period (Al-Dairi et al., 2021).

2.2.4 Firmness

Firmness is a crucial quality attribute that influences consumer perception, marketability, and
postharvest value of fruits and vegetables. It is primarily governed by the cell wall structure, tissue
composition, and physiological changes occurring during postharvest storage (Huang et al., 2018;
Mishra et al., 2022). A reduction in firmness is commonly attributed to enzymatic degradation of
cell wall polysaccharides, particularly pectin, by enzymes such as polygalacturonase (PG),

pectinesterase (PE), and cellulase (Anastasiadi et al., 2020; Garrido et al., 2001; He et al., 2022).



These enzymatic activities disrupt the structural integrity of plant cells, resulting in tissue softening
and texture loss (Toscano et al., 2021; Wang et al., 2016). Low-temperature storage is widely
recognized for its ability to preserve firmness by slowing down the conversion of protopectin to
soluble pectin and suppressing enzymatic activity (Geng et al., 2020; Manganaris et al., 2008).
However, transitions from cold to ambient conditions can accelerate firmness loss due to enhanced
ethylene production and increased respiration rates (Matabura, 2022). In fruits like pears, the
degradation of soluble pectin by polygalacturonase plays a critical role in softening during cold
storage (Kaur and Dhillon, 2015). Similarly, firmness loss in blueberries is related to the increased
water-soluble pectin and alterations in the cell wall matrix (Concepcion et al., 2021). Moreover, the
initial maturity stage at harvest significantly affects postharvest firmness retention. Earlier-
harvested fruits generally maintain firmness longer than those harvested at advanced maturity
stages, as reported in pears and apples (Kaur and Dhillon, 2014; Candan & Calvo, 2021; Moggia et
al., 2017). The role of ethylene is also central to firmness loss, with high ethylene exposure
accelerating cell wall breakdown, especially in climacteric fruits like apples (Tong et al., 2013;
Concepcion et al., 2021). In plums, cooler storage temperatures effectively delay softening and
preserve textural quality over extended periods (Guo et al., 2022; Cocco et al., 2022). In contrast to
most fruits, green asparagus exhibits firmness loss primarily due to water loss and the accumulation
of lignin rather than enzymatic pectin degradation. The rise in lignification during storage
contributes to increased toughness, reducing consumer acceptability and overall sensory quality

(Toscano et al., 2021; Priss et al., 2024).

2.2.5 Soluble Solid Content (SSC)

Soluble Solids Content (SSC) is an essential quality attribute for fruits and vegetables. It plays a
crucial role in determining their sweetness (Guo et al., 2019; Lie et al., 2016). Studies have shown
that ripening increases SSC, driven by the conversion of starch into simple sugars and moisture loss
during storage. Kodagoda et al. (2021) reported that temperature and time significantly affect the
sugar content of fruits like plums, apples, and others. Lower initial SSC is associated with extended
storage potential, as higher SSC results in faster metabolic activity and reduced shelf life (Guerra
& Casquero, 2008; Crisosto et al., 2004). Additionally, Jha et al. (2012) demonstrated that SSC in
apples increases as starch is converted to sugars during ripening (Cao et al., 2021; Tokala et al.,
2022). For instance, the SSC of kiwi fruit increases during ripening due to the breakdown of starch

into sugars (Xia et al., 2024). However, lower storage temperatures have been shown to decelerate
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metabolic processes, thereby prolonging the retention of SSC. In tomatoes stored at low
temperatures, SSC degradation was slower compared to those stored in ambient air (Valenzuela et
al., 2011). Similarly, Phillips et al. (2021) reported that starch is converted to simple sugars when
bananas ripen. On the other hand, peppers, SSC in peppers declined more rapidly during early
storage (Diaz-Pérez et al., 2024). In mangoes, spatial variations within the fruit also influence SSC,
with the shoulder region near the stem showing higher SSC compared to the tip (Mahayothee et al.,
2020). Zhang et al. (2022) observed that the SSC in ‘Gannan navel’ oranges initially increased
during early storage, reflecting enhanced sweetness as sugars accumulated. However, prolonged
storage at ambient temperature (20°C) led to a gradual decline in SSC, likely due to sugar
degradation and metabolic activity. Conversely, low-temperature storage (4°C) better preserved
SSC levels over time. Tomar and Pradhan (2024) also reported that the SSC of Amla (Phyllanthus
emblica) fruit stored at room temperature significantly increased, primarily due to moisture loss,

while SSC changes under low-temperature conditions were insignificant.

2.2.6 Peel Color

Peel color is a key visual indicator of ripeness and quality in fruits and vegetables, governed by
pigments like chlorophylls, carotenoids, and anthocyanins (Kapoor et al., 2022; Muhammad et al.,
2024). These pigments undergo metabolic changes during ripening and storage, leading to visible
color transitions (Kapoor et al., 2022; Schiavon et al., 2023). Anthocyanin accumulation,
particularly in fruits like plums, plays a major role in deepening pigmentation (Kodagoda et al.,
2021; Lorente et al., 2015). The hue angle and L* value based on the International Commission on
Illumination (CIE) typically decrease with ripening, color development (Ozturk et al., 2015; Bizjak
et al., 2012). The L* value represents the lightness of the color, ranging from 0 (black) to 100
(white). The hue angle (expressed in degrees) describes the actual color tone: 0° =red, 90° = yellow,
180° = green, and 270° = blue. High storage temperatures accelerate undesirable color changes
(Neri et al., 2019), and prolonged storage may degrade pigmentation (Guerra et al., 2010).
Controlled conditions help preserve color, as seen in blackberries and pitayas, where anthocyanin
synthesis continues postharvest (Martineli et al., 2021, 2022; Schiavon et al., 2023). Aispuro-
Hernandez et al. (2019) showed that storage temperature directly affects grapefruit peel color via
pigment composition. In pomegranates, Sarrwy et al. (2021) found that 10 °C storage enhanced
anthocyanin content and red pigmentation, while 20 °C caused browning and 5 °C preserved color

with reduced intensity.
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2.3 Non-destructive quality assessment of fruits and vegetables

The growing consumer demand for high-quality fruits and vegetables has intensified the need for
reliable, efficient, and scalable quality assessment methods (Ncama and Magwaza, 2022).
Traditionally, external attributes like color and size are evaluated through visual inspection, yet this
method is subjective and often inconsistent due to human perception and environmental factors
(Nguyen et al., 2024; Tasioulas et al., 2024). To overcome these challenges, advanced tools
integrating machine vision and machine learning now provide objective, repeatable assessments for
automated sorting (Araujo et al., 2022; Bahaddou et al., 2024; Tian and Xu, 2023). Meanwhile,
internal quality assessment has historically relied on destructive techniques such as chemical
analysis and physicochemical testing (Jaywant et al., 2022; Fodor et al., 2024), which, while
accurate, are labor-intensive, costly, non-repeatable, and unsuitable for high-throughput use (Tian
and Xu, 2022; Jaywant et al., 2022). In contrast, non-destructive technologies such as NIR
spectroscopy, LLBI, hyperspectral imaging, and machine vision enable a real-time, large-scale
evaluation without damaging the product (Fodor et al., 2024; Baranyai and Zude, 2009; Wieme et
al., 2022). These techniques not only reduce waste and operational costs (Luo et al., 2022; Jaywant
et al., 2022) but also support continuous postharvest monitoring to preserve freshness (Aline et al.,
2023; Shen et al., 2018). Unlike traditional sensory evaluation, which is subjective, non-destructive
methods offer consistency through sensor-based measurement and machine learning algorithms
(Akter et al., 2024; Elmetwalli et al., 2024). Additionally, traditional systems are often standalone
and difficult to digitize, whereas non-destructive tools are designed for integration, automation, and
data-driven decision-making across the supply chain (Fakhlaei et al., 2014). However, these
advanced techniques also have their own limitations, such as complex data processing requirements,
spectral overlapping, the need for skilled personnel, and relatively high costs (Fodor et al., 2024;
Wieme et al., 2024). The strengths and weaknesses of these approaches are discussed in detail in
Section 2.5.3. This section presents only a general comparison between conventional and non-
destructive methods. A summary of their differences in terms of cost, speed, scalability, and

integration is provided in Table 1.
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Table 1: Comparison between traditional and Non-destructive measurement techniques

Attribute Traditional Non-destructive measurements  References
measurements

Destructiveness Often destructive, Non-destructive, allowing (Tian and Xu,
leading to sample loss repeated measurements on the  2022)

same sample

Speed Time-consuming, Rapid and suitable for real-time Fodor et al 2024
especially for large-scale monitoring
operations

Subjectivity Subjective, particularly ~ Objective and consistent, (Akter et al.,
in sensory evaluation reducing human error 2024).

Cost High costs due to labor, = Lower costs in the long run,
equipment, and sample ~ with minimal labor and no (Jaywant et al,
destruction sample destruction 2022; Luo et al,,

2022)
Integration Difficult to integrate Easily integrated into sorting

Data analysis

with automated systems

Requires specialized

equipment and expertise

lines and supply chain
management systems

Can be combined with machine
learning for enhanced accuracy

and automation

Fakhlaei et
2024

al.,

(Elmetwalli et
al., 2024; Salehi,
2020)
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2.4 NIR spectroscopy and Laser light backscattering imaging (LLBI)

Near-infrared (NIR) spectroscopy and laser light backscattering imaging (LLBI) are modern, non-
destructive techniques that are increasingly being used for postharvest quality assessment of fruits
and vegetables. These methods leverage different regions of the electromagnetic spectrum,
including 400-1000 nm (VNIR) and 900-1700 nm (NIR), as shown in Figure 1. These spectral
ranges are widely utilized to evaluate both internal attributes, such as SSC, moisture content, and
firmness, and external features, like color and texture (Gibertoni et al., 2022; Ravikanth et al., 2017).
The basic principles, spectral preprocessing strategies, optimal wavelength selection, image
analysis, calibration models, and comparison of both NIR spectroscopy and LLBI are discussed in

the following sections.

<0.01nm 0.01-10nm 10-100nm  400-740nm 90012000 nm 10%-10" nm 10%10" nm
y-rays X-rays UVrays  Visible rays Infrared rays Microwaves Microwaves

900-1700nm “
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I e N
I 400-1000nm »
G VisioleR — > %
00-7400m_y 900-12000 nm, N
Visible rays i Infrared rays b

400 740 12000

970-3000nm  3000-5000 nm 8000-12000nm
Shortwave IR Midwave IR Longwave IR

Figure 1: The electromagnetic spectrum (source: Ravikanth et al. 2017)
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2.4.1 Near-infrared spectroscopy (NIR)

Basic principle

NIR spectroscopy is widely used for non-destructive quality assessment of fruits and vegetables
due to its rapid, non-invasive, and cost-effective approach (Bureau et al., 2009; Hayati et al., 2020;
Walsh et al., 2020). It assesses the quality of fruits and vegetables by measuring light absorption
and diffuse reflectance in the near-infrared region. When NIR light interacts with a sample's surface,
chemical components such as water, sugars, and proteins absorb light at specific wavelengths, while
diffuse reflectance is influenced by tissue structures (Camps and Gilli, 2017 ; Tian and Xu, 2022 ).
Absorption occurs due to C-H, O-H, and N-H bonds, while spectral features arise from overtones

and combinations of molecular vibrations at infrared wavelengths (Wu et al., 2014)
Spectral Characteristics

The NIR absorption peak at 930—1080 nm is attributed to O—H stretching overtones in water and
carbohydrates (Qing et al., 2007a), while the 970 nm band corresponds to the second overtone of
O-H stretching in water. Additional peaks at 1190 nm and 1462 nm are linked to C—H and O-H
first overtones, respectively (Mireei et al., 2010). Absorption at 840, 960, and 1440 nm is associated
with O—H, and at 910, 1100, and 1700 nm with C—H overtones (Walsh et al., 2020), with 910 nm
particularly sensitive to sugar content (Paz et al., 2008; Walsh et al., 2020). Subedi et al. (2012) also
noted that absorbance near 1680 nm reflects CH2 or O-H-containing compounds. However, water
is the dominant absorber in the NIR region, complicating spectral interpretation (Nicolai et al.,
2007). Moreover, NIR spectra are affected by overlapping bands, low signal-to-noise ratios, and
sample composition variability, requiring advanced pre-processing for accurate analysis (Magwaza

etal., 2012).
Savitzky-Golay Smoothing

The Savitzky-Golay (SG) smoothing method is commonly used in spectroscopy to eliminate high-
frequency noise while enhancing the signal-to-noise ratio (Yao et al., 2023). It works by generating
an optimal estimate through averaging or fitting multiple data points within a designated window
size (Magwaza et al., 2012; Yao et al., 2023). Unlike traditional smoothing techniques, SG filtering
preserves the integrity of spectral shapes, ensuring that the important spectral features and chemical
composition information remain intact (Costa and Lima, 2013; Rinnan et al., 2009). This method

enhances data quality for further analysis without distorting critical spectral characteristics required
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for fruit and vegetable quality assessments. The effectiveness of SG smoothing depends on the
degree of the polynomial and the window size, both of which determine the extent of smoothing
applied to the data. It enhances spectral clarity and peak detection but must be carefully configured
(window size, polynomial order), as improper settings can flatten subtle but meaningful signals

(Antonov, 2017).

Multiplicative Scatter Correction (MSC)

Multiplicative Scatter Correction (MSC) is a widely used spectral pretreatment method that
enhances the robustness and accuracy of multivariate calibration models. It corrects the scatter level
of each spectrum to match an average spectrum, aiming to eliminate deviations caused by sample
size, texture, and undesirable scatter effect by the devices (Rinnan et al., 2009). Unlike SNV, which
uses data from each spectrum, MSC standardizes every spectrum using the mean spectrum of all
spectra. Jiang et al. (2012) found that MSC minimizes spectral variability in diffuse reflectance
measurements caused by light scattering, sample thickness differences, and environmental noise.
Lei et al. (2019) reported that MSC significantly enhances prediction accuracy by compensating for
light scattering and baseline shifts due to physical sample differences. However, Fearn et al. (2009)
noted that MSC relies on a stable reference spectrum and may perform poorly with nonlinearities

and spectral outliers
Standard Normal Variate (SNV) Transformations

SNV is a row-oriented transformation that can remove scatter effects in spectral data, which arise
from variations in sample particle size, surface roughness, or path length (Rinnan et al., 2009). In
NIR spectroscopy, these scatter effects can obscure true chemical information by introducing
baseline shifts or slope changes in the spectrum (Pokhrel et al., 2023; Rajkumar et al., 2022). SNV
transformation works by standardizing each spectrum, setting its mean value to zero and standard
deviation to one, thereby removing light-scattering effects and allowing for better sample
comparisons. Each spectrum can be calibrated based on the average value of a spectrum that is
subtracted from the original spectrum, and then the result is divided by the standard deviation. Thus,
it plays a crucial role in making spectral data more uniform, reducing the impact of physical
inconsistencies, and improving model accuracy in predicting fruit and vegetable quality attributes

(Liu et al., 2021; Rinnan et al., 2009). However, it may have a potential loss of useful scattering
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information and ineffectiveness to the biological variability (Kusumiyati et al., 2021; Mishra et al.,

2021).
Use of Derivatives

Derivatives can remove both additive and multiplicative effects in spectra (Hasanzadeh et al., 2022;
Rinnan et al., 2009). They are particularly useful for reducing baseline shifts and improving the
resolution of overlapping peaks in complex spectral data (Hasanzadeh et al., 2022). The first
derivative measures the slope of the spectral curve at each point, effectively removing constant
baseline offsets. The second derivative measures the change in the slope, eliminating linear trends
and improving spectral clarity (Liu et al., 2021; Rajkumar et al., 2022). In addition, these techniques
are particularly valuable in distinguishing between closely related chemical compounds and
resolving overlapping absorption bands. By highlighting underlying chemical variations,
derivatives allow for more precise assessments of quality parameters, such as sugar content,
moisture levels, and ripeness in fruits and vegetables (Liu et al., 2021; Rinnan et al., 2009).
However, the effectiveness of these methods is challenged by spectral complexity, fruit variability,
and environmental influences (Abderrahim et al., 2023 ;Mishra et al 2021). The comparison

summary of the spectral pretreatment methods used in NIR spectroscopy is presented in Table 2.

Table 2: Strengths and weaknesses of common spectral preprocessing methods

Method Strength Weakness References
Savitzky-Golay It preserves fine spectral detail ~ Requires careful selection of
Smoothing better than traditional window size and polynomial Antonov, 2017
smoothing filters. order.
Reduces noise while Over-smoothing may flatten

maintaining the shape of peaks. small but meaningful peaks.
Not effective if baseline drift
or scattering is present
Multiplicative Effective for removing scatter ~ Requires reference spectrum.  Fearn et al
Scatter Correction  effects, particularly in diffuse =~ Limited for non-linear effects 2009
(MSC) reflectance spectra. tend to produce outliers in

treated spectra
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Standard Normal
Variate (SNV)

Derivatives (1st &

2nd order)

Self-normalizes

No reference needed
Effective for removing
baseline shifts and slope
variations.

Improves resolution of
overlapping features.

Helps in baseline correction

and subtle feature detection.

Being sensitive to noise may
suppress useful variations.
It may also interfere with the

interpretation of spectra

Very sensitive to noise,
especially higher-order
derivatives.

Needs smoothing before

Kusumiyati et
al 2021
Mishra et al
2021

Abderrahim et
al 2023

Compensation for instrumental

drift

application to avoid

amplifying noise.

Selection of Wavelengths

The NIR spectrum contains a full of information but often suffers from high dimensionality and
nonlinearity, which can hinder model performance. Various wavelength selection methods have
been developed to extract the most informative and relevant spectral variables to enhance the
predictive accuracy and reduce the complexity of the model. The utilization of these methods
minimizes redundancy, reduces calibration time, and improves model robustness. The Successive
Projections Algorithm (SPA) has been shown to identify wavelengths with minimal collinearity and
low redundancy (Liu et al., 2014; Wang et al., 2015). Competitive Adaptive Reweighted Sampling
(CARS) is a method that selects a subset of wavelengths by eliminating variables with low
regression coefficients through an iterative process involving adaptive reweighting and Monte Carlo
sampling (L1 et al., 2019; Yang et al., 2016). Meanwhile, the Genetic Algorithm (GA) acts as a
global optimization strategy inspired by the principles of natural evolution. The GA starts with a
randomly generated set of potential solutions and applies genetic operators such as selection,
crossover, and mutation to evolve toward an optimal solution, typically minimizing RMSEP (Wang

etal., 2015; Zhang et al., 2018)

18



2.4.2 Laser light backscattering imaging (LLBI)

Basic principles

Laser light backscattering imaging (LLBI) is a non-destructive optical technique used to evaluate
the quality of fruits and vegetables by analyzing how light is reflected and scattered from their
surface and internal tissues (Baranyai and Zude, 2009; Mollazade et al., 2012). Based on the
principle of diffuse backscattering, LLBI measures the diffusely reflected light after it interacts with
biological materials. The scattering behavior is influenced by the tissue’s optical properties,
geometry, and cellular structure, including factors such as water content, sugar, pigment levels, and
surface roughness (Birth, 1978; Trager, 2012; Lu, 2017). As illustrated in Figure 2, diffuse

reflection patterns vary depending on the nature of the medium (Lu, 2017).
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Figure 2: Diffuse reflection occurring on two types of medium (Source: Lu, 2017)

Agricultural products typically reflect only 4%—5% of incident light, with the rest being absorbed
or scattered within the tissue (Birth, 1978). Reflectance accuracy can be compromised by surface
curvature and requires correction for consistency. The reflected intensity follows Lambert's cosine
law, being proportional to the cosine of the angle between the incident beam and the surface normal
(Kienle et al., 1996). During LLBI measurement, a laser beam creates a ‘halo’ of backscattered
light, which is captured by imaging sensors. Absorbed photons reveal chemical composition, while
scattered light informs on texture, firmness, and mechanical traits (Lu, 2004; Baranyai and Zude,
2009; Mollazade et al., 2012). When integrated with spectral data, LLBI can also estimate attributes
like soluble solids content (Qing et al., 2007b). LLBI operates in the visible and near-infrared
wavelength range. It includes two primary approaches: monochromatic imaging and broadband
imaging (Peng and Lu, 2006; Qing et al., 2008). The important factors in system design include the
beam's wavelength, size, and angle of incidence. A smaller beam is preferred for localized analysis,
as it simplifies quantification by reducing the scattering region (Lu, 2004). For instance, prior

studies have used beam diameters and divergence angles such as 1.6 mm (0.024 rad) for apples
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(Peng and Lu, 2005), 1.5 mm (<0.296 rad) for peaches (Peng and Lu, 2006), and 1 mm (<0.01 rad)
for kiwifruit (Baranyai and Zude, 2009). The optimal angle of incidence ranges from 7° to 25°
relative to the perpendicular to the surface of the materials (Qin and Lu, 2008; Qing et al., 2007b).
This configuration (i.e., small beam size and optimal angle of incidence light) results in image
symmetry around the point of incidence, which simplifies image processing. However, LLBI is

typically limited to a single wavelength at a time, restricting its spectral coverage (Qing et al.,

2007b).
Wavelength Selection

The selection of appropriate wavelengths for the target fruit or vegetable is an essential first step in
Light Backscattering Imaging (LBI). Since there is a limited number of wavelengths that provide
sufficient information about the internal chemical and mechanical properties of agricultural and
food products, the effectiveness of LLBI analysis depends largely on the wavelengths that are
chosen. The following methods can be applied to the selection of wavelengths:- A complete
wavelength search (Lu, 2009), based on prior knowledge of the effective spectral ranges for
particular fruit attributes (Lu, 2004) and selection based on NIR spectroscopy results, where
wavelengths identified as important in Near-Infrared (NIR) spectroscopy studies are applied to LBI
(Lu, 2004; Qing et al., 2007b).

Image processing

In Light Backscatter Imaging (LBI), enhancing the signal-to-noise ratio (SNR) and reducing image
noise are essential for reliable analysis. Techniques such as radial averaging, profile averaging, and
pixel binning are commonly applied to improve image quality and reduce random variability (Lu,
2004; Peng and Lu, 2005, 2006). Histogram-based thresholding is widely used to convert images
to grayscale and define clusters for automated segmentation (Qing et al., 2007b). Backscattering
images are then processed through feature extraction, including total pixel count, intensity values,
and 2D texture features, to assess quality traits in agro-food products (Noh and Lu, 2007; Romano
et al., 2010; Qing et al., 2007b; Mollazade et al., 2012).Theoretical models, such as the Lorentzian
distribution, help characterize scattering profiles (Peng and Lu, 2005). Statistical descriptors,
including mean, median, mode, standard deviation, skewness, and kurtosis, can also be extracted
from pixel intensities to develop efficient classification and prediction models, supporting potential

real-time applications (Zhu et al., 2021).
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2.4.3 Classification models

Supervised classification models are valuable for assigning input data to predefined categories
based on feature patterns, making them useful for detecting quality changes in fruits and vegetables
(Lasalvia et al., 2022; Zhao et al., 2023). Partial Least Squares Discriminant Analysis (PLS-DA),
derived from PLS regression, adapts regression techniques for classification by identifying latent
variables that maximize separation between quality classes (Daniels et al., 2021; Lasalvia et al.,
2022). PLS-DA handles complex, high-dimensional datasets effectively, optimizing the covariance
between predictor variables and categorical outcomes, and performs well even in the presence of
collinearity or noise (Wang et al., 2015; Zhao et al., 2023). This makes it particularly suitable for
NIR and LLBI applications. In contrast, Linear Discriminant Analysis (LDA) is a classic statistical
approach that projects data onto a subspace maximizing between-class variance while minimizing
within-class variance, enabling discrimination of fruit quality changes (Vignati et al., 2023; Vitalis
etal., 2021; Lorente et al., 2015). While less capable of handling non-linear relationships than PLS-
DA, LDA remains effective when its assumptions align with the data. Model performance for both
PLS-DA and LDA is commonly evaluated using confusion matrices, which provide the basis for

metrics such as accuracy, precision, sensitivity, specificity, and F1-score (Pokhrel et al., 2023).

2.4.4 Prediction models

Supervised statistical models are widely used to predict fruit and vegetable quality attributes such
as soluble solids content (SSC) and firmness (Wang et al., 2015). These models establish
quantitative relationships between spectral predictors and target variables (Wang et al. 2015). Partial
least squares regression (PLSR) is among the most widely adopted methods for spectral data
analysis. It models the relationship between a set of predictor variables (i.e., spectral data) and a
continuous response variable by projecting both into a lower-dimensional latent space that
maximizes their covariance (Rosipal and Kridmer, 2006; Vestergaard et al., 2021). This
dimensionality reduction enhances model robustness and interpretability, making PLSR particularly
effective in fruit and vegetable quality assessment applications. In addition, support vector machine
(SVM) regression is applied to model both linear and non-linear relationships between predictors
and responses (Kashef, 2021; Zareef et al., 2020). SVM constructs hyperplanes in high-dimensional
feature spaces to predict continuous outcomes, and its ability to use kernel functions allows it to

capture non-linear patterns in spectral data (Chidambaram and Srinivasagan, 2019; Kashef, 2021;
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Zareef et al., 2020). This adaptability is particularly advantageous for assessing quality attributes
that do not follow linear trends, such as textural changes or color evolution. Multivariate Adaptive
Regression Splines (MARS) offers another approach for modeling nonlinear relationships. It works
by partitioning the data into separate regions and fitting linear regression models within each region.
The MARS algorithm automatically selects optimal knots and basic functions, allowing it to flexibly
capture complex, time-dependent quality dynamics in postharvest produce (Akin et al., 2020).
Furthermore, multivariate regression (MVR) is relevant when predicting multiple continuous
outcomes simultaneously from a set of independent variables. Unlike univariate models, MVR
accounts for interdependencies among multiple response variables, which is beneficial in scenarios
where fruit quality is influenced by several interconnected factors (Seasholtz and Kowalski, 1992).
To evaluate the predictive accuracy and reliability of these regression models, performance metrics
such as the coefficient of determination (R?), root mean square error of prediction (RMSEP), and
residual predictive deviation (RPD) are commonly used. A high R? indicates a strong correlation
between predicted and actual values, while a low RMSEP reflects minimal prediction error. An RPD
value between 2 and 2.5 indicates that coarse quantitative predictions are possible, and a value

above 2.5 corresponds to good prediction accuracy (Hemrattrakun et al., 2021; Nicolai et al., 2007).
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2.5 Applications of NIR spectroscopy and LLBI in postharvest quality
assessment
Near-Infrared (NIR) spectroscopy and Laser light backscattering imaging (LLBI) have emerged as
promising non-destructive techniques for monitoring the postharvest quality of fruits and vegetables
throughout the supply chain. These techniques have been applied for applications such as ripening
assessment, defect detection, and quality control, enabling rapid and accurate evaluations that help
maintain product consistency and reduce losses (Liu et al., 2022; Pham et al., 2024; Li et al., 2018).
By capturing internal and external quality attributes in real time, NIR and LLBI systems support
decision-making during storage, transport, and retail stages. Specifically, NIR spectroscopy excels
at assessing internal features like SSC, firmness, and moisture due to its penetrative capabilities
across near-infrared wavelengths, while LLBI is particularly adept at characterizing surface textural

properties and detecting bruises or cuts that may not be visible to the naked eye.

2.5.1 Quality monitoring using classification models

Near-infrared (NIR) spectroscopy and laser light backscattering imaging (LLBI), when combined
with classification models, have proven to be powerful non-destructive tools for monitoring
postharvest quality changes in fruits and vegetables. These methods are particularly useful in
detecting changes due to factors such as temperature, storage time, and cultivar variation. For
example, Li et al. (2018) utilized NIR spectroscopy in combination with a support vector machine
(SVM) to classify apples based on variety and origin, achieving a prediction accuracy of 96.67%.
Cortés et al. (2019) integrated principal component analysis (PCA) with quadratic discriminant
analysis (QDA) for in-line apple variety classification, reporting 98% accuracy for red apples and
85% for yellow varieties. Similarly, Kanchanomai et al. (2022) employed QDA to classify seeded
and seedless grape cultivars of the ‘White Malaga’ variety, attaining classification accuracies up to
95.44%. Sanchez et al. (2009) used a diode array/scanning monochromator NIR instrument (350—
2500 nm) and PLS2-discriminant analysis (PLS2-DA) to evaluate quality changes in green
asparagus stored at 2 °C for 28 days. Sampling at intervals of 0, 7, 14, and 28 days, the study
achieved 100% classification accuracy, confirming the model’s robustness in distinguishing
freshness levels. Gabri€ls et al. (2020) demonstrated the use of visible and near-infrared
spectroscopy (VNIRS, 400-1000 nm) with artificial neural networks (ANN) to classify internal
browning in ‘Keitt” mangoes. Their model achieved an overall accuracy of 83.1%, with 86.3%

sensitivity and 80.0% specificity, highlighting its potential for detecting internal disorders non-
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destructively. Shen et al. (2018) explored the use of Vis/NIR spectroscopy (650—-1690 nm) for
assessing postharvest quality and storage duration of strawberries. Using partial least squares-
discriminant analysis (PLS-DA), the study achieved classification accuracies between 93.3% and
97.4%, particularly when coupled with competitive adaptive reweighted sampling (CARS) for
wavelength selection. The method proved effective for distinguishing storage durations based on
changes in soluble solids content (SSC). On the other hand, in the LLBI applications, Lockman et
al. (2019) used 658 nm and 705 nm laser diodes to monitor ripening in cocoa pods. Features like
mean intensity, area, and shape descriptors were extracted from images and correlated with
reference firmness and color measurements. Linear discriminant analysis (LDA) classified pods by
ripeness stage with 90% accuracy at 658 nm and 95% at 705 nm. Zulkifli et al. (2019) applied LLBI
at 658 nm to classify ripening stages in Berangan bananas. Using LDA, the model achieved 94.2%
accuracy for binary classification (unripe vs. ripe), though performance dropped to 59.2% when
distinguishing all six commercial ripening stages, indicating challenges in mid-stage classification.
Adebayo et al. (2016) further demonstrated the power of LLBI with ANN models trained on optical
parameters derived from Farrell’s diffusion model using five laser wavelengths (532—1060 nm).
Their model classified banana ripeness (stages 2—7) with 97.53% accuracy, with most
misclassifications occurring only between adjacent stages. This study highlighted how absorption
is related to chemical content (e.g., sugars, chlorophyll), while scattering reflects structural changes
(e.g., cell wall breakdown). Lorente et al. (2013) and (2015) developed LLBI-based systems for
early detection of citrus fruit decay. Infected oranges (Penicillium digitatum) were scanned using
five wavelengths (532—-1060 nm), and features from Gaussian—Lorentzian (GL) model fitting were
extracted. Classification with LDA achieved 80.4% accuracy using 532 nm alone, which improved
to 96.1% when all wavelengths were combined. The follow-up study achieved 93.4% overall
accuracy by comparing both GL and physical diffusion models, confirming the advantages of multi-
wavelength fusion and spatial modeling for decay detection. Yang et al. (2021) evaluated LBI at
520 nm for detecting chilling injury in kiwifruit. For the ‘SunGold™" variety, flexible discriminant
analysis (FDA) modeling based on four key LBI parameters achieved a 92% classification accuracy,

while performance for ‘Hayward’ was lower at 58%.
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2.5.2 Quality monitoring using prediction models

Table 3 summarizes the application of NIR spectroscopy and laser light backscattering imaging
(LLBI) for the non-destructive assessment of fruit and vegetable quality, including weight loss,
firmness, soluble solids content (SSC), and skin color. These techniques, often combined with
multivariate regression models such as PLSR, SVM, and ANN. They vary in performance
depending on the spectral range, produce type, and modeling strategy.

The near-infrared (NIR) spectroscopy has been used to detect variations in the water molecular
structure that are closely associated with weight loss and other quality attributes (Gibertoni et al.,
2022; Vitalis et al., 2023). For example, Rabasco-Vilchez et al. (2024) successfully applied NIR
spectroscopy within the 700-1430 nm range, combined with partial least squares regression
(PLSR), to estimate weight loss in strawberries. Their model achieved an R? of 0.82 and an RMSE
of 4.07%. Moreover, Bonifazi et al. (2024) used visible and short-wave infrared (Vis-SWIR)
spectroscopy (350-2500 nm) along with PLSR to predict weight loss in intact olive fruits. Their
method achieving an R? of 0.96 and a cross-validated RMSE of 4.5%. They also observed that the
prominent wavelengths, which were sensitive to weight loss at bands 700—800 nm (third overtone
of O—H), 1400-1500 nm (first overtone of O—H), and 1900-2000 nm (i.e., combination of O—H
stretch and bend). On the other hand, LLBI at 670 nm has been applied for monitoring moisture
loss in banana a strong linear relationship (R? > 0.93) was observed between moisture content and
the relative laser area across all pre-treatment groups (Romano et al 2010).

Flores-Rojas et al. (2009) used NIR spectroscopy (400-2500 nm) with modified PLSR to predict
firmness as a shear force in asparagus, achieving an R? of 0.67 and an RMSEP of 7.81. However,
high moisture content and the fibrous heterogeneity of the spears limited the model's accuracy. The
prominent wavelengths influencing prediction included water absorption bands (970, 1450, 1940
nm) and cellulose-related C—H bonds (1160, 1790 nm). Similarly, Huang et al. (2018) found that
tomato firmness prediction was hindered by internal complexity and high-water content. Beyond
1340 nm, strong water absorption reduced the signal-to-noise ratio, and overlapping spectral
features were especially prominent at 970, 1180, and 1340 nm. In contrast, Chen et al. (2024) used
Vis/NIR (350-1150 nm) with SwinT-PLS and CARS for peach firmness prediction, achieving high
accuracy (R? =0.951, RMSEP = 0.443 N/mm). For bananas, Ferreira et al. (2022) employed NIR
(900—1700 nm) with SVM and reported R? = 0.84, RMSEP = 7.98 N. Additionally, they highlighted

the visible range (660—727 nm) as useful for identifying biochemical and textural changes during
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ripening. Besides, LLBI has also shown strong potential for firmness assessment. Qing et al.
(2007b) used LLBI at 680—980 nm with PLSR for ‘Elstar’ apples, yielding R? = 0.81 and RMSEP
=5.49 N/cm?; similar results were obtained across 600—1100 nm (R? = 0.79). Peng and Lu (2005)
used a Lorentzian distribution (LD) model on scattering images at 680, 880, 905, and 940 nm,
achieving an excellent fit (R? > 0.99, SEE = 4.37). Firmness predictions were conducted across two
independent datasets (Test 1 and Test 2), with multi-linear regression (MLR) models yielding R?
values of 0.67 and 0.58, respectively, and standard errors of validation (SEV) of 6.39 N and 6.01
N. Similarly, Peng and Lu (2006) developed an MLR model using three parameters extracted from
the Gompertz function (GF) of scattering profiles for predicting apple firmness, achieving an R? of
0.79. Meanwhile, Pratiwi et al. (2023) found that SSC prediction was more accurate in thinner-
skinned fruits, achieving R? values up to 0.90 in sapodilla and 0.88 in banana, while thick-skinned
fruits like dragon fruit and tomatoes yielded lower R? values (0.59—-0.64). Similarly, Zeng et al.
(2024) used NIR spectroscopy to predict SSC in intact apples by collecting diffuse reflectance
spectra in the 900—1700 nm range. Among the tested models, the PLSR model preprocessed with
Savitzky-Golay smoothing and multiplicative scatter correction (S-G + MSC) performed best,
achieving R>=10.92 and RMSEP = 0.54%. Yu and Yao (2023) developed a universal NIR model for
SSC across several thin-skinned fruits (i.e., Fuji apples, Aksu apples, Korla pears, and Nanguo
pears), achieving R = 0.93, RMSEP = 0.60 %. Jiang et al. (2022) emphasized the impact of apple
size on NIR accuracy, finding improved predictions when models were size-specific. Data fusion
with fruit diameter and CARS-enhanced features further improved performance (R* = 0.77-0.82,
RMSEP = 0.497-0.536%). Furthermore, Mariani et al. (2014) also demonstrated SSC prediction in
jaboticaba using NIR reflectance (10002500 nm), achieving R? = 0.71 and RMSEP = 1.33 %.
Praiphui et al. (2023) applied NIR (640—-1050 nm) to mangoes, reporting R* = 0.81 and RMSEP =
1.07 %. Shen et al. (2018) used Vis/NIR (650—-1690 nm) in online strawberry assessment with a
CARS-PLSR model, achieving R? =0.733 and RMSEP = 0.69%. Pratiwi et al. (2023) also showed
Vis—SWNIR (400-1000 nm) was effective for sapodilla (R? = 0.905), banana (R? = 0.885), and
guava (R? = 0.769), though less so for tomato (R* = 0.646) and dragon fruit (R? = 0.596), due to
thick skin, high water content, and complex internal morphology. Qing et al. (2007b) evaluated
LLBI (680-980 nm) for SSC in apples, achieving R* = 0.79 and RMSEP = 5.44%. Mozaffari et al.
(2022) applied LLBI with a 650 nm laser and ANN models in apricots, achieving R? = 0.96 and
RMSEP = 1.146 for SSC. Likewise, Adebayo et al. (2016) used LLBI with ANN and NIR
wavelengths (830 and 1060 nm), achieving an accuracy (R? = 0.92- 0.96) for SSC. Furthermore,
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while firmness and soluble solids content (SSC) contribute to internal quality attributes, skin color
also plays a significant role in external attributes. Noh and Lu (2007) have predicted apple skin
color (hue) using hyperspectral imaging and a neural network, achieving an R? of 0.88, while
chroma was predicted with an R? of 0.54. They also highlighted the importance of selecting
appropriate wavelengths to effectively capture anthocyanin variations during ripening. It agreed
with the pigment dynamics reported by Chen (2015). Moreover, Vis/NIR spectroscopy has also
been applied to other fruit types. In the case of tomatoes, Arruda De Brito et al. (2022) used Vis/NIR
spectroscopy combined with PLSR to predict the a* color parameter, achieving a strong correlation
(R* = 0.94, RMSEP = 2.89), further demonstrating the technique's robustness across different
produce. In addition, Zulkifli et al. (2019) demonstrated the effectiveness of laser light
backscattering imaging (LLBI) at 658 nm, where parameters such as mean intensity, diameter,
backscattering area, and maximum intensity, when combined with stepwise multiple linear
regression (MLR), could accurately predict peel color changes during banana ripening. Among the
CIE Lab* color components, the b* value, representing yellowness, showed the highest predictive
performance (R? = 0.85, RMSEP = 2.80), confirming its strong relationship with banana ripeness
stages. Similarly, Li et al. (2018) used hyperspectral imaging to predict plum peel color non-
destructively. They applied VNIR (600-975 nm) and SWIR (865-1610 nm) imaging systems to
develop PLSR models from spectral data on both sides of the fruit. Notably, the b* value was again
predicted with high accuracy in the VNIR region, particularly for the ‘Marjorie’s Seedling’ cultivar,
where the model achieved an R? of 0.88, RMSEP of 2.01, and RPD of 2.98. The ‘Victoria’ cultivar
and the combined-cultivar model also showed good predictive ability (R*=0.72—-0.73; RPD = 1.95).
In contrast, predictions based on SWIR spectra resulted in lower accuracy (R* = 0.55-0.69; RPD =
1.34-1.52).
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Table 3: Applications of NIR spectroscopy and LLBI in quality assessment of fruits and vegetables.

Techniques Fruit/ Parameter Wavelength Model Performance Reference

vegetable (R?, RMSEP)
NIR Strawberry ~ Weight loss 700-1430 nm  PLSR R2=10.82, Rabasco-Vilchez et al.
Spectroscopy RMSE =4.07 (2024)
NIR Olive Weight loss 3502500 nm PLSR R>=0.96, Bonifazi et al. (2024)
Spectroscopy RMSEP =4.5%
Vis/NIR Peach Firmness 350-1150 nm  SwinT-PLS R?=0.951, Chen et al. (2024)
Spectroscopy +CARS RMSEP =0.443 N/mm
Vis/SWNIR Tomatoes Firmness 400-1100 nm  PLSR >2=0.899 Huang et al. (2018)
Spectroscopy
NIR Bananas Firmness 900-1700 nm SVM R2=0.84, Ferreira et al. (2022)
Spectroscopy RMSEP=7.98 N
NIR Green Firmness 400-2500 nm PLSR R?>=0.55-0.67 Flores-Rojas et  al
Spectroscopy asparagus 350-2500 nm (2009)
LLBI Apple Firmness 680-980 nm PLSR R?=0.81 Qing et al. (2007b)
LLBI Apple Firmness 600-1100 nm PLSR R>=0.79 Qing et al. (2007b)
LLBI Apple Firmness 680, 800,900, PLSR R2=0.90 Peng and Lu (2006)

and 950 nm

NIR Apple SSC 900-2500 nm  PLS R2=0.8757, Shen et al. (2021)
Spectroscopy RMSEP = 0.4092%
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600-1080 nm

1000-2500 nm

900-1700 nm
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400-1000 nm
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Skin color (a*) 396-1,131 nm
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PLSR

PLSR
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PLSR + GA
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2=0.81,

RMSEP =1.07 %

R*=0.71,

RMSEP = 1.33 %

2=0.92,

RMSEP = 0.54%

R*=0.91,

RMSEP = 0.508 %

R>=0.88,

RMSEP = 0.39 %

R?=0.90,

RMSEP =0.73 %

R?>=0.77-0.82

Rz=10.79,

RMSEP =4.14%

R>=0.963,

RMSEP = 1.146%

R?=10.92-96

R> = 0.94, RMSEP =

2.89

Praiphui et al. (2023)

Mariani et al. (2014)

Zeng et al. (2024)

Song et al. (2024)

Pratiwi et al. (2023)

Yu and Yao (2023)

Jiang et al. (2022)

Qing et al. (2007b)

Mozaffari et al. (2022)

Adebayo et al. (2016)

Arruda De Brito et al.
(2022)
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2.5.3 Comparison between NIR spectroscopy, LLBI, and HSI techniques

Hyperspectral Imaging (HSI), Near-Infrared Spectroscopy (NIR), and Laser light backscattering
imaging (LLBI) are non-destructive techniques widely used for evaluating the quality of fruits and
vegetables. HSI combines imaging and spectroscopy to generate a spatial-spectral ‘hypercube’,
capturing a full spectrum at each pixel, which enables detailed analysis of surface and internal
features (Wieme et al., 2022). It operates in reflectance, transmittance, or interactance modes,
depending on the intended application (Nikzadfar et al., 202. It has been applied for SSC prediction
in strawberries, oranges, and plums (Meng et al., 2021; Riccioli et al., 2021; Weng et al., 2020), as
well as for detecting bruises and defects in pomegranates and loquats (Han et al., 2023; Okere et
al., 2023). However, HSI is cost-intensive, requires powerful data processing systems, and is
sensitive to surface texture and light variability (Ahmed et al., 2024; Benelli et al., 2020). In
contrast, NIR spectroscopy evaluates internal quality by measuring the absorption of near-infrared
light, which is sensitive to molecular bonds such as O-H, C—H, and N-H (Farag et al., 2022;
Giordano et al., 2023). This allows for the estimation of soluble solids content, moisture, and dry
matter. It can be used for monitoring ripeness, grading, and shelf-life (Kusumiyati et al., 2019). NIR
is fast and scalable for industrial use but suffers from overlapping absorption bands, lacks spatial
resolution, and depends on complex calibration models (Farag et al., 2022; Zhang et al., 2018).
Meanwhile, LLBI analyzes how laser light scatters on and beneath the fruit’s surface to assess
firmness, texture, and mechanical damage (Adebayo et al., 2016; Pham et al., 2024). It is a low-cost
and rapid method, making it practical for postharvest quality checks. However, LLBI is limited to
surface and near-surface evaluation and is highly affected by sample curvature, shape, and ambient
lighting (Mollazade et al., 2012; Pham et al., 2024). Overall, while each technique offers unique
advantages, their suitability depends on specific application needs, required accuracy, and practical
constraints of implementation. The summarized strength and weaknesses of the techniques is

presented in Table 4.
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Table 4: Comparison of advantages and limitations of HSI, NIR spectroscopy, and LLBI

Techniques Strength weakness References
Hyperspectral Imaging Detailed chemical and Expensive Wieme et al., 2022
(HSI) spatial mapping Multicollinearity Ahmed et al., 2024
detects internal and Tedious data processing
external defects Not suitable for direct
implementation in
industries
NIR Spectroscopy High chemical Limited to surface Kusumiyati et al.,
prediction accuracy analysis, sensitive to 2019; Farag et al.,
Fast and scalable scattering effects, and 2022
Suitable for bulk requires sample
sorting preparation.

Spectral overlapping
requires advanced data
processing and needs

frequent calibration

Laser light Fast and cost- Limited detection of Mollazade et al.,
backscattering imaging  effective internal  defects, high 2012; Pham et al.,
(LLBI) Easy to operate dependence on image 2024

processing
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3. RESEARCH GAP

After reviewing various literature, I identified some research gaps that can be used for further
investigation. Traditional methods have high operating costs, product wastage, and are limited to
integrated online operations. Advanced non-destructive techniques like hyperspectral imaging are
costly to develop and maintain, hard to scale for industrial use, and produce complex datasets that
are difficult to process and interpret (Wieme et al., 2022). Exploring cost-effective and easy-to-
handle complementary techniques, such as NIR spectroscopy and LLBI, can provide
comprehensive information for the quality assessment of fruits and vegetables during post-harvest
handling. However, most studies have applied full-spectrum approaches and typically implement
an independent predictive model, constraining flexibility and adaptability. The performance of NIR
models is often affected by physical, biological, and environmental variability (Jiang et al., 2022;
Pratiwi et al., 2023; Zhang et al., 2018). Exploring optimal spectral ranges and comparing linear
and nonlinear models can enhance the robustness and accuracy of postharvest quality assessment
across different conditions. On the other hand, the literature on Laser light backscattering imaging
(LLBI) has predominantly focused on beam system configurations and characterizing the LLBI
profile using radial averaging and histogram techniques. While these approaches have proven
useful, there is potential for improvement by evaluating different LLBI systems with varied
parameter settings, such as beam size, wavelength, and incident light angle. Exploring alternative
LLBI system configurations and feature extraction methods could further enhance its effectiveness

as a non-destructive technique for characterizing agricultural products.
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4. RESEARCH OBJECTIVES

The objective of the work was to apply non-destructive techniques to assess quality changes in fruits

and vegetables during post-harvest storage. The following goals were established:

1. To develop classification and prediction models using optimized and full NIR spectra to detect

quality changes during storage

Applying different linear and non-linear models using the full spectral range provided by
the handheld near-infrared (NIR) spectrometer (900—1700 nm).
Optimizing the full NIR spectra by analyzing the standard deviation (SD) of the normalized

spectra and selecting high-SD wavelengths for multispectral analysis.

2. To compare different mathematical models in Laser light backscattering imaging (LLBI) for

describing the signal and utilizing model coefficients for classification and prediction models

Emitting multispectral laser diodes (532—-1064 nm) onto the sample surface and acquiring
backscattering images.

Extracting features and characterizing peaks using various theoretical mathematical models.
Optimizing wavelengths based on the analysis of variance (ANOVA) of the extracted model
coefficients.

Comparing the performance of both beam and line-based LLBI systems at a specific

wavelength

3. To evaluate the applicability of the developed techniques for assessing quality changes in

asparagus, plum, and apple during post-harvest storage

Applying reference measurement methods to investigate changes in quality attributes such
as weight loss, firmness, SSC, and color in samples stored under different time and
temperature conditions.

Applying the developed LLBI and NIR techniques to monitor quality changes in asparagus,

plum, and apple during post-harvest storage.
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5. MATERIALS AND METHODS
5.1 Materials

This study evaluated the postharvest quality of three horticultural products of plum, asparagus, and
apple was collected from commercial orchards located in Csengdd, Kiskoros, and Dunaszentmiklos,
Hungary (Fig. 3). After harvest, the fruits and vegetables were packed in polypropylene crates and
promptly transported to the Laboratory of the Department of Food Measurement and Process
Control, Institute of Food Science and Technology, at the Hungarian University of Agriculture and
Life Sciences. Upon arrival, all samples were visually inspected to ensure uniformity in size,

ripeness, and the absence of visible defects or infections.

Initially, a total of 1,300 samples were used. This included 120 green asparagus spears (Eros’) with
an average mass of 36.88 + 4.59 g, length of 20.42 + 0.58 cm, diameter of 11.94 + 3.52 mm, and
firmness at the base, middle, and tip of 15.01 + 2.78 N, 12.86 + 3.64 N, and 10.86 = 1.09 N,
respectively. Additionally, 1,020 plums (510 per cultivar) were analyzed, with average firmness of
45.76 £ 6.97 N (‘Stanley’) and 44.74 + 5.83 N (‘Elena’), and SSC of 14.50 + 1.03% and 14.95 +
0.52%, respectively. Furthermore, 160 ‘Granny Smith’ apples were evaluated, with SSC of 10.75 +
1.09%, an average height of 72.97 &+ 3.66 mm, a width of 66.25 + 4.36 mm, and a starch index of
4.81 £0. 83.

Storage conditions were tailored for each product. Asparagus samples were randomly divided into
three groups, packed in low-density polyethylene (LDPE) plastic bags with ventilation holes. They
were stored at 2 °C, 10 °C, and 15 °C for 12 days. Each plum cultivar was divided into four groups
and stored at 1 °C, 5°C, 10 °C, and 15 °C for 24 days. Apples were divided into two groups and
stored at 2 °C for up to 27 weeks and at 22 °C for 5 weeks.

Relative humidity (RH) in the storage was measured using a Sain Lang humidity meter and DL-
120TH Voltcraft data loggers. Cold storage conditions (1-10 °C) were 90-95% RH, while ambient
storage (22 °C) was 60—-65% RH. Some samples in each treatment were removed from the
experiment before the scheduled measurement due to decay. Decayed fruits were excluded from the

groups in accordance with Regulation (EU) No 543/2011 (Article 3, Annex I, Part A).
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Figure 3: sample images for the materials (a) plums (i.e. ‘Stanley’ — left and ‘Elena’- right) (b)
green asparagus (i.e. ‘Eros’) and (c) apple (i.e. ‘Granny Smith’) used for the quality assessment

using nondestructive techniques.

5.2 Measurement of quality attributes

5.2.1 Ethylene production

The ethylene production was measured by placing a standardized quantity (typically 1 kg) of the
produce in a hermetically sealed container. The container was set for one hour, after that period the
concentration of ethylene gas accumulated inside was recorded using an ICA-56 hand-held ethylene
analyzer (International Controlled Atmosphere Ltd., United Kingdom) (Fig. 4). The resulting values

were expressed as the volume of ethylene produced per kilogram of produce per hour (uL/Kg.h).
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Figure 4: Schematic diagram of ethylene measurement

5.2.2 Respiration Rate

The respiration rate was measured by placing produce (typically 1kg) inside a sealed polymethyl
methacrylate (plexiglass) container equipped with FY A600-CO2H carbon dioxide (CO:) sensors
connected to an Almemo 3290-8 data logger (Ahlborn Mess-und Regelungstechnik GmbH,
Germany). The container was sealed to maintain a controlled environment, and CO: levels were
measured in 1 hr. (Fig. 5). The results were reported as the volume of CO: produced per kilogram

of produce per hour (mL/Kg.h)
Carbon dioxide sensor

Almemo 3290-8

data logger
Computer A
0.245
0.367 ...

Closed plexi
glass container

__— Sample

Figure 5: Schematic diagram of respiration measurement

5.2.3 Weight loss
Weight loss of fresh produce was determined using a digital balance (WLC 2/A2, RADWAG,

Radom, Poland). The initial weight of each sample was recorded, followed by subsequent
measurements over time. Weight loss was calculated as the difference between the current and initial
weight, expressed as a percentage relative to the initial value. The weighing method varied
depending on the type of produce: Green asparagus and Granny Smith apples were weighed

individually, whereas plums were weighed in groups (i.e., 20 pieces per group)
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5.2.4 Firmness

Asparagus

The firmness of the samples was measured using a texture analyzer (TA-XTplus, Stable
Microsystems, Surrey, UK) equipped with a blade cutter (HDP/BSK) for the analysis of green
asparagus samples. The test speed was set to 1 mm/s, with a 0.01 s delay between consecutive data
points (Fig. 6a). Ten asparagus spears were tested at every 4-day interval from each storage
temperature group. The maximum force (N) was recorded at three positions: the base, middle, and
peak. Ten spears were used from each group on each measurement day, had four measurement days

Plum

The firmness was measured using a portable fruit firmness tester (FT 327, T.R. Turoni srl, Forli, Italy)
with a cylindrical probe with a diameter of 7.9 mm was used. The probe penetrated the peeled plums
tissue of samples to a depth of 2 mm (Fig.6b). The maximum force (N) was obtained from two sides

of each fruit. 20 fruits were used per 4-day interval across four storage temperature groups
Apple

Apple firmness was measured using a handheld fruit firmness tester (FT 327, T.R. Turoni srl, Forli,
Italy) mounted on a vertical stand for stability. A 7.9 mm cylindrical probe penetrated the peeled
apple tissue to a depth of 10 mm. Maximum force (N) was recorded at three equatorial positions on
each fruit. Twenty apples were measured every 9 weeks under cold storage (2 °C) and every 2 weeks

at room temperature (22 °C)
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Figure 6: Schematic diagram of firmness measurement devices with different way

5.2.5 Soluble Solid Content (SSC)

SSC was measured using a handheld refractometer (PAL-1, Atago Co. Ltd., Tokyo, Japan; 0—-53%
range). Juice was extracted from each fruit, clarified of pulp, and one drop placed on the prism to
record °Brix. Twenty plums were measured every 4 days across four storage temperatures, while

twenty apples were sampled from each temperature group at every measurement point.

5.2.6 Peel Color

Minolta Chroma Meter

The peel color of plums was measured using a portable Minolta Chroma Meter CR-400 (Minolta
Corporation, Osaka, Japan) (Fig.7a). The device was calibrated before each measurement session
using a standard white calibration plate (CR-A43). Color measurements were taken at two opposite

points along the equatorial section of each plum. Standard CIE color parameters (L*, a*, and b*)

were recorded. The chroma (C*) value was calculated as Va*? + b*? and hue angle value was

calculated as the tan! of b*/a*.

Machine vision

A computer vision (CV) system was used to monitor peel color changes in asparagus and apples
during storage. The system consisted of a high-performance color digital camera (Hitachi HV-C20

3CCD, Tokyo, Japan) operated in manual mode with default settings. The color temperature was
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3200 K and was used for image acquisition. The camera was mounted 60 cm above the sample
chamber, positioned perpendicular to the surface of the samples to ensure consistent top-down
imaging and eliminate perspective distortion. LED lights (Im/Im LED light strips, 30LEDs, 2.8W)
were arranged in a circular configuration around the inner ceiling of the chamber, providing uniform
and diffuse illumination. This setup minimized shadows and reflections, ensuring consistent
lighting across all samples. The color change in asparagus and apples during storage was evaluated
(Fig. 7b). Four to five samples were placed on a white background, which also served as a color
reference. Images were captured at a resolution of 768 x 576 pixels and processed using Scilab
software (version 2024.0.1), following the image analysis method described by Nguyen et al.
(2021). IP_hue spectra were extracted from each image to quantitatively assess color changes over
storage time and temperature. The IP _hue represents a weighted histogram of hue angles,
summarizing saturation across the image, with color changes indicated by peak displacement. The
root mean square error (RMSE) between consecutive measurement days was calculated using the

following formula:

n

RMSEA_B =

where A; and B; represent the saturation values at the i™ hue degree for two consecutive
measurement days, and n is the total number of hue degrees (typically 360).

USB cable

Minolta CCD camera

LED light

B S Sample

Sample ‘ — 2
Computer |

(a) (b)

Sample holder

Chamber

Figure 7: Schematic diagram of portable (a) Minolta Chroma Meter and (b) computer vision

system
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5.3 Non-destructive measurement techniques

5.3.1 NIR spectroscopy (NIR)

Fruits and vegetables are semi-transparent or opaque to radiation in the visible and near-infrared
(NIR) regions, with NIR spectroscopy detecting absorption primarily from C-H, O-H, and N-H
bonds in compounds like water, sugars, and pigments (Chandrasekaran et al., 2019). In this thesis

work, a handheld NIR spectrometer was used. Its details are described below; -
NIR Spectra Acquisition

A handheld near-infrared (NIR) spectrometer (NIR-S-G1, InnoSpectra Co., Hsinchu, Taiwan) was
used to collect absorption spectra in the 900—1700 nm wavelength range, with a spectral resolution
of 4 nm. The device is based on digital light processing (DLP) technology and operates in
reflectance mode. It features compact optics and is equipped with both Micro USB and Bluetooth
Low Energy (BLE) interfaces, allowing data transfer either via USB or wirelessly to smartphones,
tablets, or personal computers. Spectral acquisition was performed using the manufacturer’s
software (NIRScan) under ambient laboratory conditions. The device is internally calibrated and
does not require an external white reference tile, as calibration is automatically managed by the
internal system. During measurement, asparagus spears were positioned horizontally, and spectra
were collected from three distinct locations along each spear: the base, middle, and tip. This
approach was used to capture spatial variation in tissue composition along the spear. For plums and
apples spectral data were collected from both opposite sides at the equatorial region. (as illustrated
in Fig. 8). At each measurement location, two to three consecutive scans were performed to ensure
repeatability and reliability. During scanning, the measurement window was fully covered by the

sample surface to maintain a consistent contact area and minimize external light interference.

\ .| '7 = y 7 =
NIR Spectrometer i Computer A

Protector

Figure 8: Schematic diagram about collecting the NIR absorption spectra in reflectance mode
using a handheld spectrometer.
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Pre-processing of NIR spectra

The spectral data was pre-processed using several techniques to correct for physical and chemical
effects, such as non-zero baselines and scatter. These methods included Savitzky-Golay smoothing
(i.e., polynomial, n=3 and window size, m =21) to reduce noise and Standard Normal Variate (SNV)
to correct for scatter effects (Guo et al., 2019; Pandiselvam et al., 2022). These pre-processing
techniques were applied to green asparagus, plums, and apple experiments to improve the quality

of the spectra for subsequent analysis.
Selection of sensitive wavelengths

In this study, sensitive wavelengths were selected using a filter-based variable selection approach.
The acquired spectra were pre-processed using SNV to remove the noise that is potentially produced
by specular reflection and the device. The standard deviation of the normalized spectra was
calculated column-wise to identify local maxima values, and significant wavelengths were manually
selected. These wavelengths were considered important because they corresponded to changes in
quality parameters such as WL, firmness, and SSC. Their relevance was further confirmed by
calculating quality indices, including the normalized difference index (NDI) and quality index (QI),
at the selected wavelengths. The reference wavelength was chosen based on the minimum standard

deviation of the normalized full spectrum.

NDI — Aselected— Areference QI — Aselected

2
Aselectedt Areference Areference

Where Agejecteq 18 NIR absorbance at the selected wavelength(s), Areference 1S NIR absorbance of
the reference wavelength.

5.3.2 Laser light backscattering imaging (LLBI) system

Laser light backscattering imaging (LLBI) is a relatively novel technique that uses light absorption,
scattering, and image processing in the visible and near-infrared range to assess the quality attributes
of fruits and vegetables. In this method, a laser beam illuminates a point on the fruit's surface in a
dark chamber, and the resulting light scattering provides valuable information about the fruit's

mechanical and textural properties (Qing et al., 2007b; Qing et al., 2008; Baranyai and Zude, 2009).
Laser Module and Camera Specifications

Beam based LLBI
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As shown in Fig. 9a, A laser beam imaging system with a 12-bit/pixel monochrome CMOS camera
(MV1-D1312, Photon Focus, Lachen, Switzerland) with default settings was used to generate
diffusely reflected signals. Laser diodes (3 mW) emitting at 532, 635, 780, 808, 850, and 1064 nm
were used. The incident angle of the laser beams was set to 15°, focused within a circular area of
@1 mm. Image acquisition was performed in a dark chamber to minimize external light interference
and improve the signal-to-noise ratio. The system captured images at a resolution of 0.113 mm/pixel

and a size of 512 x 512 pixels. The images were stored in raw binary format for analysis.
Line Based LLBI

A line laser imaging system was implemented to monitor quality changes in samples during post-
harvest storage (Fig. 9b). The system comprised a dark chamber, a monochrome industrial camera
(DMK38GX540-a, 1.2-inch Sony CMOS, GigE Interface (RJ45), Imaging Source, Bremen,
Germany), and a 635 nm LM Laser KH93242 single-line laser module(1 mW power, 1 mm line
thickness). The laser module was used to illuminate the samples, generating diffusely reflected
signals for imaging. The camera lens was positioned 27 cm from the sample surface, and a laser
module was mounted at an incident angle of 20° within a dark chamber to reduce direct reflections
and geometric distortion. Digital images were captured at a resolution of 0.0325 mm per pixel to

ensure spatial accuracy and minimize curvature-related effects.
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system with their respective sample of a backscatter image at 635 nm.

Description of LLBI profiles

An image processing algorithm was developed using Scilab (version 2024.1.0). Raw RGB image
files were transformed into greyscales, resulting in a two-dimensional (2D) matrix of pixels with
intensity values ranging from 0 to 255 . The incident (center) point was determined by calculating
the intensity-weighted average of pixel positions. A 5-pixel-wide band crossing the incident point
was selected as the region of interest (ROI). The 1D profiles were obtained from the intensity values
within the ROI. Then, the 1D intensity profiles were modeled using the modified Cauchy
distribution (CD) function (Eq. a) and the modified Gaussian distribution (GD) function (Eq. b),

which are mathematically expressed as follows:

- _ ZcZ3c®
IC = Z1e + (x—24¢)?% +23.2 (a)
(x—2z4 )2
Ig = 214 + zyg€xp (— —223;2 ) (b)
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Where I and I; denotes estimated light intensity; x denote the picture width ; z;. and z; 4 are the
baseline intensity; z,. and z,4 are amplitude; z3. and z34 are shape factors; and z,. and z,4 are the
location of the peak of CD and GD functions.

Image processing and feature extraction

The collected images were processed using Scilab (version 2024.1.0, Dassault Systémes, Vélizy-
Villacoublay, France). The coefficient parameters of the intensity profile were extracted using a
signal approximation approach based on modified Cauchy distribution and Gaussian distribution
function models. The coefficients derived from the model demonstrated strong performance in
characterizing intensity profiles and were used to develop models for monitoring quality changes.
The coefficients extracted from the line-based system at 635 nm, in combination with LDA, were
used to detect quality changes of 4-day storage intervals. These coefficients combined with linear
(MVR), and non-linear (MARS) models were used to estimate weight loss and firmness of green
asparagus. Additionally, the coefficients from the beam-based system at optimal wavelengths,
combined with LDA, were applied to detect quality changes in plums within 4-day storage intervals.
These coefficients, combined with MVR, were used to estimate plum firmness, SSC, and skin color.
On the other hand, coefficients directly extracted from the Cauchy model, measured at 635 nm using
line- and beam-based systems, were used to estimate apple weight loss and firmness using SVM
and MVR models. The MARS algorithm selects knots and basis functions adaptively, allowing it
to capture non-linear relationships between predictors and responses (Akin et al., 2020) . The MARS

model mathematically can be expressed as follows:

f&) = Bo+ Xi=1BiBi(x) (©)

Where, [, is the intercept, §; are the coefficients, B;( x) are basis functions, which are piecewise
linear splines that fit different regions of the data. Whereas MVR is used to model the relationship
between multiple predictors and a continuous dependent variable. Unlike simple regression
models, which predict a single outcome, MVR simultaneously predicts multiple outcomes based
on several independent variables (Seasholtz and Kowalski, 1992).

The general form of a multivariate regression model can be represented as:
Y=XB+E (d)
Where Y is the matrix of response variables, X is a matrix of predictor variables, B is the vector of

coefficients, and E is the vector of errors.
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5.4 Experimental design

The experiments of this research are schematically summarized in the flow chart shown in Fig. 10.
Green asparagus (i.e., ‘Eros’), plums (i.e., ‘Stanley’, ‘Elena’), and apples (i.e., ‘Granny Smith”)

were used for experimental work, treated at different storage temperatures and times.

Experiments

Quality Assessment

3. Apple

2. Plum

(‘Eros)) (‘Stanley’, ‘Flena’)
At 2,10and 15°C for12d at 1,5,10 and 15 °C for 24 d

1. Green asparagus

(‘Granny Smith’)
at 2 °C for 27 weeks
at 22 °C for 5 weeks

L 1-10 °C (90-95%RH) 22 °C (60-65%RH)

Reference
measurements

Non-destructive

techniques

Figure 10: Overall experimental design of quality assessment of green asparagus, plum, and apple during

post-harvest storage.
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5.4.1 Quality assessment of green asparagus during post-harvest storage

Storage treatment

The LDPE-packed green asparagus spears (Eros’) were stored at three different temperatures (2 -
10 °C with 90-95 RH% and 15 °C with default RH%). Measurements were taken at 4-day intervals,
with 10 samples tested from each group at each time point. The samples were kept at room
temperature for 12 h to maintain the surface temperature of the samples the same as the room
temperature. First, non-destructive measurements were performed on each spear at three positions
of the base, middle, and tip. Afterward, destructive analyses were conducted on the same tested
spears, which were then removed from the sample pool. The over all quality assessment design
presented in Fig 11.

Measurement

The weight loss and firmness of the green asparagus spears were measured using the methods
described in Sections 5.2.3 and 5.2.4, respectively. The device used for NIR and the system for
LLBI evaluations are detailed in Sections 5.3.1 and 5.3.2.

NIR spectroscopy

NIR spectra were collected non-destructively with two consecutive scans at three positions (base,
middle, tip) of each asparagus spear, preprocessed with SNV, and analyzed to select sensitive
wavelengths for NDI and QI calculation. A dataset of 684 observations across four storage times
and three temperatures was split (80% training, 20% validation) to develop classification (PLS-DA,
LDA) and prediction models (PLSR, SVM), with performance evaluated by metrics such as
accuracy, sensitivity, specificity, precision, F1-score, and balanced accuracy (detailed in Annex
Table 12.2). and R?, RMSE, and RPD for prediction, validated by 100 bootstrap repetitions.

LLBI

Line-based LLBI was conducted at the wavelength of 635 nm, capturing three LLBI images from
the base, middle, and peak of each asparagus spear. The Cauchy curve fitting method extracted
LLBI parameters (i.e, amplitude, shape and FWHM) from the LLBI profile. A total of 344
observations were collected from asparagus spears stored at 2 °C, 10 °C, and 15 °C. MVR and
MARS models were developed to predict weight loss and firmness, while LDA was applied to
evaluate quality changes in the asparagus. The dataset was randomly split into two subsets, with

80% used for training and 20% for validation. Bootstrapping with 100 repetitions was performed to
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evaluate model performance, generating statistical metrics such as mean and 95% confidence

intervals for R2, RMSE, and RPD.

Sample Collection:
120 asparagus spears
Stored at 2-10°C (90-95% RH) and 15°C for 12 days
30 initial samples, 10 samples every 4 days

l

Measurement Interval:
Day 0, 4, 8, 12

l

Measurements:
Non-Destructive:
- Weight Loss, Skin color
- LLBI Images (base, middle, peak)
- NIR Spectra (2 replications)

Destructive:
/ - Firmness
LLBI Processing: IP_hue spectrum analysis:
Gaussian and Cauchy Fits - Digital images
LLBI Parameters(Amplitude,Shape,F WHM) - RMSE evaluation
LLBI Applications: NIR Analysis:
- LDA: Storage Time Groups Full Spectra (901-1700 nm)
- MVR: Firmness & Weight Loss Selected Wavelengths (PLS-DA, LDA, NDVI, QI)
Predictive Modeling:

PLSR and SVM for Weight Loss and Firmness

l

Statistical Analysis:
- ANOVA: Time & Temperature Effects
- Correlation: Pearson

l

Processing:
- Statistical Analysis using RStudio (v4.4.2)
- Image Processing using Scilab (v2024.1.0)

Figure 11: Assessment of quality changes in green asparagus using NIR Spectroscopy and LLBI

techniques during post-harvest storage.
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5.4.2 Quality assessment of Plums during post-harvest storage
Storage treatment
Two plum cultivars (Stanley’ and ‘Elena’) were used in the study. A total of 510 fruits were selected
for each cultivar, of which 30 were used for initial measurements. The remaining 480 fruits were
randomly divided into four temperature groups (1 -10 °C with 90-95 RH%, and 15 °C) and stored
for 24 days. Storage duration was recorded in days. On each measurement day, 20 fruits were taken
from each temperature group, and they were kept for 12 h before the measurement to maintain the
sample’s surface temperature the same as the room temperature. Moreover, some groups were
terminated early due to mold growth. Fig. 12 presents the overall assessment of quality changes in
plums using NIR spectroscopy and LLBI techniques during postharvest storage.
Measurements
The physiological and quality changes of the plums were measured using the methods described
in Sections 5.2.1 to 5.2.6. The device used for NIR and the system for LLBI evaluations are detailed
in Sections 5.3.1 and 5.3.2.
NIR spectroscopy
Spectral data were collected from both sides of each fruit with three consecutive scans and
preprocessed using SNV. Sensitive wavelengths were identified from the normalized spectra by
calculating the standard deviation. Their sensitivity was also confirmed using NDI and QI indices.
PLSR and SVM models were developed with both full spectra and selected wavelengths to predict
weight loss and SSC, using a dataset of 2965 observations (1649 ‘Stanley’ and 1316 ‘Elena’). Each
dataset (combined, ‘Stanley,” and ‘Elena’) was randomly split into 80% training and 20%
validation, and model performance was evaluated with 100 bootstraps, reporting mean and 95%
confidence intervals for R?, RMSE, and RPD.
LLBI
Beam-based LLBI captured two images per plum from both sides across six wavelengths (532—
1064 nm). Optimized wavelengths, identified via ANOVA and Tukey’s test, highlighted sensitivity
to quality changes. From 1,276 observations (Stanley’ 569, ‘Elena’ 707), LDA classified samples
by storage time, while MVR models predicted firmness, SSC, and skin color using two LLBI
parameters at optimized wavelengths. Model performance was validated with 100 bootstraps,

reporting R, RMSE, and RPD with 95% confidence intervals.
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Sample Collection:
Two Plum Cultivars (Stanley, Elena)
510 pieces per cultivar
30 fruits for initial measurements
20 samples for each day interval
Stored at 1-10°C (90-95% RH) and 15 °C for 24 days

Measurement Intervals:
Day 0, 4, 8, 12, 16, 20, 24

Measurements:
- Weight Loss (WL)
- Soluble Solids Content (SSC)
- Skin Color
- Respiration Rate
- Ethylene Production
- LLBI Images (523, 635, 780, 808, 850, 1064 nm)
- NIR Spectra (901-1700 nm)

/

NIR Analysis:
- Full Spectra (901-1700 nm)
- Selected Wavelengths
- NDI & QI Calculation

/

Spectral Modeling:

LLBI Analysis:
_PLSR and SVM - Gaussian and Ca}lchy Fits
(SSC & WL Prediction) - LDA for Storage Time Groups
cdictio - MVR for Firmness, SSC & Skin Color

N

Statistical Analysis:
- ANOVA (Temperature, Time, Cultivar Effects)
- Pearson Correlation (Variable Relationships)

Software Processing:
- R (v4.2.3) for Statistical Analysis
- Scilab (v2024.1.0) for Image Processing

Figure 12: Assessment of quality changes in plums using NIR Spectroscopy and LLBI techniques

during post-harvest storage.
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5.4.3 Quality assessment of apple during post-harvest storage

Storage treatment

Similar to green asparagus and plums, the overall assessment of quality changes in ‘Granny smith’
apple using NIR spectroscopy and LLBI techniques during postharvest storage is presented in Fig.
13. A total of 160 apple samples were randomly divided into two groups. The first part was stored
at room temperature (22 °C with 60-65 RH%) for 5 weeks and sampled at 2-week intervals. The
second part apples were stored under cold conditions (2 °C with 90-95 RH%) for 26 weeks,
followed by 1 week at 22 °C for shelf life, with sampling conducted at 9-week intervals.

Measurement

The physiological and quality changes of the ‘Granny Smith apples were measured using the
methods described in Section 5.2.1. to 5.2.6 The device used for NIR and the system for LLBI
evaluations are detailed in Sections 5.3.1 and 5.3.2
NIR Spectroscopy

A handheld NIR spectrometer (900—1700 nm) collected spectra from two opposite locations around
the equator of each apple, with three consecutive scans per location. Spectra were preprocessed
using SG smoothing and SNV. The significant wavelengths were identified from column-wise
standard deviations. Additionally, NDI and QI indices for these wavelengths were calculated to
confirm their sensitivity. PLSR and SVM models were developed using both the full spectra and
the selected wavelengths, and their performance was compared. A total of 834 observations were
collected. This dataset was randomly divided into two sheets, with 80% used for training and 20%
for validation. Bootstrapping with 100 repetitions was employed to assess model performance,
providing statistical metrics such as the mean and 95% confidence intervals for R?, RMSE, and
RPD, ensuring robust and reliable evaluation of the models
LLBI

Line-based LLBI images were captured from two opposite equatorial locations per apple. At 635
nm, LLBI profiles were fitted with a modified Cauchy model to extract amplitude, shape, and
FWHM, which were used in MVR and SVM models. From 643 observations (line: 382, beam:
261). The dataset was randomly divided into two subsets, with 80% used for training and 20% for
validation. Bootstrapping with 100 repetitions was performed, and model performance metrics (R?,

RMSE, and RPD) were evaluated using t-tests with 95% confidence intervals.

50



Data Collection:
160 Granny Smith Apples

Y
Storage Conditions:

- Room Temp: 22°C, 60-65% RH

- Cold Storage: 2°C, 90-95% RH

A
Measurement interval:

- Room Temp: Every 2 weeks for 5 weeks

- Cold Storage every 9 weeks for 27 weeks

A
Parameters Measured:
Weight Loss, SSC, Firmness,
Skin Color, Ethylene, Respiration,
NIR Absorbance, LLBI Images

NIR Analysis: \

900-1700 nm Spectrometer LLBI System Comparison:
- SNV Normalization - Line-Based: Two Locations
- Local Max Peaks - Beam-Based: Single Location
- Selected Wavelengths \

Indices Computation: S
) 635 nm with Cauchy Distribution
e s e s Extract Amplitude, Shape and FWHM Parameters

\ I

Prediction Models: oy :
. Prediction Using LLBI:
PLSR, SVM for WL, SSC, Firmness, MVR, SVM for WL, Firmness

full spectra, selected wavelengths

N

Statistical Analysis:
- Pearson Correlation
- ANOVA (Time, Temp, Interaction)

A
Software Processing:
- R (v4.2.3) for Statistical Analysis
- Scilab (v2024.1.0) for Image Processing

Figure 13: Assessment of quality changes in apple using NIR Spectroscopy and LLBI techniques

during post-harvest storage.
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5.5 Data analysis

The data analysis provides a comprehensive framework for the spectral analysis of horticultural
products, employing both classification and prediction techniques to effectively assess and manage
fruit quality. This integration of advanced spectral analysis with multivariate statistical methods
enables precise control and improvement of post-harvest handling and processing procedures. In
this dissertation, basic descriptive statistics on the quality parameters of the fresh produce during
treatments were presented in plots, Analysis of Variance (ANOVA) was used to evaluate the effects
of the treatments on these parameters. Moreover, classification and prediction models were applied
to assess the association between quality parameters and the laser and NIR spectral variables. Partial
Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA) were
established to classify the samples based on their treatment groups, utilizing the ‘plsdepot’ (version
0.2.0) and ‘mda’ (version 0.5-3) packages. Additionally, Partial Least Squares Regression (PLSR),
Multivariate Regression (MVR) Support Vector Machine Regression (SVM) and Adaptive
Regression Splines (MARS) were built to predict the quality attributes of the samples using the ‘pls’
(version 2.8-2), ‘aquap?2’ (version 0.4.2), ‘1071’ (version 1.7-13), ‘earth’ (version 5.3.3) packages,
respectively. All statistical analyses were performed using R software (version 4.2.3, R Foundation

for Statistical Computing, Vienna, Austria).
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6. RESULTS AND DISCUSSIONS

6.1 Green asparagus experiment during post-harvest storage

This section presents the results of NIR spectroscopy and line-based LLBI techniques used to
monitor quality changes in green asparagus during storage. For NIR spectroscopy analysis, a total
of 684 observations were generated by acquiring spectral data at three positions (base, middle, and
peak) on each spear, using two scans per position. The collected spectra were preprocessed using
standard normal variate (SNV), and sensitive wavelengths were manually selected based on the
standard deviation of the normalized spectra. Normalized difference index (NDI) and quality index
(QI) were calculated to validate the sensitivity of these wavelengths. Classification models (PLS-
DA, LDA) and prediction models PLSR and SVM were developed using both full spectra and the
spectra at selected wavelengths to evaluate changes in asparagus quality. PLS-DA was implemented
using the ‘plsdepot’ package (version 0.2.0), while LDA was performed using the ‘mda ’package
(version 0.5-3) in R. For LLBI, 344 observations were obtained by capturing images at 635 nm
from the same three positions on each spear. LLBI parameters (i.e., amplitude, shape and FWHM)
were extracted using Cauchy curve fitting. MVR using ‘pls’ (version 2.8-2), and MARS with ‘earth’
(version 5.3.3) package in R. The models were developed to predict weight loss and firmness, while
LDA was used to detect quality changes over time for the samples stored at different storage
temperature groups. All datasets were randomly split into training (80%) and validation (20%)
subsets. Model performance was evaluated using bootstrapped metrics (R?, RMSE, RPD) with 95%

confidence intervals

6.1.1 Weight loss

The box plot (Fig. 14) illustrates the significant impact of storage temperature and duration on
weight loss in green asparagus. Weight loss increased significantly with both storage temperature
and time (ANOVA, P <0.001). Moreover, by day 12, the highest weight loss was observed in spears
stored at 15 °C, followed by those stored at 10 °C.. Higher temperatures accelerated moisture loss
due to increased respiration and transpiration, consistent with previous reports (Tzoumaki et al.,
2009; Villanueva et al., 2005; Gantner et al., 2020). Spears stored at 15 °C also showed mold growth,

likely from surface condensation (Hung et al., 2011).
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Figure 14: Changes in weight loss in the green asparagus samples stored at 2, 10, and 15 °C.

6.1.2 Firmness

The firmness of asparagus spears at the base increased over time across all storage temperatures
and time (Fig.15). The increase was more pronounced at higher temperatures. ANOVA confirmed
significant effects of temperature (F = 862.10), time (F =4751.08), and spear position (F = 168.087,
p < 0.001). Samples stored at 15°C showed the greatest firmness and variability, while lower
temperatures preserved texture by reducing enzymatic and microbial activity. Higher temperatures
accelerated moisture loss, chemical reactions, and deterioration, leading to reduced visual and
textural quality. Firmness trends for the middle and peak positions of the spears are presented in
Appendix Fig. 12.1.2. These observations align with previous reports showing that extended storage
negatively affects texture, fiber, and organic compounds in asparagus, and that higher temperatures
accelerate lignin development and firmness increases, whereas lower temperatures help maintain
freshness and quality (Anastasiadi et al., 2020; Garrido et al., 2001; Villanueva et al., 2005; Lipton,
2011; An et al., 2008; Hung et al., 2011).
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Figure 15: Changes in firmness in the base position of green asparagus samples stored at 2, 10,
and 15 °C.

6.1.3 Peel color

Fig. 16 shows asparagus spear samples after 12 days of storage at different temperatures. Panels (a)
to (c) present photographs of spears stored at 2 °C, 10 °C, and 15 °C, respectively, while panels (d)
to (f) display the IP hue spectra for each temperature group across their respective storage
durations. Saturation and hue angle were used to evaluate color changes in green asparagus. As
storage time and temperature increased, asparagus showed reduced freshness and quality, with
discoloration, odor, and mold particularly evident at 15 °C. At 2 °C, hue spectra remained stable
with minimal changes, while at 10 °C moderate shifts were observed. At 15 °C, the hue angle
decreased markedly, shifting from yellow-green toward yellow, along with greater loss of
saturation. These changes reflect chlorophyll breakdown, structural degradation, and accelerated
enzymatic activity at higher temperatures. High moisture content and warmer storage conditions
create an environment conducive to mold growth, leading to discoloration and surface blemishes

(Sothornvit and Kiatchanapaibul, 2009; Villanueva et al., 2005). Additionally, these color changes
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signify a decline in freshness and quality, with more pronounced changes at 10 °C compared to 2

°C (Gantner et al., 2020).

IP_saturation

1EE S

o T
(d)zo 30 40 50 60 0 80 o0

IP_hue, degree

20 30 40 50 60 70 80 90
IP_hue, degree

RMSE; 4 RMSE; 3 RMSEy ;; RMSE; 3 RMSEs;; RMS;

RMSE; 4 RMSEy g RMSEy 12 RMSEs 3 RMSEs ;2 RMS; ;2 [ RMSE; 4 RMSEg g RMSEg 17 RMSEs g RMSEy 1n RMS; 12

83E-05 0000122 0.000262 6.99639E-05 0.000228 0.0001898 0.000141 0.000238 0.000267 0.000105 0.000173 0.000125 B 0.000267 0.000379 0.000576 0.000219 0.000411 0.00020

Figure 16: Asparagus spears sample images arranged in front of the camera at the end of the
experiment and hue spectra plot at storage temperatures of 2 °C (a & d), 10 °C (b & e), and 15 °C
(c & 1), respectively.

6.1.4 NIR spectroscopy

Spectral description

Fig. 17 shows (a) raw full-spectrum absorbance data for green asparagus stored at 2 °C, 10 °C, and
15 °C for 12 days in the 900-1700 nm range, (b) SNV-transformed normalization, (c) standard
deviation of SNV, and (d) NDI 1252 box plots at 1696 nm showing changes in asparagus quality
over time. The standard deviation highlights variability in absorbance across wavelengths, with
higher variations at 907 nm, 923 nm, 1069 nm, 1442 nm, and 1696 nm, related to quality changes.
The reference wavelength at 1252 nm showed the minimum standard deviation across the spectra.
The NDI 1252 at 1696 nm declines over time, with higher fluctuations at higher temperatures,
possibly due to increased metabolic and enzymatic activities. The absorbance peak at 1442 nm
shows a greater change at 15 °C, likely due to temperature-related changes in spears structure or
composition. Higher temperatures break down cells, leading to increased water loss. This weakens
the interaction of light with internal water and cellular components, resulting in more pronounced

changes in the spectrum of light absorption. Moreover, the enzymes responsible for the degradation
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of structural polysaccharides, such as pectin and cellulose, are also stimulated by elevated
temperatures (Villanueva et al., 2005). The literature reports that the NIR absorption peaks at this
wavelength correspond to molecular vibrations of CH, OH and NH, likely influencing the spectral

readings (Camps and Gilli, 2017).
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Figure 17: NIR analysis techniques: raw spectra (a), SNV (b), SD of SNV (¢) and sample

NDI 1252 at 1696 nm (d) of different storage time and temperature

Storage time significantly impacted both the NDI 1252 and QI indices across all wavelengths
(Table 5). NDI_ 1252 of all selected wavelengths shows slightly higher F-values than QI across most
wavelengths, except at 1442 nm, indicating greater sensitivity to time changes. Storage temperature
has minimal effect on NDI 1252, except at 1442 nm and 1696 nm, while QI indices are more
influenced by temperature, especially at longer wavelengths. In addition, interaction effects are

significant at shorter wavelengths but decrease at longer wavelengths.

Table 5: F-values for the effects of storage time, storage temperature, and their interactions on
NDI 1252 and QI indices at selected wavelengths.

Parameters Factor 907nm 923 nm 1069 nm 1442nm 1696 nm
Time(A), days 94.611°  104.5° 135.721°  570.095° 1622.416°
Asparagus NDI  Temperature(B) 1.845 2.015 0.566 7.455° 6.933°
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Interaction (Ax B)  417.271° 497.67°  491.082° 0.382 3.976

Time(A), days 74.888°  89.378° 112.651°  685.056° 1251.284°
Temperature(B) 3.973 33 5.451*% 11.176° 13.47°
Asparagus QI Interaction (Ax B)  399.197° 467.909° 498.399° 3.209 0.704

NB: “s’, p<0.001, “a” p<0.05

The correlation analysis between NIR absorbances, weight loss, and firmness further explains these
relationships (Table 6). A significant correlation was observed between NIR absorbances at specific
wavelengths, such as between NIR-907 and NIR-1069 (r = 0.998). Both NIR-907 (r = 0.928) and
NIR-1069 (r = 0.923) exhibit significant correlations with firmness. Similarly, a significant
correlation is observed between NIR absorbance at these wavelengths and weight loss (r = 0.829).
The absorbance at longer wavelengths, such as NIR-1442 and NIR-1696, exhibited significant
correlations with firmness (r = 0.453 and r = 0.607, respectively) and weaker correlations with
weight loss (r = 0.233 and r = 0.439, respectively). This may be due to the longer wavelengths that
penetrate deeper into the tissue and capture more complex changes. These interactions are less
directly associated with properties on the surface such as firmness and weight loss, which leads to
lower correlation values (Camps and Gilli, 2017). Additionally, the presence of overlapping
absorption bands in the spectra may explain the lower level of significance observed between 907
nm and 1069 nm. Furthermore, these wavelengths may be sensitive to similar molecular vibrations,

such as O-H and C-H bonds in water or organic compounds.

Table 6: Pearson's correlation matrix between NIR absorbance of the selected wavelength, weight
loss, and firmness for green asparagus

NIR 907 NIR 923 NIR 1069 NIR 1442 NIR 1696 Firmness, N WL, %

NIR 907 0.526 0.998 0.509 0.67 0.928  0.829
NIR 923 ] 0.523 0.878 0.834 0.499 0.21
NIR 1069 a S 0.51 0.672 0.923  0.829
NIR 1442 ] S s 0.9 0.453 0.233
NIR 1696 ] S ] ] 0.607  0.439
Firmness, N s S s s s 0.755
WL, % ] ] ] ] ] S

NB: “s’ p<0.001 and “a” p<0.05

Classification based on storage time and temperature
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Fig. 18 compares PLS-DA and LDA models for detecting quality changes in asparagus stored at 15
°C for 12 days. PLS-DA used full spectra, while LDA relied on selected wavelengths. LDA
outperformed PLS-DA, achieving accuracies of 76.9% (15 °C), 74.3% (10 °C), and 60.4% (2 °C)
(Appendix Tables 12.2.2 and 12.2.3), with clearer class separation in score plots. This improvement
is due to feature selection, which reduces spectral noise and emphasizes informative wavelengths.
Lower accuracy at 2 °C reflects slower physiological changes and weaker spectral differences.
Similar findings were reported by Sanchez et al. (2009), who achieved over 81% accuracy using

PLS-DA on asparagus stored at 2 °C for 28 days.

5 PLS-DA LDA
g 2
b ~
@ . - 0 3 - 0
::. - 4 2 0 - 4
g 12 8 fz
g g
89 -2
\.} *
-5 0 5 10 -50 -25 00 25 5.0 75
Component 1 (96.48%) LD1 (76.77%)
Validation set (n=45, LV=5) Validation set (n=45,LV=5)
Metric Mean CI95 min CI95 max
Metric Mean  CI95 min CI95 max Accurac 76.9% 67.4% 88.1%
A 51.9%  422%  54.4% ¥
ccuracy : : . Y 77.0% 65.9% 89.5%
Sensitivity 7% - 389% - 74.8% Sy 92.5%  89.3%  96.3%
Specificity 86.2%  822%  90.5% Specificity o o o
N SLov  ALL%  639% Precision 764%  663%  87.8%
Foscore 57.9%  44.1%  75.3% F-score 76.0%  65.6%  87.6%
Balanced Accuracy  72.7% 62.3% 74.4% Balanced Accuracy 54 7%  77.7% 92.9%

Figure 18: Comparison of PLS-DA and LDA models for detecting quality changes in Green

Asparagus across four-day storage intervals using full and selected spectra for 15 °C storage groups.

On the other hand, Fig. 19 compares the quality detection efficiency of the PLS-DA and LDA models
for green asparagus stored at three different temperatures (2°C, 10°C, and 15°C) on the 12" day of
storage. Both models were constructed using five latent variables (LV = 5). The PLS-DA model,
which used the full NIR spectrum, achieved a mean accuracy of 42.8%, with a sensitivity of 42.6%
and a balanced accuracy of 58.3%. The score plot for PLS-DA shows an overlap between temperature

groups. In contrast, the LDA model, constructed using selected NIR wavelengths, demonstrated
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superior performance across all metrics. The LDA model achieved a mean accuracy of 87.7%, a
sensitivity of 89.4%, and a balanced accuracy of 91.9%. The score plot for LDA reveals well-
separated clusters for each temperature group. The PLS-DA plot shows overlap between the storage
temperature groups, indicating that the full NIR spectra may not be discriminatory enough for
detecting quality changes. The performance table reveals that PLS-DA has relatively good specificity
(74.0%) but struggles with classification, as shown by its low precision and F-score. In contrast, the
LDA plot shows clear separation between the temperature groups, particularly for samples stored at
2 °C, and demonstrates better performance. LDA achieves 87.7% accuracy, 89.4% sensitivity, and
94.4% specificity, with a balanced accuracy of 91.9%, indicating it effectively detects quality changes

and classifies samples into temperature groups.
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Figure 19: Comparison of PLS-DA and LDA models for detecting quality changes in Green Asparagus

across three storage temperature groups using full and selected spectra.

Prediction of Weight Loss and Firmness

Figure 20 presents a comparison of the performance of PLSR and SVM models using the full NIR
spectra and spectra at selected wavelengths for predicting weight loss (%) and firmness (N) in green
asparagus. Each model was evaluated using both the full NIR spectra (left column) and selected

wavelengths (right column).Scatter plots show predicted versus measured values, with data points
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color-coded by storage temperature: blue represents samples stored at 2°C, orange corresponds to
10°C, and green indicates 15°C.The temperature-dependent variation significantly influenced the
performance of the predictive models. In particular, the blue data points exhibited signs of
overfitting. In contrast, the orange and green data points showed underfitting. The cross-validated
performance metrics are summarized in Table 7. The SVM model showed relatively improved
predictive accuracy when using selected wavelengths compared to PLSR model for both
parameters. For weight loss, the model achieved with R? =0 .768, RMSE =5.690, and RPD= 2.080.
for firmness, the model achieved R? of 0.829, RMSE= 5.380 N, and RPD =2.322. These results
indicate that focusing on informative spectral regions combined with nonlinear regression models
enhances model performance. Previous research by Flores-Rojas et al. (2009) applied PLSR to full
NIR spectral data to estimate shear force in green asparagus, reporting moderate predictive ability
(R? < 0.67), with limitations largely attributed to the product’s high moisture content and tissue

heterogeneity. In a similar study, Pérez-Marin et al. (2002) used NIR spectroscopy to estimate
cutting force, achieving R? = 0.840.
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Figure 20: PLSR (top ) and SVM (bottom) models for prediction of weight loss (left) and
firmness (right) using full spectra (left) and selected wavelengths (right).
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Table 7. Cross-validated performance metrics of the PLSR and SVM models for predicting
asparagus weight loss and firmness (N = 684, LV = 5)

Dataset Parameter: R2 RMSE RPD
atasets NIR arameters Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max

WL 0.744 0.738 0.751 6.054 5973 6.136 1.949 1923 1975

PLSR Full Firmness 0.788 0.780  0.795 5.899 5.748  6.049 2.138 2.105 2.172
Selected WL 0.739 0.733  0.745 6.077 6.006 6.149 1936 1912 1.960
Firmness 0.792 0.787  0.798 5.799 5.688 5910 2.165 2.137 2.193

Full . WL 0.724 0.717 0.732 6.585 6.505 6.664 1.788 1.768  1.807

SVM Firmness 0.731 0.719 0.743 7.966 7.760  8.171 1.568 1.545 1.591

Selected WL 0.768 0.762  0.775 5.690 5.616 5.764 2.080 2.053  2.108
Firmness 0.829 0.822  0.835 5.380 5.270 5491 2322 2281 2362

6.1.5 Laser light backscattering imaging (LLBI)

LLBI Profile Description

The amplitude, shape, and FWHM parameters of the LLBI profile were extracted using the modified
Cauchy and Gaussian distribution function models. Curve fitting across all sample images (n =344)
showed that the Cauchy model (R* = 0.78, RPD = 2.29) outperformed the Gaussian model (R* =
0.53, RPD = 1.96). As illustrated in Fig. 21, the modified Cauchy model provided a superior fit to
the observed LLBI data, particularly for amplitude and Shape, and was therefore selected for further

analysis
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Figure 21: Sample illuminated images with a line laser at 635 nm (top left), followed by the

grayscale image (top right), and curve-fitted profile using Gaussian and Cauchy models
(bottom).

Fig. 22 shows that amplitude and shape parameters consistently increase with both time and
temperature. Amplitude values indicate scattering intensity, while the shape parameter reflects light

distribution size within the asparagus tissue. These changes are linked to physiological processes
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like water loss, cell wall degradation, and tissue senescence. ANOVA results indicate significant
effects of storage time on amplitude (F = 641.172, p < 0.001) and shape (F =431.757, p <0.001).
Pearson’s correlation analysis (Table 8) shows strong correlations between amplitude and shape (r
= 0.816), amplitude and weight loss (r = 0.809), and shape with firmness (r = 0.928). Previous
studies support that moisture loss and structural degradation affect light distribution in tissues, with

firmer vegetables blocking light penetration (Romano et al., 2008; Hashim et al., 2018)
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Figure 22: Changes in amplitude and shape parameters of modified Cauchy-Fitted LLBI Profiles
for green asparagus at different storage times and temperatures
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Table 8: Pearson’s correlation coefficient between variables (n=344).

Variables Amplitude, RU Shape, mm WL, % Firmness
Amplitude, RU 0.816 0.809 0.654
Shape, mm s 0.843 0.928
WL, % s s 0.748
Firmness, N S S S

‘s”, p<0.001

Classification of storage time and temperature groups

To assess the effect of storage time on asparagus quality, an LDA model was developed across all
temperature groups (Fig. 23). The overall detection accuracy was 85.4% in training and 79.7% in
validation. Individually, performance improved with temperature: 81.4% at 2 °C, 89.6% at 10 °C,
and 93.4% at 15 °C (Appendix Fig. 12.1.3). This demonstrates the model’s strong potential for real-
time freshness classification, especially at higher temperatures. Previous studies also support the
effectiveness of LDA in food quality monitoring. Pham et al. (2023) applied LLBI at 635 nm with
LDA to starch-coated asparagus, achieving 70.5% accuracy. Lockman (2019) used LDA with LLBI
at 650-705 nm to classify copepod maturity, reporting 90-95% accuracy. Zulkifli et al. (2019)
combined LLBI (658 nm) with LDA for banana ripening stages, achieving above 90% accuracy.

Component 2 (22.22%)
[~

|
N
L

Component 1 (77.78%)

Figure 23: LDA plot on the training set (left) and the confusion matrix (right) for storage time
groups of green asparagus
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Prediction of Weight Loss and Firmness

Fig. 24 presents regression results for predicting weight loss and firmness using LLBI parameters
with Multivariate Regression (MVR) and Multivariate Adaptive Regression Splines (MARS).
MARS outperformed MVR, showing tighter clustering around the regression line across all
temperature groups (Table 9). While MVR struggled to balance predictions, especially across
different temperatures, MARS better captured nonlinear variations, though slight dispersion

remained at 15 °C.
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Figure 24: MVR (top) and MARS (bottom) for predicting weight loss (left) and firmness (right).
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The MARS model showed higher performance compared to the MVR model across all metrics. For
weight loss, MARS achieved a higher R* = 0.846, RMSE = 6.401% and a higher RPD = 2.558 .
Similarly, for firmness, MARS showed superior performance with an R? = 0.927, RMSE = 3.266
N, and RPD = 3.775. Compared with previous studies, Qing et al. (2007b) reported that firmness
prediction using frequencies of gray scale intensities and PLSR achieved R? = 0.81 and RMSECV
= 5.44 N. This high correlation and reasonable RMSECYV indicates good predictive performance,
although the RMSECYV is higher than the RMSEP achieved by MARS in this study. Similarly, Peng
and Lu (2006) also found that LLBI parameters provided good fruit firmness predictions using
multilinear regression, with r = 0.896 and SEP = 6.50 N. Romano et al. (2012) reported that
scattering area and light intensity were able to predict moisture content changes of yellow bell
pepper during drying. The logarithmic regression model was applied, and it achieved R?=0.86 and
RMSEP = 7.28%. Compared to existing literature, the current study demonstrates that LLBI
combined with MARS is highly effective in predicting the weight loss and firmness of green

asparagus during storage.

Table 9: Cross- validated Performance metrics of MVR and MARS models (n=344) for predicting

WL and firmness.

R? RMSE RPD
Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max

WL  0.746 0.739 0.753 8.161 8.084 8238 1983 1955 2.011
Firmness 0.886 0.882  0.890 4.178 4.075 4280 2.939 2.883  2.994
WL 0846 0.840 0.851 6.401 6312 6.489 2.558 2514  2.603
Firmness 0.927 0.922 0932 3.266 3.140 3391 3.775 3.634 3915

Models Parameters

MVR

MARS
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6.2 Assessment of quality changes in plums during post-harvest storage

In this section, the results obtained from physiological assessments, near-infrared (NIR)
spectroscopy, and beam-based LLBI techniques are presented to evaluate the quality attributes of
plum fruits during storage. For NIR spectroscopy analysis, a total of 2,965 observations were
produced by acquiring spectral data from both sides of each fruit using three consecutive scans,
followed by SNV preprocessing and manual selection of five prominent wavelengths. NDI and QI
indices were calculated to validate spectral sensitivity. PLSR and SVM models were developed
using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-13), respectively. These models
were calibrated using both the full spectra and selected wavelengths to predict weight loss and
soluble solids content in green asparagus. For LLBI, 1,276 observations were obtained by capturing
images at six wavelengths (532, 635, 780, 808, 850, and 1064 nm) from both sides of each fruit.
Optimized wavelengths were identified through ANOVA and Tukey’s post hoc analysis. LDA and
MVR models were used to detect the quality changes by classifying samples into their storage time
groups and predicting firmness, SSC, and skin color, respectively. The datasets included samples
from two cultivars (Stanley’ and ‘Elena’) and were split into training and validation subsets. Model
performance was evaluated using bootstrapped metrics (R?, RMSE, RPD) with 95% confidence

intervals.

6.2.1 Ethylene production

The rate of ethylene production increased with both storage temperature (F-value = 321.80 and
109.11; P < 0.001) and storage time (F-value = 170.42 and 69.03; P < 0.001) in both ‘Stanley’ and
‘Elena’ plums. However, the ethylene production of plums stored at 1 °C significantly differed from
those stored at higher temperatures. The ‘Stanley’ plums showed a relatively higher rate of ethylene
production than the ‘Elena’ plums across the temperature groups (Fig. 25). Similar studies have
shown that plums, as climacteric fruits, experience a significant increase in ethylene production
during ripening (Luo et al., 2009; Ha et al., 2023). In climacteric fruits, ethylene triggers ripening
events such as fruit softening, chlorophyll breakdown, color development, and sugar accumulation
(Ravindra and Goswami, 2008). These processes accelerate ripening, producing a relatively short

shelf life (Kumar et al., 2018; Manganaris et al., 2008).
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Figure 25: Ethylene production rate of ‘Stanley’ (left) and ‘Elena’(right) during storage at different

time and temperature groups. Results are presented as mean = SD.

6.2.2 Respiration rate
The respiration rate of both ‘Stanley’ and ‘Elena’ plums increased with both storage temperature
(F-value =195.04 and 565.46; P <0.001) and storage time (F-value =816.80 and 269.53; P <0.001).
‘Stanley’ plums stored at 10 °C and 15 °C exhibited higher respiration rates compared to those
stored at 1 °C and 5 °C, while ‘Elena’ plums showed the highest respiration at 15 °C (Fig. 26 left).
Respiration peaked at 8 days for ‘Stanley’ and 12 days for ‘Elena’, then declined after 20 days (Fig.
26 right). Respiration rates ranged from 6.41 to 18.65 mL/ Kg.h influenced by temperature,
duration, and enzymatic activity. Singh and Khan (2010) reported that respiration increases to a
peak and declines as the fruit ripens, while lower temperatures suppress ethylene production and

slow ripening, extending shelf life (Argenta et al., 2003).
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Figure 26: Respiration rate ‘Stanley’ (left) and ‘Elena’(right) during storage at different time and
temperature groups. Results are presented as mean = SD
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6.2.3 Weight loss

Table 10 summarizes plum weight loss (WL) across different storage temperatures and times.
‘Stanley’ plums showed greater WL than ‘Elena’, with ANOVA confirming significant effects of
storage time, temperature, and cultivar (F = 6.06 x 10?8, 1.88 x 10%, 1.21 x 10%; p < 0.001). WL
increased notably after 12 days due to ripening-related water loss, enzymatic activity, and
respiration. Moisture evaporation led to wilting, shriveling, and softening, consistent with prior
reports on pre- and post-ripening weight loss (Guerra and Casquero, 2008; Zora and Ahmad, 2010;
Van Dijk et al., 2006). Changes in water molecular structure also correlate with WL, as reported in
previous studies (Gibertoni et al., 2022; Vitalis et al., 2023).

Table 10: Weight loss (Mean + SD) of ‘Stanley’ and ‘Elena’ plums at different storage temperature

and time.
Variables Days  Cultivars Storage temperatures
1°C 5°C 10 °C 15 °C
0 Stanley 0+ 0.00% 0+ 0.00% 0+ 0.00% 0+ 0.00%
Elena 0+ 0.007 0 + 0.00%2 0+ 0.007 0 + 0.0042
4 Stanley 1.37 £0.114° 1.61 £ 0.095° 1.96 £0.10®  2.63+£0.12P°
Elena 1.74 £ 0202  2.14+£0.16"° 2.66+£0.19  3.25+0.20"°
8 Stanley 2.48+0.134¢ 3.28 £0.128¢ 3.92+0.12% 470 £0.15
o\i Elena 3.15£0.194¢ 4.00 £ 0.298¢ 5.14+£0.19°  6.03+0.21>
% 12 Stanley 3.66 £0.124¢ 471 +0.17% 6.19+£0.18% NA
— Elena 438+£0.17*  5.19+0.178¢ 7.30+£0.16%  8.99+0.21P
%D 16 Stanley 4.72 £0.194¢ 6.23 £0.148¢ NA NA
kS Elena 5.50 +£0.18%¢ 6.59 £ 0.268 10.2 +£0.23°¢ 12,95+ 0.22P¢
2 20 Stanley 591+£0.19M  7.84+0.19%  NA NA
Elena 7.13 £0.18Af 8.71 £0.158f NA NA
24 Stanley NA NA NA NA
Elena 9.31 +0.20%¢ 11.24+£0.19%¢ NA NA

NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences
between storage temperatures for a given cultivar and storage time. Different lower-case letters within a column indicate
significant differences between a given cultivar's storage times at a given cultivars and temperature (Tukey’s test; p <
0.05).

The variation in plums' weight loss is influenced by storage temperature and duration, which
accelerate enzymatic activities that enhance ripening due to increased respiration rates. Singh and
Khan (2010) describe how oxygen consumption and carbon dioxide production rates initially
increase, peak, and then decline as the fruit becomes overripe. Additionally, ripening leads to water
loss in the fruit, causing undesirable effects like wilting, shriveling, and softening (Guerra and
Casquero, 2008; Li et al., 2022). This is likely due to reduced metabolic activity and decreased
evaporation, which help preserve the fruit's structural integrity over a longer period (Crisosto et al.,
2004; Wang et al., 2016).
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6.2.4 Firmness

Table 11 shows that plum firmness declined steadily over time for both cultivars, with samples
stored at 15 °C exhibiting the fastest softening, followed by 10 °C. ANOVA confirmed significant
effects of storage time (F = 8992.12), temperature (F = 1927.80), and cultivar (F = 3142.06; p <
0.001). Firmness loss is driven by ripening, enzymatic degradation of cell wall polysaccharides
(polygalacturonase and pectinesterase), and moisture loss, while lower temperatures slow these
processes by preserving cell wall integrity and delaying pectin breakdown. Genetic traits and
physiological maturity also contribute to cultivar-specific differences in firmness. Previous studies
reported that firmness variability is strongly influenced by cultivar genetics, ripening stage, and
enzymatic activity, with lower storage temperatures mitigating softening and extending shelf life.
For instance, Cetin and Saragoglu (2023) and Hend et al. (2009) highlighted the role of genotype
and maturation in texture changes, He et al. (2022) and Wang et al. (2016) emphasized the role of
enzymatic cell wall degradation, while Geng et al. (2020) and Manganaris et al. (2008)
demonstrated that cold storage preserves firmness by slowing pectin breakdown. Moisture loss
during storage also contributes to softening and textural deterioration (Huang et al., 2018; Mishra
et al., 2022).

Table 11: Firmness (Mean £ SD) of “Stanley’ and ‘Elena’ plums at different storage temperatures

and time
Variables Days Cultivars Storage temperature
1°C 5°C 10 °C 15°C
0 Stanley 45.76 £ 6.98% 4576 £ 6,984 4576 + 6.98A¢ 45.76 £ 6,984
Elena 44,16 +7.88% 44,16 +£7.88%  44.16 = 7.88% 44.16 + 7.88"
4 Stanley 30.62 £ 8.624°  19.16 £ 4.588°  15.07 £ 3.48" 9.65 +£2.42P°
Elena 37.27+7.222°  30.11 £5.60%°  26.51 +6.95° 25.29 +7.88P°
8 Stanley 29.70 £4.14%¢ 13,70+ 3.77%¢  10.53 £ 3.64¢ 7.16 +1.88P¢
) Elena 36.95+8.15%¢  24.50+5.67%  15.78 £5.69¢ 11.50+ 5.46°¢
If;"mness’ 12 Stanley ~ 29.16 £4.69% 10.25+1.96%¢  7.39 +1.63% NA
Elena 32,60 +£5.47A 2138 +£6.84% 1414 +4.41% 7.82 4,777
16 Stanley 25.96 £4.774¢  8.16 + 1.558¢ NA NA
Elena 30.09 +8.90%  14.25+£2.83%  10.30+2.47¢ 7.60 + 1.94P¢
20 Stanley 30.35+£5.86M  8.47+2.278 NA NA
Elena 32.77+£3.06AT 1390 £3.91% NA NA
24 Stanley NA NA NA NA
Elena 10.71 £ 1.64%  939+4.16%  NA NA

NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences
between storage temperatures for a given cultivar and storage time. Different lower-case letters within a column indicate

significant differences between storage times at a given cultivar and storage temperature (Tukey’s test; p < 0.05).
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6.2.5 Soluble solid content (SSC)

Table 12 shows that SSC significantly increased with both storage time and temperature, with
ANOVA revealing significant effects for both factors (F = 124779.90 and 4632.10; p < 0.001), as
well as significant differences between cultivars (F = 250701.30; p < 0.001). Higher storage
temperatures accelerated SSC increases, as seen in samples stored at 15 °C, which also had the
highest SSC values. SSC is an indicator of sweetness, and ripeness of the fruits (Guo et al 2019; Lie
et al 2016) and it can be influenced by sugar concentration, moisture loss, and cultivar
characteristics (Kodagoda et al., 2021; Wang et al., 2016). Cold storage prolongs shelf life by
reducing metabolic processes and evaporation, while higher temperatures lead to faster ripening and

potential spoilage (Crisosto et al., 2004; Manganaris et al., 2008; Guerra and Casquero, 2008).

Table 12: SSC (Mean + SD) of ‘Stanley’ and ‘Elena’ plums at different storage temperatures and

time

Variable days Cultivar Storage temperatures
1°C 5°C 10 °C 15°C
0 Stanley ~ 14.50+0.07%  14.50 + 0.074° 14.50 £ 0.074*  14.50 + 0.074¢
Elena 14.95+0.224*  14.95 +0.224¢ 14.95 +£0.224  14.95 +0.224¢
4 Stanley  14.49+0.08%° 14.96 +0.118° 15.19£0.02°®  15.34 +0.05"°
Elena 15.71 £0.094°  16.04 +0.185° 16.48 £0.09 16.76 +£0.17°°
8 Stanley ~ 15.5 +0.08%¢ 15.69 £ 0.075¢ 15.94+0.07°° 16 +0.00"°
Elena 17.19£0.144¢  17.55 +0.05% 17.72£0.07°  17.87 +0.05"¢
SSC, % 12 Stanley  16.05+0.05%¢  16.19 +0.02B4 1636 £0.1°¢¢  NA
Elena 17.9 £ 0.0244 18.06 = 0.055¢ 18.1 £ 0% 18.1 +£0.00P
16 Stanley  16.54 +0.05% 16.73 +£0.078¢ NA NA
Elena 18.26 £ 0.14¢ 18.54 £ 0.118¢ 18.79 £ 0.08 19 +0.08°
20 Stanley — 16.96 £ 0.12A7  17.59 +0.228B¢ NA NA
Elena 19.36 £0.14A"  19.71 +0.09%f NA NA
24 Stanley NA NA NA NA
Elena 20.11 £0.15%  20.2 + (B¢ NA NA

NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences between
storage temperatures for a given cultivar and storage time. Different lower-case letters within a column indicate significant
differences between storage times for a given cultivar and storage temperature (Tukey’s test; p < 0.05)
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6.2.6 Peel Color

Table 13 shows the chroma and hue values of two plum cultivars measured using the Minolta
Chroma Meter during storage at different temperatures and times. Both chroma and hue were
significantly affected by storage conditions, with greater changes observed at higher temperatures.
The ‘Stanley’ cultivar experienced a greater decline in chroma, and more noticeable hue shifts
compared to ‘Elena’, indicating its higher sensitivity to temperature-induced color changes. Lower
temperatures (1 °C and 5 °C) slowed hues and chroma changes, but ‘Stanley’ showed a sudden
decline in hue at 5 °C, likely due to water loss and advanced ripening. Two-way ANOVA confirmed
that chroma was most influenced by cultivar (F = 1498.539), followed by storage time (F =
1433.125), and temperature (F = 273.025), while hue was primarily affected by time (F = 1803.530)
and temperature (F = 244.233). The reduction in chroma and hue shifts were attributed to
biochemical changes during ripening, with anthocyanin accumulation playing a role in hue changes,
particularly under cold stress (Wang et al., 2020; Robertson et al., 1991). Furthermore, the presence
and transformation of pigments such as chlorophylls, carotenoids, and anthocyanins during the

ripening process lead to changes in skin or peel color (Muhammad et al., 2024).

Table 13: Changes in chroma and hue angle of the two plum cultivars at different storage times
and temperatures.

Variables Days Cultivars Storage temperatures
1°C 5°C 10 °C 15 °C
0 Stanley 9.82 £2.10%¢ 9.82 £2.10 9.82 £2.10% 9.82 £2.104¢
Elena 9.032 +0.834¢ 9.032 £ 0.83% 9,032 +0.83%¢ 9.032 + 0.83%%
4 Stanley 7.28 £0.324° 6.75 £ 0.524° 6.63 £0.43° 5.72 +0.478°
Elena 7.83 £0.5048° 8.24 £ 0.654° 7.07 £ 0.498¢® 6.73 £0.31
g 8 Stanley 5.89+ 0.36%¢ 5.66 +0.26A¢ 5.44 £0.26" 4,39+ 0.475¢
‘E Elena 6.78 £ 0.1948¢ 7.21 £0.114¢ 5.83 +0.265¢ 5.82+0.27¢
o 12 Stanley 5.01 £0.2544 4,74+ 0.2619 4.44 + 0.608¢ NA
Elena 6.20 + 0.16AB4 6.67 £ 0.20A 5.10 +£0.178¢ 4.95+(0.29%
16 Stanley 3.91 £0.344¢ 4.02+ 0.224¢ NA NA
Elena 5.61 £0.17A8¢ 6.05+0.13%¢ 4.24+0.518¢ 3.86 + 0.49¢¢
20 Stanley 2.73 +£0.454" 3.014 0.467" NA NA
Elena 5.05 +0.1948B¢ 5.54+£0.18%¢ NA NA
24 Stanley NA NA NA NA
Elena 4.26 £ 0.474Bf 4.57 £ 0.407 NA NA
o 0 Stanley 40.05 £ 27.2942 40.05 +£27.294 40.05 +£27.294 40.05 +£27.294
g3 go Elena 20.9 &+ 17.8942 20.9 £ 17.894 20.9 £ 17.894 20.9 £ 17.8942
T 58 4 Stanley 17.88 £ 15.034° 30.71 +10.718° 19.68 £ 12.97°*  -21.98 £22.17°°
Elena 6.67 £4.414° -20.2+ 17.96° -37.53+26.63%*  -36.36 £ 28.91°°
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8 Stanley 38.81 + 17.424¢ 26.27 +6.198¢ -16.14 +14.42¢¢  -20.87 £ 27.65"
Elena -8.47+ 6.1248¢ -35.47 £21.414¢  -48.42 +£22.24BC¢ 4557 £ 25.60
12 Stanley 37.65 + 17.09A 18.08 + 4.328¢ 2.23 +19.29¢ NA
Elena - 9.43+ 8.28ABd -39.28 £ 142740 -56.63+ 16.47%¢¢  -66.04 + 15.25%
16 Stanley -1.18 £ 28.424¢ -13.8 £ 12.69%¢ NA NA
Elena -22.184 12.1848¢ -44.94 10.204¢ -52.67+ 18.535%  -60.32 + 14.63¢
20 Stanley 12.58 + 25.44A1 -11.98+ 13.765f NA NA
Elena -4.63 £ 2.9248¢ -37.55+ 12.374¢ NA NA
24 Stanley NA NA NA NA
Elena -13.60 + 3.294Bf -50.26+ 8.10Af NA NA

NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences
between storage temperatures for a given cultivar and storage time. Different lower-case letters within a column
indicate significant differences between storage times for a given cultivar and storage temperature (Tukey’s test; p <
0.05)

In addition, the changes in the skin color parameters of plums can be attributed to pigment
transformations driven by biochemical processes such as anthocyanin accumulation and chlorophyll
degradation. Anthocyanin accumulation, which increases during ripening, is a key driver of the
bright red coloration in plums, as highlighted by Fiol et al. (2021). Furthermore, chlorophyll
degradation during ripening enhances the visibility of anthocyanins, leading to the transition from
green to red (Wang et al., 2022). Among anthocyanins, cyanidin 3-O-glucoside plays a dominant
role in the color change process, while carotenoids contribute secondarily by imparting yellow to
orange hues (Chen, 2015). Additionally, plums are rich in carotenoids, with their concentrations
significantly higher in the skin compared to the flesh (Kaulmann et al., 2016; Rezaei Kalaj et al.,
2016; Deng et al., 2023).

6.2.7 NIR spectroscopy

Spectral description

Fig. 27 illustrates how storage temperature influences the spectral properties of plum samples. The
raw NIR spectra (900—1700 nm) in Fig. 27(a) show distinct absorbance trends based on temperature,
with notable changes after SNV correction in Fig. 27(b), particularly around ~1650 nm. The
standard deviation of the SNV spectra in Fig. 27(c) highlights sensitive wavelengths (909, 1064,
1323, 1447, and 1650 nm), with the reference wavelength at 1532 nm showing the minimum
standard deviation across the spectra. The wavelengths exhibiting significant variation may reflect
physiological and biochemical changes in plums. These variations are likely linked to temperature-

induced changes in metabolic activities and water dynamics. Previous studies indicate that
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absorbance at these wavelengths corresponds to specific chemical bonds, with variations associated
with sugar concentration, water absorption, and the overtones of C-H and O-H bonds (Paz et al.,
2008; Walsh et al., 2020). Moreover, the NIR absorbance at 975 nm is useful for determining SSC
(Mireei et al., 2010), while bands at 1330 nm, 1376 nm, and 1418 nm are associated with water
absorption (Paz et al., 2008 ;Walsh et al., 2020). In addition, NIR peaks at 900, 906, and 910 nm
with sugar-related third overtone absorption in fresh fruits and vegetables (Walsh et al., 2020; Wang
and Xie, 2014). Variations in absorbance intensity at 1060 nm have been linked to changes in sugar
concentration (Qing et al., 2007a), while intensity variations around 1680 nm are associated with

the degradation organic compounds
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Figure 27: Full NIR raw spectra (a), Normalized spectra by SNV (b), and the standard deviation

(b) of the normalized spectra (c)

The two-way ANOVA for plum NDI 1532 and QI (Table 14) shows that NDI 1532 is more
sensitive to temperature across all wavelengths, with higher F-values compared to QI. While both
parameters are significantly affected by time, NDI 1532 shows greater sensitivity at longer
wavelengths (1447 and 1650 nm), reflecting its ability to capture structural changes over time.

Shorter wavelengths like 909 nm and 1064 nm exhibit consistent responses for both indices, but the
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effects are greater at longer wavelengths. NDI 1532 is more influenced by cultivar differences,
especially at 1447 nm and 1650 nm, while QI is unaffected by cultivar variations. These findings
suggest that NDI 1532 is more suitable for structural assessment, while QI is better for biochemical

quality monitoring.

Table 14: Effects of storage time, temperature, cultivar, and their interactions on NDI 1532 and QI

indices across selected wavelengths (N =2994)

Parameters Factor 909 nm 1064 nm 1323 nm 1447 nm 1650 nm
Time (A) 114.874° 112.518° 93.052¢ 167.692¢ 251.372¢
Temperature (B) 25231.130°  25347.471° 25107.612° 16536.74° 21561.623%
Cultivar (C) 2.792 0.321 2.371 55.71¢8 37.7458

Plum NDI A xB 12168.716s  12099.964°  12341.622°  8719.549° 11202.127¢
AxC 0.235 0.144 2.522 0.073
BxC 54.2258 53.622¢ 38.065% 18.812° 40.114°
AxBxC 6.505% 6.574° 8.628* 5.865° 7.911¢
Time (A) 5343.298¢ 5470.481¢ 5394.634° 4815.256° 5266.945%
Temperature (B) 4.821 5.997° 5.743% 8.972° 6.01°
Cultivar (C) 0.103 0.252 0.014 0.734 0.13

Plum QI AxB 2335.702¢ 2362.81° 2382.9152 2073.68° 2394.11¢
AxC 250.616° 243.783¢ 255.313¢ 241.384* 261.289¢
B xC 6.495% 6.445% 5.986° 8.188° 6.217¢
AxBxC 223.4258 229.678° 231.384¢ 205.436° 230.844¢

s p<0.001

Pearson’s correlation analysis (Table 15) showed significant relationships between NIR absorbance
at selected wavelengths, weight loss (WL), and soluble solids content (SSC) (p < 0.001). Shorter
wavelengths (909, 1064, 1323 nm) were strongly positively correlated with each other and with
1650 nm, while 1447 nm showed a strong negative correlation with these wavelengths. SSC
correlated positively with WL (r = 0.868) and with absorbances at 1650 nm (r = 0.803), 1323 nm (r
= 0.741), 1064 nm (r = 0.681), and 909 nm (r = 0.647), indicating sugar accumulation during
ripening. In contrast, SSC was negatively correlated with 1447 nm (r = —0.734), reflecting
sensitivity to structural changes and water loss in fruit cells. Similarly, WL showed strong positive
correlation with 1650 nm (r = 0.822) and negative correlation with 1447 nm (r = —0.755),
highlighting moisture loss and cell wall degradation during maturation. These results align with
previous reports demonstrating that NIR absorbances reflect fruit water content, sugar

accumulation, and ripening-induced structural changes (Cen and He, 2007; Walsh et al., 2020).
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Table 15. Pearson’s correlation values among parameters (N = 2964)

SNV normalized NIR readings
909 nm  1064nm 1323 nm 1447 nm 1650 nm S5C WL
909 nm 0.974 0.966 -0.915 0.930 0.647 0.693

1064 nm S 0.984 -0.943 0.956 0.681 0.715
1323 nm S S -0.962 0.978 0.741 0.757
1447 nm S S S -0.962 -0.734 -0.755
1650 nm S S S S 0.803 0.822
SSC, % S S S S S 0.868
WL, % S S S S S S

13

NB: Upper triangle shows the correlation values, while the bottom triangle shows the significance level.
0.001

s’p<

Prediction of WL and SSC

Fig. 28 compares the performance of SVM models in predicting SSC and WL of ‘Stanley’ and
‘Elena’ plums using full NIR spectra versus selected wavelengths, with PLSR and SVM metrics
summarized in Table 16. For SSC, PLSR improved from R? = 0.661, RMSE = 1.130%, RPD =
1.717 (full spectra) to R>=0.747, RMSE = 0.981%, RPD = 1.991 (selected wavelengths). For WL,
PLSR improved from R?=0.676, RMSE = 1.768%, RPD = 1.758 to R> = 0.738, RMSE = 1.582%,
RPD = 1.954. The SVM model outperformed PLSR, with SSC prediction reaching R* = 0.844,
RMSE = 0.781%, RPD = 2.499 and WL prediction R* = 0.917, RMSE = 0.884%, RPD = 3.492
using selected wavelengths. This demonstrates that SVM combined with feature selection provides

superior accuracy for estimating SSC and WL in plums.

Table 16: Cross-validation performance metrics of SVM and PLSR models for predicting SSC and
WL using full NIR spectra and spectra at selected wavelengths (n=2964)

R? RMSE RPD

Category Model ; X -
Mean CI95min CI95max Mean CI95min CI95max Mean CI95min  CI95max
SSC PLSR 0.661 0.657 0.665 1.130 1.119 1.140 1.717 1.706 1.728
o WL PLSR 0.676 0.672 0.680 1.768 1.751 1.785 1.758 1.746 1.769
= g SSC SVM 0.720 0.716 0.725 1.052 1.040 1.064 1.857 1.843 1.871
=~ @ WL SVM 0.727 0.722 0.731 1.648 1.627 1.670 1.869 1.853 1.886
- SSC PLSR 0.747 0.741 0.752 0.981 0.967 0.994 1.991 1.969 2.013
E f) WL PLSR 0.738 0.734 0.742 1.582 1.565 1.599 1.954 1.938 1.969
% % SSC SVM 0.844 0.840 0.848 0.781 0.768 0.794 2.499 2.463 2.535
A =2 WL SVM 0.917 0.916 0.919 0.884 0.876 0.894 3.492 3.459 3.526
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Figure 28: SVM prediction results for SSC (left) and WL (right) using full NIR spectra (top) and

selected wavelengths (bottom).

The SVM model performance observed in this study aligns with previous reports (Table 17). For
SSC prediction, Costa and Lima (2013) achieved R? = 0.817 for the ‘Angeleno’ plum, while a
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combined PLSR model across nine cultivars reached R2 =0.720, RMSEP = 0.860. Golic and Walsh
(2006) reported multi-variety PLSR models with R? > 0.85 for plums. SSC prediction in
‘Bergarouge’ apricots using PLSR reached R? = 0.96, RMSEP = 1.0% (Camps and Christen, 2009),
and Carlini et al. (2000) predicted SSC in ‘Ravenna’ cherries with R? = 0.97, RMSEP = 0.490%
using 600—1100 nm spectral data. Moreover, a PLS-SVM model predicted pear firmness with R? =
0.893, RMSEP =0.476 (Li et al., 2013), confirming the effectiveness of SVM-based approaches for

fruit quality assessment.

Table 17. Performance of SSC prediction of plums in single and multi-cultivar models.

Plum cultivar LV Model R? RMSEP Reference
Pioneer 10 0.959 0.520
Pioneer, Laectitia, and Angeleno 12 PLSR 0.946 0.610 (Costa and
Laetitia 10 0.905 0.453 Lima, 2013)
Angeleno 10 0.817 0.569
African Pride, Black Diamond,
Fortune, Laetitia, Larry Anne, (Paz et al.,
n.a. PLSR 0.720 0.860

Late Royal, Prime Time, 2008)
Sapphire, and Songold
Black Diamond, Golden Globe,

(Pérez-Marin
Golden Japan, Fortune, Friar, n.a. PLSR 0.68 1.22

et al., 2010)
and Santa Rosa
Plums 5 PLSR 0.66 1.13 *

n.a. — information is not available ; ‘*’ -current study

In this study, both SVM and PLSR models using the spectra at selected wavelengths for WL and
SSC showed performance comparable to the results reported in the literature for multi-cultivar
models. For example, for SSC, multi-cultivar models established with full spectra showed results
like those observed in previous studies by Paz et al. (2008) and Pérez-Marin et al. (2010) (Table
17). The promising performance of the presented models confirms the effectiveness of wavelength
selection and highlights the usability of the multi-spectral NIR technique for postharvest quality

assessment of plums.
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6.2.8 Laser Back Scattering Imaging
Description of backscattering profiles

Fig. 29 shows sample images illustrating the change in diffuse reflectance of ‘Elena’ plums at
different storage conditions across all wavelengths. The light attenuation varied by wavelength both
before and after storage. Before storage, the diffusively illuminated surface areas were marked with
green circles. After storage, the images were marked with orange (1 °C) and red (15 °C) circles.
Higher light attenuation was observed in plums stored at higher temperatures. This could be due to
the increased enzymatic activity at higher temperatures, leading to increased SSC and degraded

pigments, which affect the light absorption properties.

Before storage

532 nm 635 nm 780 nm 808 nin 850 nm 1064 nm

[u—
!

% After storage
a

Figure 29: Changes of diffuse reflectance of ‘Elena’ plums under different storage conditions at all
wavelengths.

Selection of sensitive wavelengths

Fig. 30 shows changes in amplitude and shape values across six wavelengths, with a significant
impact of wavelength on both metrics, as confirmed by a one-way ANOVA (F = 623.86 for
amplitude, F = 2321.50 for shape, p < 0.001, n = 7825).The amplitude values derived from the
Cauchy distribution fitting of the LLBI backscatter profiles exhibited their highest values at 532
nm, with a gradual decrease observed across longer wavelengths (780—1064 nm). This trend likely
reflects higher scattering efficiency and detector sensitivity at shorter wavelengths. In contrast, the
shape parameter reached its minimum at 635 nm and showed an increasing trend in the 780—850

nm range, suggesting a wavelength-dependent variation in the spectral width or distribution of the
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backscattered signal. These observations suggest the importance of 532 nm and 780 nm as potential
wavelengths for monitoring plum quality during postharvest storage. , the change at these
wavelengths correlate with firmness, soluble solids content (SSC), and color changes, agrees with
literature indicating 532 nm is useful for evaluating skin color (Chen, 2015;Rezaei Kalaj et al.,
2016) and 780 nm for assessing firmness and SSC (Baranyai and Zude, 2009; Romano et al., 2011;
Hashim et al, 2014).
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Figure 30: Change of the amplitude (left) and shape (right) values across different wavelengths
during postharvest storage. Different letters on top of the boxes indicate significant differences

(Tukey's post-hoc test, p < 0.05).

Fig. 31 compares the performance of the Gaussian and Cauchy distribution models for fitting LLBI
profiles of plums at 532 nm and 780 nm. The modified Cauchy distribution (CD) with amplitude
and shape of profile parameters demonstrated relatively better predictive power, achieving average
values of R? above 0.96 and RPD above 4.5, in comparison to the Gaussian distribution, which
achieved average R? below 0.70 and RPD below 4.5. Excluding top and bottom 5% of the intensity
range led to a decline in both models' performance (Fig. 32 right), but the Cauchy model still
performed better. Thus, LLBI parameters derived from the fully fitted Cauchy distribution at 532

nm and 780 nm were used for further analysis.
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Figure 31: Sample curve fittings of GD (Gaussian Distribution) and CD (Cauchy Distribution)
functions for the full (left) and partial (right) scattering profile of plum samples at 532 nm (top) and
780 nm (bottom).

The two-way ANOVA revealed that storage time, temperature, and cultivar type significantly
affected amplitude and shape values in LLBI profiles (Table 18), with stronger effects observed at
780 nm than at 532 nm. The deeper tissue penetration of 780 nm made it more sensitive to internal
structural changes like moisture loss and tissue softening, while 532 nm was more responsive to
surface-level properties, including texture and pigmentation (Romano et al., 2012; Rezaei Kalaj et
al.,, 2016). As storage time increased, these changes amplified the amplitude sensitivity, with

stronger interaction effects at 532 nm, especially for surface properties, leading to hue shifts to red
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and purple tones. The amplitude variation at 532 nm is likely due to changes in anthocyanin content,
which affects light scattering as the fruit ripens, with cultivar-specific surface attributes influencing
the results (Rezaei Kalaj et al., 2016). Studies have also shown that carotenoids, identifiable in the
green/yellow regions, correlate with hyperspectral absorbance data (Falcioni et al., 2023). The
sharper LLBI profile peaks observed during fruit ripening result from changes in the fruit’s internal
structure and composition (Mozaffari et al., 2022; Rezaei Kalaj et al., 2016). As fruits ripen, cell
wall breakdown and softening create air spaces, leading to sharper peaks. Additionally, changes in
pigments (such as reduced chlorophyll and increased anthocyanins or carotenoids) affect light
absorption and scattering (Rezaei Kalaj et al., 2016). Water loss and structural modifications further

enhance light scattering, contributing to the sharper LLBI peaks (Romano et al., 2008).

Table 18: F- value of two-way ANOVA results of the measured parameters (n=1276).

Factor Amplitude Shape

532 nm 780 nm 532 nm 780 nm
Storage time (A) 370.80° 263.63° 650.93° 587.51°
Storage temperature (B) 46.17° 71.75° 160.06° 93.89°
Cultivar (C) 465.16° 9.80° 412.30° 2611.99°
Interaction(AXB) 29.798 20.95% 39.96° 19.89°
Interaction (AxC) 277.71° 60.11° 171.69° 140.81°
Interaction (BxC) 28.16° 3.23 8.20° 15.93%

NB: “s”, p <0.001

The Pearson correlation analysis (Table 19) also supports the results of ANOVA. There is strong
correlation between amplitude and shape coefficients at 532 nm (r = 0.787). The amplitude at 780
nm showed positive correlation with firmness (r = 0.607) and chroma (r = 0.661), but a negative
one with SSC (r = -0.609), suggesting that increased SSC increase absorption and decrease peak
intensity. The shape at 532 nm was highly correlated with chroma (r = 0.748) and firmness (r =
0.600). Shape at 780 nm was most strongly associated with firmness (r = 0.720) and chroma (r =
0.670) and was inversely associated with SSC (r = -0.570). Correlations meet expectations that
plums with higher firmness have lower SSC and higher chromaticity. Previous studies have also
reported that photon scattering is influenced by the density of tissue structure (Romano et al., 2011;
Hashim et al., 2014). Although significant correlation was found between the huge angle and
selected coefficients, this parameter obtained the lowest values. The observed difference between

coefficients of 532 nm and 780 nm might be attributed to the rough surface.
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Table 19: Pearson’s correlation between variables (n=1276)

Amplitude Shape, mm

Variables 532nm  780nm 532nm 780nm Firmness, N SSC, % Chroma Hue, degree
Amplitude (532nm) 0.680 0.787 0.239 0.434 -0.498 0.541 -0.102
Amplitude(780nm) S 0.859  0.355 0.607 -0.609 0.661 0.419
Shape(532nm) S S 0.451 0.600 -0.604 0.748 0.229
Shape(780nm) s s S 0.720 -0.570  0.670 0.256
Firmness, N S S S S -0.824 0.817 0.351
SSC, % S S S S S -0.858 -0.377
Chroma S S S S S S 0.375
Hue, degree S S s S S S s

NB: correlation values are above the diagonal, while significance indicators are below (s’, p< 0.05)

Classification of sample groups

Linear Discriminant Analysis (LDA) models using four LLBI parameters at 532 nm and 780 nm
detected storage time-related quality changes in ‘Stanley’ and ‘Elena’ plums. Using all temperature
groups, accuracy was 61.3% for ‘Stanley’ and 77.3% for ‘Elena’ ( Fig. 32). When calibrated for
individual temperatures, accuracy increased to 92.3% for ‘Stanley’ and 91.9% for ‘Elena’ at 1 °C
and reached 100% for both cultivars at 5 °C (Appendix Fig. 12.1.7). These results demonstrate that
LLBI effectively captures cumulative structural and compositional changes during storage.
Previous studies reported similar trends: mid- to late-ripening stages in fruits like apples and
watermelons show pronounced structural changes, enabling precise classification (Romano et al.,
2011; Mohd Ali et al., 2017). Zulkifli et al. (2019) classified banana ripeness using LLBI at 658 nm
and LDA with 94.2% accuracy, while Lorente et al. (2015) classified orange quality at 532 nm with

93.4% accuracy.

84



Training set (n= 455). average accuracy = 65.1%

64 © od 4d 8d 12d l6d 20d
od 72.55 27.45 0 0 0 0
= days ad 1.60 80.51  17.80 0 0 0
N 31 o 8d 0 2376 6535 099 0 9.90
3 -4 12d 0 0 4133 1733 1467  26.67
~ -8 16d 0 0 28 0 58 14
g of° =12 20d 0 0 0 0 3.33 96.67
g - ;g Validation set (n= 114), average accuracy= 61.3%
8
-3 od 88.89 1111 0 0 0 0
4d 0 9167 833 0 0 0
&d 0 3667 4667  10.00 0 6.67
10 5 12d 0 1765 4118 29.41 0 11.76
Component 1 (75.78%) 16d 0 0 71.43 0 2143 7.4
20d 0 0 10.00 0 0 90.00
Training set (n= 566), average accuracy =79.5%
od 4d 8d 12d  16d  20d  24d
od 6136 3864 0 0 0 0 0
4d 119 8929 9.52 0 0 0 0
8d 0 472 8774 755 0 0 0
- days 12d 0 0 14.16 77.88  7.96 0 0
g o -0 16d 0 0 0 2083 75 0 417
b -4 20d 0 0 0 390 519 7792 12.99
g A 24d 0 0 0 0 0 2174 7826
2 16 Validation set (n=141), average accuracy= 77.3%
g- -5 K - 20
] 2 od 65 375 0 0 0 0 0
. 4d 0 7273 2727 0 0 0 0
8d 0 4 88 8 0 0 0
i , ) . 12d 0 0 1739 78.26  4.35 0 0
T T 0 10 16d 0 0 0 2727 7273 0 0
Component 1 (78.72%) 20d 0 0 0 0 0 20 20
24d 0 0 0 0 0 833 9167
Figure 32: LDA plot on training set and the confusion matrix for storage time groups of ‘Stanley’

(top) and ‘Elena’ (bottom) plums.

Prediction of quality parameters

The regression plots (Fig. 33) and validation results (Table 20) show the performance of MVR
models calibrated using both two-cultivar and cultivar-specific datasets. Two LLBI parameters at
532 nm and 780 nm were used to estimate firmness, soluble solids content (SSC), chroma, and hue.

For firmness, the two-cultivar model achieved R? = 0.632, RMSE = 3.924 N, and RPD = 1.653,
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while cultivar-specific models performed better: ‘Stanley’ (R* = 0.769, RMSE = 3.049 N, RPD =
2.084) and ‘Elena’ (R?=0.726, RMSE = 3.375 N, RPD = 1.932). The Durbin-Watson test indicated
autocorrelation (DW = 0.344, p <2.2e-16). Previous studies reported by Qing et al. (2007b) showed
apple firmness predicted across multiple cultivars with R? = 0.81, Li et al. (2018) reported firmness
prediction for ‘Victoria’ plums with R?=0.73 and RPD = 1.90, and Mohd Ali et al. (2017) achieved

2 = (.882 for watermelon firmness using PLSR. Similarly, Lu (2004) and Qing et al. (2008)
reported R? = 0.87 for apple firmness prediction using light backscattering and PLSR.
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Figure 33: MVR Prediction of firmness (top-left), SSC (top-right), chroma (bottom-left) and hue
angle (bottom-right).
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Similar pattern was observed for SSC with higher accuracy of cultivar specific models for ‘Elena’
(R* = 0.818, RMSE = 0.873%, RPD = 2.366) and ‘Stanley’ (R* = 0.769, RMSE = 0.983, RPD =
2.117). All quality indices confirmed this pattern. Cultivars achieved close performance indices, but
hue angle showed the largest difference. This might reflect the different color development of the
cultivars involved. Qing et al. (2007b) reported that LLBI achieved an R? of 0.79 for SSC prediction
in ‘Elstar’ apples using PLSR, while Qing et al. (2008) found an R? of 0.88 for SSC prediction in
‘Pinova’ apples. Additionally, Li et al. (2018) demonstrated that SWIR hyperspectral imaging in the
wavelength range of 865-1610 nm effectively predicted SSC in ‘Victoria’ and ‘Marjorie’s Seedling’
plums. The PLSR model achieved an R? value of above 0.8. On the other hand, the MVR model
was effective in cultivar-specific models compared to multi-cultivar models for color parameter
predictions. The model predicted chroma for ‘Elena’ with an R? of 0.866 and hue with an R? of
0.731 for ‘Stanley’ (Table 20). Similar studies, such as Noh and Lu (2007), reported predicting apple
skin hue using LLBI with an R? of 0.88, while Udomkun et al. (2014) achieved an R? of 0.92 for
predicting dried papaya color using MVR. Li et al. (2018) demonstrated that hyperspectral imaging
in the 600-975 nm range with PLSR could predict plum color with R? values above 0.7 and RMSE
below 3.16

Table 20: Cross validation performance metrics of MVR model ‘Stanley’ (n=114) and ‘Elena’
(n=141) and all samples together (n=255)

) . R? RMSE RPD
Variable Cultivar . . .
Mean CI95Min CI95Max Mean CI95Min CI95Max Mean CI95Min CI95Max

All 0.632 0.624 0.640 3.924 3.875 3.974 1.653 1.635 1.671

-

NP Stanley 0769 0753 0786 3.049 2900 3.198 2084 2011  2.157
Elena 0.726 0.714 0.738 3.375 3.308 3.443 1.932 1.889 1.974
All 0.515 0.507 0.523 1.431 1.417 1.445 1.436 1.424 1.448

SSC,%  Stanley 0.769 0.757 0.781 0.983 0.954 1.013 2.117 2.056 2.179
Elena 0.818 0.810 0.826 0.873 0.853 0.893 2.366 2.314 2418

All 0.642 0.636 0.649 1.160 1.146 1.175 1.669 1.654 1.685
Chroma  Stanley 0.835 0.826 0.844 0.883 0.859 0.907 2.498 2.429 2.567
Elena 0.866 0.858 0.873 0.634 0.614 0.655 2.766 2.694 2.838

All 0.465 0.457 0.473 26.183 25.955 26.411 1.366 1.356 1.376
Stanley  0.731 0.722 0.740 16.623 16.384 16.863 1.933 1.902 1.965
Elena 0.521 0.510 0.533 23.073 22.775 23.371 1.442 1.425 1.460

Hue,
degree
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6.3. Assessment of quality changes of apples during post-harvest storage

This section also discusses the results of physiological measurement, NIR spectroscopy, and LLBI
techniques applied to assess quality attributes of ‘Granny smith’ apples stored under different
temperature conditions. In NIR spectroscopy analysis, a total of 834 observations were made by
acquiring spectral data from two locations around equatorial part of each apple using three
consecutive scans per location. The apples were rotated 180 degrees between scans to ensure full
surface coverage. Spectral data in the 900—1700 nm range were preprocessed using SNV, and five
significant wavelengths were manually selected based on the standard deviation of the normalized
spectra. NDI and QI were computed to assess the sensitivity of selected wavelengths. PLSR and
SVM models were developed using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-
13), respectively. These models were calibrated using both full spectra and selected wavelengths to
predict weight loss, firmness, and SSC. For LLBI, 643 observations were collected using both line-
based (n = 382) and beam-based (n = 261) systems. LLBI images were captured at 635 nm, and the
resulting profiles were fitted using the Cauchy Distribution model to extract amplitude and shape
parameters. These parameters were used to develop MVR and SVM models for predicting weight
loss and firmness. All datasets were randomly divided into training (80%) and validation (20%)
subsets. Model performance was evaluated using bootstrapped metrics (R?, RMSE, RPD) with 95%

confidence intervals.

6.3.1 Ethylene production

The ethylene production rate in apples varied with storage temperature and time (Fig. 34). Apples
stored in cold storage and then exposed to room temperature showed an increasing trend in ethylene
production, while those stored at room temperature initially increased and then declined after 2
weeks. By the end of the storage period, apples in shelf-life conditions produced around 50 pL/
Kg.h, while those stored at room temperature had a final rate of 25 uL/ Kg.h. ANOVA indicated
significant effects of storage temperature and time on ethylene production (F = 171.985 and
111.961; p < 0.001). Cold storage inhibits ethylene production but enhances the peel's ethylene-
forming capacity, whereas warmer temperatures accelerate ripening and ethylene production. These
findings align with previous studies showing that ethylene production in apples follows a
climacteric pattern, with an initial increase, a peak, and a decline (Rudell et al., 2000; Wang et al.,

2022).
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Figure 34: Ethylene production rate of ‘Granny Smith’ apples under different storage time and

temperature

6.3.2 Respiration Rate

The respiration rate in apples followed a similar pattern to ethylene production. Apples stored in
cold storage and then exposed to room temperature showed an increasing respiration rate over time,
while those stored continuously at room temperature increased initially and then declined (Fig. 35).
ANOVA indicated significant effects of storage temperature and time on respiration (F = 83.665
and 49.668; p <0.001). The highest respiration rate was observed in apples subjected to cold storage
followed by room temperature shelf life, peaking at 18.50 mL/ Kg.h. Apples stored at cold
temperatures had lower respiration (11.88 mL/ Kg.h), while those stored at room temperature
peaked at 6.20 mL/ Kg.h after two weeks before declining. This pattern aligns with the climacteric
nature of apples, where respiration increases, peaks, and then declines as the fruit ripens (Singh and

Khan, 2010; Choi and Jung, 2014; Lekke et al., 2011).
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Figure 35: Respiration rate of ‘Granny Smith’ apples under different storage time and
temperature

6.3.3 Weight loss

The weight loss of apples during storage increased over time (Fig. 36), with apples stored at cold
temperatures showing lower weight loss than those stored at room temperature. ANOVA confirmed
significant effects of storage time and temperature on weight loss (F-value = 571.58 and 216.57; p
< 0.001). Higher temperatures accelerate respiration and water loss, leading to faster weight loss,
while lower temperatures slow respiration and preserve freshness. Previous studies have shown that
higher temperatures increase respiration and water loss, and accelerate weight loss (Guerra &
Casquero, 2008; Singh and Khan, 2010). Cold storage helps to control microbial deterioration and
preserves fruit (Zhao et al., 2022). However, moving apples from cold storage to room temperature
further accelerates water loss (Kassebi et al., 2022; Hasan et al., 2024). During this transition, apples
may experience temperature shock. The sudden temperature change leads to internal condensation
and increases water activity inside the fruit, creating an environment where the fruit becomes more
vulnerable to mechanical stress, including vibrations. Additionally, this temperature shift softens
the fruit, making it more susceptible to physical damage (Wei et al., 2019; Fang and Wakisaka,
2021).
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Figure 36: Change of weight loss of ‘Granny Smith’ apple at different storage time and
temperature.

6.3.4 Firmness

The firmness of apples decreased over time in both cold storage and cold-to-ambient storage
conditions (Fig. 37). Apples stored under cold-to-ambient conditions showed a faster reduction in
firmness compared to those stored solely at ambient temperatures. ANOVA revealed that both
storage time and temperature significantly affected firmness (F-value = 1469.8 and 2561.2,
respectively; p < 0.001), with temperature having a more substantial impact. This may be due to
temperature-induced changes in cellular structure, such as cell wall breakage and pectin
degradation. Previous studies suggest that cold-to-ambient storage accelerates ethylene production
and respiration rates, hastening ripening (Matabura, 2022). Metabolic changes during ripening lead
to cell wall breakdown and tissue softening (Johnston et al., 2001; Geng et al., 2020). In addition,
Singh, et al. (2011) reported that prolonged storage can alter the expression of ethylene-related

genes, leading to increased ethylene production and a reduction in firmness as apples ripen.
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Figure 37: Change of Firmness of ‘Granny Smith’ apple at different storage time and temperature

6.3.5 Soluble solid content (SSC)

The SSC of the apples increased over time and with rising temperatures (Fig. 38). ANOVA revealed
that the effects of storage time and temperature were significant (F-value = 354.3 and 16.8,
respectively; p <0.001). The increase in SSC is primarily due to the conversion of starch into sugars
during ripening. This process is supported by findings by Jha et al.(2012), who noted that SSC in
apples undergoes cyclic changes: initially decreasing as sugars convert to starch, followed by an
increase as starch is reconverted into sugars during prolonged storage. In cold storage, the
conversion of starches to sugars is slowed, and the respiration rate and ethylene production remain
low. However, when apples are moved to ambient temperature, these processes accelerate, rapidly
increasing SSC. Therefore, temperature and storage duration can significantly influence sugar

accumulation in apples, thereby affecting SSC (Cao et al., 2021; Tokala et al., 2022).
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Figure 38: Change of SSC of ‘Granny Smith’ apple at different storage time and temperature

6.3.6 Peel color

The hue spectra of ‘Granny Smith’ apples were measured using machine vision, with four apples
per image and nine images per temperature group. The average hue spectra values for each
temperature group across the storage period are shown in Fig.39. The first plot captures the initial
ripening phase of apples over 0, 2, 4, and 5 weeks. The RMSE values between these intervals are
relatively low, with the highest being 0.003068 between days 4 and 5 weeks. This suggests that
color changes are gradual during early ripening. The IP _hue spectra graph shows a steady shift,
indicating increasing pigmentation and hue transformation.

Additionally, apples stored at cold temperatures showed minimal color change, though noticeable
changes developed gradually over time (Appendix Fig. 12.1.9). In contrast, samples kept at ambient
room temperature for an additional week per measurement exhibited color changes and defects after

9 weeks. The RMSE values also reflected increasing differences, with the highest (0.004004)

93



observed between the curves at 9 and 27 weeks. Related literature reported that the hue angle
effectively measures apple color development, with a decrease in hue angle correlating with
increased red pigmentation in varieties like ‘Fuji’ and ‘Idared’ apples (Ozturk et al., 2015; Bizjak et
al., 2012). Whale and Singh (2007) reported these changes are due to chlorophyll degradation and
increased the concentration of other pigments like carotenoids. The higher storage temperatures
accelerate enzymatic browning, leading to a more orange-red color (Neri et al., 2019), while
prolonged storage can cause undesirable color changes (Guerra et al., 2010). Matsumoto et al.

(2021) observed that physiological disorder retaining green color with low brix values.
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Figure 39: Changes in skin color and corresponding hue spectra of ‘Granny Smith’ apples under
different storage durations and temperatures: Hue-saturation at room storage (top ) and cold storage-

ambient (bottom).

6.3.7 NIR spectroscopy
Fig. 40 illustrates the raw spectra (a), spectra normalized by SNV (b), SD of normalized spectra (c),

and apple NDI 1531 at 1650 nm (d). The higher standard deviation of the normalized spectra was
observed at 908, 1080, 1358, 1450, and 1650 nm (Fig. 40c), with the reference wavelength at 1531
nm showing the minimum standard deviation across the spectra. The deviations at these
wavelengths reflect temperature and time-induced changes in apple quality attributes such as

firmness, SSC, and weight loss. NDI 1531nm at 1650 nm value at both room temperature (22 °C)
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and cold storage (2 °C), apples showed a noticeable increase in variability of NDI values in the first
4 days and 67 days, respectively. This is likely to reflect differences in the physiological responses
among individual apples. Some fruits had already begun to deteriorate, while others remained intact,
resulting in a wider spread of values. With prolonged storage, variability decreased as most apples
reached a more uniform state of deterioration, leading to narrower NDI ranges. The 1650 nm
wavelength in NIR spectroscopy is highly sensitive to changes in fruit tissue properties, including
moisture, sugars, organic compounds, and cell structure integrity (Subedi et al., 2012; Walsh et al.,
2020). The two-way ANOVA confirmed significant effects of storage temperature, time, and their
interaction on both NDI 1531nm at 1650 nm and QI, with particularly high F-values indicating
strong sensitivity. While 1450 nm and 1358 nm also showed high responsiveness, their effects were
slightly lower (Table 21). Additionally, absorbance at 908 nm is associated with sugar-related third
overtone absorption (Paz et al., 2008; Walsh et al., 2020).
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Figure 40: Full NIR raw spectra (a) Normalized spectra by SNV (b) and the standard deviation
(b) of the normalized spectra (¢) and (d) apple NDI 1531 at 1650 nm.
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Furthermore, absorbance at 1080 nm is associated with changes in sugar content during ripening,
driven by C-H stretching vibrations (Eisenstecken et al., 2015; Workman and Weyer, 2007). At 1360
nm and 1658 nm, variations correspond to firmness loss caused by pectin and cellulose degradation,
with higher temperatures accelerating softening (Baltazar et al., 2020; Cetin and Kavdir, 2017).
Absorbance at 1658 nm, linked to C=O stretching vibrations, indicates ripeness and cell wall
breakdown (Buyukcan and Kavdir, 2017; Wu et al., 2014). At 1450 nm, water absorption changes
highlight moisture and weight loss during storage, intensified at higher temperatures (Bobelyn et

al., 2010; Ignat et al., 2014).

Table 21: ANOVA results showing the effects of storage time (days), temperature (°C) and
interaction on apple NDI 1531 and QI (n=834)

Factor 908 nm 1080nm 1358nm 1450nm 1650nm
Storage time (A) 1297.53% 1203.749¢ 1843.885° 1941.101° 1961.863°
Apple Temperature(B) 1065.269° 1009.629¢ 1576.809¢ 1765.275¢ 1805.046°

NDI  Interaction (AXx B)  2751.275° 2592.136° 3905.025° 4244.262° 4346.353°

Storage time (A) 1537.144° 1458.867° 1974.701° 1875.882° 2073.146°
Apple Temperature(B) 1263.259° 1225.476° 1690.205° 1706.297° 1907.081°
QI Interaction (Ax B) 3266.739° 3149.307° 4168.064° 4112.744° 4579.414°

‘s’ p<0.001
Pearson correlation analysis (Table 22) revealed strong relationships between NIR absorbances and
apple quality parameters during storage. Significant positive correlations were found between 908
nm and 1080 nm (r = 0.844), 1080 nm and 1358 nm (r = 0.999), and 1358 nm and 1450 nm (r =
0.976). The 1650 nm wavelength showed the highest sensitivity, with strong correlations to weight
loss (r =-0.87) and SSC (r =-0.843). Negative correlations were observed between weight loss and
908 nm (r = -0.873) and 1080 nm (r = -0.883), capturing moisture loss. Firmness correlated
positively with 908 nm (r= 0.828) and 1650 nm (r = 0.818), while SSC showed negative correlations
with 908 nm (r = -0.851) and 1450 nm (r = -0.806). Weight loss and SSC were strongly positively
correlated (r = 0.936), whereas firmness and SSC showed a moderate negative correlation (r = -

0.754).
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Table 22. Pearson's correlation values between NIR readings, WL and firmness for apples (n = 834)

at different storage times and temperatures

WL, Firmness, SSC,

1080 nm 1358 nm 1450 nm 1650 nm % N %
908 nm 0.844 0.839 0.809 0.991 -0.873 0.828 -0.851
1080 nm 0.999 0.974 0.854 -0.883 0.785 -0.843
1358 nm S 0.976 0.850 -0.879 0.775 -0.836
1450 nm S S 0.823 -0.835 0.690 -0.806
1650 nm S S S -0.87 0.818 -0.843
WL, % S S S S -0.824  0.936
Firmness, N s S S S S -0.754

‘s’ p <0.001; the upper triangle shows the correlation values, while the bottom triangle shows the significance level.

Prediction models

The comparison of PLSR and SVM models (Table 23) using bootstrapped validation highlights the
clear advantage of selected wavelength approaches (Fig. 41) over full spectra. SVM consistently
outperformed PLSR for weight loss, firmness, and SSC. For weight loss, PLSR with selected
wavelengths achieved R?=0.893, RMSE = 1.116%, and RPD = 3.046, while SVM further improved
predictions to R* = 0.955, RMSE = 0.708%, and RPD = 4.85. For firmness, PLSR yielded R* =
0.823, RMSE = 4.545 N, and RPD = 2.39, whereas SVM achieved R? = 0.958, RMSE = 2.201 N,
and RPD = 5.09. For SSC, PLSR reached R2 = 0.791, RMSE = 0.440%, and RPD = 2.20, while
SVM significantly outperformed it with R* = 0.937, RMSE = 0.250%, and RPD = 3.93. These
results indicate that SVM combined with selected wavelengths provides better predictive accuracy
for apple quality parameters, outperforming both PLSR and full-spectrum approaches. Previous
studies support these findings, such as Li et al. (2013) using NIR and LS-SVM (R?=0.891, RMSEP
=0.624), Zhang et al. (2021) with Vis-NIR and PLSR (R = 0.82, RMSEP = 0.71), and Ignat et al.
(2014) with NIR (8501888 nm) and PLSR (R?=0.60, RMSEP = 1.2, RPD = 1.7).
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Figure 41: PLSR (left) and SVM (right) models using a set of selected wavelengths for prediction
results of WL, firmness, and SSC (top-bottom)
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Moreover, the selected wavelengths provided significant enhancements in predictive accuracy over
the full spectra in SSC predictions. With PLSR, the full spectra yielded R2 of 0.488, RMSE of
0.70%, and RPD of 1.39, while the selected wavelengths achieved an R? of 0.791, RMSE of 0.44%,
and RPD of 2.20. For SVM, the selected wavelengths (R?=0.937, RMSE = 0.25%, RPD = 3.93)
significantly performed better than the full spectra (R?>=0.613, RMSE = 0.62%, RPD = 1.56).
Previous studies have also reported the use of various calibration techniques for predicting the SSC
of fruits. Fan et al. (2020) predicted apple SSC using NIR and PLSR with R? = 0.690, RMSEP =
0.604% and RPD = 1.794. In addition, Li et al. (2013) used NIR and LS-SVM to predict Pears SSC
with R?2=10.916 and RMSEP = 0.250%, while Sun et al. (2009) reported on apples SSC predictions
using LS-SVM with R? = 0.88 and RMSEP = 0.80%. The current study's SVM model performs
better in predicting weight loss, SSC, and firmness than that described in the cited literature.

Table 23: Cross-validated SVM and PLSR model performance metrics of ‘Granny Smith’ apples
in validation set (n=167)

R? RMSE RPD

Category Model ; X ;
Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max

SSC  PLSR 0.488 0.478 0.498 0.697 0.687 0.706 1.395 1.381 1.409
WL  PLSR 0.549 0.539 0.558  2.280 2.255 2305 1.490 1.475 1.505
Firmness PLSR 0.600  0.592 0.609 6.830 6.757 6.903 1583 1.565 1.600
SSC  SVM 0.613 0.603 0.623  0.620 0.609 0.631 1.556 1.538 1.575
WL SVM 0.692 0.684 0.701 1910 1.877 1.934 1.782 1.756 1.808
Firmness SVM 0.756  0.750 0.762  5.430 5.368 5489 2.004 1.979 2.028

Full spectra

SSC  PLSR 0.791 0.785 0.798 0.440 0.431 0.450 2.198 2.163 2.234
WL  PLSR 0.893 0.890 0.895 1.116 1.102 1.130 3.046 3.012 3.081
Firmness PLSR 0.823  0.818 0.829 4.545 4.483 4.608 2391 2.354 2.428
SSC  SVM 0.937 0.934 0.940 0.250 0.240 0.259 3933 3.819 4.047
WL  SVM 0.955 0.953 0.958 0.708 0.689 0.727 4.852 4716 4.987
Firmness SVM 0.958  0.955 0962 2201 2.117 2.286 5.088 4.891 5.284

Selected
wavelengths
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6.3.8 Laser light backscattering imaging (LLBI)

The modified Cauchy distribution (CD) function provided strong curve-fitting for LLBI parameter
extraction, with average performance of R? =0.970 and RPD = 6.08 for the beam system, and R? =
0.884 and RPD = 3.145 for the line system. In a single laser signal image at 635 nm (Fig. 42), the
beam-based profile showed a strong fit (R? = 0.97), though filtering increased RMSE (5.50 to 12.63)
and slightly reduced RPD (5.66 to 5.07). The line-based profile also fit well (R? = 0.98, RMSE =
3.60), but filtering reduced R? to 0.97 and raised RMSE to 9.26. Full data fitting results were used

for subsequent analyses.
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Figure 42: Sample curve fittings of modified Cauchy Distribution functions for the full (left) and
partial (right) scattering profiles of apple samples at 635 nm using beam-based LLBI profiles (top)

and line-based LLBI profiles (bottom).
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Figure 43 shows the changes in amplitude and shape values from the modified CD model for
different storage systems. The amplitude decreased, while the shape increased, for apples stored at
room temperature and cold-ambient temperature. Different measurement approaches lead to
differences in shape and amplitude values. This is due to changes in apple structure during storage
(Baranyai and Zude, 2009; Lorente et al., 2015). Room temperature accelerates structural and
biochemical changes, resulting in higher shape values more rapidly than cold-ambient storage. The
changes in shape and amplitude have been related to chlorophyll loss and carotenoid pigment
emergence, which reduce scattering widths at 635 nm (Hashim et al., 2014; Rezaei Kalaj et al.,
2016). As apples ripen, diminished chlorophyll absorption and increased carotenoids lead to greater
backscattering, reflecting ripening progress and storage conditions (Rezaei Kalaj et al., 2016). These
structural changes alter light absorption and scattering behaviors (Hashim et al., 2014; Romano et

al., 2011).
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Line-based illumination
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Figure 43: Change of amplitude (left) and Shape (right) from spot based (top) and line (bottom)
illumination type in ‘Granny smith’ apple samples stored at different storage times and
temperatures.

Table 24 shows the two-way ANOVA results for the effects of storage time, temperature, and their
interactions on amplitude and shape values. Storage temperature significantly impacted amplitude
(F = 477.176. Similarly, time and temperature interactions were significant for amplitude (F =

45.506) and shape (F =292.44).

Table 24: Two- way ANOVA results showing the effects of storage time, temperature, and their
interaction on the amplitude and shape values (N= 643).

Factor LLBI parameters
Amplitude Shape
Time (A) 471.252¢ 1590.99 ¢
Temperature (B) 477.176 % 14582.91 ¢
Interaction A x B 45.506 ¢ 29244
*”p<0.001

Table 25 shows significant correlations between storage time, firmness, weight loss, and LLBI
parameters. Amplitude positively correlated with firmness (r = 0.828 with beam, r = 0.684 with
line) and negatively with weight loss (r = -0.883 with beam, r = -0.891 with line) and shape (r = -
0.968 with line), indicating that higher amplitude reflects firmer fruits with less moisture loss and

surface shrinkage. Shape negatively correlated with firmness (r = -0.726 with beam, r = -0.745 with
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line) and positively with weight loss (r = 0.946 with both beam and line), suggesting that ripening-

induced softening and moisture loss alter fruit structure.

Table 25: Pearson’s correlation coefficients between storage time, firmness, weight loss, and
LLBI profile variables measured using beam-based (n=261) and line-based (n=382) laser systems.

System Amplitude Shape, mm Firmness, N Weight Time,
loss, % days

Amplitude beam -0.928 0.828 -0.883 -0.560
line -0.968 0.684 -0.891 -0.380
Shape, mm beam ] -0.726 0.946 0.328
line s -0.745 0.946 0.477
Firmness, N beam S S -0.762 -0.836
line s ] -0.720 -0.869
Weight loss, %  beam S s s 0.443
line s ] s 0.525

NB: upper triangle shows the correlation values, while the bottom triangle shows the significance level (s’ p< 0.05)

Prediction models

The performance of MVR and SVM models was evaluated for predicting weight loss and firmness
of ‘Granny Smith’ apples using LLBI-derived parameters under spot and line illumination (Fig. 44,
Table 26). SVM consistently outperformed MVR, effectively capturing both surface and subsurface
changes. With three LLBI parameters from modified Cauchy fitting, SVM achieved high predictive
accuracy for weight loss (R > 0.96) and firmness (R? > 0.91). Line illumination enhanced weight
loss prediction (R?=0.971, RMSE = 0.608%, RPD = 6.035), while spot illumination gave the best
firmness prediction (R* = 0.940, RMSE = 2.626 N, RPD = 4.100). Earlier studies reported lower
accuracies: Lu (2004) used neural networks (R? = 0.87) for firmness; Qing et al. (2007b, 2008)
applied PLSR with R? of 0.81-0.87 for ‘Elstar’ and other apples; Peng and Lu (2005) employed
twelve Lorentzian parameters across four wavelengths, reaching r = 0.76 and SEV = 6.01 N; and
Romano et al. (2011) predicted apple moisture during drying with a linear LLBI model (R* = 0.89,
RMSECV = 8.9%). In comparison, the present SVM-based approach shows superior performance,
with the beam-based SVM best for firmness (R?=0.969, RMSEP = 1.919 N, RPD = 5.728) and the
line-based SVM best for weight loss (R? =0.972, RMSEP = 0.603%, RPD = 6.115

104



Predicted Frimness, N

Beam LLBI

MVR SVM
< T
=3 o R = 0.968
[+] o~ ° [~}
N4 R2_0906 - LT RMSEP = 0.679
® 0. © s~ °®
@ RMSEP =1216 o0 g o RPD-=5.781
8 E N ] o ~ Deo
z RPD=3219 z o N
2 o - §B B o & &
= © g .8 2 % C o
i) e 8 b4 ©
Q 0 o8 2 e
3 o ° 5 © 2 ¢ o
k=] o 82 o " g
2 o @ o
o -] © o
< ° 3 @ o 22¢ <+ o 8 o0 22°C
o
0® ozc 8 02°c
o & [ §°
T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Measured Weight loss, % Measured Weight loss, %
& 1 s
Lv=3 R'= 0.94
2_ o =
g | R-0705 R 2 RMSEP = 2.626
RMSEP - 6.042 z RPD=4.1
w
w
_ @
Q | RPD=1805 g 2
E
w
3
8 $3-
=]
o
a
(== [=
fro o 22 o ° 22
02°C 02°C
(=T (=
g =
T T T T T T T T T T T T
40 50 60 70 80 20 40 50 60 70 80 90
Measured Frimness, N Measured Frimness, N
Line LLBI
MVR SVM
< =
= R s
Lv=3 o Rz 0.971
&4 R?-0903 é N 4 RMSEP=0608
B3 8 2 A
@ RMSEP = 1.127 § g o RPD =6.035
8 2 8 8 2
= RPD=3.21 ° =
B =
© D o o
= @ = r
- o
i) @
B o g o §
3 3 o
o T 0
= o 2°C = 1 0 22°C
- ? 02°C
02°C
o ~d 5 qg?
T T T T T T T T T
12 14 2 4 6 8 10 12 14

Measured Weight loss, %

105

Measured Weight loss, %




8 7 o 8 1 / 1
Lv=3 yd R'= 0912 ,S' ggc:
A o8
R®=0798 ] e RMSEP - 2.769 %6°
& 8 A g & 2
=] - o 940
= RMSEP - 4.184 B0, 8 8 g ﬁ 28 z RPD -3.99 ' fpg;
2 ootge”” Bl ] & Eo o
[ e RPD = 1.805 “5935 %) o e ieg o
E 00 of £ oo ok
= 550 E § QEE
'} gl w -
3 o o 5 2 5 59 :
g ® ° 8 égg T @ p
- %o g = o
2 00,0 2 A
o & o 4
3 8 =3
o 22°C & 22°C
0rc g 02'c
o (=
<
= T T T T T I T T T T T
40 50 60 70 80 90 40 50 60 70 80 90
Measured Frimness, N Measured Frimness, N

Figure 44: MVR (left) and SVM (right) prediction results for weight loss (top) and firmness
(bottom) using datasets from beam and line LLBI.
Table 26: Cross-validated performance metrics of MVR and SVM models using LLBI parameters

from beam and line datasets (n: = 261, n. = 382) for predicting weight loss and firmness in ‘Granny
Smith’ apples.

R? RMSE RPD

Models  Parameters Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max
WL, % 0.906 0.903 0909 1.216 1.194 1.238 3.219 3.164 3.275

MVR 0.903 0.901 0905 1.127 1.116 1.1384 3.210 3.177 3.244
Firmness, N 0.705 0.693 0.7166 6.042 5907 6.177 1.805 1.766 1.843

0.798 0.791 0.805 4.184 4.144 4.224 2.237 2.202 2.273

WL, % 0.968 0.966 0970 0.679 0.658 0.701 5.781 5.616 5.945

SVM 0.971 0.970 0.973 0.608 0.593 0.624 6.035 5.886 6.183
Firmness, N 0.940 0.937 0.944 2.626 2.551 2.701 4.100 3.982 4.218

0.912 0.909 00916 2.769 2.720 2.817 3.390 3.321 3.458
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7. NEW SCIENTIFIC RESULTS

This study evaluated the application of non-destructive techniques to monitor quality changes in
green asparagus, plums, and apples during post-harvest storage. The main scientific results from

each practical experiment are presented as follows:

1. An optimum set of wavelengths (907, 923, 1069, 1442, and 1696 nm) was selected for the
quality assessment of green asparagus during storage and shelf life. Linear Discriminant
Analysis (LDA) using the selected wavelengths successfully detected the quality change in 4
days storage interval. The model achieved classification accuracies of 60.4% at 2 °C, 74.3% at
10 °C, and 76.9% at 15 °C. After 12 days, temperature-induced changes were detected with
87.7% accuracy. The SVM model demonstrated enhanced predictive accuracy compared to the
PLSR model when calibrated using NIR spectra at selected wavelengths for predicting weight
loss and firmness. The SVM model achieved R? = 0.768, RMSE = 5.690%, and RPD = 2.080
for weight loss, while for firmness, it achieved R? =0.829, RMSE = 5.380 N, and RPD =2.322.

2. Line-based Laser Light Backscattering Imaging (LLBI) analysis with a single laser module
emitting at 635 nm was applied, and diffusely illuminated surfaces were captured from three
positions (base, middle, tip) on asparagus spears. LLBI parameters of amplitude, shape, and
FWHM were extracted using Cauchy curve fitting. The LDA model based on LLBI parameters
detected quality changes in asparagus spears after 4 days across all temperature groups with
79.7% accuracy. For individual temperatures, accuracy was 81.4% at 2 °C, 89.6% at 10 °C, and
93.4% at 15 °C. MVR and MARS models were developed to predict weight loss and firmness.
MARS outperformed MVR, and predicted weight loss with R*=0.846, RMSE = 6.401%, RPD
=2.558, and firmness with R?=0.927, RMSE =3.266 N, RPD = 3.775.

3. An optimum set of wavelengths (909, 1064, 1323, 1447, 1650 nm) was selected for quality
assessment of plum fruits during storage and shelf life. Using these wavelengths, PLSR
predicted weight loss with R? = 0.738, RMSEP = 1.582%, and RPD = 1.953, and SSC with R?
=0.740, RMSEP = 0.980%, and RPD = 1.991. However, performance improved with the SVM
model, which achieved R? = 0.917, RMSEP = 0.844%, and RPD = 3.492 for weight loss, and
R?=0.844, RMSEP = 0.780%, and RPD = 2.498 for SSC.
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4. The beam-based LLBI technique with a Cauchy distribution function fitted on the signal of
532 nm and 780 nm was able to detect quality changes of plum. Plums stored at 1 °C showed
detectable quality changes within 4 days interval, with LDA models achieving classification
accuracy of 92.3% for ‘Stanley’ and 91.9% for ‘Elena’. For storage at 5 °C, the models reached
100% accuracy across all time points and cultivars. Cultivar-specific regression models
outperformed combined models. The best cross-validation results were observed for ‘Elena’
(Minolta chroma-based chroma: R? = 0.866, RMSE = 0.634; SSC: R? = 0.818, RMSE =
0.873%) and ‘Stanley’ (firmness: R? = 0.769, RMSE = 3.049 N; Minolta chroma-based hue
angle: R? = 0.731, RMSE = 16.62°). This showed the potential of LLBI combined with
multivariate models (i.e. LDA, MVR) for real-time quality assessment in postharvest handling

and cold chain management.

5. Optimized wavelengths (908, 1080, 1358, 1450, and 1650 nm) were used to assess storage
quality and shelf-life of ‘Granny Smith ’apples. The SVM model showed better performance
than PLSR, predicting weight loss (R? = 0.955, RMSEP = 0.708%, RPD = 4.852), firmness (R?
=0.958, RMSEP = 2.201 N, RPD = 5.088), and SSC (R* = 0.937, RMSEP = 0.249%, RPD =
3.932).

6. LLBI technique demonstrated the effectiveness of both line and beam laser configurations on
apple quality assessment. The SVM with three LLBI parameters extracted from the modified
Cauchy fitting on the LLBI profile, the system demonstrated good predictive performance for
both weight loss (R? > 0.96) and firmness (R> > 0.91). Hence, line-based LLBI combined with
SVM enhanced its performance in predicting weight loss (R*=0.971, RMSEP = 0.608%, RPD
=6.035), while the beam laser setup yielded the best results for firmness prediction (R* = 0.940,
RMSEP =2.626 N, RPD =4.100).
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8. POSSIBLE APPLICATIONS AND SUGGESTIONS

8.1 Possible applications

The empirical findings of NIR and LLBI techniques demonstrate their potential applications for

monitoring quality changes in fresh fruits and vegetables. Some of these applications are described

as follows: -

NIR and LLBI enable real-time quality monitoring and sorting of fruits and vegetables based
on firmness, weight loss, SSC, and color, helping reduce waste.

These techniques can predict shelf life and optimize storage conditions (temperature and
duration) for produce such as asparagus, plums, and apples.

NIR and LLBI allow nondestructive assessment of ripeness and overall quality in stores or
distribution centers, supporting optimal harvest timing and ensuring high-quality produce

for consumers.

8.2 Limitations and further research-

8.2.1 Limitations

The seasonal nature of green asparagus, plums, and apples significantly limits the replication
of experimental work for each crop. These fruits and vegetables are only available fresh
during specific months of the year (i.e., April to June for green asparagus and July to October
for plum and apple), which restricts the timeframe for conducting experiments that require
fresh samples to accurately assess their quality and shelf life.

The humidity, and gas composition for each treatment was not evaluated due to laboratory
limited facility and spaces

The maturity, cultivar differences, internal structural composition variation, and exposed
storage temperature affect the consistency and accuracy of measurements, particularly for

LLBI and NIR models.

8.2.2 Further research

— Expand the application of these nondestructive techniques to other fruits and vegetables.

This would increase the applicability of these technologies to a broader range of agricultural

products and make them more valuable for large-scale industrial adoption.
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9. SUMMARY

Apples, plums, and green asparagus are widely cultivated crops, with Hungary being a major
producer. These fruits and vegetables are essential to a nutritious diet, offering health benefits
including a reduced risk of cancer and cardiovascular diseases(Glabska et al., 2020; Wang et al.,
2014). However, maintaining their quality during post-harvest storage poses challenges, as elevated
temperature and long storage time accelerate degradation, leading to weight loss, reduced firmness,
discoloration, and microbial infestation. Non-destructive methods such as NIR spectroscopy and
LLBI were effective in predicting quality changes. Linear regression models like PLSR and MVR
showed promising results, while non-linear models like SVM and MARS demonstrated better
performance in predicting weight loss, SSC, firmness, and skin color. The full NIR spectra collected
from green asparagus, plums (i.e., ‘Stanley’,” Elena’), and apples (i.e., ‘Granny Smith’ ) were
pretreated using SNV, and the standard deviation of the normalized spectra was computed.
Wavelengths were manually selected based on the local maxima peaks. The multispectral technique,
utilizing selected NIR wavelengths (907, 923, 1069, 1442, and 1696 nm), was applied to evaluate
the firmness and weight loss of green asparagus. Similarly, five wavelengths (909, 1064, 1323,
1447, and 1650 nm) were selected to assess the weight loss and SSC of plums. Additionally,
multispectral data from five selected wavelengths (908, 1080, 1358, 1450, and 1650 nm) were used

to evaluate weight loss, firmness, and SSC in ‘Granny Smith’ apples.

A beam- and line-based LLBI system at different wavelengths was applied to monitor the quality
changes of green asparagus, plums, and ‘Granny Smith’ apples. The beam-based LLBI system,
using a multispectral range (532-1064 nm), was optimized based on ANOVA applied to LLBI
parameters extracted from the Cauchy distribution function. The data extracted from wavelengths
of 532 nm and 780 nm were applied as a non-destructive approach to evaluate the firmness, SSC,
and color of plums during storage. Additionally, the line-based system at 635 nm was used to assess
weight loss and firmness in green asparagus and ‘Granny Smith’ apples. These findings underscore
the potential of, NIR spectroscopy, and LLBI, as effective and reliable tools for non-destructive
quality monitoring of asparagus, plum, and apple during post-harvest storage, enabling better

preservation and reduced waste.
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12. APPENDIX

Appendix 12. 1 — Pictures

Before storage After 12 days of storage

i
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Figure 12.1.1: Green asparagus before storage (left) and exposed at different storage temperatures
after 12 days of storage period (right)
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Figure 12.1.2. Changes in firmness of green asparagus after exposure to different temperatures and
durations, shown at the middle (top) and peak (bottom) positions of the spears.
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Figure 12.1.3. LDA plot (left) of the training set and confusion matrix tables (right) for both training
and validation sets, showing classification performance across storage temperature groups for
detecting quality changes in green asparagus at 4-day storage intervals using three LLBI parameters.
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‘Stanley”

‘Elena’

Before storage After storage

Figure 12.1.4: Photos of plums (top-‘Stanley’, bottom- Elena’) taken before storage (left) and after
storage (right) at different temperatures.
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Figure 12.1.5 Changes in sample plums' NDI (top) and QI (bottom) with storage time and
temperature at 1650 nm
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Figure 12.1.6. PLSR model predictions for SSC (left) and WL (right) using full spectra (top) and
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Figure 12.1.7: Cross-validated LDA model performance (left) in detecting quality changes in
plum cultivars ‘Stanley’ and ‘Elena’ stored at 1 °C (top row) and 5 °C (bottom row), based on
four-day storage intervals. The confusion matrix tables (right) summarize the training and
validation set accuracies across different storage durations.
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Figure 12.1.8 ‘Granny Smith’ apple stored at room, cold and cold-ambient at room temperature
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Figure 12.1.9 Changes in skin color and corresponding hue spectra of ‘Granny Smith’ apples
under different storage durations and temperatures: Hue-saturation of samples at storage .

153



At 15 °C after 12 days of At 5 °C after 20 and 24 days of storage, After 180 days at 2°C + 7 days
storage respectively of ambient storage

Figure 12.1.10 Decayed green asparagus(a) and plums (b) and ‘Granny Smith’ apple(c) during
Storage
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Appendix 12.2 — Tables

Table 12.2.1: Performance metrics for the PLS-DA model, including equations for sensitivity,
specificity, precision, accuracy, and F-score.

Equation Description
Sensitivity = TP Sensitivity indicates the model's ability to
Y7 TP + FN
correctly identify true positives out of all positive
observations.
s TN Specificity 1 f del's ability t
Specificity = pecificity is a measure of a model's ability to
TN + FP
correctly identify true negatives from all negative
observations.
. TP Precision reflects the accuracy of positive
Precision = ——
TP + FP
predictions, measuring the ratio of true positives
to all predicted positive cases.
(TP + TN) Accuracy assesses the overall correctness of a
Accuracy =

(TP + TN + FP + FN)
model by calculating the ratio of correctly

predicted cases to the total number of cases.

F-score is used for evaluating the model's ability to

2 X Precision X Sensitivity correctly classify both positive and negative cases
Precision + Sensitivity

F-score =

by considering precision and sensitivity.
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Table 12.2.2: Cross-validation performance metrics of the PLS-DA model using full spectra in
detecting quality changes of green asparagus within 4-day storage intervals at different storage
temperature groups.

2°C
Training set (n=182) Validation set (n=46)
Metric Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max
Accuracy 479%  44.4% 51.1%  46.6%  40.4% 53.2%
Sensitivity 389%  27.8% 499%  39.0%  24.0% 59.2%
Specificity 85.0%  84.0% 86.1%  84.8%  81.9% 87.7%
Precision 49.2%  45.8% 523%  47.7%  41.4% 54.2%
F-score 43.7%  34.8% 55.5%  50.8%  39.1% 66.6%

Balanced Accuracy 62.5%  56.4% 68.3%  62.0%  54.4% 74.6%
10 °C

Training set (n=187) Validation set(n=47)
Metric Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max
Accuracy 50.5% 48.1% 53.3% 49.2% 44.5% 54.3%
Sensitivity 52.1% 40.2% 62.4% 46.7% 28.6% 68.5%
Specificity 86.7% 85.9% 87.3% 86.5% 84.1% 88.1%
Precision 50.4% 48.1% 53.1% 49.2% 44.5% 54.2%
F-score 48.7% 37.4% 56.1% 57.8% 46.3% 71.2%
Balanced Accuracy 70.9% 64.4% 76.4% 68.7% 57.9% 69.8%
15°C
Training set(n=177) Validation set(n=45)
Metric Mean CI95.Min CI95.ax Mean CI95.Min CI95.Max
Accuracy 52.1% 46.9% 57.9% 51.9% 42.2% 54.4%
Sensitivity 55.9% 41.6% 62.5% 57.4% 38.9% 74.8%
Specificity 86.1% 84.4% 88.0% 86.2% 82.2% 90.5%
Precision 51.0% 45.7% 56.9% 51.0% 41.1% 63.7%
F-score 57.5% 49.3% 65.6% 57.9% 44.1% 75.3%
Balanced Accuracy 73.5% 63.6% 77.3% 72.7% 62.3% 74.4%

Table 12.2.3: Cross-validation performance metrics of the LDA model using spectra at selected
wavelengths in detecting quality changes of green asparagus within 4-day storage intervals at
different storage temperature groups.

2°C
Training set (n=182) Validation set (n=46)
Metric Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max
Accuracy 63.9%  59.6% 67.5% 60.4%  48.9% 68.9%
Sensitivity 61.8% 57.4% 66.2% 59.2%  46.4% 69.4%
Specificity 88.3%  86.8% 89.5% 87.3% 83.1% 90.7%
Precision 63.1%  58.8% 66.9% 59.8%  48.1% 68.4%
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F-score 61.9%  57.9% 65.6%  58.6%  47.7% 67.4%
Balanced Accuracy 75.1%  72.1% 77.7%  73.2%  65.4% 79.6%
10 °C

Training set (n=187) Validation set(n=47)
Metric Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max
Accuracy 75.5% 72.2% 78.6% 74.3% 66.0% 84.1%
Sensitivity 76.1% 72.5% 79.6% 75.8% 64.4% 85.7%
Specificity 91.8% 90.8% 92.9% 91.6% 88.8% 94.9%
Precison 75.2% 71.8% 78.6% 74.1% 65.1% 84.1%
F-score 75.4% 72.0% 78.8% 73.9% 63.7% 84.0%
Balanced Accuracy 83.9% 81.7% 86.3% 83.7% 76.8% 90.3%
15°C
Training set(n=177) Validation set(n=45)
Metric Mean CI95.Min CI95.ax Mean CI95.Min  CI95.Max
Accuracy 81.1% 77.7% 84.1% 76.9% 67.4% 88.1%
Sensitivity 80.4% 76.7% 83.3% 77.0% 65.9% 89.5%
Specificity 93.8% 92.7% 94.8% 92.5% 89.3% 96.3%
Precision 80.4% 76.9% 83.4% 76.4% 66.3% 87.8%
F-score 80.3% 76.8% 83.3% 76.0% 65.6% 87.6%
Balanced Accuracy 87.1% 84.7% 89.0% 84.7% 77.7% 92.9%
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