
 
 

1 
 

 

Hungarian University of Agriculture and Life Sciences 

 

 

APPLICATION OF NON-DESTRUCTIVE TECHNIQUES IN QUALITY 

ASSESSMENT OF FRUITS AND VEGETABLES DURING POST-HARVEST 

STORAGE 

 

 

 

         

 

 

 

Zinabu Hailu Siyum 

 

 

Budapest 

2025 

 



 
 

i 
 

 

 

 



 
 

i 
 

 

TABLE OF CONTENTS 

TABLE OF CONTENTS ............................................................................................................... i 

LIST OF ABBREVIATIONS ....................................................................................................... v 

1. INTRODUCTION ........................................................................................................................ 1 

1.1 Background ............................................................................................................................. 1 

2. LITERATURE REVIEW ............................................................................................................. 3 

2.1 Production and post-harvest storage of fruits and vegetables ................................................ 3 

2.1.1 Asparagus ......................................................................................................................... 3 

2.1.2 Plum ................................................................................................................................. 4 

2.1.3 Apple ................................................................................................................................ 5 

2.2 Quality assessment of fruits and vegetables ........................................................................... 6 

2.2.1 Ethylene production ......................................................................................................... 7 

2.2.2 Respiration Rate ............................................................................................................... 7 

2.2.3 Weight Loss ...................................................................................................................... 9 

2.2.4 Firmness ........................................................................................................................... 9 

2.2.5 Soluble Solid Content (SSC) ......................................................................................... 10 

2.2.6 Peel Color ....................................................................................................................... 11 

2.3 Non-destructive quality assessment of fruits and vegetables ............................................... 12 

2.4 NIR spectroscopy and Laser light backscattering imaging (LLBI) ...................................... 14 

2.4.1 Near-infrared spectroscopy (NIR) ................................................................................. 15 

2.4.2 Laser light backscattering imaging (LLBI) .................................................................... 19 

2.4.3 Classification models ..................................................................................................... 21 

2.4.4 Prediction models ........................................................................................................... 21 

2.5 Applications of NIR spectroscopy and LLBI in postharvest quality assessment ................. 23 



 
 

ii 
 

2.5.1 Quality monitoring using classification models ............................................................ 23 

2.5.2 Quality monitoring using prediction models ................................................................. 25 

2.5.3 Comparison between NIR spectroscopy, LLBI, and HSI techniques ............................ 30 

3. RESEARCH GAP ...................................................................................................................... 32 

4. RESEARCH OBJECTIVES ...................................................................................................... 33 

5. MATERIALS AND METHODS ................................................................................................ 34 

5.1 Materials ............................................................................................................................... 34 

5.2 Measurement of quality attributes ........................................................................................ 35 

5.2.1 Ethylene production ....................................................................................................... 35 

5.2.2 Respiration Rate ............................................................................................................. 36 

5.2.3 Weight loss ..................................................................................................................... 36 

5.2.4 Firmness ......................................................................................................................... 37 

5.2.5 Soluble Solid Content (SSC) ......................................................................................... 38 

5.2.6 Peel Color ....................................................................................................................... 38 

5.3 Non-destructive measurement techniques ............................................................................ 40 

5.3.1 NIR spectroscopy (NIR) ................................................................................................ 40 

5.3.2 Laser light backscattering imaging (LLBI) system ....................................................... 41 

5.4 Experimental design ............................................................................................................. 45 

5.4.1 Quality assessment of green asparagus during post-harvest storage ............................. 46 

5.4.2 Quality assessment of Plums during post-harvest storage ............................................. 48 

5.4.3 Quality assessment of apple during post-harvest storage .............................................. 50 

5.5 Data analysis ......................................................................................................................... 52 

6. RESULTS AND DISCUSSIONS ............................................................................................... 53 

6.1 Green asparagus experiment during post-harvest storage .................................................... 53 

6.1.1 Weight loss ..................................................................................................................... 53 



 
 

iii 
 

6.1.2 Firmness ......................................................................................................................... 54 

6.1.3 Peel color ....................................................................................................................... 55 

6.1.4 NIR spectroscopy ........................................................................................................... 56 

6.1.5 Laser light backscattering imaging (LLBI) .................................................................... 62 

6.2 Assessment of quality changes in plums during post-harvest storage .................................. 68 

6.2.1 Ethylene production ....................................................................................................... 68 

6.2.2 Respiration rate .............................................................................................................. 69 

6.2.3 Weight loss ..................................................................................................................... 70 

6.2.4 Firmness ......................................................................................................................... 71 

6.2.5 Soluble solid content (SSC) ........................................................................................... 72 

6.2.6 Peel Color ....................................................................................................................... 73 

6.2.7 NIR spectroscopy ........................................................................................................... 74 

6.2.8 Laser Back Scattering Imaging ...................................................................................... 80 

6.3. Assessment of quality changes of apples during post-harvest storage ................................ 88 

6.3.1 Ethylene production ....................................................................................................... 88 

6.3.2 Respiration Rate ............................................................................................................. 89 

6.3.3 Weight loss ..................................................................................................................... 90 

6.3.4 Firmness ......................................................................................................................... 91 

6.3.5 Soluble solid content (SSC) ........................................................................................... 92 

6.3.6 Peel color ....................................................................................................................... 93 

6.3.7 NIR spectroscopy ........................................................................................................... 95 

6.3.8 Laser light backscattering imaging (LLBI) .................................................................. 101 

7. NEW SCIENTIFIC RESULTS ................................................................................................ 107 

8. POSSIBLE APPLICATIONS AND SUGGESTIONS ............................................................. 109 

8.1 Possible applications ........................................................................................................... 109 



 
 

iv 
 

8.2 Limitations and further research- ....................................................................................... 109 

8.2.1 Limitations ................................................................................................................... 109 

8.2.2 Further research ........................................................................................................... 109 

10. ACKNOWLEDGEMENT ...................................................................................................... 111 

11. REFERENCES ....................................................................................................................... 112 

12. APPENDIX ............................................................................................................................ 146 

Appendix 12. 1 – Pictures ......................................................................................................... 146 

Appendix 12.2 – Tables ............................................................................................................ 155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

v 
 

 

LIST OF ABBREVIATIONS 

ACS Amino cyclopropane carboxylate synthase 

ACO Amino cyclopropane carboxylate oxidase 

ANN Artificial neural network 

ANOVA Analysis of Variance 

BLE Bluetooth Low Energy 

CA Controlled atmosphere 

CCD Charge-Coupled Device 

CDF Cauchy distribution function 

CI Confidence interval 

CARS Competitive adaptive reweighted sampling 

CMOS Complementary Metal-Oxide-Semiconductor 

FAO Food Agriculture Organization 

FDA Flexible discriminant analysis 

GA Genetic algorithm 

GDF Gaussian distribution function 

GF Gompertz function 

GL Gaussian–Lorentzian 

HCSO Hungarian Central Statistical Office 

HSI Hyperspectral imaging 

LDA Linear discriminant analysis 

LD Lorentzian distribution 

LLBI Laser light backscattering imaging 

LS-SVM Least squares-support vector machine 

LV Latent variables 

MARS Multivariate adaptive regression splines 

MCP Methylcyclopropene 

MLR Multi-linear regression 

MSC Multiplicative scatter correction 



 
 

vi 
 

MVR Multivariate regression 

NDI Normalized difference index 

NIR Near-infrared spectroscopy 

PCA Principal component analysis 

PLS-DA Partial least square discriminant analysis 

PLS2-DA Partial least squares 2-Discriminant analysis 

PLSR Partial least squares regression 

QDA Quadratic discriminant analysis 

QI Quality index 

RH Relative humidity 

RPD Residual prediction deviation 

RMSEP Root mean square error for predictions 

SG Savitzky-Golay 

SNR Signal-to-noise ratio 

SNV Standard normal variate 

SPA Successive Projections Algorithm 

SSC Soluble solid content 

SVM Support vector machine regression 

USB Universal Serial Bus 

Vis-SWIR Visible and short-wave infrared 

VNIRS Visible and near-infrared spectroscopy 

WHO World Health Organization 

WL Weight loss 

  

 

 

 

 

   



 
 

1 
 

1. INTRODUCTION 

1.1 Background 

Fruit and vegetables are essential for a healthy diet. They support immune function and reduce the 

risk of chronic diseases (Głąbska et al., 2020; Lara et al., 2020). As living standards improve, people 

are focusing more on the quality, taste, and nutritional value of fruits and vegetables (Mason-D’Croz 

et al., 2019; Pegiou et al., 2019). However, these horticultural products can deteriorate during 

storage due to temperature and time, affecting quality (Johnston et al., 2001; Ha et al., 2023). This 

can reduce shelf life. There's an increasing need for efficient methods to monitor and evaluate the 

quality of fruits and vegetables during postharvest storage. Traditional inspection techniques are 

often invasive, destructive, time-consuming, and not suitable for continuous, real-time evaluation. 

This indicates the need for rapid, nondestructive, and cost-effective methods to assess the quality 

and physiological status of fruits and vegetables (Costa and Lima, 2013; Nicolaï et al., 2007; Tian 

and Xu, 2022). 

Optical methods, such as near-infrared (NIR) spectroscopy and laser light backscattering imaging 

(LLBI), have emerged as promising nondestructive techniques for postharvest quality assessment 

of fruits and vegetables. NIR spectroscopy typically operates within the 700–2500 nm wavelength 

range by measuring the light absorption to evaluate internal quality attributes, such as soluble solids 

content (SSC), firmness, and moisture content (Nicolaï et al., 2007; Tian and Xu, 2022). Conversely, 

LLBI utilizes laser diodes in the visible to near-infrared range to capture backscattered light, 

providing insights into tissue structure and surface properties based on scattering profiles (Qing et 

al., 2008; Baranyai and Zude, 2009; Mollazade et al., 2012). The NIR spectroscopy and LLBI are 

relatively low in cost and have faster acquisition times. Additionally, they have simpler hardware 

setups and better adaptability for real-time and industrial applications compared to other optical 

techniques such as hyperspectral imaging (HSI) (Qing et al., 2008; Baranyai and Zude, 2009; 

Mollazade et al., 2012; Wieme et al., 2022). However, these techniques face challenges related to 

noise, instrument limitations, and the heterogeneous nature of produce. For example, the water 

content of fruits and vegetables can overlap with other spectral bands, making interpretation 

difficult (Assaad, 2020; Bertran et al., 1999; Paz et al., 2008). To address these challenges, various 

spectral preprocessing methods, such as Savitzky-Golay filters, Standard Normal Variate (SNV), 

and derivatives, have been applied to improve signal quality (Nicolaï et al., 2007). Additionally, 
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advanced mathematical techniques, including genetic algorithms, optimization of loading weights 

in partial least squares regression (PLSR) models, and analysis of regression coefficients, have been 

employed to select sensitive wavelengths, further improving the calibration of predictive models in 

spectroscopic analyses (Yao et al., 2023; Zhang et al., 2018). When combined with chemometric 

models like PLSR, SVM, and MARS, these methods enhance the assessment of fruit and vegetable 

quality during storage (Hasanzadeh et al., 2022; Rinnan et al., 2009). Chemometric techniques are 

widely applied to predict various quality attributes of fruits and vegetables (Aline et al., 2023; 

Chauchard et al., 2004; Kashef, 2021). For instance, Zeb et al. (2023) applied LDA to classify the 

sweetness content of different orange varieties (Blood Red, Mosambi, and Succari), achieving a 

cross-validated accuracy of 56.7%. Liu et al. (2021) also applied PLSR to evaluate weight loss (R² 

= 0.96, RMSEP = 1.432%) and firmness (R² = 0.60, RMSEP = 2.453 N) in Chinese mini cabbage. 

The least squares support vector machine (LS-SVM) model was used to predict the firmness of 

pears, achieving an R² of 0.893 (Li et al., 2013). Alenazi et al. (2020) found that PLSR predicted 

the firmness of fresh tomatoes with an R² of 0.69. Additionally, Radzevičius et al. (2016) reported 

that simple linear regression predicted the SSC of tomatoes with an R² of 0.815. 

Beyond NIR applications, laser light backscattering imaging (LLBI) has been used for the quality 

assessment of fruits and vegetables. Liu et al. (2020) used LLBI to classify peaches based on storage 

time with over 90% accuracy, while Daniels et al. (2021) used LLBI to classify grapes by color with 

75% accuracy. LLBI has been used to detect decay in oranges due to fungal infection, achieving 

high accuracy (Lorente et al., 2015). Qing et al. (2007b) demonstrated that LLBI combined with 

PLSR could predict fruit firmness with R2 = 0.81 and RMSEP = 5.44 N. Similarly, Romano et al. 

(2012) used digital imaging and laser diodes (532 nm and 635 nm) to monitor moisture content in 

bell peppers. They predicted moisture content using scattering area and light intensity, achieving R2 

= 0.86 and RMSEP =7.28 % for yellow peppers. The literature reports showed that non-destructive 

quality assessments using NIR spectroscopy and LLBI have been conducted at different 

geographical locations, using various measurement techniques, fruits and vegetables, and varying 

approaches to spectral and image processing, feature extraction, and calibration models. This work 

assessed the quality of popular Hungarian fruits and vegetables (i.e., asparagus, plum, and apple) 

using NIR spectroscopy, LLBI, and different calibration models.  
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2. LITERATURE REVIEW 

2.1 Production and post-harvest storage of fruits and vegetables  

Global fruit and vegetable production has steadily increased over the past decade (FAO, 2025). 

Similarly, in Hungary, the gross production value of fruits and vegetables has increased 

significantly over the past decade (FAO, 2025; KSH, 2025). However, to meet the dietary needs of 

an estimated 10 billion people by 2050, fruit and vegetable production will need to increase by 50-

150% (Mason-D'Croz et al., 2019; Stratton et al., 2021).   Due to the growth in population and 

increased health awareness, there has also been a rise in the consumption of fruits and vegetables 

globally. These horticulture items are abundant in bioactive substances that have major health 

benefits, such as flavonoids, carotenoids, anthocyanins, and phenolic compounds (Ruiz-López and 

García-Villanova Ruiz, 2023; Yahia et al., 2019). Regular consumption of these products plays an 

important role in the prevention of cardiovascular disease, diabetes, cancer, and mental disorders 

(Głąbska et al., 2020; Ju and Park, 2019).  The World Health Organization (WHO) recommends a 

daily intake of at least 400 grams of fruits and vegetables for adults and children older than 10 years 

(WHO, 2025). Wang et al., (2014) also reported that higher consumption of fruits and vegetables 

was related to a lower risk of cardiovascular mortality.  Additionally, the production, health benefits, 

and postharvest storage conditions of asparagus, plum, and apple are described in detail in the 

sections below:  

2.1.1 Asparagus 

Asparagus is highly valued for its distinct aroma, taste, and nutritional benefits, being low in 

calories, high in fiber, and rich in phytochemicals (Sergio et al., 2021). Traditionally, asparagus 

extracts have been used in medicine to treat conditions such as kidney and liver diseases, asthma, 

and cancer (Pegiou et al., 2019). However, post-harvest preservation remains a major challenge due 

to its high perishability and rapid deterioration, which results from its high respiratory and metabolic 

activity (Anastasiadi et al., 2020; Garrido et al., 2001). Storage conditions significantly impact 

asparagus quality. Storing asparagus at ambient temperatures accelerates chlorophyll breakdown, 

texture changes, and nutrient loss (Lipton, 2011; Villanueva et al., 2005). While storage above 10°C 

causes spear toughening, temperatures below 0°C for over 10 days can result in chilling injuries, 

such as loss of glossiness and wilting (An et al., 2008; Villanueva et al., 2005). Prolonged storage 

also leads to weight loss due to moisture evaporation from the product.  The effect is more 

pronounced at higher storage temperatures. Increased temperatures not only accelerate weight loss 
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but also cause discoloration and deterioration of the visual quality of the product. For instance, 

‘Gijnlim’ asparagus exhibited significant discoloration at 10°C (Boonsiriwit et al., 2021; Kitazawa 

et al., 2011) . In contrast, cold storage at 4°C helps preserve higher levels of chlorophyll and vitamin 

C, thereby extending both nutritional quality and shelf life (Boonsiriwit et al., 2021).  Storage also 

affects the texture of asparagus, particularly its firmness and toughness. These changes are most 

noticeable in the lower portions of the spears, where an increase in toughness is attributed to the 

accumulation of lignin and other phenolic compounds in the cell walls, leading to tissue hardening 

(Jaramillo et al., 2007; Rodríguez et al., 2004). In addition to physical and biochemical changes, 

green asparagus is highly susceptible to microbial contamination, primarily from aerobic bacteria, 

yeast, and mold, which can cause significant deterioration during storage (Wang et al., 2021). The 

proliferation of these microorganisms is strongly influenced by storage temperature. The higher 

temperatures accelerating microbial growth leading to faster sensory degradation and reduced shelf 

life (Valero et al., 2006; Wang et al., 2021). The fresh green asparagus stored at 1–2 °C can remain 

fresh for up to 14 days. To prevent moisture loss, the relative humidity (RH) should be maintained 

between 92% and 99%. However, when RH drops as low as 66%, significant weight loss and 

accelerated quality deterioration occurs, leading to faster degradation of both visual and textural 

attributes (Fuchs et al., 2008, Villanueva,2005). In cold storage, asparagus is best kept at 0–2°C, 

with 95–100% relative humidity (RH), 10–14% CO₂, and oxygen levels above 10%, allowing 

storage for up to 2–3 weeks (Cantwell and Suslow, 2002). 

2.1.2 Plum 

Plum is a widely consumed stone fruit known for its attractive appearance, flavor, and aroma. 

According to the Food and Agriculture Organization (FAO, 2025), the leading plum-producing 

countries include China, Romania, Serbia, and Chile. It is highly valued for its rich nutritional 

content, containing phytochemicals, vitamins, minerals, and dietary fibers  (Lara et al., 2020).  Its 

health benefits include potential roles in anti-inflammatory, memory-improving characteristics, and 

chronic disease management (Igwe and Charlton, 2016; Lara et al., 2020). However, plums are 

climacteric fruits with a short shelf life. The ethylene production accelerates ripening, respiration, 

and senescence, leading to structural and biochemical changes (Khan, 2022; Kumar et al., 2018; 

Singh and Khan, 2010). Proper storage conditions are crucial for preserving plum quality. Storage 

at 0 °C to 2 °C provides the best retention of weight, firmness, soluble solids, and vitamin C, while 

also reducing microbial activity (Briano et al., 2015; Feng et al., 2024; Pimienta et al., 2020). In 
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contrast, prolonged exposure to temperatures below 2–5°C may cause skin pitting, staining, and 

flesh browning (Briano et al., 2015; Ding et al., 2010). Higher storage temperatures (above 15°C), 

however, accelerate microbial growth and increase spoilage risk. For instance, plums stored at 37°C 

exhibited significant quality deterioration (Cárdenas et al., 2024). Fungal infections are another 

major factor influencing plum decay, with their growth highly dependent on storage conditions such 

as temperature, time, and humidity (He et al., 2024; Szparaga et al., 2014). Argenta et al. (2003) 

stored ‘Laetitia’ plums at 1 °C and 80 ± 5% relative humidity for up to 50 days, followed by ripening 

at 23 °C and 75 ± 8% RH for approximately 22 days, using 1-methylcyclopropene (1-MCP) to delay 

ripening. Similarly, Kumar et al. (2018) reported that under cold storage conditions of 2 ± 1 °C and 

85–90% relative humidity, the shelf life and quality of ‘Santa Rosa’ plums were preserved for up 

to 28 days. Typically, plums are stored at –1 °C to 0 °C with 90–95% RH to minimize water loss 

and shriveling. For extended storage, controlled atmosphere conditions with 1–3% O₂ and 2–5% 

CO₂ are used to slow respiration and ripening, maintaining quality for 2–5 weeks (Cantwell and 

Suslow, 2002). 

2.1.3 Apple 

Apple is among the most widely consumed fruits worldwide. The leading apple-producing countries 

are China, the United State of America (USA), Turkey, Poland, and India (FAO, 2025). China and 

the USA alone contribute around 50% of global apple production (Khan, 2022).  Over the years, 

global apple production has increased significantly, driven by the introduction of new apple varieties 

and advancements in cultivation technologies (Sayin et al., 2010).  It is also nutritionally rich. It 

contains phytochemicals such as quercetin, catechin, and chlorogenic acid.  These compounds 

provide health benefits, including reducing the risk of chronic diseases (Hyson, 2011). However, 

proper storage conditions are essential to maintain apple quality and extend shelf life. Storage at 

0°C has been found to better maintain firmness and color and extend the storage time of fresh-cut 

apples  (Li et al., 2014) . In some cases, storage at 4°C may be more beneficial for certain apple 

varieties, as it helps reduce peel disorders and maintain internal ethylene concentration (Yoo et al., 

2018). Additionally, low temperatures (0–4°C) preserve color, flesh hardness, and volatile 

compounds, maintaining better overall quality compared to higher temperatures (Zhang et al., 2022) 

. Conversely, higher storage temperatures (such as 20°C ) speed up ripening and shorten shelf life 

by reducing acidity and firmness (East et al., 2008; Zhang et al., 2022 ). Cold storage is crucial for 

slowing down ripening, but it can also lead to storage disorders such as flesh breakdown and 
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browning (Hasan et al., 2024; Lee et al., 2019). During extended storage periods, wound sites on 

apples serve as entry points for microorganisms, leading to tissue breakdown and decay (Hamilton 

et al., 2022; Scheper et al., 2007).  The fungal infections significantly reduce apple quality and 

marketable yield (Argenta et al., 2021; Leng et al., 2023).  However, other literature suggests that 

apples are typically stored at 0–3°C to preserve their quality and extend shelf life. This range slows 

ripening and reduces the quality loss (Büchele et al., 2024; Prange and Wright, 2023).  According 

to Sharma et al. (2013), ‘Royal Delicious’ apples stored under ambient conditions (22–28 °C and 

52–68% RH) exhibited an extended shelf life of up to 35 days. In contrast, Lidster (1990) reported 

that ‘McIntosh’ apples stored at 3 °C in controlled atmosphere (CA) conditions for 198 to 255 days, 

under varying relative humidity levels (80% to 94%). Prange and Wright (2023) reviewed global 

storage recommendations for apples, suggesting optimal temperatures of 0–1 °C and RH of 90–95% 

for storage durations of 5–8 months, depending on cultivar sensitivity to chilling. Generally, apples 

are stored at 0–3 °C with 90–95% RH to minimize moisture loss and maintain firmness. They 

benefit significantly from CA storage, where oxygen levels are reduced to 1–3% and carbon dioxide 

is maintained at 0.5–2.5%, depending on the cultivar. Under these optimized conditions, some apple 

varieties can be stored for up to 9–12 months without significant quality loss (Büchele et al., 2024). 

2.2 Quality assessment of fruits and vegetables 

Quality assessment of fruits and vegetables is a comprehensive process that involves evaluating 

both external and internal attributes to ensure that consumer preferences and market standards are 

fulfilled (Kyriacou and Rouphael, 2018). While external quality is typically assessed visually, 

internal quality is commonly evaluated using destructive techniques, which include chemical, 

physical, and mechanical analyses (Jaywant et al., 2022; Lu, 2017). There are two techniques used 

to assess the quality of fruits and vegetables: traditional and non-destructive techniques. Although 

traditional techniques provide detailed and accurate results, the trend is shifting towards non-

destructive techniques, which offer rapid, efficient, and comprehensive quality assessment without 

causing damage to the products (Abasi et al., 2018; Aline et al., 2023). The evaluation of quality 

changes in fruits and vegetables during storage using traditional techniques is presented in detail in 

the following sections: - 
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2.2.1 Ethylene production 

Ethylene production in fruits typically increases with both temperature and storage duration, 

contributing significantly to accelerated ripening and softening. For example, plums stored at higher 

temperatures exhibit elevated ethylene levels. This level is driven by enhanced activities of ethylene 

biosynthetic enzymes such as ACS (1-aminocyclopropane-1-carboxylate synthase) and ACO (1-

aminocyclopropane-1-carboxylate oxidase) (Khan et al., 2011). Melnyk et al. (2014) reported that 

apples stored at 2 °C for 180 days, ethylene emission varies by cultivar; ‘Golden Delicious’ showed 

the highest production (~60 µL·kg⁻¹·h⁻¹ at 150 days), while ‘Idared’ remained much lower 

(~4.4 µL·kg⁻¹·h⁻¹ at 180 days). Similarly, Wang et al. (2022) demonstrated that apples stored at 

20 °C released ethylene more rapidly and in higher amounts (peak ~37.62 µL·kg⁻¹·h⁻¹ at 10 days) 

compared to those stored at 0 °C (peak ~26.46 µL·kg⁻¹·h⁻¹ at 35 days). Storage duration also plays 

a critical role, with longer periods resulting in higher ethylene levels (Shafiq et al., 2011). Moreover, 

cold-stored fruits often experience a spike in ethylene production when transferred to ambient 

temperatures, accelerating ripening and firmness loss. Persimmons stored at 1 °C showed a sharp 

ethylene surge upon warming, leading to chilling injury (Orihuel-Iranzo et al., 2010), a trend echoed 

in zucchini moved from 4 °C to 20 °C. Higher storage temperatures further rise ethylene synthesis, 

which has been related to increased chilling sensitivity (Liu et al., 2022; Whale and Singh, 2007; 

Megías et al., 2015). Ethylene surges are a central trigger for physiological ripening processes, 

including texture softening, color development, and sugar accumulation (Luo et al., 2009; Ravindra 

and Goswami, 2008). Ultimately, higher ethylene levels accelerate fruit senescence, thereby 

shortening shelf life (Kumar et al., 2018; Manganaris et al., 2008). 

2.2.2 Respiration Rate  

Respiration rate refers to the rate at which oxygen is consumed, and carbon dioxide is produced in 

stored plant tissues. Higher respiration rate is closely associated with faster deterioration of produce 

quality because it accelerates biochemical changes that compromise freshness and shelf life 

(Ravindra and Goswami, 2008). This rate is influenced by storage temperature and enzymatic 

activities, and it increases during ripening. For example, Singh and Khan (2010) found that 

respiration rates rise from a minimum level to a peak as the fruit matures and then decline as it 

overripens.  Argenta et al. (2003) emphasized that lower storage temperatures help suppress 

ethylene production, slow the ripening process, and extend the shelf life of produce. Contrary, Singh 

and Khan (2010) reported that higher respiration rates lead to quicker starch depletion and softening 
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of the fruits. Additionally, Løkke et al. (2011) demonstrated that respiration rates can increase by 

two to three times with every 10°C rise in temperature, underlining the importance of controlled 

temperature in maintaining postharvest quality. However, respiration rate can be affected by cultivar 

type, harvest maturity, preharvest environment, storage temperature, atmospheric composition, and 

postharvest treatments (Singh and Khan, 2010). Studies on crops like tomato, pepper, cucumber, 

and zucchini reveal that respiration varies significantly among cultivars (Priss et al, 2017). In 

climacteric fruits such as papaya, apples, and plums, respiration rates increase over time and with 

rising temperatures after harvest (Torrieri et al., 2009; Martins et al., 2014; Singh and Khan, 2010).  

Furthermore, Choi and Jung (2014) observed that respiration rates increased more rapidly in ‘Fuji’ 

apples stored at higher temperatures. In contrast, low temperatures can slow the respiration rate 

during storage (Singh and Khan, 2010).  The temperature dependence of respiration is further 

illustrated in specific crops. Green mature mangoes, for example, exhibit a sharp increase in CO₂ 

production from approximately 16.5 ml CO₂ kg⁻¹ h⁻¹ at 5 °C to around 55 ml CO₂ kg⁻¹ h⁻¹ at 30 °C, 

with a decline over time in closed systems due to oxygen depletion (Ravindra and Goswami, 2008). 

Similarly, pomegranate fruit and arils show higher respiration at warmer temperatures: whole fruit 

CO₂ production increases from about 5.7 ml CO₂ kg⁻¹ h⁻¹ at 5 °C to 18.5 ml CO₂ kg⁻¹ h⁻¹ at 15 °C, 

while fresh arils range between 2.7 and 9.0 ml CO₂ kg⁻¹ h⁻¹ over the same temperature range, with 

cultivar differences also influencing CO₂ evolution (Caleb et al., 2012). In fresh-cut Annurca apples, 

respiration is primarily driven by temperature, with CO₂ production rising from about 

3.0 ml CO₂ kg⁻¹ h⁻¹ at 5 °C to approximately 11.0 ml CO₂ kg⁻¹ h⁻¹ at 20 °C (Torrieri et al., 2009).The  

CO₂ production of ‘Golden’ papaya stored at 13 °C  also rose from 7.62 to 33.18 mL kg⁻¹ h⁻¹ over 

30 days (Martins et al., 2014). on the other hand, Plums benefit from controlled atmosphere (CA) 

storage conditions typically 1–3% O₂ and 2–5% CO₂ which help sup-press respiration and delay 

ripening (Cantwell and Suslow, 2002). Lu et al. (2023) developed a mathematical model for 

modified atmosphere packaging (MAP) using low-density polyethylene (LDPE) film to extend the 

shelf life of green asparagus. Their active MAP system maintained an internal atmosphere of 6.5% 

oxygen (O₂) and 15.5% carbon dioxide (CO₂) during storage at 5 °C. 
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2.2.3 Weight Loss  

Weight loss is a critical indicator of the postharvest quality of fruits and vegetables. It affects their 

appearance due to shrinkage. The rate of weight loss is influenced by storage conditions, such as 

temperature and humidity, which affect respiration and water transpiration (Van Dijk et al., 2006). 

Hasan et al. (2024) indicated that water loss is a factor affecting the postharvest quality and shelf 

life of apples. Additionally, Kassebi et al. (2022) reported that higher storage temperatures 

accelerate weight loss in ‘Golden Delicious’ apples. Tzoumaki et al. (2009) found that asparagus 

stored at 4 °C for 11 days lost 7.3% of its weight, while Villanueva et al. (2005) reported an 11.8% 

loss of weight at 2 °C in 14 days. Atmospheric humidity also plays a significant role in determining 

weight loss, as shown by Hung et al. (2011). Guerra and Casquero (2008) reported that weight loss 

is significantly affected by harvest maturity in plums. Fruit harvested earlier showed less weight 

loss during storage but had low eating quality after ripening compared to later-harvested fruit. Li et 

al. (2022) noted that ‘French’ plums stored at 1 °C and 90 % relative humidity experienced 

significant and progressive weight loss throughout the 35-day storage period. Crisosto et al. (2004) 

revealed that lower metabolic activity and reduced evaporation in colder storage conditions help 

preserve the structural integrity of fruits over extended periods. Wang et al. (2016) reported that 

storage temperature and harvest maturity affect the development of physiological disorders in 

‘Friar’ plums, with rapid disorder development at 5 °C and 15 °C, delayed or suppressed disorders 

at 0 °C and 2 °C. Additionally, pectin solubilization at 5 °C and 15 °C contributed to gel-like flesh 

translucency. Zhao et al. (2022) reported that low-temperature storage of fruits and vegetables helps 

maintain their weight and reduces deterioration caused by the growth of spoilage microorganisms. 

For instance, apples stored at 2 °C showed minimal weight loss compared to those stored at higher 

temperatures (Sanad et al., 2023). Similarly, weight loss in tomatoes was significantly affected by 

transportation distance, storage temperature, and storage period (Al-Dairi et al., 2021). 

2.2.4 Firmness  

Firmness is a crucial quality attribute that influences consumer perception, marketability, and 

postharvest value of fruits and vegetables. It is primarily governed by the cell wall structure, tissue 

composition, and physiological changes occurring during postharvest storage (Huang et al., 2018; 

Mishra et al., 2022). A reduction in firmness is commonly attributed to enzymatic degradation of 

cell wall polysaccharides, particularly pectin, by enzymes such as polygalacturonase (PG), 

pectinesterase (PE), and cellulase (Anastasiadi et al., 2020; Garrido et al., 2001; He et al., 2022). 
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These enzymatic activities disrupt the structural integrity of plant cells, resulting in tissue softening 

and texture loss (Toscano et al., 2021; Wang et al., 2016). Low-temperature storage is widely 

recognized for its ability to preserve firmness by slowing down the conversion of protopectin to 

soluble pectin and suppressing enzymatic activity (Geng et al., 2020; Manganaris et al., 2008). 

However, transitions from cold to ambient conditions can accelerate firmness loss due to enhanced 

ethylene production and increased respiration rates (Matabura, 2022). In fruits like pears, the 

degradation of soluble pectin by polygalacturonase plays a critical role in softening during cold 

storage (Kaur and Dhillon, 2015). Similarly, firmness loss in blueberries is related to the increased 

water-soluble pectin and alterations in the cell wall matrix (Concepción et al., 2021). Moreover, the 

initial maturity stage at harvest significantly affects postharvest firmness retention. Earlier-

harvested fruits generally maintain firmness longer than those harvested at advanced maturity 

stages, as reported in pears and apples (Kaur and Dhillon, 2014; Candan & Calvo, 2021; Moggia et 

al., 2017). The role of ethylene is also central to firmness loss, with high ethylene exposure 

accelerating cell wall breakdown, especially in climacteric fruits like apples (Tong et al., 2013; 

Concepción et al., 2021). In plums, cooler storage temperatures effectively delay softening and 

preserve textural quality over extended periods (Guo et al., 2022; Cocco et al., 2022). In contrast to 

most fruits, green asparagus exhibits firmness loss primarily due to water loss and the accumulation 

of lignin rather than enzymatic pectin degradation. The rise in lignification during storage 

contributes to increased toughness, reducing consumer acceptability and overall sensory quality 

(Toscano et al., 2021; Priss et al., 2024).  

2.2.5 Soluble Solid Content (SSC)  

Soluble Solids Content (SSC) is an essential quality attribute for fruits and vegetables. It plays a 

crucial role in determining their sweetness (Guo et al., 2019; Lie et al., 2016). Studies have shown 

that ripening increases SSC, driven by the conversion of starch into simple sugars and moisture loss 

during storage. Kodagoda et al. (2021) reported that temperature and time significantly affect the 

sugar content of fruits like plums, apples, and others. Lower initial SSC is associated with extended 

storage potential, as higher SSC results in faster metabolic activity and reduced shelf life (Guerra 

& Casquero, 2008; Crisosto et al., 2004). Additionally, Jha et al. (2012) demonstrated that SSC in 

apples increases as starch is converted to sugars during ripening (Cao et al., 2021; Tokala et al., 

2022). For instance, the SSC of kiwi fruit increases during ripening due to the breakdown of starch 

into sugars (Xia et al., 2024). However, lower storage temperatures have been shown to decelerate 
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metabolic processes, thereby prolonging the retention of SSC. In tomatoes stored at low 

temperatures, SSC degradation was slower compared to those stored in ambient air (Valenzuela et 

al., 2011). Similarly, Phillips et al. (2021) reported that starch is converted to simple sugars when 

bananas ripen. On the other hand, peppers, SSC in peppers declined more rapidly during early 

storage (Díaz-Pérez et al., 2024). In mangoes, spatial variations within the fruit also influence SSC, 

with the shoulder region near the stem showing higher SSC compared to the tip (Mahayothee et al., 

2020). Zhang et al. (2022) observed that the SSC in ‘Gannan navel’ oranges initially increased 

during early storage, reflecting enhanced sweetness as sugars accumulated. However, prolonged 

storage at ambient temperature (20°C) led to a gradual decline in SSC, likely due to sugar 

degradation and metabolic activity. Conversely, low-temperature storage (4°C) better preserved 

SSC levels over time. Tomar and Pradhan (2024) also reported that the SSC of Amla (Phyllanthus 

emblica) fruit stored at room temperature significantly increased, primarily due to moisture loss, 

while SSC changes under low-temperature conditions were insignificant. 

2.2.6 Peel Color  

Peel color is a key visual indicator of ripeness and quality in fruits and vegetables, governed by 

pigments like chlorophylls, carotenoids, and anthocyanins (Kapoor et al., 2022; Muhammad et al., 

2024). These pigments undergo metabolic changes during ripening and storage, leading to visible 

color transitions (Kapoor et al., 2022; Schiavon et al., 2023). Anthocyanin accumulation, 

particularly in fruits like plums, plays a major role in deepening pigmentation (Kodagoda et al., 

2021; Lorente et al., 2015). The hue angle and L* value based on the International Commission on 

Illumination (CIE) typically decrease with ripening, color development (Ozturk et al., 2015; Bizjak 

et al., 2012). The L* value represents the lightness of the color, ranging from 0 (black) to 100 

(white). The hue angle (expressed in degrees) describes the actual color tone: 0° = red, 90° = yellow, 

180° = green, and 270° = blue. High storage temperatures accelerate undesirable color changes 

(Neri et al., 2019), and prolonged storage may degrade pigmentation (Guerra et al., 2010). 

Controlled conditions help preserve color, as seen in blackberries and pitayas, where anthocyanin 

synthesis continues postharvest (Martineli et al., 2021, 2022; Schiavon et al., 2023). Aispuro-

Hernández et al. (2019) showed that storage temperature directly affects grapefruit peel color via 

pigment composition. In pomegranates, Sarrwy et al. (2021) found that 10 °C storage enhanced 

anthocyanin content and red pigmentation, while 20 °C caused browning and 5 °C preserved color 

with reduced intensity. 
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2.3 Non-destructive quality assessment of fruits and vegetables 

The growing consumer demand for high-quality fruits and vegetables has intensified the need for 

reliable, efficient, and scalable quality assessment methods (Ncama and Magwaza, 2022). 

Traditionally, external attributes like color and size are evaluated through visual inspection, yet this 

method is subjective and often inconsistent due to human perception and environmental factors 

(Nguyen et al., 2024; Tasioulas et al., 2024). To overcome these challenges, advanced tools 

integrating machine vision and machine learning now provide objective, repeatable assessments for 

automated sorting (Araujo et al., 2022; Bahaddou et al., 2024; Tian and Xu, 2023). Meanwhile, 

internal quality assessment has historically relied on destructive techniques such as chemical 

analysis and physicochemical testing (Jaywant et al., 2022; Fodor et al., 2024), which, while 

accurate, are labor-intensive, costly, non-repeatable, and unsuitable for high-throughput use (Tian 

and Xu, 2022; Jaywant et al., 2022). In contrast, non-destructive technologies such as NIR 

spectroscopy, LLBI, hyperspectral imaging, and machine vision enable a real-time, large-scale 

evaluation without damaging the product (Fodor et al., 2024; Baranyai and Zude, 2009; Wieme et 

al., 2022). These techniques not only reduce waste and operational costs (Luo et al., 2022; Jaywant 

et al., 2022) but also support continuous postharvest monitoring to preserve freshness (Aline et al., 

2023; Shen et al., 2018). Unlike traditional sensory evaluation, which is subjective, non-destructive 

methods offer consistency through sensor-based measurement and machine learning algorithms 

(Akter et al., 2024; Elmetwalli et al., 2024). Additionally, traditional systems are often standalone 

and difficult to digitize, whereas non-destructive tools are designed for integration, automation, and 

data-driven decision-making across the supply chain (Fakhlaei et al., 2014). However, these 

advanced techniques also have their own limitations, such as complex data processing requirements, 

spectral overlapping, the need for skilled personnel, and relatively high costs (Fodor et al., 2024; 

Wieme et al., 2024). The strengths and weaknesses of these approaches are discussed in detail in 

Section 2.5.3. This section presents only a general comparison between conventional and non-

destructive methods. A summary of their differences in terms of cost, speed, scalability, and 

integration is provided in Table 1. 
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Table 1: Comparison between traditional and Non-destructive measurement techniques  

Attribute Traditional 

measurements  

Non-destructive measurements References  

 

Destructiveness Often destructive, 

leading to sample loss 

Non-destructive, allowing 

repeated measurements on the 

same sample 

 (Tian and Xu, 

2022) 

Speed Time-consuming, 

especially for large-scale 

operations 

Rapid and suitable for real-time 

monitoring 

Fodor et al 2024 

Subjectivity Subjective, particularly 

in sensory evaluation 

Objective and consistent, 

reducing human error 

(Akter et al., 

2024). 

Cost High costs due to labor, 

equipment, and sample 

destruction 

Lower costs in the long run, 

with minimal labor and no 

sample destruction 

 

(Jaywant et al., 

2022; Luo et al., 

2022) 

Integration Difficult to integrate 

with automated systems 

Easily integrated into sorting 

lines and supply chain 

management systems 

 

Fakhlaei et al., 

2024 

Data analysis Requires specialized 

equipment and expertise 

Can be combined with machine 

learning for enhanced accuracy 

and automation 

(Elmetwalli et 

al., 2024; Salehi, 

2020) 
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2.4 NIR spectroscopy and Laser light backscattering imaging (LLBI) 

Near-infrared (NIR) spectroscopy and laser light backscattering imaging (LLBI) are modern, non-

destructive techniques that are increasingly being used for postharvest quality assessment of fruits 

and vegetables. These methods leverage different regions of the electromagnetic spectrum, 

including 400-1000 nm (VNIR) and 900-1700 nm (NIR), as shown in Figure 1. These spectral 

ranges are widely utilized to evaluate both internal attributes, such as SSC, moisture content, and 

firmness, and external features, like color and texture (Gibertoni et al., 2022; Ravikanth et al., 2017). 

The basic principles, spectral preprocessing strategies, optimal wavelength selection, image 

analysis, calibration models, and comparison of both NIR spectroscopy and LLBI are discussed in 

the following sections. 

 .  

Figure 1: The electromagnetic spectrum (source: Ravikanth et al. 2017) 
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2.4.1 Near-infrared spectroscopy (NIR) 

Basic principle  

NIR spectroscopy is widely used for non-destructive quality assessment of fruits and vegetables 

due to its rapid, non-invasive, and cost-effective approach (Bureau et al., 2009; Hayati et al., 2020; 

Walsh et al., 2020). It assesses the quality of fruits and vegetables by measuring light absorption 

and diffuse reflectance in the near-infrared region. When NIR light interacts with a sample's surface, 

chemical components such as water, sugars, and proteins absorb light at specific wavelengths, while 

diffuse reflectance  is influenced by tissue structures (Camps and Gilli, 2017 ; Tian and Xu, 2022 ). 

Absorption occurs due to C-H, O-H, and N-H bonds, while spectral features arise from overtones 

and combinations of molecular vibrations at infrared wavelengths (Wu et al., 2014) 

Spectral Characteristics 

The NIR absorption peak at 930–1080 nm is attributed to O–H stretching overtones in water and 

carbohydrates (Qing et al., 2007a), while the 970 nm band corresponds to the second overtone of 

O–H stretching in water. Additional peaks at 1190 nm and 1462 nm are linked to C–H and O–H 

first overtones, respectively (Mireei et al., 2010). Absorption at 840, 960, and 1440 nm is associated 

with O–H, and at 910, 1100, and 1700 nm with C–H overtones (Walsh et al., 2020), with 910 nm 

particularly sensitive to sugar content (Paz et al., 2008; Walsh et al., 2020). Subedi et al. (2012) also 

noted that absorbance near 1680 nm reflects CH₂ or O-H-containing compounds. However, water 

is the dominant absorber in the NIR region, complicating spectral interpretation (Nicolaï et al., 

2007). Moreover, NIR spectra are affected by overlapping bands, low signal-to-noise ratios, and 

sample composition variability, requiring advanced pre-processing for accurate analysis (Magwaza 

et al., 2012). 

Savitzky-Golay Smoothing 

The Savitzky-Golay (SG) smoothing method is commonly used in spectroscopy to eliminate high-

frequency noise while enhancing the signal-to-noise ratio (Yao et al., 2023). It works by generating 

an optimal estimate through averaging or fitting multiple data points within a designated window 

size (Magwaza et al., 2012; Yao et al., 2023). Unlike traditional smoothing techniques, SG filtering 

preserves the integrity of spectral shapes, ensuring that the important spectral features and chemical 

composition information remain intact (Costa and Lima, 2013; Rinnan et al., 2009). This method 

enhances data quality for further analysis without distorting critical spectral characteristics required 
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for fruit and vegetable quality assessments. The effectiveness of SG smoothing depends on the 

degree of the polynomial and the window size, both of which determine the extent of smoothing 

applied to the data. It enhances spectral clarity and peak detection but must be carefully configured 

(window size, polynomial order), as improper settings can flatten subtle but meaningful signals 

(Antonov, 2017). 

 

Multiplicative Scatter Correction (MSC) 

Multiplicative Scatter Correction (MSC) is a widely used spectral pretreatment method that 

enhances the robustness and accuracy of multivariate calibration models. It corrects the scatter level 

of each spectrum to match an average spectrum, aiming to eliminate deviations caused by sample 

size, texture, and undesirable scatter effect by the devices (Rinnan et al., 2009). Unlike SNV, which 

uses data from each spectrum, MSC standardizes every spectrum using the mean spectrum of all 

spectra. Jiang et al. (2012) found that MSC minimizes spectral variability in diffuse reflectance 

measurements caused by light scattering, sample thickness differences, and environmental noise. 

Lei et al. (2019) reported that MSC significantly enhances prediction accuracy by compensating for 

light scattering and baseline shifts due to physical sample differences. However, Fearn et al. (2009) 

noted that MSC relies on a stable reference spectrum and may perform poorly with nonlinearities 

and spectral outliers 

 Standard Normal Variate (SNV) Transformations 

 SNV is a row-oriented transformation that can remove scatter effects in spectral data, which arise 

from variations in sample particle size, surface roughness, or path length (Rinnan et al., 2009). In 

NIR spectroscopy, these scatter effects can obscure true chemical information by introducing 

baseline shifts or slope changes in the spectrum (Pokhrel et al., 2023; Rajkumar et al., 2022). SNV 

transformation works by standardizing each spectrum, setting its mean value to zero and standard 

deviation to one, thereby removing light-scattering effects and allowing for better sample 

comparisons. Each spectrum can be calibrated based on the average value of a spectrum that is 

subtracted from the original spectrum, and then the result is divided by the standard deviation. Thus, 

it plays a crucial role in making spectral data more uniform, reducing the impact of physical 

inconsistencies, and improving model accuracy in predicting fruit and vegetable quality attributes 

(Liu et al., 2021; Rinnan et al., 2009). However, it may have a potential loss of useful scattering 
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information and ineffectiveness to the biological variability (Kusumiyati et al., 2021; Mishra et al., 

2021). 

Use of Derivatives  

Derivatives can remove both additive and multiplicative effects in spectra (Hasanzadeh et al., 2022; 

Rinnan et al., 2009). They are particularly useful for reducing baseline shifts and improving the 

resolution of overlapping peaks in complex spectral data (Hasanzadeh et al., 2022). The first 

derivative measures the slope of the spectral curve at each point, effectively removing constant 

baseline offsets. The second derivative measures the change in the slope, eliminating linear trends 

and improving spectral clarity (Liu et al., 2021; Rajkumar et al., 2022). In addition, these techniques 

are particularly valuable in distinguishing between closely related chemical compounds and 

resolving overlapping absorption bands. By highlighting underlying chemical variations, 

derivatives allow for more precise assessments of quality parameters, such as sugar content, 

moisture levels, and ripeness in fruits and vegetables (Liu et al., 2021; Rinnan et al., 2009). 

However, the effectiveness of these methods is challenged by spectral complexity, fruit variability, 

and environmental influences (Abderrahim et al., 2023 ;Mishra et al 2021). The comparison 

summary of the spectral pretreatment methods used in NIR spectroscopy is presented in Table 2. 

Table 2: Strengths and weaknesses of common spectral preprocessing methods  

Method  Strength  Weakness References  

  

Savitzky-Golay 

Smoothing 

It preserves fine spectral detail 

better than traditional 

smoothing filters. 

Reduces noise while 

maintaining the shape of peaks. 

Requires careful selection of 

window size and polynomial 

order. 

Over-smoothing may flatten 

small but meaningful peaks. 

Not effective if baseline drift 

or scattering is present 

 

Antonov, 2017 

Multiplicative 

Scatter Correction 

(MSC) 

Effective for removing scatter 

effects, particularly in diffuse 

reflectance spectra. 

Requires reference spectrum.  

Limited for non-linear effects 

tend to produce outliers in 

treated spectra 

Fearn et al 

2009 
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Standard Normal 

Variate (SNV) 

Self-normalizes  

No reference needed 

Effective for removing 

baseline shifts and slope 

variations. 

Being sensitive to noise may 

suppress useful variations. 

It may also interfere with the 

interpretation of spectra 

Kusumiyati et 

al 2021 

Mishra et al 

2021 

 

Derivatives (1st & 

2nd order) 

Improves resolution of 

overlapping features. 

Helps in baseline correction 

and subtle feature detection. 

Compensation for instrumental 

drift 

Very sensitive to noise, 

especially higher-order 

derivatives. 

Needs smoothing before 

application to avoid 

amplifying noise. 

 

Abderrahim et 

al 2023 

 

Selection of Wavelengths 

The NIR spectrum contains a full of information but often suffers from high dimensionality and 

nonlinearity, which can hinder model performance. Various wavelength selection methods have 

been developed to extract the most informative and relevant spectral variables to enhance the 

predictive accuracy and reduce the complexity of the model. The utilization of these methods 

minimizes redundancy, reduces calibration time, and improves model robustness. The Successive 

Projections Algorithm (SPA) has been shown to identify wavelengths with minimal collinearity and 

low redundancy (Liu et al., 2014; Wang et al., 2015). Competitive Adaptive Reweighted Sampling 

(CARS) is a method that selects a subset of wavelengths by eliminating variables with low 

regression coefficients through an iterative process involving adaptive reweighting and Monte Carlo 

sampling (Li et al., 2019; Yang et al., 2016). Meanwhile, the Genetic Algorithm (GA) acts as a 

global optimization strategy inspired by the principles of natural evolution. The GA starts with a 

randomly generated set of potential solutions and applies genetic operators such as selection, 

crossover, and mutation to evolve toward an optimal solution, typically minimizing RMSEP (Wang 

et al., 2015; Zhang et al., 2018) 
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2.4.2 Laser light backscattering imaging (LLBI) 

Basic principles  

Laser light backscattering imaging (LLBI) is a non-destructive optical technique used to evaluate 

the quality of fruits and vegetables by analyzing how light is reflected and scattered from their 

surface and internal tissues (Baranyai and Zude, 2009; Mollazade et al., 2012). Based on the 

principle of diffuse backscattering, LLBI measures the diffusely reflected light after it interacts with 

biological materials. The scattering behavior is influenced by the tissue’s optical properties, 

geometry, and cellular structure, including factors such as water content, sugar, pigment levels, and 

surface roughness (Birth, 1978; Träger, 2012; Lu, 2017). As illustrated in Figure 2, diffuse 

reflection patterns vary depending on the nature of the medium (Lu, 2017). 

  

Figure 2: Diffuse reflection occurring on two types of medium (Source: Lu, 2017) 

Agricultural products typically reflect only 4%–5% of incident light, with the rest being absorbed 

or scattered within the tissue (Birth, 1978). Reflectance accuracy can be compromised by surface 

curvature and requires correction for consistency. The reflected intensity follows Lambert's cosine 

law, being proportional to the cosine of the angle between the incident beam and the surface normal 

(Kienle et al., 1996). During LLBI measurement, a laser beam creates a ‘halo’ of backscattered 

light, which is captured by imaging sensors. Absorbed photons reveal chemical composition, while 

scattered light informs on texture, firmness, and mechanical traits (Lu, 2004; Baranyai and Zude, 

2009; Mollazade et al., 2012). When integrated with spectral data, LLBI can also estimate attributes 

like soluble solids content (Qing et al., 2007b). LLBI operates in the visible and near-infrared 

wavelength range. It includes two primary approaches: monochromatic imaging and broadband 

imaging (Peng and Lu, 2006; Qing et al., 2008). The important factors in system design include the 

beam's wavelength, size, and angle of incidence. A smaller beam is preferred for localized analysis, 

as it simplifies quantification by reducing the scattering region (Lu, 2004). For instance, prior 

studies have used beam diameters and divergence angles such as 1.6 mm (0.024 rad) for apples 
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(Peng and Lu, 2005), 1.5 mm (<0.296 rad) for peaches (Peng and Lu, 2006), and 1 mm (<0.01 rad) 

for kiwifruit (Baranyai and Zude, 2009). The optimal angle of incidence ranges from 7° to 25° 

relative to the perpendicular to the surface of the materials (Qin and Lu, 2008; Qing et al., 2007b).  

This configuration (i.e., small beam size and optimal angle of incidence light) results in image 

symmetry around the point of incidence, which simplifies image processing. However, LLBI is 

typically limited to a single wavelength at a time, restricting its spectral coverage (Qing et al., 

2007b). 

Wavelength Selection 

The selection of appropriate wavelengths for the target fruit or vegetable is an essential first step in 

Light Backscattering Imaging (LBI). Since there is a limited number of wavelengths that provide 

sufficient information about the internal chemical and mechanical properties of agricultural and 

food products, the effectiveness of LLBI analysis depends largely on the wavelengths that are 

chosen. The following methods can be applied to the selection of wavelengths:- A complete 

wavelength search  (Lu, 2009), based on prior knowledge of the effective spectral ranges for 

particular fruit attributes (Lu, 2004) and selection based on NIR spectroscopy results, where 

wavelengths identified as important in Near-Infrared (NIR) spectroscopy studies are applied to LBI 

(Lu, 2004; Qing et al., 2007b). 

Image processing  

In Light Backscatter Imaging (LBI), enhancing the signal-to-noise ratio (SNR) and reducing image 

noise are essential for reliable analysis. Techniques such as radial averaging, profile averaging, and 

pixel binning are commonly applied to improve image quality and reduce random variability (Lu, 

2004; Peng and Lu, 2005, 2006). Histogram-based thresholding is widely used to convert images 

to grayscale and define clusters for automated segmentation (Qing et al., 2007b). Backscattering 

images are then processed through feature extraction, including total pixel count, intensity values, 

and 2D texture features, to assess quality traits in agro-food products (Noh and Lu, 2007; Romano 

et al., 2010; Qing et al., 2007b; Mollazade et al., 2012).Theoretical models, such as the Lorentzian 

distribution, help characterize scattering profiles (Peng and Lu, 2005). Statistical descriptors, 

including mean, median, mode, standard deviation, skewness, and kurtosis, can also be extracted 

from pixel intensities to develop efficient classification and prediction models, supporting potential 

real-time applications (Zhu et al., 2021).  
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2.4.3 Classification models  

Supervised classification models are valuable for assigning input data to predefined categories 

based on feature patterns, making them useful for detecting quality changes in fruits and vegetables 

(Lasalvia et al., 2022; Zhao et al., 2023). Partial Least Squares Discriminant Analysis (PLS-DA), 

derived from PLS regression, adapts regression techniques for classification by identifying latent 

variables that maximize separation between quality classes (Daniels et al., 2021; Lasalvia et al., 

2022). PLS-DA handles complex, high-dimensional datasets effectively, optimizing the covariance 

between predictor variables and categorical outcomes, and performs well even in the presence of 

collinearity or noise (Wang et al., 2015; Zhao et al., 2023). This makes it particularly suitable for 

NIR and LLBI applications. In contrast, Linear Discriminant Analysis (LDA) is a classic statistical 

approach that projects data onto a subspace maximizing between-class variance while minimizing 

within-class variance, enabling discrimination of fruit quality changes (Vignati et al., 2023; Vitalis 

et al., 2021; Lorente et al., 2015). While less capable of handling non-linear relationships than PLS-

DA, LDA remains effective when its assumptions align with the data. Model performance for both 

PLS-DA and LDA is commonly evaluated using confusion matrices, which provide the basis for 

metrics such as accuracy, precision, sensitivity, specificity, and F1-score (Pokhrel et al., 2023). 

2.4.4 Prediction models  

Supervised statistical models are widely used to predict fruit and vegetable quality attributes such 

as soluble solids content (SSC) and firmness (Wang et al., 2015). These models establish 

quantitative relationships between spectral predictors and target variables (Wang et al. 2015). Partial 

least squares regression (PLSR) is among the most widely adopted methods for spectral data 

analysis. It models the relationship between a set of predictor variables (i.e., spectral data) and a 

continuous response variable by projecting both into a lower-dimensional latent space that 

maximizes their covariance (Rosipal and Krämer, 2006; Vestergaard et al., 2021). This 

dimensionality reduction enhances model robustness and interpretability, making PLSR particularly 

effective in fruit and vegetable quality assessment applications.  In addition, support vector machine 

(SVM) regression is applied to model both linear and non-linear relationships between predictors 

and responses (Kashef, 2021; Zareef et al., 2020). SVM constructs hyperplanes in high-dimensional 

feature spaces to predict continuous outcomes, and its ability to use kernel functions allows it to 

capture non-linear patterns in spectral data (Chidambaram and Srinivasagan, 2019; Kashef, 2021; 
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Zareef et al., 2020). This adaptability is particularly advantageous for assessing quality attributes 

that do not follow linear trends, such as textural changes or color evolution. Multivariate Adaptive 

Regression Splines (MARS) offers another approach for modeling nonlinear relationships. It works 

by partitioning the data into separate regions and fitting linear regression models within each region. 

The MARS algorithm automatically selects optimal knots and basic functions, allowing it to flexibly 

capture complex, time-dependent quality dynamics in postharvest produce (Akin et al., 2020). 

Furthermore, multivariate regression (MVR) is relevant when predicting multiple continuous 

outcomes simultaneously from a set of independent variables. Unlike univariate models, MVR 

accounts for interdependencies among multiple response variables, which is beneficial in scenarios 

where fruit quality is influenced by several interconnected factors (Seasholtz and Kowalski, 1992). 

To evaluate the predictive accuracy and reliability of these regression models, performance metrics 

such as the coefficient of determination (R²), root mean square error of prediction (RMSEP), and 

residual predictive deviation (RPD) are commonly used. A high R² indicates a strong correlation 

between predicted and actual values, while a low RMSEP reflects minimal prediction error. An RPD 

value between 2 and 2.5 indicates that coarse quantitative predictions are possible, and a value 

above 2.5 corresponds to good prediction accuracy (Hemrattrakun et al., 2021; Nicolaï et al., 2007). 
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2.5 Applications of NIR spectroscopy and LLBI in postharvest quality 

assessment 

Near-Infrared (NIR) spectroscopy and Laser light backscattering imaging (LLBI) have emerged as 

promising non-destructive techniques for monitoring the postharvest quality of fruits and vegetables 

throughout the supply chain. These techniques have been applied for applications such as ripening 

assessment, defect detection, and quality control, enabling rapid and accurate evaluations that help 

maintain product consistency and reduce losses (Liu et al., 2022; Pham et al., 2024; Li et al., 2018). 

By capturing internal and external quality attributes in real time, NIR and LLBI systems support 

decision-making during storage, transport, and retail stages. Specifically, NIR spectroscopy excels 

at assessing internal features like SSC, firmness, and moisture due to its penetrative capabilities 

across near-infrared wavelengths, while LLBI is particularly adept at characterizing surface textural 

properties and detecting bruises or cuts that may not be visible to the naked eye. 

2.5.1 Quality monitoring using classification models 

Near-infrared (NIR) spectroscopy and laser light backscattering imaging (LLBI), when combined 

with classification models, have proven to be powerful non-destructive tools for monitoring 

postharvest quality changes in fruits and vegetables. These methods are particularly useful in 

detecting changes due to factors such as temperature, storage time, and cultivar variation.  For 

example, Li et al. (2018) utilized NIR spectroscopy in combination with a support vector machine 

(SVM) to classify apples based on variety and origin, achieving a prediction accuracy of 96.67%. 

Cortés et al. (2019) integrated principal component analysis (PCA) with quadratic discriminant 

analysis (QDA) for in-line apple variety classification, reporting 98% accuracy for red apples and 

85% for yellow varieties. Similarly, Kanchanomai et al. (2022) employed QDA to classify seeded 

and seedless grape cultivars of the ‘White Malaga’ variety, attaining classification accuracies up to 

95.44%. Sánchez et al. (2009) used a diode array/scanning monochromator NIR instrument (350–

2500 nm) and PLS2-discriminant analysis (PLS2-DA) to evaluate quality changes in green 

asparagus stored at 2 °C for 28 days. Sampling at intervals of 0, 7, 14, and 28 days, the study 

achieved 100% classification accuracy, confirming the model’s robustness in distinguishing 

freshness levels. Gabriëls et al. (2020) demonstrated the use of visible and near-infrared 

spectroscopy (VNIRS, 400–1000 nm) with artificial neural networks (ANN) to classify internal 

browning in ‘Keitt’ mangoes. Their model achieved an overall accuracy of 83.1%, with 86.3% 

sensitivity and 80.0% specificity, highlighting its potential for detecting internal disorders non-
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destructively.  Shen et al. (2018) explored the use of Vis/NIR spectroscopy (650–1690 nm) for 

assessing postharvest quality and storage duration of strawberries. Using partial least squares-

discriminant analysis (PLS-DA), the study achieved classification accuracies between 93.3% and 

97.4%, particularly when coupled with competitive adaptive reweighted sampling (CARS) for 

wavelength selection. The method proved effective for distinguishing storage durations based on 

changes in soluble solids content (SSC). On the other hand, in the LLBI applications, Lockman et 

al. (2019) used 658 nm and 705 nm laser diodes to monitor ripening in cocoa pods. Features like 

mean intensity, area, and shape descriptors were extracted from images and correlated with 

reference firmness and color measurements. Linear discriminant analysis (LDA) classified pods by 

ripeness stage with 90% accuracy at 658 nm and 95% at 705 nm. Zulkifli et al. (2019) applied LLBI 

at 658 nm to classify ripening stages in Berangan bananas. Using LDA, the model achieved 94.2% 

accuracy for binary classification (unripe vs. ripe), though performance dropped to 59.2% when 

distinguishing all six commercial ripening stages, indicating challenges in mid-stage classification. 

Adebayo et al. (2016) further demonstrated the power of LLBI with ANN models trained on optical 

parameters derived from Farrell’s diffusion model using five laser wavelengths (532–1060 nm). 

Their model classified banana ripeness (stages 2–7) with 97.53% accuracy, with most 

misclassifications occurring only between adjacent stages. This study highlighted how absorption 

is related to chemical content (e.g., sugars, chlorophyll), while scattering reflects structural changes 

(e.g., cell wall breakdown). Lorente et al. (2013) and (2015) developed LLBI-based systems for 

early detection of citrus fruit decay. Infected oranges (Penicillium digitatum) were scanned using 

five wavelengths (532–1060 nm), and features from Gaussian–Lorentzian (GL) model fitting were 

extracted. Classification with LDA achieved 80.4% accuracy using 532 nm alone, which improved 

to 96.1% when all wavelengths were combined. The follow-up study achieved 93.4% overall 

accuracy by comparing both GL and physical diffusion models, confirming the advantages of multi-

wavelength fusion and spatial modeling for decay detection. Yang et al. (2021) evaluated LBI at 

520 nm for detecting chilling injury in kiwifruit. For the ‘SunGold™’ variety, flexible discriminant 

analysis (FDA) modeling based on four key LBI parameters achieved a 92% classification accuracy, 

while performance for ‘Hayward’ was lower at 58%.  

 



 
 

25 
 

2.5.2 Quality monitoring using prediction models 

Table 3 summarizes the application of NIR spectroscopy and laser light backscattering imaging 

(LLBI) for the non-destructive assessment of fruit and vegetable quality, including weight loss, 

firmness, soluble solids content (SSC), and skin color. These techniques, often combined with 

multivariate regression models such as PLSR, SVM, and ANN. They vary in performance 

depending on the spectral range, produce type, and modeling strategy. 

The near-infrared (NIR) spectroscopy has been used to detect variations in the water molecular 

structure that are closely associated with weight loss and other quality attributes (Gibertoni et al., 

2022; Vitalis et al., 2023). For example, Rabasco-Vílchez et al. (2024) successfully applied NIR 

spectroscopy within the 700–1430 nm range, combined with partial least squares regression 

(PLSR), to estimate weight loss in strawberries. Their model achieved an R² of 0.82 and an RMSE 

of 4.07%. Moreover, Bonifazi et al. (2024) used visible and short-wave infrared (Vis-SWIR) 

spectroscopy (350–2500 nm) along with PLSR to predict weight loss in intact olive fruits. Their 

method achieving an R² of 0.96 and a cross-validated RMSE of 4.5%. They also observed that the 

prominent wavelengths, which were sensitive to weight loss at bands 700–800 nm (third overtone 

of O–H), 1400–1500 nm (first overtone of O–H), and 1900–2000 nm (i.e., combination of O–H 

stretch and bend). On the other hand, LLBI at 670 nm has been applied for monitoring moisture 

loss in banana a strong linear relationship (R² > 0.93) was observed between moisture content and 

the relative laser area across all pre-treatment groups (Romano et al 2010).  

Flores-Rojas et al. (2009) used NIR spectroscopy (400–2500 nm) with modified PLSR to predict 

firmness as a shear force in asparagus, achieving an R² of 0.67 and an RMSEP of 7.81. However, 

high moisture content and the fibrous heterogeneity of the spears limited the model's accuracy. The 

prominent wavelengths influencing prediction included water absorption bands (970, 1450, 1940 

nm) and cellulose-related C–H bonds (1160, 1790 nm). Similarly, Huang et al. (2018) found that 

tomato firmness prediction was hindered by internal complexity and high-water content. Beyond 

1340 nm, strong water absorption reduced the signal-to-noise ratio, and overlapping spectral 

features were especially prominent at 970, 1180, and 1340 nm. In contrast, Chen et al. (2024) used 

Vis/NIR (350–1150 nm) with SwinT-PLS and CARS for peach firmness prediction, achieving high 

accuracy (R² = 0.951, RMSEP = 0.443 N/mm). For bananas, Ferreira et al. (2022) employed NIR 

(900–1700 nm) with SVM and reported R² = 0.84, RMSEP = 7.98 N. Additionally, they highlighted 

the visible range (660–727 nm) as useful for identifying biochemical and textural changes during 
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ripening. Besides, LLBI has also shown strong potential for firmness assessment. Qing et al. 

(2007b) used LLBI at 680–980 nm with PLSR for ‘Elstar’ apples, yielding R² = 0.81 and RMSEP 

= 5.49 N/cm²; similar results were obtained across 600–1100 nm (R² = 0.79). Peng and Lu (2005) 

used a Lorentzian distribution (LD) model on scattering images at 680, 880, 905, and 940 nm, 

achieving an excellent fit (R² > 0.99, SEE = 4.37). Firmness predictions were conducted across two 

independent datasets (Test 1 and Test 2), with multi-linear regression (MLR) models yielding R² 

values of 0.67 and 0.58, respectively, and standard errors of validation (SEV) of 6.39 N and 6.01 

N.  Similarly, Peng and Lu (2006) developed an MLR model using three parameters extracted from 

the Gompertz function (GF) of scattering profiles for predicting apple firmness, achieving an R² of 

0.79. Meanwhile, Pratiwi et al. (2023) found that SSC prediction was more accurate in thinner-

skinned fruits, achieving R² values up to 0.90 in sapodilla and 0.88 in banana, while thick-skinned 

fruits like dragon fruit and tomatoes yielded lower R² values (0.59–0.64). Similarly, Zeng et al. 

(2024) used NIR spectroscopy to predict SSC in intact apples by collecting diffuse reflectance 

spectra in the 900–1700 nm range. Among the tested models, the PLSR model preprocessed with 

Savitzky-Golay smoothing and multiplicative scatter correction (S-G + MSC) performed best, 

achieving R² = 0.92 and RMSEP = 0.54%. Yu and Yao (2023) developed a universal NIR model for 

SSC across several thin-skinned fruits (i.e., Fuji apples, Aksu apples, Korla pears, and Nanguo 

pears), achieving R² = 0.93, RMSEP = 0.60 %. Jiang et al. (2022) emphasized the impact of apple 

size on NIR accuracy, finding improved predictions when models were size-specific. Data fusion 

with fruit diameter and CARS-enhanced features further improved performance (R² = 0.77–0.82, 

RMSEP = 0.497–0.536%). Furthermore, Mariani et al. (2014) also demonstrated SSC prediction in 

jaboticaba using NIR reflectance (1000–2500 nm), achieving R² = 0.71 and RMSEP = 1.33 %. 

Praiphui et al. (2023) applied NIR (640–1050 nm) to mangoes, reporting R² = 0.81 and RMSEP = 

1.07 %. Shen et al. (2018) used Vis/NIR (650–1690 nm) in online strawberry assessment with a 

CARS-PLSR model, achieving R² = 0.733 and RMSEP = 0.69%. Pratiwi et al. (2023) also showed 

Vis–SWNIR (400–1000 nm) was effective for sapodilla (R² = 0.905), banana (R² = 0.885), and 

guava (R² = 0.769), though less so for tomato (R² = 0.646) and dragon fruit (R² = 0.596), due to 

thick skin, high water content, and complex internal morphology.  Qing et al. (2007b) evaluated 

LLBI (680–980 nm) for SSC in apples, achieving R² = 0.79 and RMSEP = 5.44%. Mozaffari et al. 

(2022) applied LLBI with a 650 nm laser and ANN models in apricots, achieving R² = 0.96 and 

RMSEP = 1.146 for SSC. Likewise, Adebayo et al. (2016) used LLBI with ANN and NIR 

wavelengths (830 and 1060 nm), achieving an accuracy (R² = 0.92- 0.96) for SSC.  Furthermore, 
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while firmness and soluble solids content (SSC) contribute to internal quality attributes, skin color 

also plays a significant role in external attributes. Noh and Lu (2007) have predicted apple skin 

color (hue) using hyperspectral imaging and a neural network, achieving an R² of 0.88, while 

chroma was predicted with an R² of 0.54. They also highlighted the importance of selecting 

appropriate wavelengths to effectively capture anthocyanin variations during ripening. It agreed 

with the pigment dynamics reported by Chen (2015). Moreover, Vis/NIR spectroscopy has also 

been applied to other fruit types. In the case of tomatoes, Arruda De Brito et al. (2022) used Vis/NIR 

spectroscopy combined with PLSR to predict the a* color parameter, achieving a strong correlation 

(R² = 0.94, RMSEP = 2.89), further demonstrating the technique's robustness across different 

produce. In addition, Zulkifli et al. (2019) demonstrated the effectiveness of laser light 

backscattering imaging (LLBI) at 658 nm, where parameters such as mean intensity, diameter, 

backscattering area, and maximum intensity, when combined with stepwise multiple linear 

regression (MLR), could accurately predict peel color changes during banana ripening. Among the 

CIE Lab* color components, the b* value, representing yellowness, showed the highest predictive 

performance (R² = 0.85, RMSEP = 2.80), confirming its strong relationship with banana ripeness 

stages. Similarly, Li et al. (2018) used hyperspectral imaging to predict plum peel color non-

destructively. They applied VNIR (600–975 nm) and SWIR (865–1610 nm) imaging systems to 

develop PLSR models from spectral data on both sides of the fruit. Notably, the b* value was again 

predicted with high accuracy in the VNIR region, particularly for the ‘Marjorie’s Seedling’ cultivar, 

where the model achieved an R² of 0.88, RMSEP of 2.01, and RPD of 2.98. The ‘Victoria’ cultivar 

and the combined-cultivar model also showed good predictive ability (R² = 0.72–0.73; RPD = 1.95). 

In contrast, predictions based on SWIR spectra resulted in lower accuracy (R² = 0.55–0.69; RPD = 

1.34–1.52).   
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Table 3: Applications of NIR spectroscopy and LLBI in quality assessment of fruits and vegetables. 

Techniques Fruit/ 

vegetable 

Parameter Wavelength Model Performance  

(R², RMSEP) 

Reference 

NIR 

Spectroscopy 

Strawberry  Weight loss 700–1430 nm PLSR R² = 0.82,  

RMSE = 4.07 

Rabasco-Vílchez et al. 

(2024) 

NIR 

Spectroscopy 

Olive Weight loss 350–2500 nm PLSR R² = 0.96,  

RMSEP = 4.5% 

Bonifazi et al. (2024) 

Vis/NIR 

Spectroscopy 

Peach Firmness 350–1150 nm SwinT-PLS 

+CARS 

R² = 0.951,  

RMSEP = 0.443 N/mm 

Chen et al. (2024) 

Vis/SWNIR 

Spectroscopy 

Tomatoes Firmness 400–1100 nm PLSR R² = 0.899 Huang et al. (2018) 

NIR 

Spectroscopy 

Bananas Firmness 900–1700 nm SVM R² = 0.84,  

RMSEP = 7.98 N 

Ferreira et al. (2022) 

NIR 

Spectroscopy 

Green 

asparagus  

Firmness  400-2500 nm 

350–2500 nm 

PLSR R² = 0.55–0.67 Flores-Rojas et al. 

(2009) 

LLBI Apple Firmness 680–980 nm PLSR R² = 0.81 Qing et al. (2007b) 

LLBI Apple Firmness 600–1100 nm PLSR R² = 0.79 Qing et al. (2007b) 

LLBI Apple Firmness 680, 800,900, 

and 950 nm 

PLSR R² = 0.90 Peng and Lu (2006) 

NIR 

Spectroscopy 

Apple SSC 900–2500 nm PLS R² = 0.8757,  

RMSEP = 0.4092% 

Shen et al. (2021) 
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NIR 

Spectroscopy 

Mango SSC 600–1080 nm PLSR R² = 0.81,  

RMSEP = 1.07 % 

Praiphui et al. (2023) 

NIR 

Spectroscopy 

Jaboticaba SSC 1000-2500 nm PLSR R² = 0.71,  

RMSEP = 1.33 % 

Mariani et al. (2014) 

NIR 

Spectroscopy 

Apple SSC 900–1700 nm PLSR R² = 0.92, 

 RMSEP = 0.54% 

Zeng et al. (2024) 

Vis/NIR 

Spectroscopy 

Apple SSC 470–1150 nm PLSR R² = 0.91,  

RMSEP = 0.508 % 

Song et al. (2024) 

NIR 

Spectroscopy 

Banana  SSC 400–1000 nm PLSR R² = 0.88,  

RMSEP = 0.39 % 

Pratiwi et al. (2023) 

NIR 

Spectroscopy 

Pear and 

apple 

SSC 900–1700 nm PLSR + GA R² = 0.90,  

RMSEP = 0.73 % 

Yu and Yao (2023) 

NIR 

Spectroscopy 

Apple SSC 900–1700 nm PLSR R² = 0.77–0.82 

 

Jiang et al. (2022) 

LLBI Apple SSC 680–980 nm PLSR R² = 0.79,  

RMSEP = 4.14% 

Qing et al. (2007b) 

LLBI Apricot SSC 650 nm ANN R² = 0.963,  

RMSEP = 1.146% 

Mozaffari et al. (2022) 

LLBI Banana SSC 830, 1060 nm ANN R2 = 0.92–96 Adebayo et al. (2016) 

Vis/NIR 

Spectroscopy 

Tomatoes Skin color (a*) 396-1,131 nm  PLSR R² = 0.94, RMSEP = 

2.89 

Arruda De Brito et al. 

(2022) 



 
 

30 
 

2.5.3 Comparison between NIR spectroscopy, LLBI, and HSI techniques  

Hyperspectral Imaging (HSI), Near-Infrared Spectroscopy (NIR), and Laser light backscattering 

imaging (LLBI) are non-destructive techniques widely used for evaluating the quality of fruits and 

vegetables. HSI combines imaging and spectroscopy to generate a spatial-spectral ‘hypercube’, 

capturing a full spectrum at each pixel, which enables detailed analysis of surface and internal 

features (Wieme et al., 2022). It operates in reflectance, transmittance, or interactance modes, 

depending on the intended application (Nikzadfar et al., 202. It has been applied for SSC prediction 

in strawberries, oranges, and plums (Meng et al., 2021; Riccioli et al., 2021; Weng et al., 2020), as 

well as for detecting bruises and defects in pomegranates and loquats (Han et al., 2023; Okere et 

al., 2023). However, HSI is cost-intensive, requires powerful data processing systems, and is 

sensitive to surface texture and light variability (Ahmed et al., 2024; Benelli et al., 2020). In 

contrast, NIR spectroscopy evaluates internal quality by measuring the absorption of near-infrared 

light, which is sensitive to molecular bonds such as O–H, C–H, and N–H (Farag et al., 2022; 

Giordano et al., 2023). This allows for the estimation of soluble solids content, moisture, and dry 

matter. It can be used for monitoring ripeness, grading, and shelf-life (Kusumiyati et al., 2019). NIR 

is fast and scalable for industrial use but suffers from overlapping absorption bands, lacks spatial 

resolution, and depends on complex calibration models (Farag et al., 2022; Zhang et al., 2018). 

Meanwhile, LLBI analyzes how laser light scatters on and beneath the fruit’s surface to assess 

firmness, texture, and mechanical damage (Adebayo et al., 2016; Pham et al., 2024). It is a low-cost 

and rapid method, making it practical for postharvest quality checks. However, LLBI is limited to 

surface and near-surface evaluation and is highly affected by sample curvature, shape, and ambient 

lighting (Mollazade et al., 2012; Pham et al., 2024). Overall, while each technique offers unique 

advantages, their suitability depends on specific application needs, required accuracy, and practical 

constraints of implementation. The summarized strength and weaknesses of the techniques is 

presented in Table 4. 
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Table 4: Comparison of advantages and limitations of HSI, NIR spectroscopy, and LLBI 

Techniques  Strength  weakness References  

Hyperspectral Imaging 

(HSI) 

Detailed chemical and 

spatial mapping 

detects internal and 

external defects 

Expensive 

Multicollinearity 

Tedious data processing 

Not suitable for direct 

implementation in 

industries 

 

Wieme et al., 2022 

Ahmed et al., 2024 

NIR Spectroscopy High chemical 

prediction accuracy 

Fast and scalable 

Suitable for bulk 

sorting 

Limited to surface 

analysis, sensitive to 

scattering effects, and 

requires sample 

preparation. 

Spectral overlapping 

requires advanced data 

processing and needs 

frequent calibration 

Kusumiyati et al., 

2019; Farag et al., 

2022 

Laser light 

backscattering imaging 

(LLBI) 

 Fast and cost-

effective 

Easy to operate 

 

Limited detection of 

internal defects, high 

dependence on image 

processing 

Mollazade et al., 

2012; Pham et al., 

2024 
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3. RESEARCH GAP 

After reviewing various literature, I identified some research gaps that can be used for further 

investigation. Traditional methods have high operating costs, product wastage, and are limited to 

integrated online operations. Advanced non-destructive techniques like hyperspectral imaging are 

costly to develop and maintain, hard to scale for industrial use, and produce complex datasets that 

are difficult to process and interpret (Wieme et al., 2022). Exploring cost-effective and easy-to-

handle complementary techniques, such as NIR spectroscopy and LLBI, can provide 

comprehensive information for the quality assessment of fruits and vegetables during post-harvest 

handling. However, most studies have applied full-spectrum approaches and typically implement 

an independent predictive model, constraining flexibility and adaptability. The performance of NIR 

models is often affected by physical, biological, and environmental variability (Jiang et al., 2022; 

Pratiwi et al., 2023; Zhang et al., 2018). Exploring optimal spectral ranges and comparing linear 

and nonlinear models can enhance the robustness and accuracy of postharvest quality assessment 

across different conditions. On the other hand, the literature on Laser light backscattering imaging 

(LLBI) has predominantly focused on beam system configurations and characterizing the LLBI 

profile using radial averaging and histogram techniques. While these approaches have proven 

useful, there is potential for improvement by evaluating different LLBI systems with varied 

parameter settings, such as beam size, wavelength, and incident light angle. Exploring alternative 

LLBI system configurations and feature extraction methods could further enhance its effectiveness 

as a non-destructive technique for characterizing agricultural products.  
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4. RESEARCH OBJECTIVES 
 

The objective of the work was to apply non-destructive techniques to assess quality changes in fruits 

and vegetables during post-harvest storage. The following goals were established: 

1. To develop classification and prediction models using optimized and full NIR spectra to detect 

quality changes during storage 

• Applying different linear and non-linear models using the full spectral range provided by 

the handheld near-infrared (NIR) spectrometer (900–1700 nm). 

• Optimizing the full NIR spectra by analyzing the standard deviation (SD) of the normalized 

spectra and selecting high-SD wavelengths for multispectral analysis. 

2. To compare different mathematical models in Laser light backscattering imaging (LLBI) for 

describing the signal and utilizing model coefficients for classification and prediction models 

• Emitting multispectral laser diodes (532–1064 nm) onto the sample surface and acquiring 

backscattering images. 

• Extracting features and characterizing peaks using various theoretical mathematical models. 

• Optimizing wavelengths based on the analysis of variance (ANOVA) of the extracted model 

coefficients. 

• Comparing the performance of both beam and line-based LLBI systems at a specific 

wavelength 

3. To evaluate the applicability of the developed techniques for assessing quality changes in 

asparagus, plum, and apple during post-harvest storage 

• Applying reference measurement methods to investigate changes in quality attributes such 

as weight loss, firmness, SSC, and color in samples stored under different time and 

temperature conditions. 

• Applying the developed LLBI and NIR techniques to monitor quality changes in asparagus, 

plum, and apple during post-harvest storage. 
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5. MATERIALS AND METHODS 

 5.1 Materials  

 This study evaluated the postharvest quality of three horticultural products of plum, asparagus, and 

apple was collected from commercial orchards located in Csengőd, Kiskőrös, and Dunaszentmiklós, 

Hungary (Fig. 3). After harvest, the fruits and vegetables were packed in polypropylene crates and 

promptly transported to the Laboratory of the Department of Food Measurement and Process 

Control, Institute of Food Science and Technology, at the Hungarian University of Agriculture and 

Life Sciences. Upon arrival, all samples were visually inspected to ensure uniformity in size, 

ripeness, and the absence of visible defects or infections.  

Initially, a total of 1,300 samples were used. This included 120 green asparagus spears (Eros’) with 

an average mass of 36.88 ± 4.59 g, length of 20.42 ± 0.58 cm, diameter of 11.94 ± 3.52 mm, and 

firmness at the base, middle, and tip of 15.01 ± 2.78 N, 12.86 ± 3.64 N, and 10.86 ± 1.09 N, 

respectively. Additionally, 1,020 plums (510 per cultivar) were analyzed, with average firmness of 

45.76 ± 6.97 N (‘Stanley’) and 44.74 ± 5.83 N (‘Elena’), and SSC of 14.50 ± 1.03% and 14.95 ± 

0.52%, respectively. Furthermore, 160 ‘Granny Smith’ apples were evaluated, with SSC of 10.75 ± 

1.09%, an average height of 72.97 ± 3.66 mm, a width of 66.25 ± 4.36 mm, and a starch index of 

4.81 ± 0. 83. 

Storage conditions were tailored for each product. Asparagus samples were randomly divided into 

three groups, packed in low-density polyethylene (LDPE) plastic bags with ventilation holes. They 

were stored at 2 °C, 10 °C, and 15 °C for 12 days. Each plum cultivar was divided into four groups 

and stored at 1 °C, 5 °C, 10 °C, and 15 °C for 24 days. Apples were divided into two groups and 

stored at 2 °C for up to 27 weeks and at 22 °C for 5 weeks. 

Relative humidity (RH) in the storage was measured using a Sain Lang humidity meter and DL-

120TH Voltcraft data loggers.  Cold storage conditions (1–10 °C) were 90–95% RH, while ambient 

storage (22 °C) was 60–65% RH.  Some samples in each treatment were removed from the 

experiment before the scheduled measurement due to decay. Decayed fruits were excluded from the 

groups in accordance with Regulation (EU) No 543/2011 (Article 3, Annex I, Part A). 
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Figure 3: sample images for the materials (a) plums (i.e. ‘Stanley’ – left and ‘Elena’- right) (b) 

green asparagus (i.e. ‘Eros’) and (c) apple (i.e. ‘Granny Smith’) used for the quality assessment 

using nondestructive techniques. 

5.2 Measurement of quality attributes  

5.2.1 Ethylene production 

The ethylene production was measured by placing a standardized quantity (typically 1 kg) of the 

produce in a hermetically sealed container. The container was set for one hour, after that period the 

concentration of ethylene gas accumulated inside was recorded using an ICA-56 hand-held ethylene 

analyzer (International Controlled Atmosphere Ltd., United Kingdom) (Fig. 4). The resulting values 

were expressed as the volume of ethylene produced per kilogram of produce per hour (µL/Kg.h). 
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Figure 4: Schematic diagram of ethylene measurement 

5.2.2 Respiration Rate 

The respiration rate was measured by placing produce (typically 1kg) inside a sealed polymethyl 

methacrylate (plexiglass) container equipped with FY A600-CO2H carbon dioxide (CO₂) sensors 

connected to an Almemo 3290-8 data logger (Ahlborn Mess-und Regelungstechnik GmbH, 

Germany). The container was sealed to maintain a controlled environment, and CO₂ levels were 

measured in 1 hr. (Fig. 5). The results were reported as the volume of CO₂ produced per kilogram 

of produce per hour (mL/Kg.h) 

 

Figure 5: Schematic diagram of respiration measurement 

 

5.2.3 Weight loss 

Weight loss of fresh produce was determined using a digital balance (WLC 2/A2, RADWAG, 

Radom, Poland). The initial weight of each sample was recorded, followed by subsequent 

measurements over time. Weight loss was calculated as the difference between the current and initial 

weight, expressed as a percentage relative to the initial value. The weighing method varied 

depending on the type of produce: Green asparagus and Granny Smith apples were weighed 

individually, whereas plums were weighed in groups (i.e., 20 pieces per group) 
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5.2.4 Firmness 

 Asparagus  

The firmness of the samples was measured using a texture analyzer (TA-XTplus, Stable 

Microsystems, Surrey, UK) equipped with a blade cutter (HDP/BSK) for the analysis of green 

asparagus samples. The test speed was set to 1 mm/s, with a 0.01 s delay between consecutive data 

points (Fig. 6a). Ten asparagus spears were tested at every 4-day interval from each storage 

temperature group. The maximum force (N) was recorded at three positions: the base, middle, and 

peak.  Ten spears were used from each group on each measurement day, had four measurement days 

Plum  

The firmness was measured using a portable fruit firmness tester (FT 327, T.R. Turoni srl, Forlì, Italy) 

with a cylindrical probe with a diameter of 7.9 mm was used. The probe penetrated the peeled plums 

tissue of samples to a depth of 2 mm (Fig.6b). The maximum force (N) was obtained from two sides 

of each fruit. 20 fruits were used per 4-day interval across four storage temperature groups 

Apple 

 Apple firmness was measured using a handheld fruit firmness tester (FT 327, T.R. Turoni srl, Forlì, 

Italy) mounted on a vertical stand for stability. A 7.9 mm cylindrical probe penetrated the peeled 

apple tissue to a depth of 10 mm. Maximum force (N) was recorded at three equatorial positions on 

each fruit. Twenty apples were measured every 9 weeks under cold storage (2 °C) and every 2 weeks 

at room temperature (22 °C)  
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Figure 6: Schematic diagram of firmness measurement devices with different way 

5.2.5 Soluble Solid Content (SSC) 

SSC was measured using a handheld refractometer (PAL-1, Atago Co. Ltd., Tokyo, Japan; 0–53% 

range). Juice was extracted from each fruit, clarified of pulp, and one drop placed on the prism to 

record °Brix. Twenty plums were measured every 4 days across four storage temperatures, while 

twenty apples were sampled from each temperature group at every measurement point. 

5.2.6 Peel Color 

Minolta Chroma Meter 

The peel color of plums was measured using a portable Minolta Chroma Meter CR-400 (Minolta 

Corporation, Osaka, Japan) (Fig.7a). The device was calibrated before each measurement session 

using a standard white calibration plate (CR-A43). Color measurements were taken at two opposite 

points along the equatorial section of each plum. Standard CIE color parameters (L*, a*, and b*) 

were recorded. The chroma (C*) value was calculated as √𝑎∗2 + 𝑏∗2 and hue angle value was 

calculated as the tan-1 of b*/a*. 

Machine vision  

A computer vision (CV) system was used to monitor peel color changes in asparagus and apples 

during storage. The system consisted of a high-performance color digital camera (Hitachi HV-C20 

3CCD, Tokyo, Japan) operated in manual mode with default settings. The color temperature was 
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3200 K and was used for image acquisition. The camera was mounted 60 cm above the sample 

chamber, positioned perpendicular to the surface of the samples to ensure consistent top-down 

imaging and eliminate perspective distortion. LED lights (1m/1m LED light strips, 30LEDs, 2.8W) 

were arranged in a circular configuration around the inner ceiling of the chamber, providing uniform 

and diffuse illumination. This setup minimized shadows and reflections, ensuring consistent 

lighting across all samples. The color change in asparagus and apples during storage was evaluated 

(Fig. 7b). Four to five samples were placed on a white background, which also served as a color 

reference. Images were captured at a resolution of 768 × 576 pixels and processed using Scilab 

software (version 2024.0.1), following the image analysis method described by Nguyen et al. 

(2021). IP_hue spectra were extracted from each image to quantitatively assess color changes over 

storage time and temperature. The IP_hue represents a weighted histogram of hue angles, 

summarizing saturation across the image, with color changes indicated by peak displacement. The 

root mean square error (RMSE) between consecutive measurement days was calculated using the 

following formula: 

𝑅𝑀𝑆𝐸𝐴−𝐵 = √
∑ (𝐴𝑖−𝐵𝑖)2𝑛

𝑖=1

𝑛
 

where 𝐴𝑖 and  𝐵𝑖 represent the saturation values at the ith hue degree for two consecutive 

measurement days, and n is the total number of hue degrees (typically 360). 

 

  

 Figure 7: Schematic diagram of portable (a) Minolta Chroma Meter and (b) computer vision 

system 
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5.3 Non-destructive measurement techniques  

5.3.1 NIR spectroscopy (NIR) 

Fruits and vegetables are semi-transparent or opaque to radiation in the visible and near-infrared 

(NIR) regions, with NIR spectroscopy detecting absorption primarily from C-H, O-H, and N-H 

bonds in compounds like water, sugars, and pigments (Chandrasekaran et al., 2019). In this thesis 

work, a handheld NIR spectrometer was used. Its details are described below; - 

NIR Spectra Acquisition  

A handheld near-infrared (NIR) spectrometer (NIR-S-G1, InnoSpectra Co., Hsinchu, Taiwan) was 

used to collect absorption spectra in the 900–1700 nm wavelength range, with a spectral resolution 

of 4 nm. The device is based on digital light processing (DLP) technology and operates in 

reflectance mode. It features compact optics and is equipped with both Micro USB and Bluetooth 

Low Energy (BLE) interfaces, allowing data transfer either via USB or wirelessly to smartphones, 

tablets, or personal computers. Spectral acquisition was performed using the manufacturer’s 

software (NIRScan) under ambient laboratory conditions. The device is internally calibrated and 

does not require an external white reference tile, as calibration is automatically managed by the 

internal system. During measurement, asparagus spears were positioned horizontally, and spectra 

were collected from three distinct locations along each spear: the base, middle, and tip. This 

approach was used to capture spatial variation in tissue composition along the spear. For plums and 

apples spectral data were collected from both opposite sides at the equatorial region. (as illustrated 

in Fig. 8). At each measurement location, two to three consecutive scans were performed to ensure 

repeatability and reliability. During scanning, the measurement window was fully covered by the 

sample surface to maintain a consistent contact area and minimize external light interference. 

 

Figure 8: Schematic diagram about collecting the NIR absorption spectra in reflectance mode 

using a handheld spectrometer. 
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Pre-processing of NIR spectra 

The spectral data was pre-processed using several techniques to correct for physical and chemical 

effects, such as non-zero baselines and scatter. These methods included Savitzky-Golay smoothing 

(i.e., polynomial, n=3 and window size, m =21) to reduce noise and Standard Normal Variate (SNV) 

to correct for scatter effects (Guo et al., 2019; Pandiselvam et al., 2022). These pre-processing 

techniques were applied to green asparagus, plums, and apple experiments to improve the quality 

of the spectra for subsequent analysis.  

Selection of sensitive wavelengths 

In this study, sensitive wavelengths were selected using a filter-based variable selection approach. 

The acquired spectra were pre-processed using SNV to remove the noise that is potentially produced 

by specular reflection and the device. The standard deviation of the normalized spectra was 

calculated column-wise to identify local maxima values, and significant wavelengths were manually 

selected. These wavelengths were considered important because they corresponded to changes in 

quality parameters such as WL, firmness, and SSC. Their relevance was further confirmed by 

calculating quality indices, including the normalized difference index (NDI) and quality index (QI), 

at the selected wavelengths. The reference wavelength was chosen based on the minimum standard 

deviation of the normalized full spectrum. 

𝑁𝐷𝐼 =
𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑− 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑+ 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
,            𝑄𝐼 =

𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

Where 𝐴𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is NIR absorbance at the selected wavelength(s), 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is NIR absorbance of 

the reference wavelength. 

5.3.2 Laser light backscattering imaging (LLBI) system  

Laser light backscattering imaging (LLBI) is a relatively novel technique that uses light absorption, 

scattering, and image processing in the visible and near-infrared range to assess the quality attributes 

of fruits and vegetables. In this method, a laser beam illuminates a point on the fruit's surface in a 

dark chamber, and the resulting light scattering provides valuable information about the fruit's 

mechanical and textural properties (Qing et al., 2007b; Qing et al., 2008; Baranyai and Zude, 2009). 

Laser Module and Camera Specifications 

Beam based LLBI 
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As shown in Fig. 9a, A laser beam imaging system with a 12-bit/pixel monochrome CMOS camera 

(MV1-D1312, Photon Focus, Lachen, Switzerland) with default settings was used to generate 

diffusely reflected signals. Laser diodes (3 mW) emitting at 532, 635, 780, 808, 850, and 1064 nm 

were used. The incident angle of the laser beams was set to 15°, focused within a circular area of 

Ø1 mm. Image acquisition was performed in a dark chamber to minimize external light interference 

and improve the signal-to-noise ratio. The system captured images at a resolution of 0.113 mm/pixel 

and a size of 512 × 512 pixels.   The images were stored in raw binary format for analysis. 

Line Based LLBI 

A line laser imaging system was implemented to monitor quality changes in samples during post-

harvest storage (Fig. 9b). The system comprised a dark chamber, a monochrome industrial camera 

(DMK38GX540-a, 1.2-inch Sony CMOS, GigE Interface (RJ45), Imaging Source, Bremen, 

Germany), and a 635 nm LM Laser KH93242 single-line laser module(1 mW power, 1 mm line 

thickness). The laser module was used to illuminate the samples, generating diffusely reflected 

signals for imaging. The camera lens was positioned 27 cm from the sample surface, and a laser 

module was mounted at an incident angle of 20° within a dark chamber to reduce direct reflections 

and geometric distortion. Digital images were captured at a resolution of 0.0325 mm per pixel to 

ensure spatial accuracy and minimize curvature-related effects. 
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Figure 9: Laser light backscattering imaging System:(a) Beam-based system and (b) Line-based 

system with their respective sample of a backscatter image at 635 nm. 

Description of LLBI profiles 

An image processing algorithm was developed using Scilab (version 2024.1.0). Raw RGB image 

files were transformed into greyscales, resulting in a two-dimensional (2D) matrix of pixels with 

intensity values ranging from 0 to 255 . The incident (center) point was determined by calculating 

the intensity-weighted average of pixel positions. A 5-pixel-wide band crossing the incident point 

was selected as the region of interest (ROI). The 1D profiles were obtained from the intensity values 

within the ROI.  Then, the 1D intensity profiles were modeled using the modified Cauchy 

distribution (CD) function (Eq. a) and the modified Gaussian distribution (GD) function (Eq. b), 

which are mathematically expressed as follows: 

 𝐼𝐶 = 𝑧1𝑐 +
𝑧2𝑐 𝑧3𝑐

2

(𝑥−𝑧4𝑐)2+𝑧3𝑐
2                                           (a) 

𝐼𝐺 = 𝑧1𝑔 + 𝑧2𝑔exp (−
(𝑥−𝑧4𝑔)2

2 𝑧3𝑔
2

)                                (b)            
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Where 𝐼𝐶 and 𝐼𝐺  denotes estimated light intensity;  𝑥 denote the picture width ;  𝑧1𝑐 and 𝑧1𝑔 are the 

baseline intensity; 𝑧2𝑐 and 𝑧2𝑔 are amplitude; 𝑧3𝑐 and 𝑧3𝑔 are shape factors; and 𝑧4𝑐 and 𝑧4𝑔 are the 

location of the peak of CD and GD functions.                     

Image processing and feature extraction 

The collected images were processed using Scilab (version 2024.1.0, Dassault Systèmes, Vélizy-

Villacoublay, France). The coefficient parameters of the intensity profile were extracted using a 

signal approximation approach based on modified  Cauchy distribution and Gaussian distribution 

function models. The coefficients derived from the model demonstrated strong performance in 

characterizing intensity profiles and were used to develop models for monitoring quality changes. 

The coefficients extracted from the line-based system at 635 nm, in combination with LDA, were 

used to detect quality changes of 4-day storage intervals. These coefficients combined with linear 

(MVR), and non-linear (MARS) models were used to estimate weight loss and firmness of green 

asparagus. Additionally, the coefficients from the beam-based system at optimal wavelengths, 

combined with LDA, were applied to detect quality changes in plums within 4-day storage intervals. 

These coefficients, combined with MVR, were used to estimate plum firmness, SSC, and skin color. 

On the other hand, coefficients directly extracted from the Cauchy model, measured at 635 nm using 

line- and beam-based systems, were used to estimate apple weight loss and firmness using SVM 

and MVR models.  The MARS algorithm selects knots and basis functions adaptively, allowing it 

to capture non-linear relationships between predictors and responses (Akin et al., 2020) . The MARS 

model mathematically can be expressed as follows: 

𝑓 (𝑥)  =    𝛽0  +   ∑ 𝛽𝑖 𝐵𝑖( 𝑥)𝑛
𝑖 =1                                            (c) 

 

Where,  𝛽0 is the intercept, 𝛽𝑖 are the coefficients,  𝐵𝑖( 𝑥) are basis functions, which are piecewise 

linear splines that fit different regions of the data.  Whereas MVR is used to model the relationship 

between multiple predictors and a continuous dependent variable. Unlike simple regression 

models, which predict a single outcome, MVR simultaneously predicts multiple outcomes based 

on several independent variables (Seasholtz and Kowalski, 1992). 

The general form of a multivariate regression model can be represented as: 

Y = Xβ + E                                                              (d) 

Where Y is the matrix of response variables, X is a matrix of predictor variables, β is the vector of 

coefficients, and E is the vector of errors. 
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5.4 Experimental design  

The experiments of this research are schematically summarized in the flow chart shown in Fig. 10. 

Green asparagus (i.e., ‘Eros’), plums (i.e., ‘Stanley’, ‘Elena’), and apples (i.e., ‘Granny Smith’) 

were used for experimental work, treated at different storage temperatures and times. 

 

 

Figure 10: Overall experimental design of quality assessment of green asparagus, plum, and apple during 

post-harvest storage. 
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5.4.1 Quality assessment of green asparagus during post-harvest storage 

Storage treatment  

The LDPE-packed green asparagus spears (Eros’) were stored at three different temperatures (2 - 

10 ℃ with 90-95 RH% and 15 ℃ with default RH%). Measurements were taken at 4-day intervals, 

with 10 samples tested from each group at each time point. The samples were kept at room 

temperature for 12 h to maintain the surface temperature of the samples the same as the room 

temperature. First, non-destructive measurements were performed on each spear at three positions 

of the base, middle, and tip. Afterward, destructive analyses were conducted on the same tested 

spears, which were then removed from the sample pool. The over all quality assessment design 

presented in Fig 11. 

Measurement 

The weight loss and firmness of the green asparagus spears were measured using the methods 

described in Sections 5.2.3 and 5.2.4, respectively. The device used for NIR and the system for 

LLBI evaluations are detailed in Sections 5.3.1 and 5.3.2.  

NIR spectroscopy 

NIR spectra were collected non-destructively with two consecutive scans at three positions (base, 

middle, tip) of each asparagus spear, preprocessed with SNV, and analyzed to select sensitive 

wavelengths for NDI and QI calculation. A dataset of 684 observations across four storage times 

and three temperatures was split (80% training, 20% validation) to develop classification (PLS-DA, 

LDA) and prediction models (PLSR, SVM), with performance evaluated by metrics such as 

accuracy, sensitivity, specificity, precision, F1-score, and balanced accuracy (detailed in Annex 

Table 12.2).  and R², RMSE, and RPD for prediction, validated by 100 bootstrap repetitions. 

LLBI 

Line-based LLBI was conducted at the wavelength of 635 nm, capturing three LLBI images from 

the base, middle, and peak of each asparagus spear. The Cauchy curve fitting method extracted 

LLBI parameters (i.e, amplitude, shape and FWHM) from the LLBI profile. A total of 344 

observations were collected from asparagus spears stored at 2 °C, 10 °C, and 15 °C. MVR and 

MARS models were developed to predict weight loss and firmness, while LDA was applied to 

evaluate quality changes in the asparagus. The dataset was randomly split into two subsets, with 

80% used for training and 20% for validation. Bootstrapping with 100 repetitions was performed to 
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evaluate model performance, generating statistical metrics such as mean and 95% confidence 

intervals for R², RMSE, and RPD. 

 

Figure 11: Assessment of quality changes in green asparagus using NIR Spectroscopy and LLBI 

techniques during post-harvest storage. 
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5.4.2 Quality assessment of Plums during post-harvest storage 

Storage treatment  

Two plum cultivars (Stanley’ and ‘Elena’) were used in the study. A total of 510 fruits were selected 

for each cultivar, of which 30 were used for initial measurements. The remaining 480 fruits were 

randomly divided into four temperature groups (1 -10 °C with 90-95 RH%, and 15 °C) and stored 

for 24 days. Storage duration was recorded in days. On each measurement day, 20 fruits were taken 

from each temperature group, and they were kept for 12 h before the measurement to maintain the 

sample’s surface temperature the same as the room temperature.  Moreover, some groups were 

terminated early due to mold growth. Fig. 12 presents the overall assessment of quality changes in 

plums using NIR spectroscopy and LLBI techniques during postharvest storage. 

Measurements 

The physiological and quality changes of the plums were measured using the methods described 

in Sections 5.2.1 to 5.2.6. The device used for NIR and the system for LLBI evaluations are detailed 

in Sections 5.3.1 and 5.3.2. 

NIR spectroscopy 

Spectral data were collected from both sides of each fruit with three consecutive scans and 

preprocessed using SNV. Sensitive wavelengths were identified from the normalized spectra by 

calculating the standard deviation. Their sensitivity was also confirmed using NDI and QI indices. 

PLSR and SVM models were developed with both full spectra and selected wavelengths to predict 

weight loss and SSC, using a dataset of 2965 observations (1649 ‘Stanley’ and 1316 ‘Elena’). Each 

dataset (combined, ‘Stanley,’ and ‘Elena’) was randomly split into 80% training and 20% 

validation, and model performance was evaluated with 100 bootstraps, reporting mean and 95% 

confidence intervals for R², RMSE, and RPD. 

LLBI 

Beam-based LLBI captured two images per plum from both sides across six wavelengths (532–

1064 nm). Optimized wavelengths, identified via ANOVA and Tukey’s test, highlighted sensitivity 

to quality changes. From 1,276 observations (Stanley’ 569, ‘Elena’ 707), LDA classified samples 

by storage time, while MVR models predicted firmness, SSC, and skin color using two LLBI 

parameters at optimized wavelengths. Model performance was validated with 100 bootstraps, 

reporting R², RMSE, and RPD with 95% confidence intervals. 
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Figure 12: Assessment of quality changes in plums using NIR Spectroscopy and LLBI techniques 

during post-harvest storage. 
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5.4.3 Quality assessment of apple during post-harvest storage 

Storage treatment 

Similar to green asparagus and plums, the overall assessment of quality changes in ‘Granny smith’ 

apple using NIR spectroscopy and LLBI techniques during postharvest storage is presented in Fig. 

13.  A total of 160 apple samples were randomly divided into two groups. The first part was stored 

at room temperature (22 °C with 60-65 RH%) for 5 weeks and sampled at 2-week intervals. The 

second part apples were stored under cold conditions (2 °C with 90-95 RH%) for 26 weeks, 

followed by 1 week at 22 °C for shelf life, with sampling conducted at 9-week intervals.  

Measurement 

 The physiological and quality changes of the ‘Granny Smith apples were measured using the 

methods described in Section 5.2.1. to 5.2.6 The device used for NIR and the system for LLBI 

evaluations are detailed in Sections 5.3.1 and 5.3.2 

NIR Spectroscopy 

A handheld NIR spectrometer (900–1700 nm) collected spectra from two opposite locations around 

the equator of each apple, with three consecutive scans per location. Spectra were preprocessed 

using SG smoothing and SNV. The significant wavelengths were identified from column-wise 

standard deviations. Additionally, NDI and QI indices for these wavelengths were calculated to 

confirm their sensitivity. PLSR and SVM models were developed using both the full spectra and 

the selected wavelengths, and their performance was compared. A total of 834 observations were 

collected. This dataset was randomly divided into two sheets, with 80% used for training and 20% 

for validation. Bootstrapping with 100 repetitions was employed to assess model performance, 

providing statistical metrics such as the mean and 95% confidence intervals for R², RMSE, and 

RPD, ensuring robust and reliable evaluation of the models 

LLBI 

 Line-based LLBI images were captured from two opposite equatorial locations per apple. At 635 

nm, LLBI profiles were fitted with a modified Cauchy model to extract amplitude, shape, and 

FWHM, which were used in MVR and SVM models. From 643 observations (line: 382, beam: 

261). The dataset was randomly divided into two subsets, with 80% used for training and 20% for 

validation. Bootstrapping with 100 repetitions was performed, and model performance metrics (R², 

RMSE, and RPD) were evaluated using t-tests with 95% confidence intervals. 
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Figure 13: Assessment of quality changes in apple using NIR Spectroscopy and LLBI techniques 

during post-harvest storage. 
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5.5 Data analysis  

The data analysis provides a comprehensive framework for the spectral analysis of horticultural 

products, employing both classification and prediction techniques to effectively assess and manage 

fruit quality. This integration of advanced spectral analysis with multivariate statistical methods 

enables precise control and improvement of post-harvest handling and processing procedures. In 

this dissertation, basic descriptive statistics on the quality parameters of the fresh produce during 

treatments were presented in plots, Analysis of Variance (ANOVA) was used to evaluate the effects 

of the treatments on these parameters. Moreover, classification and prediction models were applied 

to assess the association between quality parameters and the laser and NIR spectral variables. Partial 

Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA) were 

established to classify the samples based on their treatment groups, utilizing the ‘plsdepot’ (version 

0.2.0) and ‘mda’ (version 0.5-3) packages. Additionally, Partial Least Squares Regression (PLSR), 

Multivariate Regression (MVR) Support Vector Machine Regression (SVM) and Adaptive 

Regression Splines (MARS) were built to predict the quality attributes of the samples using the ‘pls’ 

(version 2.8-2), ‘aquap2’ (version 0.4.2), ‘e1071’ (version 1.7-13), ‘earth’ (version 5.3.3) packages, 

respectively. All statistical analyses were performed using R software (version 4.2.3, R Foundation 

for Statistical Computing, Vienna, Austria). 
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6. RESULTS AND DISCUSSIONS 

6.1 Green asparagus experiment during post-harvest storage 

This section presents the results of NIR spectroscopy and line-based LLBI techniques used to 

monitor quality changes in green asparagus during storage. For NIR spectroscopy analysis, a total 

of 684 observations were generated by acquiring spectral data at three positions (base, middle, and 

peak) on each spear, using two scans per position. The collected spectra were preprocessed using 

standard normal variate (SNV), and sensitive wavelengths were manually selected based on the 

standard deviation of the normalized spectra. Normalized difference index (NDI) and quality index 

(QI) were calculated to validate the sensitivity of these wavelengths. Classification models (PLS-

DA, LDA) and prediction models PLSR and SVM were developed using both full spectra and the 

spectra at selected wavelengths to evaluate changes in asparagus quality. PLS-DA was implemented 

using the ‘plsdepot’ package (version 0.2.0), while LDA was performed using the ‘mda ’package 

(version 0.5-3) in R. For LLBI, 344 observations were obtained by capturing images at 635 nm 

from the same three positions on each spear. LLBI parameters (i.e., amplitude, shape and FWHM) 

were extracted using Cauchy curve fitting. MVR using ‘pls’ (version 2.8-2), and MARS with ‘earth’ 

(version 5.3.3) package in R. The models were developed to predict weight loss and firmness, while 

LDA was used to detect quality changes over time for the samples stored at different storage 

temperature groups. All datasets were randomly split into training (80%) and validation (20%) 

subsets. Model performance was evaluated using bootstrapped metrics (R², RMSE, RPD) with 95% 

confidence intervals 

6.1.1 Weight loss  

The box plot (Fig. 14) illustrates the significant impact of storage temperature and duration on 

weight loss in green asparagus. Weight loss increased significantly with both storage temperature 

and time (ANOVA, P < 0.001). Moreover, by day 12, the highest weight loss was observed in spears 

stored at 15 °C, followed by those stored at 10 °C.. Higher temperatures accelerated moisture loss 

due to increased respiration and transpiration, consistent with previous reports (Tzoumaki et al., 

2009; Villanueva et al., 2005; Gantner et al., 2020). Spears stored at 15 °C also showed mold growth, 

likely from surface condensation (Hung et al., 2011). 
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Figure 14: Changes in weight loss in the green asparagus samples stored at 2, 10, and 15 °C.  

6.1.2 Firmness  

The firmness of asparagus spears at the base increased over time across all storage temperatures 

and time (Fig.15). The increase was more pronounced at higher temperatures. ANOVA confirmed 

significant effects of temperature (F = 862.10), time (F = 4751.08), and spear position (F = 168.087, 

p < 0.001). Samples stored at 15°C showed the greatest firmness and variability, while lower 

temperatures preserved texture by reducing enzymatic and microbial activity. Higher temperatures 

accelerated moisture loss, chemical reactions, and deterioration, leading to reduced visual and 

textural quality. Firmness trends for the middle and peak positions of the spears are presented in 

Appendix Fig. 12.1.2. These observations align with previous reports showing that extended storage 

negatively affects texture, fiber, and organic compounds in asparagus, and that higher temperatures 

accelerate lignin development and firmness increases, whereas lower temperatures help maintain 

freshness and quality (Anastasiadi et al., 2020; Garrido et al., 2001; Villanueva et al., 2005; Lipton, 

2011; An et al., 2008; Hung et al., 2011). 
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Figure 15: Changes in firmness in the base position of green asparagus samples stored at 2, 10, 

and 15 °C.  

 

 

 

6.1.3 Peel color 

Fig. 16 shows asparagus spear samples after 12 days of storage at different temperatures. Panels (a) 

to (c) present photographs of spears stored at 2 °C, 10 °C, and 15 °C, respectively, while panels (d) 

to (f) display the IP_hue spectra for each temperature group across their respective storage 

durations. Saturation and hue angle were used to evaluate color changes in green asparagus. As 

storage time and temperature increased, asparagus showed reduced freshness and quality, with 

discoloration, odor, and mold particularly evident at 15 °C. At 2 °C, hue spectra remained stable 

with minimal changes, while at 10 °C moderate shifts were observed. At 15 °C, the hue angle 

decreased markedly, shifting from yellow-green toward yellow, along with greater loss of 

saturation. These changes reflect chlorophyll breakdown, structural degradation, and accelerated 

enzymatic activity at higher temperatures. High moisture content and warmer storage conditions 

create an environment conducive to mold growth, leading to discoloration and surface blemishes 

(Sothornvit and Kiatchanapaibul, 2009; Villanueva et al., 2005). Additionally, these color changes 
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signify a decline in freshness and quality, with more pronounced changes at 10 °C compared to 2 

°C (Gantner et al., 2020). 

 

 

 

Figure 16:  Asparagus spears sample images arranged in front of the camera at the end of the 

experiment and hue spectra plot at storage temperatures of 2 °C (a & d), 10 °C (b & e), and 15 °C 

(c & f), respectively. 

6.1.4 NIR spectroscopy 

 Spectral description  

Fig. 17 shows (a) raw full-spectrum absorbance data for green asparagus stored at 2 °C, 10 °C, and 

15 °C for 12 days in the 900–1700 nm range, (b) SNV-transformed normalization, (c) standard 

deviation of SNV, and (d) NDI_1252 box plots at 1696 nm showing changes in asparagus quality 

over time. The standard deviation highlights variability in absorbance across wavelengths, with 

higher variations at 907 nm, 923 nm, 1069 nm, 1442 nm, and 1696 nm, related to quality changes. 

The reference wavelength at 1252 nm showed the minimum standard deviation across the spectra.  

The NDI_1252 at 1696 nm declines over time, with higher fluctuations at higher temperatures, 

possibly due to increased metabolic and enzymatic activities. The absorbance peak at 1442 nm 

shows a greater change at 15 °C, likely due to temperature-related changes in spears structure or 

composition. Higher temperatures break down cells, leading to increased water loss. This weakens 

the interaction of light with internal water and cellular components, resulting in more pronounced 

changes in the spectrum of light absorption. Moreover, the enzymes responsible for the degradation 
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of structural polysaccharides, such as pectin and cellulose, are also stimulated by elevated 

temperatures (Villanueva et al., 2005).  The literature reports that the NIR absorption peaks at this 

wavelength correspond to molecular vibrations of CH, OH and NH, likely influencing the spectral 

readings (Camps and Gilli, 2017).  

 

Figure 17: NIR analysis techniques: raw spectra (a), SNV (b), SD of SNV (c)  and sample 

NDI_1252 at 1696 nm (d) of different storage time and temperature 

Storage time significantly impacted both the NDI_1252 and QI indices across all wavelengths 

(Table 5). NDI_1252 of all selected wavelengths shows slightly higher F-values than QI across most 

wavelengths, except at 1442 nm, indicating greater sensitivity to time changes. Storage temperature 

has minimal effect on NDI_1252, except at 1442 nm and 1696 nm, while QI indices are more 

influenced by temperature, especially at longer wavelengths. In addition, interaction effects are 

significant at shorter wavelengths but decrease at longer wavelengths. 

Table 5: F-values for the effects of storage time, storage temperature, and their interactions on 

NDI_1252 and QI indices at selected wavelengths. 

Parameters  Factor 907 nm 923 nm 1069 nm 1442 nm 1696 nm 

Asparagus NDI 

Time(A), days 94.611s 104.5s 135.721s 570.095s 1622.416s 

Temperature(B) 1.845 2.015 0.566 7.455s 6.933s 
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Interaction (A× B) 417.271s 497.67s 491.082s 0.382 3.976 

Asparagus QI 

 Time(A), days 74.888s 89.378s 112.651s 685.056s 1251.284s 

Temperature(B) 3.973 3.3 5.451a 11.176s 13.47s 

Interaction (A× B) 399.197s 467.909s 498.399s 3.209 0.704 

NB: “s’, p<0.001, “a” p<0.05 

The correlation analysis between NIR absorbances, weight loss, and firmness further explains these 

relationships (Table 6). A significant correlation was observed between NIR absorbances at specific 

wavelengths, such as between NIR-907 and NIR-1069 (r = 0.998). Both NIR-907 (r = 0.928) and 

NIR-1069 (r = 0.923) exhibit significant correlations with firmness. Similarly, a significant 

correlation is observed between NIR absorbance at these wavelengths and weight loss (r = 0.829). 

The absorbance at longer wavelengths, such as NIR-1442 and NIR-1696, exhibited significant 

correlations with firmness (r = 0.453 and r = 0.607, respectively) and weaker correlations with 

weight loss (r = 0.233 and r = 0.439, respectively). This may be due to the longer wavelengths that 

penetrate deeper into the tissue and capture more complex changes. These interactions are less 

directly associated with properties on the surface such as firmness and weight loss, which leads to 

lower correlation values (Camps and Gilli, 2017).  Additionally, the presence of overlapping 

absorption bands in the spectra may explain the lower level of significance observed between 907 

nm and 1069 nm. Furthermore, these wavelengths may be sensitive to similar molecular vibrations, 

such as O-H and C-H bonds in water or organic compounds. 

Table 6: Pearson's correlation matrix between NIR absorbance of the selected wavelength, weight 

loss, and firmness for green asparagus  

 NIR_907 NIR_923 NIR_1069 NIR_1442 NIR_1696 Firmness, N WL, % 

NIR_907  0.526 0.998 0.509 0.67 0.928 0.829 

NIR_923 s  0.523 0.878 0.834 0.499 0.21 

NIR_1069 a s  0.51 0.672 0.923 0.829 

NIR_1442 s s s  0.9 0.453 0.233 

NIR_1696 s s s s  0.607 0.439 

Firmness, N s s s s s  0.755 

WL, % s s s s s s  

NB: “s’ p<0.001 and “a” p<0.05 

 Classification based on storage time and temperature  
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Fig. 18 compares PLS-DA and LDA models for detecting quality changes in asparagus stored at 15 

°C for 12 days. PLS-DA used full spectra, while LDA relied on selected wavelengths. LDA 

outperformed PLS-DA, achieving accuracies of 76.9% (15 °C), 74.3% (10 °C), and 60.4% (2 °C) 

(Appendix Tables 12.2.2 and 12.2.3), with clearer class separation in score plots. This improvement 

is due to feature selection, which reduces spectral noise and emphasizes informative wavelengths. 

Lower accuracy at 2 °C reflects slower physiological changes and weaker spectral differences. 

Similar findings were reported by Sánchez et al. (2009), who achieved over 81% accuracy using 

PLS-DA on asparagus stored at 2 °C for 28 days. 

 

Figure 18: Comparison of PLS-DA and LDA models for detecting quality changes in Green 

Asparagus across four-day storage intervals using full and selected spectra for 15 ℃ storage groups. 

On the other hand, Fig. 19 compares the quality detection efficiency of the PLS-DA and LDA models 

for green asparagus stored at three different temperatures (2°C, 10°C, and 15°C) on the 12th day of 

storage. Both models were constructed using five latent variables (LV = 5). The PLS-DA model, 

which used the full NIR spectrum, achieved a mean accuracy of 42.8%, with a sensitivity of 42.6% 

and a balanced accuracy of 58.3%. The score plot for PLS-DA shows an overlap between temperature 

groups. In contrast, the LDA model, constructed using selected NIR wavelengths, demonstrated 
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superior performance across all metrics. The LDA model achieved a mean accuracy of 87.7%, a 

sensitivity of 89.4%, and a balanced accuracy of 91.9%. The score plot for LDA reveals well-

separated clusters for each temperature group. The PLS-DA plot shows overlap between the storage 

temperature groups, indicating that the full NIR spectra may not be discriminatory enough for 

detecting quality changes. The performance table reveals that PLS-DA has relatively good specificity 

(74.0%) but struggles with classification, as shown by its low precision and F-score. In contrast, the 

LDA plot shows clear separation between the temperature groups, particularly for samples stored at 

2 °C, and demonstrates better performance. LDA achieves 87.7% accuracy, 89.4% sensitivity, and 

94.4% specificity, with a balanced accuracy of 91.9%, indicating it effectively detects quality changes 

and classifies samples into temperature groups. 

 

Figure 19: Comparison of PLS-DA and LDA models for detecting quality changes in Green Asparagus 

across three storage temperature groups using full and selected spectra. 

 

Prediction of Weight Loss and Firmness 

Figure 20 presents a comparison of the performance of PLSR and SVM models using the full NIR 

spectra and spectra at selected wavelengths for predicting weight loss (%) and firmness (N) in green 

asparagus. Each model was evaluated using both the full NIR spectra (left column) and selected 

wavelengths (right column).Scatter plots show predicted versus measured values, with data points 
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color-coded by storage temperature: blue represents samples stored at 2°C, orange corresponds to 

10°C, and green indicates 15°C.The temperature-dependent variation significantly influenced the 

performance of the predictive models. In particular, the blue data points exhibited signs of 

overfitting. In contrast, the orange and green data points showed underfitting. The cross-validated 

performance metrics are summarized in Table 7. The SVM model showed relatively improved 

predictive accuracy when using selected wavelengths compared to PLSR model for both 

parameters. For weight loss, the model achieved with R² =0 .768, RMSE =5.690, and RPD= 2.080. 

for firmness, the model achieved R² of 0.829, RMSE= 5.380 N, and RPD =2.322. These results 

indicate that focusing on informative spectral regions combined with nonlinear regression models 

enhances model performance. Previous research by Flores-Rojas et al. (2009) applied PLSR to full 

NIR spectral data to estimate shear force in green asparagus, reporting moderate predictive ability 

(R² < 0.67), with limitations largely attributed to the product’s high moisture content and tissue 

heterogeneity. In a similar study, Pérez-Marín et al. (2002) used NIR spectroscopy to estimate 

cutting force, achieving R² = 0.840.  

 

Figure 20: PLSR (top ) and SVM (bottom) models for prediction of weight loss (left) and 

firmness (right) using full spectra (left) and selected wavelengths (right). 

 

 



 
 

62 
 

 

Table 7. Cross-validated performance metrics of the PLSR and SVM models for predicting 

asparagus weight loss and firmness (N = 684, LV = 5) 

Datasets 
  Parameters 

R2  RMSE  RPD  
NIR Mean  CI95min CI95max Mean CI95min  CI95max Mean CI95min CI95max 

PLSR 

Full   
WL 0.744  0.738 0.751 6.054 5.973  6.136  1.949 1.923  1.975 

Firmness  0.788  0.780  0.795  5.899  5.748  6.049  2.138 2.105  2.172  

Selected  
WL  0.739  0.733  0.745  6.077 6.006 6.149  1.936 1.912  1.960  

Firmness  0.792  0.787  0.798  5.799  5.688  5.910  2.165  2.137  2.193  

 

SVM 

 
 

Full  
WL  0.724  0.717   0.732  6.585  6.505  6.664  1.788  1.768 1.807 

Firmness 0.731 0.719  0.743  7.966  7.760  8.171  1.568   1.545  1.591 

Selected   WL  0.768   0.762  0.775  5.690  5.616  5.764 2.080  2.053 2.108  
  Firmness  0.829  0.822  0.835  5.380  5.270  5.491  2.322  2.281  2.362 

 

6.1.5 Laser light backscattering imaging (LLBI) 

LLBI Profile Description  

The amplitude, shape, and FWHM parameters of the LLBI profile were extracted using the modified 

Cauchy and Gaussian distribution function models. Curve fitting across all sample images (n = 344) 

showed that the Cauchy model (R² = 0.78, RPD = 2.29) outperformed the Gaussian model (R² = 

0.53, RPD = 1.96). As illustrated in Fig. 21, the modified Cauchy model provided a superior fit to 

the observed LLBI data, particularly for amplitude and Shape, and was therefore selected for further 

analysis 
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Figure 21: Sample illuminated images with a line laser at 635 nm (top left), followed by the 

grayscale image (top right), and curve-fitted profile using Gaussian and Cauchy models 

(bottom). 

Fig. 22 shows that amplitude and shape parameters consistently increase with both time and 

temperature. Amplitude values indicate scattering intensity, while the shape parameter reflects light 

distribution size within the asparagus tissue. These changes are linked to physiological processes 
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like water loss, cell wall degradation, and tissue senescence. ANOVA results indicate significant 

effects of storage time on amplitude (F = 641.172, p < 0.001) and shape (F = 431.757, p < 0.001). 

Pearson’s correlation analysis (Table 8) shows strong correlations between amplitude and shape (r 

= 0.816), amplitude and weight loss (r = 0.809), and shape with firmness (r = 0.928). Previous 

studies support that moisture loss and structural degradation affect light distribution in tissues, with 

firmer vegetables blocking light penetration (Romano et al., 2008; Hashim et al., 2018) 

 

 

 

Figure 22: Changes in amplitude and shape parameters of modified  Cauchy-Fitted LLBI Profiles 

for green asparagus at different storage times and temperatures 
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Table 8: Pearson’s correlation coefficient between variables (n=344). 

Variables  Amplitude, RU Shape, mm WL, % Firmness 

Amplitude, RU 0.816 0.809 0.654 

Shape, mm s 
 

0.843 0.928 

WL, % s s 
 

0.748 

Firmness, N s s s 
 

‘s’ , p<0.001 

Classification of storage time and temperature groups 

To assess the effect of storage time on asparagus quality, an LDA model was developed across all 

temperature groups (Fig. 23). The overall detection accuracy was 85.4% in training and 79.7% in 

validation. Individually, performance improved with temperature: 81.4% at 2 °C, 89.6% at 10 °C, 

and 93.4% at 15 °C (Appendix Fig. 12.1.3). This demonstrates the model’s strong potential for real-

time freshness classification, especially at higher temperatures. Previous studies also support the 

effectiveness of LDA in food quality monitoring. Pham et al. (2023) applied LLBI at 635 nm with 

LDA to starch-coated asparagus, achieving 70.5% accuracy. Lockman (2019) used LDA with LLBI 

at 650–705 nm to classify copepod maturity, reporting 90–95% accuracy. Zulkifli et al. (2019) 

combined LLBI (658 nm) with LDA for banana ripening stages, achieving above 90% accuracy.

 

Figure 23: LDA plot on the training set (left) and the confusion matrix (right) for storage time 

groups of green asparagus   
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 Prediction of Weight Loss and Firmness 

Fig. 24 presents regression results for predicting weight loss and firmness using LLBI parameters 

with Multivariate Regression (MVR) and Multivariate Adaptive Regression Splines (MARS). 

MARS outperformed MVR, showing tighter clustering around the regression line across all 

temperature groups (Table 9). While MVR struggled to balance predictions, especially across 

different temperatures, MARS better captured nonlinear variations, though slight dispersion 

remained at 15 °C. 

 

 

Figure 24: MVR (top) and MARS (bottom) for predicting weight loss (left) and firmness (right). 
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The MARS model showed higher performance compared to the MVR model across all metrics. For 

weight loss, MARS achieved a higher R² = 0.846, RMSE = 6.401% and a higher RPD = 2.558 . 

Similarly, for firmness, MARS showed superior performance with an R² = 0.927, RMSE = 3.266 

N, and RPD = 3.775.  Compared with previous studies, Qing et al. (2007b) reported that firmness 

prediction using frequencies of gray scale intensities and PLSR achieved R2 = 0.81 and RMSECV 

= 5.44 N. This high correlation and reasonable RMSECV indicates good predictive performance, 

although the RMSECV is higher than the RMSEP achieved by MARS in this study. Similarly, Peng 

and Lu (2006) also found that LLBI parameters provided good fruit firmness predictions using 

multilinear regression, with r = 0.896 and SEP = 6.50 N. Romano et al. (2012) reported that 

scattering area and light intensity were able to predict moisture content changes of yellow bell 

pepper during drying. The logarithmic regression model was applied, and it achieved R2=0.86 and 

RMSEP = 7.28%. Compared to existing literature, the current study demonstrates that LLBI 

combined with MARS is highly effective in predicting the weight loss and firmness of green 

asparagus during storage. 

Table 9: Cross- validated Performance metrics of MVR and MARS models (n=344) for predicting 

WL and firmness. 

Models Parameters 
R2 RMSE RPD 

Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max 

MVR 
WL 0.746  0.739 0.753 8.161  8.084 8.238 1.983  1.955  2.011 

Firmness 0.886  0.882  0.890 4.178  4.075  4.280 2.939 2.883  2.994 

MARS 
WL 0.846  0.840 0.851 6.401  6.312  6.489 2.558 2.514  2.603 

Firmness 0.927  0.922  0.932 3.266  3.140  3.391 3.775  3.634  3.915 
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6.2 Assessment of quality changes in plums during post-harvest storage  

In this section, the results obtained from physiological assessments, near-infrared (NIR) 

spectroscopy, and beam-based LLBI techniques are presented to evaluate the quality attributes of 

plum fruits during storage. For NIR spectroscopy analysis, a total of 2,965 observations were 

produced by acquiring spectral data from both sides of each fruit using three consecutive scans, 

followed by SNV preprocessing and manual selection of five prominent wavelengths. NDI and QI 

indices were calculated to validate spectral sensitivity.  PLSR and SVM models were developed 

using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-13), respectively. These models 

were calibrated using both the full spectra and selected wavelengths to predict weight loss and 

soluble solids content in green asparagus. For LLBI, 1,276 observations were obtained by capturing 

images at six wavelengths (532, 635, 780, 808, 850, and 1064 nm) from both sides of each fruit. 

Optimized wavelengths were identified through ANOVA and Tukey’s post hoc analysis. LDA and 

MVR models were used to detect the quality changes by classifying samples into their storage time 

groups and predicting firmness, SSC, and skin color, respectively.  The datasets included samples 

from two cultivars (Stanley’ and ‘Elena’) and were split into training and validation subsets. Model 

performance was evaluated using bootstrapped metrics (R², RMSE, RPD) with 95% confidence 

intervals. 

6.2.1 Ethylene production  

The rate of ethylene production increased with both storage temperature (F-value = 321.80 and 

109.11; P < 0.001) and storage time (F-value = 170.42 and 69.03; P < 0.001) in both ‘Stanley’ and 

‘Elena’ plums. However, the ethylene production of plums stored at 1 °C significantly differed from 

those stored at higher temperatures. The ‘Stanley’ plums showed a relatively higher rate of ethylene 

production than the ‘Elena’ plums across the temperature groups (Fig. 25). Similar studies have 

shown that plums, as climacteric fruits, experience a significant increase in ethylene production 

during ripening (Luo et al., 2009; Ha et al., 2023).  In climacteric fruits, ethylene triggers ripening 

events such as fruit softening, chlorophyll breakdown, color development, and sugar accumulation 

(Ravindra and Goswami, 2008). These processes accelerate ripening, producing a relatively short 

shelf life  (Kumar et al., 2018; Manganaris et al., 2008). 
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Figure 25: Ethylene production rate of ‘Stanley’ (left) and ‘Elena’(right) during storage at different 

time and temperature groups. Results are presented as mean ± SD. 

 6.2.2 Respiration rate 

The respiration rate of both ‘Stanley’ and ‘Elena’ plums increased with both storage temperature 

(F-value = 195.04 and 565.46; P < 0.001) and storage time (F-value = 816.80 and 269.53; P < 0.001). 

‘Stanley’ plums stored at 10 °C and 15 °C exhibited higher respiration rates compared to those 

stored at 1 °C and 5 °C, while ‘Elena’ plums showed the highest respiration at 15 °C (Fig. 26 left). 

Respiration peaked at 8 days for ‘Stanley’ and 12 days for ‘Elena’, then declined after 20 days (Fig.  

26 right). Respiration rates ranged from 6.41 to 18.65 mL/ Kg.h influenced by temperature, 

duration, and enzymatic activity. Singh and Khan (2010) reported that respiration increases to a 

peak and declines as the fruit ripens, while lower temperatures suppress ethylene production and 

slow ripening, extending shelf life (Argenta et al., 2003). 

        

 Figure 26: Respiration rate ‘Stanley’ (left) and ‘Elena’(right) during storage at different time and 

temperature groups. Results are presented as mean ± SD 
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6.2.3 Weight loss 

Table 10 summarizes plum weight loss (WL) across different storage temperatures and times. 

‘Stanley’ plums showed greater WL than ‘Elena’, with ANOVA confirming significant effects of 

storage time, temperature, and cultivar (F = 6.06 × 10²⁸, 1.88 × 10²⁸, 1.21 × 10²⁸; p < 0.001). WL 

increased notably after 12 days due to ripening-related water loss, enzymatic activity, and 

respiration. Moisture evaporation led to wilting, shriveling, and softening, consistent with prior 

reports on pre- and post-ripening weight loss (Guerra and Casquero, 2008; Zora and Ahmad, 2010; 

Van Dijk et al., 2006). Changes in water molecular structure also correlate with WL, as reported in 

previous studies (Gibertoni et al., 2022; Vitalis et al., 2023). 

Table 10: Weight loss (Mean ± SD) of ‘Stanley’ and ‘Elena’ plums at different storage temperature 

and time. 

Variables  Days Cultivars Storage temperatures    

   1 °C 5 °C 10 °C 15 °C 

W
ei

g
h
t 

L
o
ss

, 
%

 

0 Stanley 0 ± 0.00Aa 0 ± 0.00Aa 0 ± 0.00Aa 0 ± 0.00Aa 

 Elena 0 ± 0.00Aa 0 ± 0.00Aa 0 ± 0.00Aa 0 ± 0.00Aa 

4 Stanley 1.37 ± 0.11Ab 1.61 ± 0.09Bb 1.96 ± 0.10Cb 2.63 ± 0.12Db 

 Elena 1.74 ± 0.20Ab 2.14 ± 0.16Bb 2.66 ± 0.19Cb 3.25 ± 0.20Db 

8 Stanley 2.48± 0.13Ac 3.28 ± 0.12Bc 3.92 ± 0.12Cc 4.70 ± 0.15Dc 

 Elena 3.15 ± 0.19Ac 4.00 ± 0.29Bc 5.14 ± 0.19Cc  6.03± 0.21Dc 

12 Stanley 3.66 ± 0.12Ad 4.71 ± 0.17Bd 6.19 ± 0.18Cd NA 

 Elena 4.38 ± 0.17Ad 5.19 ± 0.17Bd 7.30 ± 0.16Cd 8.99 ± 0.21Dd 

16 Stanley 4.72 ± 0.19Ae 6.23 ± 0.14Be NA NA 

 Elena 5.50 ± 0.18Ae 6.59 ± 0.26Be 10.2 ± 0.23Ce 12.95 ± 0.22De 

20 Stanley 5.91 ± 0.19Af 7.84 ± 0.19Bf NA NA 

  Elena 7.13 ± 0.18Af 8.71 ± 0.15Bf NA NA 

 24 Stanley NA NA NA NA 

  Elena 9.31 ± 0.20Ag 11.24 ± 0.19Bg NA NA 
  NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences 

between storage temperatures for a given cultivar and storage time. Different lower-case letters within a column indicate 

significant differences between a given cultivar's storage times at a given cultivars and temperature (Tukey’s test; p < 

0.05). 

The variation in plums' weight loss is influenced by storage temperature and duration, which 

accelerate enzymatic activities that enhance ripening due to increased respiration rates. Singh and 

Khan (2010) describe how oxygen consumption and carbon dioxide production rates initially 

increase, peak, and then decline as the fruit becomes overripe.  Additionally, ripening leads to water 

loss in the fruit, causing undesirable effects like wilting, shriveling, and softening (Guerra and 

Casquero, 2008; Li et al., 2022). This is likely due to reduced metabolic activity and decreased 

evaporation, which help preserve the fruit's structural integrity over a longer period (Crisosto et al., 

2004; Wang et al., 2016). 
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6.2.4 Firmness 

Table 11 shows that plum firmness declined steadily over time for both cultivars, with samples 

stored at 15 °C exhibiting the fastest softening, followed by 10 °C. ANOVA confirmed significant 

effects of storage time (F = 8992.12), temperature (F = 1927.80), and cultivar (F = 3142.06; p < 

0.001). Firmness loss is driven by ripening, enzymatic degradation of cell wall polysaccharides 

(polygalacturonase and pectinesterase), and moisture loss, while lower temperatures slow these 

processes by preserving cell wall integrity and delaying pectin breakdown. Genetic traits and 

physiological maturity also contribute to cultivar-specific differences in firmness. Previous studies 

reported that firmness variability is strongly influenced by cultivar genetics, ripening stage, and 

enzymatic activity, with lower storage temperatures mitigating softening and extending shelf life. 

For instance, Cetin and Saraçoğlu (2023) and Hend et al. (2009) highlighted the role of genotype 

and maturation in texture changes, He et al. (2022) and Wang et al. (2016) emphasized the role of 

enzymatic cell wall degradation, while Geng et al. (2020) and Manganaris et al. (2008) 

demonstrated that cold storage preserves firmness by slowing pectin breakdown. Moisture loss 

during storage also contributes to softening and textural deterioration (Huang et al., 2018; Mishra 

et al., 2022). 

Table 11: Firmness (Mean ± SD) of ‘Stanley’ and ‘Elena’ plums at different storage temperatures 

and time 

Variables  Days Cultivars Storage temperature 

  
1 °C 5 °C 10 °C 15 °C 

 

 

 

 

 

 

Firmness, 

N 

0 Stanley 45.76 ± 6.98Aa 45.76 ± 6.98Aa 45.76 ± 6.98Aa 45.76 ± 6.98Aa  
Elena 44.16 ± 7.88Aa 44.16 ± 7.88Aa 44.16 ± 7.88Aa 44.16 ± 7.88Aa 

4 Stanley 30.62 ± 8.62Ab 19.16 ± 4.58Bb 15.07 ± 3.48Cb 9.65 ± 2.42Db  
Elena 37.27 ± 7.22Ab 30.11 ± 5.60Bb 26.51 ± 6.95Cb 25.29 ± 7.88Db 

8 Stanley 29.70 ± 4.14Ac 13.70± 3.77Bc 10.53 ± 3.64Cc 7.16 ± 1.88Dc  
Elena 36.95 ± 8.15Ac 24.50 ± 5.67Bc 15.78 ± 5.69Cc 11.50± 5.46Dc 

12 Stanley 29.16 ± 4.69Ac 10.25 ± 1.96Bd 7.39 ± 1.63Cd NA  
Elena 32.60 ± 5.47Ad 21.38 ± 6.84Bd 14.14 ± 4.41Cd 7.82 ± 4.77Dd 

16 Stanley 25.96 ± 4.77Ae 8.16 ± 1.55Be NA NA  
Elena 30.09 ± 8.90Ae 14.25 ± 2.83Be 10.30± 2.47Ce 7.60 ± 1.94De 

20 Stanley 30. 35 ± 5.86Af 8.47 ± 2.27Bf NA NA  
Elena 32.77 ± 3.06Af 13.90 ± 3.91Bf NA NA 

24 Stanley NA NA NA NA  
Elena 10.71 ± 1.64Ag  9.39 ± 4.16Bg NA NA 

       

 NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences 

between storage temperatures for a given cultivar and storage time. Different lower-case letters within a column indicate 

significant differences between storage times at a given cultivar and storage temperature (Tukey’s test; p < 0.05). 
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6.2.5 Soluble solid content (SSC) 

Table 12 shows that SSC significantly increased with both storage time and temperature, with 

ANOVA revealing significant effects for both factors (F = 124779.90 and 4632.10; p < 0.001), as 

well as significant differences between cultivars (F = 250701.30; p < 0.001). Higher storage 

temperatures accelerated SSC increases, as seen in samples stored at 15 °C, which also had the 

highest SSC values. SSC is an indicator of sweetness, and ripeness of the fruits (Guo et al 2019; Lie 

et al 2016) and it can be influenced by sugar concentration, moisture loss, and cultivar 

characteristics (Kodagoda et al., 2021; Wang et al., 2016). Cold storage prolongs shelf life by 

reducing metabolic processes and evaporation, while higher temperatures lead to faster ripening and 

potential spoilage (Crisosto et al., 2004; Manganaris et al., 2008; Guerra and Casquero, 2008). 

 

Table 12: SSC (Mean ± SD) of ‘Stanley’ and ‘Elena’ plums at different storage temperatures and 

time 

 

Variable 

 

days 

 

Cultivar 

   

   Storage temperatures   
1 °C 5 °C 10 °C 15 °C 

 

 

 

 

 

 

SSC, % 

0 Stanley 14.50± 0.07Aa 14.50 ± 0.07Aa 14.50 ± 0.07Aa 14.50 ± 0.07Aa  
Elena 14.95 ± 0.22Aa 14.95 ± 0.22Aa 14.95 ± 0.22Aa 14.95 ± 0.22Aa 

4 Stanley 14.49 ± 0.08Ab 14.96 ± 0.11Bb 15.19 ± 0.02Cb 15.34 ± 0.05Db  
Elena 15.71 ± 0.09Ab 16.04 ± 0.18Bb 16.48 ± 0.09Cb 16.76 ± 0.17Db 

8 Stanley 15.5 ± 0.08Ac 15.69 ± 0.07Bc 15.9 ± 0.07Cc 16 ± 0.00Dc  
Elena 17.19 ± 0.14Ac 17.55 ± 0.05Bc 17.72 ± 0.07Cc 17.87 ± 0.05Dc 

12 Stanley 16.05 ± 0.05Ad 16.19 ± 0.02Bd 16.36 ± 0.1Cd NA  
Elena 17.9 ± 0.02Ad 18.06 ± 0.05Bd 18.1 ± 0Cd 18.1 ± 0.00Dd 

16 Stanley 16.54 ± 0.05Ae 16.73 ± 0.07Bd NA NA  
Elena 18.26 ± 0.1Ae 18.54 ± 0.11Be 18.79 ± 0.08Ce 19 ± 0.08De 

20 Stanley 16.96 ± 0.12Af 17.59 ± 0.22Be NA NA  
Elena 19.36 ± 0.14Af 19.71 ± 0.09Bf NA NA 

24 Stanley NA NA NA NA  
Elena 20.11 ± 0.15Ag 20.2 ± 0Bg NA NA 

NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences between 

storage temperatures for a given cultivar and storage time. Different lower-case letters within a column indicate significant 

differences between storage times for a given cultivar and storage temperature (Tukey’s test; p < 0.05) 



 
 

73 
 

6.2.6 Peel Color 

Table 13 shows the chroma and hue values of two plum cultivars measured using the Minolta 

Chroma Meter during storage at different temperatures and times. Both chroma and hue were 

significantly affected by storage conditions, with greater changes observed at higher temperatures. 

The ‘Stanley’ cultivar experienced a greater decline in chroma, and more noticeable hue shifts 

compared to ‘Elena’, indicating its higher sensitivity to temperature-induced color changes. Lower 

temperatures (1 °C and 5 °C) slowed hues and chroma changes, but ‘Stanley’ showed a sudden 

decline in hue at 5 °C, likely due to water loss and advanced ripening. Two-way ANOVA confirmed 

that chroma was most influenced by cultivar (F = 1498.539), followed by storage time (F = 

1433.125), and temperature (F = 273.025), while hue was primarily affected by time (F = 1803.530) 

and temperature (F = 244.233). The reduction in chroma and hue shifts were attributed to 

biochemical changes during ripening, with anthocyanin accumulation playing a role in hue changes, 

particularly under cold stress (Wang et al., 2020; Robertson et al., 1991). Furthermore, the presence 

and transformation of pigments such as chlorophylls, carotenoids, and anthocyanins during the 

ripening process lead to changes in skin or peel color (Muhammad et al., 2024). 

 

  Table 13: Changes in chroma and hue angle of the two plum cultivars at different storage times 

and temperatures.  

 

Variables  Days Cultivars Storage temperatures    

   1 °C 5 °C 10 °C 15 °C 

C
h

ro
m

a 

0 Stanley 9.82 ± 2.10Aa 9.82 ± 2.10Aa 9.82 ± 2.10Aa 9.82 ± 2.10Aa 

 Elena 9.032 ± 0.83Aa 9.032 ± 0.83Aa 9.032 ± 0.83Aa 9.032 ± 0.83Aa 

4 Stanley 7.28 ± 0.32Ab 6.75 ± 0.52Ab 6.63 ± 0.43Cb 5.72 ± 0.47Bb 

 Elena 7.83 ± 0.50ABb 8.24 ± 0.65Ab 7.07 ± 0.49BCb 6.73 ± 0.31Cb 

8 Stanley 5.89± 0.36Ac 5.66 ± 0.26Ac 5.44 ± 0.26Bc 4.39± 0.47Bc 

 Elena 6.78 ± 0.19ABc 7.21 ± 0.11Ac 5.83 ± 0.26BCc 5.82± 0.27Cc 

12 Stanley 5.01 ± 0.25Ad 4.74± 0.26Ad 4.44 ± 0.60Bd NA 

 Elena 6.20 ± 0.16ABd 6.67 ± 0.20Ad 5.10 ± 0.17BCd 4.95 ± 0.29Cd 

16 Stanley 3.91 ± 0.34Ae 4.02± 0.22Ae NA NA 

 Elena 5.61 ± 0.17ABe 6.05 ± 0.13Ae 4.24± 0.51BCe 3.86 ± 0.49Ce 

20 Stanley 2.73 ± 0.45Af 3.01± 0.46Af NA NA 

  Elena 5.05 ± 0.19ABe 5.54 ± 0.18Ae NA NA 

 24 Stanley NA NA NA NA 

  Elena 4.26 ± 0.47ABf 4.57 ± 0.40Af NA NA 

H
u
e 

an
g
le

, 

d
eg

re
e 

0 Stanley 40.05 ± 27.29Aa 40.05 ± 27.29Aa 40.05 ± 27.29Aa 40.05 ± 27.29Aa 

 Elena 20.9 ± 17.89Aa 20.9 ± 17.89Aa 20.9 ± 17.89Aa 20.9 ± 17.89Aa 

4 Stanley 17.88 ± 15.03Ab 30.71 ± 10.71Bb 19.68 ± 12.97Cb -21.98 ± 22.17Db 

 Elena 6.67 ± 4.41Ab -20.2± 17.96Ab -37.53± 26.63BCb -36.36 ± 28.91Cb 
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NB: “NA” indicates data were not available; Different upper-case letters within a row indicate significant differences 

between storage temperatures for a given cultivar and storage time. Different lower-case letters within a column 

indicate significant differences between storage times for a given cultivar and storage temperature (Tukey’s test; p < 

0.05) 

 

In addition, the changes in the skin color parameters of plums can be attributed to pigment 

transformations driven by biochemical processes such as anthocyanin accumulation and chlorophyll 

degradation. Anthocyanin accumulation, which increases during ripening, is a key driver of the 

bright red coloration in plums, as highlighted by Fiol et al. (2021). Furthermore, chlorophyll 

degradation during ripening enhances the visibility of anthocyanins, leading to the transition from 

green to red (Wang et al., 2022). Among anthocyanins, cyanidin 3-O-glucoside plays a dominant 

role in the color change process, while carotenoids contribute secondarily by imparting yellow to 

orange hues (Chen, 2015). Additionally, plums are rich in carotenoids, with their concentrations 

significantly higher in the skin compared to the flesh (Kaulmann et al., 2016; Rezaei Kalaj et al., 

2016; Deng et al., 2023). 

 

6.2.7 NIR spectroscopy 

 Spectral description   

Fig. 27 illustrates how storage temperature influences the spectral properties of plum samples. The 

raw NIR spectra (900–1700 nm) in Fig. 27(a) show distinct absorbance trends based on temperature, 

with notable changes after SNV correction in Fig. 27(b), particularly around ~1650 nm. The 

standard deviation of the SNV spectra in Fig. 27(c) highlights sensitive wavelengths (909, 1064, 

1323, 1447, and 1650 nm), with the reference wavelength at 1532 nm showing the minimum 

standard deviation across the spectra. The wavelengths exhibiting significant variation may reflect 

physiological and biochemical changes in plums. These variations are likely linked to temperature-

induced changes in metabolic activities and water dynamics. Previous studies indicate that 

8 Stanley 38.81 ± 17.42Ac 26. 27 ± 6.19Bc -16.14 ± 14.42Cc -20.87 ± 27.65Dc 

 Elena -8.47± 6.12ABc -35.47 ± 21.41Ac -48.42 ± 22.24BCc -45.57 ± 25.60Cc 

12 Stanley 37.65 ± 17.09Ad 18.08 ± 4.32Bd 2.23 ± 19.29Cd NA 

 Elena - 9.43± 8.28ABd -39.28 ± 14.27Ad -56.63± 16.47BCd -66.04 ± 15.25Cd 

16 Stanley -1.18 ± 28.42Ae -13.8 ± 12.69Be NA NA 

 Elena -22.18± 12.18ABe -44.9± 10.20Ae -52.67± 18.53BCe -60.32 ± 14.63Ce 

20 Stanley 12.58 ± 25.44Af -11.98± 13.76Bf NA NA 

  Elena -4.63 ± 2.92ABe -37.55± 12.37Ae NA NA 

 24 Stanley NA NA NA NA 

  Elena -13.60 ± 3.29ABf -50.26± 8.10Af NA NA 
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absorbance at these wavelengths corresponds to specific chemical bonds, with variations associated 

with sugar concentration, water absorption, and the overtones of C-H and O-H bonds (Paz et al., 

2008; Walsh et al., 2020).  Moreover, the NIR absorbance at 975 nm is useful for determining SSC 

(Mireei et al., 2010), while bands at 1330 nm, 1376 nm, and 1418 nm are associated with water 

absorption (Paz et al., 2008 ;Walsh et al., 2020). In addition, NIR peaks at 900, 906, and 910 nm 

with sugar-related third overtone absorption in fresh fruits and vegetables (Walsh et al., 2020; Wang 

and Xie, 2014). Variations in absorbance intensity at 1060 nm have been linked to changes in sugar 

concentration (Qing et al., 2007a), while intensity variations around 1680 nm are associated with 

the degradation organic compounds   

 

 

Figure 27: Full NIR raw spectra (a), Normalized spectra by SNV (b), and the standard deviation 

(b) of the normalized spectra (c)  

The two-way ANOVA for plum NDI_1532 and QI (Table 14) shows that NDI_1532 is more 

sensitive to temperature across all wavelengths, with higher F-values compared to QI. While both 

parameters are significantly affected by time, NDI_1532 shows greater sensitivity at longer 

wavelengths (1447 and 1650 nm), reflecting its ability to capture structural changes over time. 

Shorter wavelengths like 909 nm and 1064 nm exhibit consistent responses for both indices, but the 
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effects are greater at longer wavelengths. NDI_1532 is more influenced by cultivar differences, 

especially at 1447 nm and 1650 nm, while QI is unaffected by cultivar variations. These findings 

suggest that NDI_1532 is more suitable for structural assessment, while QI is better for biochemical 

quality monitoring. 

Table 14: Effects of storage time, temperature, cultivar, and their interactions on NDI_1532 and QI 

indices across selected wavelengths (N = 2994) 

Parameters  Factor 909 nm 1064 nm 1323 nm 1447 nm 1650 nm  
 

 

 

Plum NDI 

Time (A) 114.874s 112.518s 93.052s 167.692s 251.372s 

Temperature (B) 25231.130s 25347.471s 25107.612s 16536.74s 21561.623s 

Cultivar (C) 2.792 0.321 2.371 55.71s 37.745s 

A × B 12168.716s 12099.964s 12341.622s 8719.549s 11202.127s 

A × C 0.235 0.144 2.522 
 

0.073 

B × C 54.225s 53.622s 38.065a 18.812a 40.114s 

A × B × C  6.505s 6.574s 8.628a 5.865s 7.911s 

 

 

 

Plum QI 

Time (A) 5343.298s 5470.481s 5394.634s 4815.256s 5266.945s 

Temperature (B) 4.821 5.997s 5.743s 8.972s 6.01s 

Cultivar (C) 0.103 0.252 0.014 0.734 0.13 

A × B 2335.702s 2362.81s 2382.915a 2073.68s 2394.11s 

A × C 250.616s 243.783s 255.313a 241.384a 261.289s 

B × C 6.495s 6.445s 5.986s 8.188s 6.217s 

A × B × C  223.425s 229.678s 231.384s 205.436s 230.844s 

‘s’   p < 0.001 

Pearson’s correlation analysis (Table 15) showed significant relationships between NIR absorbance 

at selected wavelengths, weight loss (WL), and soluble solids content (SSC) (p < 0.001). Shorter 

wavelengths (909, 1064, 1323 nm) were strongly positively correlated with each other and with 

1650 nm, while 1447 nm showed a strong negative correlation with these wavelengths. SSC 

correlated positively with WL (r = 0.868) and with absorbances at 1650 nm (r = 0.803), 1323 nm (r 

= 0.741), 1064 nm (r = 0.681), and 909 nm (r = 0.647), indicating sugar accumulation during 

ripening. In contrast, SSC was negatively correlated with 1447 nm (r = −0.734), reflecting 

sensitivity to structural changes and water loss in fruit cells. Similarly, WL showed strong positive 

correlation with 1650 nm (r = 0.822) and negative correlation with 1447 nm (r = −0.755), 

highlighting moisture loss and cell wall degradation during maturation. These results align with 

previous reports demonstrating that NIR absorbances reflect fruit water content, sugar 

accumulation, and ripening-induced structural changes (Cen and He, 2007; Walsh et al., 2020). 
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Table 15. Pearson’s correlation values among parameters (N = 2964)  

 SNV normalized NIR readings 
SSC WL 

 909 nm 1064nm 1323 nm 1447 nm 1650 nm 

909 nm  0.974 0.966 -0.915 0.930 0.647 0.693 

1064 nm s  0.984 -0.943 0.956 0.681 0.715 

1323 nm s s  -0.962 0.978 0.741 0.757 

1447 nm s s s  -0.962 -0.734 -0.755 

1650 nm s s s s  0.803 0.822 

SSC, % s s s s s  0.868 

WL, % s s s s s s  
NB: Upper triangle shows the correlation values, while the bottom triangle shows the significance level.   ‘s’ p < 

0.001 

Prediction of WL and SSC 

Fig. 28 compares the performance of SVM models in predicting SSC and WL of ‘Stanley’ and 

‘Elena’ plums using full NIR spectra versus selected wavelengths, with PLSR and SVM metrics 

summarized in Table 16. For SSC, PLSR improved from R² = 0.661, RMSE = 1.130%, RPD = 

1.717 (full spectra) to R² = 0.747, RMSE = 0.981%, RPD = 1.991 (selected wavelengths). For WL, 

PLSR improved from R² = 0.676, RMSE = 1.768%, RPD = 1.758 to R² = 0.738, RMSE = 1.582%, 

RPD = 1.954. The SVM model outperformed PLSR, with SSC prediction reaching R² = 0.844, 

RMSE = 0.781%, RPD = 2.499 and WL prediction R² = 0.917, RMSE = 0.884%, RPD = 3.492 

using selected wavelengths. This demonstrates that SVM combined with feature selection provides 

superior accuracy for estimating SSC and WL in plums. 

Table 16: Cross-validation performance metrics of SVM and PLSR models for predicting SSC and 

WL using full NIR spectra and spectra at selected wavelengths (n=2964) 

Category Model 
R2 RMSE RPD 

Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max 

F
u

ll
 

sp
ec

tr
a 

SSC PLSR 0.661 0.657 0.665 1.130 1.119 1.140 1.717 1.706 1.728 

WL PLSR 0.676 0.672 0.680 1.768 1.751 1.785 1.758 1.746 1.769 

SSC SVM 0.720 0.716 0.725 1.052 1.040 1.064 1.857 1.843 1.871 

WL SVM 0.727 0.722 0.731 1.648 1.627 1.670 1.869 1.853 1.886 

S
el

ec
te

d
 

w
av

el
en

g
t

h
s 

SSC PLSR 0.747 0.741 0.752 0.981 0.967 0.994 1.991 1.969 2.013 

WL PLSR 0.738 0.734 0.742 1.582 1.565 1.599 1.954 1.938 1.969 

SSC SVM 0.844 0.840 0.848 0.781 0.768 0.794 2.499 2.463 2.535 

WL SVM 0.917 0.916 0.919 0.884 0.876 0.894 3.492 3.459 3.526 
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Figure 28: SVM prediction results for SSC (left) and WL (right) using full NIR spectra (top) and 

selected wavelengths (bottom). 

The SVM model performance observed in this study aligns with previous reports (Table 17). For 

SSC prediction, Costa and Lima (2013) achieved R² = 0.817 for the ‘Angeleno’ plum, while a 
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combined PLSR model across nine cultivars reached R² = 0.720, RMSEP = 0.860. Golic and Walsh 

(2006) reported multi-variety PLSR models with R² > 0.85 for plums. SSC prediction in 

‘Bergarouge’ apricots using PLSR reached R² = 0.96, RMSEP = 1.0% (Camps and Christen, 2009), 

and Carlini et al. (2000) predicted SSC in ‘Ravenna’ cherries with R² = 0.97, RMSEP = 0.490% 

using 600–1100 nm spectral data. Moreover, a PLS-SVM model predicted pear firmness with R² = 

0.893, RMSEP = 0.476 (Li et al., 2013), confirming the effectiveness of SVM-based approaches for 

fruit quality assessment. 

Table 17. Performance of SSC prediction of plums in single and multi-cultivar models. 

Plum cultivar  

 

LV Model R2 RMSEP Reference 

Pioneer  10 

PLSR 

0.959 0.520 

(Costa and 

Lima, 2013) 

Pioneer, Laetitia, and Angeleno  12 0.946 0.610 

Laetitia  10 0.905 0.453 

Angeleno  10 0.817 0.569 

African Pride, Black Diamond, 

Fortune, Laetitia, Larry Anne, 

Late Royal, Prime Time, 

Sapphire, and Songold 

n.a. PLSR 0.720 0.860 

 

(Paz et al., 

2008) 

 

Black Diamond, Golden Globe, 

Golden Japan, Fortune, Friar, 

and Santa Rosa 

n.a. PLSR 0.68 1.22 
(Pérez-Marín 

et al., 2010) 

Plums  5 PLSR 0.66 1.13 * 

n.a. – information is not available ; ‘*’ -current study 

In this study, both SVM and PLSR models using the spectra at selected wavelengths for WL and 

SSC showed performance comparable to the results reported in the literature for multi-cultivar 

models.  For example, for SSC, multi-cultivar models established with full spectra showed results 

like those observed in previous studies by Paz et al. (2008) and Pérez-Marín et al. (2010) (Table 

17). The promising performance of the presented models confirms the effectiveness of wavelength 

selection and highlights the usability of the multi-spectral NIR technique for postharvest quality 

assessment of plums. 

https://www.sciencedirect.com/science/article/pii/S0925521410001511?via%3Dihub#bib0125
https://www.sciencedirect.com/science/article/pii/S0925521410001511?via%3Dihub#bib0125
https://www.sciencedirect.com/science/article/pii/S0925521410001511?via%3Dihub#bib0125
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6.2.8 Laser Back Scattering Imaging  

Description of backscattering profiles 

Fig. 29 shows sample images illustrating the change in diffuse reflectance of  ‘Elena’ plums at 

different storage conditions across all wavelengths. The light attenuation varied by wavelength both 

before and after storage. Before storage, the diffusively illuminated surface areas were marked with 

green circles. After storage, the images were marked with orange (1 °C) and red (15 °C) circles. 

Higher light attenuation was observed in plums stored at higher temperatures. This could be due to 

the increased enzymatic activity at higher temperatures, leading to increased SSC and degraded 

pigments, which affect the light absorption properties. 

 

Figure 29: Changes of diffuse reflectance of ‘Elena’ plums under different storage conditions at all 

wavelengths. 

Selection of sensitive wavelengths  

Fig. 30 shows changes in amplitude and shape values across six wavelengths, with a significant 

impact of wavelength on both metrics, as confirmed by a one-way ANOVA (F = 623.86 for 

amplitude, F = 2321.50 for shape, p < 0.001, n = 7825).The amplitude values derived from the 

Cauchy distribution fitting of the LLBI backscatter profiles exhibited their highest values at 532 

nm, with a gradual decrease observed across longer wavelengths (780–1064 nm). This trend likely 

reflects higher scattering efficiency and detector sensitivity at shorter wavelengths. In contrast, the 

shape parameter reached its minimum at 635 nm and showed an increasing trend in the 780–850 

nm range, suggesting a wavelength-dependent variation in the spectral width or distribution of the 
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backscattered signal. These observations suggest the importance of 532 nm and 780 nm as potential 

wavelengths for monitoring plum quality during postharvest storage. , the change  at  these 

wavelengths correlate with firmness, soluble solids content (SSC), and color changes, agrees with 

literature indicating 532 nm is useful for evaluating skin color (Chen, 2015;Rezaei Kalaj et al., 

2016)  and 780 nm for assessing firmness and SSC (Baranyai and Zude, 2009; Romano et al., 2011; 

Hashim et al, 2014).  

    

 

Figure 30: Change of the amplitude (left) and shape (right) values across different wavelengths 

during postharvest storage. Different letters on top of the boxes indicate significant differences 

(Tukey's post-hoc test, p < 0.05). 

Fig. 31 compares the performance of the Gaussian and Cauchy distribution models for fitting LLBI 

profiles of plums at 532 nm and 780 nm. The modified Cauchy distribution (CD) with amplitude 

and shape of profile parameters demonstrated relatively better predictive power, achieving average 

values of R² above 0.96 and RPD above 4.5, in comparison to the Gaussian distribution, which 

achieved average R² below 0.70 and RPD below 4.5. Excluding top and bottom 5% of the intensity 

range led to a decline in both models' performance (Fig. 32 right), but the Cauchy model still 

performed better. Thus, LLBI parameters derived from the fully fitted Cauchy distribution at 532 

nm and 780 nm were used for further analysis. 
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Figure 31: Sample curve fittings of GD (Gaussian Distribution) and CD (Cauchy Distribution) 

functions for the full (left) and partial (right) scattering profile of plum samples at 532 nm (top) and 

780 nm (bottom). 

The two-way ANOVA revealed that storage time, temperature, and cultivar type significantly 

affected amplitude and shape values in LLBI profiles (Table 18), with stronger effects observed at 

780 nm than at 532 nm. The deeper tissue penetration of 780 nm made it more sensitive to internal 

structural changes like moisture loss and tissue softening, while 532 nm was more responsive to 

surface-level properties, including texture and pigmentation (Romano et al., 2012; Rezaei Kalaj et 

al., 2016). As storage time increased, these changes amplified the amplitude sensitivity, with 

stronger interaction effects at 532 nm, especially for surface properties, leading to hue shifts to red 
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and purple tones. The amplitude variation at 532 nm is likely due to changes in anthocyanin content, 

which affects light scattering as the fruit ripens, with cultivar-specific surface attributes influencing 

the results (Rezaei Kalaj et al., 2016). Studies have also shown that carotenoids, identifiable in the 

green/yellow regions, correlate with hyperspectral absorbance data (Falcioni et al., 2023). The 

sharper LLBI profile peaks observed during fruit ripening result from changes in the fruit’s internal 

structure and composition (Mozaffari et al., 2022; Rezaei Kalaj et al., 2016). As fruits ripen, cell 

wall breakdown and softening create air spaces, leading to sharper peaks. Additionally, changes in 

pigments (such as reduced chlorophyll and increased anthocyanins or carotenoids) affect light 

absorption and scattering (Rezaei Kalaj et al., 2016). Water loss and structural modifications further 

enhance light scattering, contributing to the sharper LLBI peaks (Romano et al., 2008).  

Table 18: F- value of two-way ANOVA results of the measured parameters (n=1276). 

Factor Amplitude Shape  
532 nm 780 nm 532 nm 780 nm 

Storage time (A) 370.80s 263.63s 650.93s 587.51s 

Storage temperature (B) 46.17s 71.75s 160.06s 93.89s 

Cultivar (C) 465.16s 9.80s 412.30s 2611.99s 

Interaction(A×B) 29.79s 20.95s 39.96s 19.89s 

Interaction (A×C) 277.71s 60.11s 171.69s 140.81s 

Interaction (B×C) 28.16s 3.23 8.20s 15.93s 

NB: “s”, p < 0.001 

The Pearson correlation analysis (Table 19) also supports the results of ANOVA. There is strong 

correlation between amplitude and shape coefficients at 532 nm (r = 0.787). The amplitude at 780 

nm showed positive correlation with firmness (r = 0.607) and chroma (r = 0.661), but a negative 

one with SSC (r = -0.609), suggesting that increased SSC increase absorption and decrease peak 

intensity. The shape at 532 nm was highly correlated with chroma (r = 0.748) and firmness (r = 

0.600). Shape at 780 nm was most strongly associated with firmness (r = 0.720) and chroma (r = 

0.670) and was inversely associated with SSC (r = -0.570). Correlations meet expectations that 

plums with higher firmness have lower SSC and higher chromaticity. Previous studies have also 

reported that photon scattering is influenced by the density of tissue structure (Romano et al., 2011; 

Hashim et al., 2014). Although significant correlation was found between the huge angle and 

selected coefficients, this parameter obtained the lowest values. The observed difference between 

coefficients of 532 nm and 780 nm might be attributed to the rough surface. 
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Table 19: Pearson’s correlation between variables (n=1276) 

 Amplitude Shape, mm   

Variables 532nm 780nm 532nm 780nm Firmness, N SSC, % Chroma Hue, degree 

Amplitude (532nm) 
 

0.680 0.787 0.239 0.434 -0.498 0.541 -0.102 

Amplitude(780nm) s 
 

0.859 0.355 0.607 -0.609 0.661 0.419 

Shape(532nm) s s 
 

0.451 0.600 -0.604 0.748 0.229 

Shape(780nm) s s s 
 

0.720 -0.570 0.670 0.256 

Firmness, N s s s s 
 

-0.824 0.817 0.351 

SSC, % s s s s s 
 

-0.858 -0.377 

Chroma s s s s s s 
 

0.375 

Hue, degree s s s s s s s 
 

NB: correlation values are above the diagonal, while significance indicators are below (s’, p< 0.05) 

 

Classification of sample groups 

Linear Discriminant Analysis (LDA) models using four LLBI parameters at 532 nm and 780 nm 

detected storage time-related quality changes in ‘Stanley’ and ‘Elena’ plums. Using all temperature 

groups, accuracy was 61.3% for ‘Stanley’ and 77.3% for ‘Elena’ ( Fig. 32). When calibrated for 

individual temperatures, accuracy increased to 92.3% for ‘Stanley’ and 91.9% for ‘Elena’ at 1 °C 

and reached 100% for both cultivars at 5 °C (Appendix Fig. 12.1.7). These results demonstrate that 

LLBI effectively captures cumulative structural and compositional changes during storage. 

Previous studies reported similar trends: mid- to late-ripening stages in fruits like apples and 

watermelons show pronounced structural changes, enabling precise classification (Romano et al., 

2011; Mohd Ali et al., 2017). Zulkifli et al. (2019) classified banana ripeness using LLBI at 658 nm 

and LDA with 94.2% accuracy, while Lorente et al. (2015) classified orange quality at 532 nm with 

93.4% accuracy. 
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Figure 32: LDA plot on training set and the confusion matrix for storage time groups of ‘Stanley’ 

(top) and ‘Elena’ (bottom) plums. 

 

Prediction of quality parameters  

The regression plots (Fig. 33) and validation results (Table 20) show the performance of MVR 

models calibrated using both two-cultivar and cultivar-specific datasets. Two LLBI parameters at 

532 nm and 780 nm were used to estimate firmness, soluble solids content (SSC), chroma, and hue. 

For firmness, the two-cultivar model achieved R² = 0.632, RMSE = 3.924 N, and RPD = 1.653, 
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while cultivar-specific models performed better: ‘Stanley’ (R² = 0.769, RMSE = 3.049 N, RPD = 

2.084) and ‘Elena’ (R² = 0.726, RMSE = 3.375 N, RPD = 1.932). The Durbin-Watson test indicated 

autocorrelation (DW = 0.344, p < 2.2e-16). Previous studies reported by Qing et al. (2007b) showed 

apple firmness predicted across multiple cultivars with R² = 0.81, Li et al. (2018) reported firmness 

prediction for ‘Victoria’ plums with R² = 0.73 and RPD = 1.90, and Mohd Ali et al. (2017) achieved 

R² = 0.882 for watermelon firmness using PLSR. Similarly, Lu (2004) and Qing et al. (2008) 

reported R² ≈ 0.87 for apple firmness prediction using light backscattering and PLSR.   

      

            

Figure 33: MVR Prediction of firmness (top-left), SSC (top-right), chroma (bottom-left) and hue 

angle (bottom-right).  
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Similar pattern was observed for SSC with higher accuracy of cultivar specific models for ‘Elena’ 

(R² = 0.818, RMSE = 0.873%, RPD = 2.366) and ‘Stanley’ (R² = 0.769, RMSE = 0.983, RPD = 

2.117). All quality indices confirmed this pattern. Cultivars achieved close performance indices, but 

hue angle showed the largest difference. This might reflect the different color development of the 

cultivars involved.  Qing et al. (2007b) reported that LLBI achieved an R² of 0.79 for SSC prediction 

in ‘Elstar’ apples using PLSR, while Qing et al. (2008) found an R² of 0.88 for SSC prediction in 

‘Pinova’ apples. Additionally, Li et al. (2018) demonstrated that SWIR hyperspectral imaging in the 

wavelength range of 865–1610 nm effectively predicted SSC in ‘Victoria’ and ‘Marjorie’s Seedling’ 

plums. The PLSR model achieved an R² value of above 0.8. On the other hand, the MVR model 

was effective in cultivar-specific models compared to multi-cultivar models for color parameter 

predictions. The model predicted chroma for ‘Elena’ with an R² of 0.866 and hue with an R² of 

0.731 for ‘Stanley’ (Table 20). Similar studies, such as Noh and Lu (2007), reported predicting apple 

skin hue using LLBI with an R² of 0.88, while Udomkun et al. (2014) achieved an R² of 0.92 for 

predicting dried papaya color using MVR. Li et al. (2018) demonstrated that hyperspectral imaging 

in the 600–975 nm range with PLSR could predict plum color with R² values above 0.7 and RMSE 

below 3.16 

Table 20: Cross validation performance metrics of MVR model ‘Stanley’ (n=114) and ‘Elena’ 

(n=141) and all samples together (n=255) 

Variable  Cultivar 
R2 RMSE RPD 

Mean CI95Min CI95Max Mean CI95Min CI95Max Mean CI95Min CI95Max 

Firmness, 

N 

All 0.632 0.624 0.640 3.924 3.875 3.974 1.653 1.635 1.671 

Stanley 0.769 0.753 0.786 3.049 2.900 3.198 2.084 2.011 2.157 

Elena 0.726 0.714 0.738 3.375 3.308 3.443 1.932 1.889 1.974 

SSC, % 

All 0.515 0.507 0.523 1.431 1.417 1.445 1.436 1.424 1.448 

Stanley 0.769 0.757 0.781 0.983 0.954 1.013 2.117 2.056 2.179 

Elena 0.818 0.810 0.826 0.873 0.853 0.893 2.366 2.314 2.418 

Chroma 

All 0.642 0.636 0.649 1.160 1.146 1.175 1.669 1.654 1.685 

Stanley 0.835 0.826 0.844 0.883 0.859 0.907 2.498 2.429 2.567 

Elena 0.866 0.858 0.873 0.634 0.614 0.655 2.766 2.694 2.838 

Hue, 

degree 

All 0.465 0.457 0.473 26.183 25.955 26.411 1.366 1.356 1.376 

Stanley 0.731 0.722 0.740 16.623 16.384 16.863 1.933 1.902 1.965 

Elena 0.521 0.510 0.533 23.073 22.775 23.371 1.442 1.425 1.460 
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6.3. Assessment of quality changes of apples during post-harvest storage  

This section also discusses the results of physiological measurement, NIR spectroscopy, and LLBI 

techniques applied to assess quality attributes of ‘Granny smith’ apples stored under different 

temperature conditions. In NIR spectroscopy analysis, a total of 834 observations were made by 

acquiring spectral data from two locations around equatorial part of each apple using three 

consecutive scans per location. The apples were rotated 180 degrees between scans to ensure full 

surface coverage. Spectral data in the 900–1700 nm range were preprocessed using SNV, and five 

significant wavelengths were manually selected based on the standard deviation of the normalized 

spectra. NDI and QI were computed to assess the sensitivity of selected wavelengths. PLSR and 

SVM models were developed using the R packages ‘pls’ (version 2.8-2) and ‘e1071’ (version 1.7-

13), respectively. These models were calibrated using both full spectra and selected wavelengths to 

predict weight loss, firmness, and SSC. For LLBI, 643 observations were collected using both line-

based (n = 382) and beam-based (n = 261) systems. LLBI images were captured at 635 nm, and the 

resulting profiles were fitted using the Cauchy Distribution model to extract amplitude and shape 

parameters. These parameters were used to develop MVR and SVM models for predicting weight 

loss and firmness. All datasets were randomly divided into training (80%) and validation (20%) 

subsets. Model performance was evaluated using bootstrapped metrics (R², RMSE, RPD) with 95% 

confidence intervals.  

6.3.1 Ethylene production 

The ethylene production rate in apples varied with storage temperature and time (Fig. 34). Apples 

stored in cold storage and then exposed to room temperature showed an increasing trend in ethylene 

production, while those stored at room temperature initially increased and then declined after 2 

weeks. By the end of the storage period, apples in shelf-life conditions produced around 50 µL/ 

Kg.h, while those stored at room temperature had a final rate of 25 µL/ Kg.h. ANOVA indicated 

significant effects of storage temperature and time on ethylene production (F = 171.985 and 

111.961; p < 0.001). Cold storage inhibits ethylene production but enhances the peel's ethylene-

forming capacity, whereas warmer temperatures accelerate ripening and ethylene production. These 

findings align with previous studies showing that ethylene production in apples follows a 

climacteric pattern, with an initial increase, a peak, and a decline (Rudell et al., 2000; Wang et al., 

2022). 



 
 

89 
 

 

Figure 34: Ethylene production rate of ‘Granny Smith’ apples under different storage time and 

temperature       

6.3.2 Respiration Rate 

The respiration rate in apples followed a similar pattern to ethylene production. Apples stored in 

cold storage and then exposed to room temperature showed an increasing respiration rate over time, 

while those stored continuously at room temperature increased initially and then declined (Fig. 35). 

ANOVA indicated significant effects of storage temperature and time on respiration (F = 83.665 

and 49.668; p < 0.001). The highest respiration rate was observed in apples subjected to cold storage 

followed by room temperature shelf life, peaking at 18.50 mL/ Kg.h. Apples stored at cold 

temperatures had lower respiration (11.88 mL/ Kg.h), while those stored at room temperature 

peaked at 6.20 mL/ Kg.h after two weeks before declining. This pattern aligns with the climacteric 

nature of apples, where respiration increases, peaks, and then declines as the fruit ripens (Singh and 

Khan, 2010; Choi and Jung, 2014; Løkke et al., 2011). 
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Figure 35:  Respiration rate of ‘Granny Smith’ apples under different storage time and 

temperature 

 

6.3.3 Weight loss 

The weight loss of apples during storage increased over time (Fig. 36), with apples stored at cold 

temperatures showing lower weight loss than those stored at room temperature. ANOVA confirmed 

significant effects of storage time and temperature on weight loss (F-value = 571.58 and 216.57; p 

< 0.001). Higher temperatures accelerate respiration and water loss, leading to faster weight loss, 

while lower temperatures slow respiration and preserve freshness. Previous studies have shown that 

higher temperatures increase respiration and water loss, and accelerate weight loss (Guerra & 

Casquero, 2008; Singh and Khan, 2010). Cold storage helps to control microbial deterioration and 

preserves fruit (Zhao et al., 2022). However, moving apples from cold storage to room temperature 

further accelerates water loss (Kassebi et al., 2022; Hasan et al., 2024). During this transition, apples 

may experience temperature shock. The sudden temperature change leads to internal condensation 

and increases water activity inside the fruit, creating an environment where the fruit becomes more 

vulnerable to mechanical stress, including vibrations. Additionally, this temperature shift softens 

the fruit, making it more susceptible to physical damage (Wei et al., 2019; Fang and Wakisaka, 

2021). 
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Figure 36: Change of weight loss of ‘Granny Smith’ apple at different storage time and 

temperature. 

6.3.4 Firmness  

The firmness of apples decreased over time in both cold storage and cold-to-ambient storage 

conditions (Fig. 37). Apples stored under cold-to-ambient conditions showed a faster reduction in 

firmness compared to those stored solely at ambient temperatures. ANOVA revealed that both 

storage time and temperature significantly affected firmness (F-value = 1469.8 and 2561.2, 

respectively; p < 0.001), with temperature having a more substantial impact. This may be due to 

temperature-induced changes in cellular structure, such as cell wall breakage and pectin 

degradation. Previous studies suggest that cold-to-ambient storage accelerates ethylene production 

and respiration rates, hastening ripening (Matabura, 2022). Metabolic changes during ripening lead 

to cell wall breakdown and tissue softening (Johnston et al., 2001; Geng et al., 2020). In addition, 

Singh, et al. (2011) reported that prolonged storage can alter the expression of ethylene-related 

genes, leading to increased ethylene production and a reduction in firmness as apples ripen. 
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Figure 37: Change of Firmness of ‘Granny Smith’ apple at different storage time and temperature 

 

6.3.5 Soluble solid content (SSC) 

The SSC of the apples increased over time and with rising temperatures (Fig. 38). ANOVA revealed 

that the effects of storage time and temperature were significant (F-value = 354.3 and 16.8, 

respectively; p < 0.001). The increase in SSC is primarily due to the conversion of starch into sugars 

during ripening. This process is supported by findings by Jha et al.(2012), who noted that SSC in 

apples undergoes cyclic changes: initially decreasing as sugars convert to starch, followed by an 

increase as starch is reconverted into sugars during prolonged storage. In cold storage, the 

conversion of starches to sugars is slowed, and the respiration rate and ethylene production remain 

low. However, when apples are moved to ambient temperature, these processes accelerate, rapidly 

increasing SSC. Therefore, temperature and storage duration can significantly influence sugar 

accumulation in apples, thereby affecting SSC (Cao et al., 2021; Tokala et al., 2022).  
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Figure 38: Change of SSC of ‘Granny Smith’ apple at different storage time and temperature 

 

6.3.6 Peel color 

The hue spectra of ‘Granny Smith’ apples were measured using machine vision, with four apples 

per image and nine images per temperature group. The average hue spectra values for each 

temperature group across the storage period are shown in Fig.39.  The first plot captures the initial 

ripening phase of apples over 0, 2, 4, and 5 weeks. The RMSE values between these intervals are 

relatively low, with the highest being 0.003068 between days 4 and 5 weeks. This suggests that 

color changes are gradual during early ripening. The IP _hue spectra graph shows a steady shift, 

indicating increasing pigmentation and hue transformation.  

Additionally, apples stored at cold temperatures showed minimal color change, though noticeable 

changes developed gradually over time (Appendix Fig. 12.1.9). In contrast, samples kept at ambient 

room temperature for an additional week per measurement exhibited color changes and defects after 

9 weeks. The RMSE values also reflected increasing differences, with the highest (0.004004) 
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observed between the curves at 9 and 27 weeks. Related literature reported that the hue angle 

effectively measures apple color development, with a decrease in hue angle correlating with 

increased red pigmentation in varieties like ‘Fuji’ and ‘Idared’ apples (Ozturk et al., 2015; Bizjak et 

al., 2012).  Whale and Singh (2007) reported these changes are due to chlorophyll degradation and 

increased the concentration of other pigments like carotenoids. The higher storage temperatures 

accelerate enzymatic browning, leading to a more orange-red color (Neri et al., 2019), while 

prolonged storage can cause undesirable color changes (Guerra et al., 2010). Matsumoto et al. 

(2021) observed that physiological disorder retaining green color with low brix values. 
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Figure 39: Changes in skin color and corresponding hue spectra of ‘Granny Smith’ apples under 

different storage durations and temperatures: Hue-saturation at room storage (top ) and cold storage- 

ambient (bottom). 

6.3.7 NIR spectroscopy 

Fig. 40 illustrates the raw spectra (a), spectra normalized by SNV (b), SD of normalized spectra (c), 

and apple NDI_1531 at 1650 nm (d). The higher standard deviation of the normalized spectra was 

observed at 908, 1080, 1358, 1450, and 1650 nm (Fig. 40c), with the reference wavelength at 1531 

nm showing the minimum standard deviation across the spectra. The deviations at these 

wavelengths reflect temperature and time-induced changes in apple quality attributes such as 

firmness, SSC, and weight loss. NDI_1531nm at 1650 nm value at both room temperature (22 °C) 
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and cold storage (2 °C), apples showed a noticeable increase in variability of NDI values in the first 

4 days and 67 days, respectively. This is likely to reflect differences in the physiological responses 

among individual apples. Some fruits had already begun to deteriorate, while others remained intact, 

resulting in a wider spread of values. With prolonged storage, variability decreased as most apples 

reached a more uniform state of deterioration, leading to narrower NDI ranges. The 1650 nm 

wavelength in NIR spectroscopy is highly sensitive to changes in fruit tissue properties, including 

moisture, sugars, organic compounds, and cell structure integrity (Subedi et al., 2012; Walsh et al., 

2020). The two-way ANOVA confirmed significant effects of storage temperature, time, and their 

interaction on both NDI_1531nm at 1650 nm and QI, with particularly high F-values indicating 

strong sensitivity. While 1450 nm and 1358 nm also showed high responsiveness, their effects were 

slightly lower (Table 21). Additionally, absorbance at 908 nm is associated with sugar-related third 

overtone absorption (Paz et al., 2008; Walsh et al., 2020). 

 

 

Figure 40: Full NIR raw spectra (a) Normalized spectra by SNV (b) and the standard deviation 

(b) of the normalized spectra (c) and (d) apple NDI_1531 at 1650 nm. 
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Furthermore, absorbance at 1080 nm is associated with changes in sugar content during ripening, 

driven by C-H stretching vibrations (Eisenstecken et al., 2015; Workman and Weyer, 2007). At 1360 

nm and 1658 nm, variations correspond to firmness loss caused by pectin and cellulose degradation, 

with higher temperatures accelerating softening (Baltazar et al., 2020; Cetin and Kavdir, 2017). 

Absorbance at 1658 nm, linked to C=O stretching vibrations, indicates ripeness and cell wall 

breakdown (Buyukcan and Kavdir, 2017; Wu et al., 2014). At 1450 nm, water absorption changes 

highlight moisture and weight loss during storage, intensified at higher temperatures (Bobelyn et 

al., 2010; Ignat et al., 2014). 

 

Table 21: ANOVA results showing the effects of storage time (days), temperature (℃) and 

interaction on apple NDI_1531 and QI (n=834) 

 Factor 908 nm 1080nm 1358nm 1450nm 1650nm 

Apple 

NDI 

 Storage time (A) 1297.53s 1203.749s 1843.885s 1941.101s 1961.863s 

Temperature(B) 1065.269s 1009.629s 1576.809s 1765.275s 1805.046s 

Interaction (A× B) 2751.275s 2592.136s 3905.025s 4244.262s 4346.353s 

Apple 

QI 

 Storage time (A) 1537.144s 1458.867s 1974.701s 1875.882s 2073.146s 

Temperature(B) 1263.259s 1225.476s 1690.205s 1706.297s 1907.081s 

Interaction (A× B) 3266.739s 3149.307s 4168.064s 4112.744s 4579.414s 
‘s’ p<0.001 

Pearson correlation analysis (Table 22) revealed strong relationships between NIR absorbances and 

apple quality parameters during storage. Significant positive correlations were found between 908 

nm and 1080 nm (r = 0.844), 1080 nm and 1358 nm (r = 0.999), and 1358 nm and 1450 nm (r = 

0.976). The 1650 nm wavelength showed the highest sensitivity, with strong correlations to weight 

loss (r = -0.87) and SSC (r = -0.843). Negative correlations were observed between weight loss and 

908 nm (r = -0.873) and 1080 nm (r = -0.883), capturing moisture loss. Firmness correlated 

positively with 908 nm (r = 0.828) and 1650 nm (r = 0.818), while SSC showed negative correlations 

with 908 nm (r = -0.851) and 1450 nm (r = -0.806). Weight loss and SSC were strongly positively 

correlated (r = 0.936), whereas firmness and SSC showed a moderate negative correlation (r = -

0.754).  
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Table 22. Pearson's correlation values between NIR readings, WL and firmness for apples (n = 834) 

at different storage times and temperatures 

 1080 nm 1358 nm 1450 nm 1650 nm 

WL, 

% 

Firmness, 

N 

SSC, 

% 

908 nm 0.844 0.839 0.809 0.991 -0.873 0.828 -0.851 

1080 nm 0.999 0.974 0.854 -0.883 0.785 -0.843 

1358 nm s  0.976 0.850 -0.879 0.775 -0.836 

1450 nm s s  0.823 -0.835 0.690 -0.806 

1650 nm s s s  -0.87 0.818 -0.843 

WL, % s s s s  -0.824 0.936 

Firmness, N s s s s s  -0.754 
‘s’ p < 0.001; the upper triangle shows the correlation values, while the bottom triangle shows the significance level.   

 

Prediction models 

The comparison of PLSR and SVM models (Table 23) using bootstrapped validation highlights the 

clear advantage of selected wavelength approaches (Fig. 41) over full spectra. SVM consistently 

outperformed PLSR for weight loss, firmness, and SSC. For weight loss, PLSR with selected 

wavelengths achieved R² = 0.893, RMSE = 1.116%, and RPD = 3.046, while SVM further improved 

predictions to R² = 0.955, RMSE = 0.708%, and RPD = 4.85. For firmness, PLSR yielded R² = 

0.823, RMSE = 4.545 N, and RPD = 2.39, whereas SVM achieved R² = 0.958, RMSE = 2.201 N, 

and RPD = 5.09. For SSC, PLSR reached R² = 0.791, RMSE = 0.440%, and RPD = 2.20, while 

SVM significantly outperformed it with R² = 0.937, RMSE = 0.250%, and RPD = 3.93. These 

results indicate that SVM combined with selected wavelengths provides better predictive accuracy 

for apple quality parameters, outperforming both PLSR and full-spectrum approaches. Previous 

studies support these findings, such as Li et al. (2013) using NIR and LS-SVM (R² = 0.891, RMSEP 

= 0.624), Zhang et al. (2021) with Vis-NIR and PLSR (R = 0.82, RMSEP = 0.71), and Ignat et al. 

(2014) with NIR (850–1888 nm) and PLSR (R² = 0.60, RMSEP = 1.2, RPD = 1.7). 
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Figure 41: PLSR (left) and SVM (right) models using a set of selected wavelengths for prediction 

results of WL, firmness, and SSC (top-bottom) 
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Moreover, the selected wavelengths provided significant enhancements in predictive accuracy over 

the full spectra in SSC predictions. With PLSR, the full spectra yielded R2 of 0.488, RMSE of 

0.70%, and RPD of 1.39, while the selected wavelengths achieved an R2 of 0.791, RMSE of 0.44%, 

and RPD of 2.20. For SVM, the selected wavelengths (R2=0.937, RMSE = 0.25%, RPD = 3.93) 

significantly performed better than the full spectra (R2=0.613, RMSE = 0.62%, RPD = 1.56). 

Previous studies have also reported the use of various calibration techniques for predicting the SSC 

of fruits. Fan et al. (2020) predicted apple SSC using NIR and PLSR with R2 = 0.690, RMSEP = 

0.604% and RPD = 1.794. In addition, Li et al. (2013) used NIR and LS-SVM to predict Pears SSC 

with R2 = 0.916 and RMSEP = 0.250%, while Sun et al. (2009) reported on apples SSC predictions 

using LS-SVM with R2 = 0.88 and RMSEP = 0.80%. The current study's SVM model performs 

better in predicting weight loss, SSC, and firmness than that described in the cited literature.  

Table 23: Cross-validated SVM and PLSR model performance metrics of ‘Granny Smith’ apples 

in validation set (n=167) 

Category Model 
R2 RMSE RPD 

Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max 

F
u
ll

 s
p
ec

tr
a 

SSC PLSR 0.488 0.478 0.498 0.697 0.687 0.706 1.395 1.381 1.409 

WL PLSR 0.549 0.539 0.558 2.280 2.255 2.305 1.490 1.475 1.505 

Firmness PLSR 0.600 0.592 0.609 6.830 6.757 6.903 1.583 1.565 1.600 

SSC SVM 0.613 0.603 0.623 0.620 0.609 0.631 1.556 1.538 1.575 

WL SVM 0.692 0.684 0.701 1.910 1.877 1.934 1.782 1.756 1.808 

Firmness SVM 0.756 0.750 0.762 5.430 5.368 5.489 2.004 1.979 2.028 

S
el

ec
te

d
 

w
av

el
en

g
th

s 

SSC PLSR 0.791 0.785 0.798 0.440 0.431 0.450 2.198 2.163 2.234 

WL PLSR 0.893 0.890 0.895 1.116 1.102 1.130 3.046 3.012 3.081 

Firmness PLSR 0.823 0.818 0.829 4.545 4.483 4.608 2.391 2.354 2.428 

SSC SVM 0.937 0.934 0.940 0.250 0.240 0.259 3.933 3.819 4.047 

WL SVM 0.955 0.953 0.958 0.708 0.689 0.727 4.852 4.716 4.987 

Firmness SVM 0.958 0.955 0.962 2.201 2.117 2.286 5.088 4.891 5.284 
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6.3.8 Laser light backscattering imaging (LLBI) 

The modified Cauchy distribution (CD) function provided strong curve-fitting for LLBI parameter 

extraction, with average performance of R² = 0.970 and RPD = 6.08 for the beam system, and R² = 

0.884 and RPD = 3.145 for the line system. In a single laser signal image at 635 nm (Fig. 42), the 

beam-based profile showed a strong fit (R² = 0.97), though filtering increased RMSE (5.50 to 12.63) 

and slightly reduced RPD (5.66 to 5.07). The line-based profile also fit well (R² = 0.98, RMSE = 

3.60), but filtering reduced R² to 0.97 and raised RMSE to 9.26. Full data fitting results were used 

for subsequent analyses. 

 

Figure 42: Sample curve fittings of modified Cauchy Distribution functions for the full (left) and 

partial (right) scattering profiles of apple samples at 635 nm using beam-based LLBI profiles (top) 

and line-based LLBI profiles (bottom). 



 
 

102 
 

Figure 43 shows the changes in amplitude and shape values from the modified CD model for 

different storage systems. The amplitude decreased, while the shape increased, for apples stored at 

room temperature and cold-ambient temperature. Different measurement approaches lead to 

differences in shape and amplitude values. This is due to changes in apple structure during storage 

(Baranyai and Zude, 2009; Lorente et al., 2015). Room temperature accelerates structural and 

biochemical changes, resulting in higher shape values more rapidly than cold-ambient storage. The 

changes in shape and amplitude have been related to chlorophyll loss and carotenoid pigment 

emergence, which reduce scattering widths at 635 nm (Hashim et al., 2014; Rezaei Kalaj et al., 

2016). As apples ripen, diminished chlorophyll absorption and increased carotenoids lead to greater 

backscattering, reflecting ripening progress and storage conditions (Rezaei Kalaj et al., 2016). These 

structural changes alter light absorption and scattering behaviors (Hashim et al., 2014; Romano et 

al., 2011). 
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Figure 43: Change of amplitude (left) and Shape (right) from spot based (top) and line (bottom) 

illumination type in ‘Granny smith’ apple samples stored at different storage times and 

temperatures. 

Table 24 shows the two-way ANOVA results for the effects of storage time, temperature, and their 

interactions on amplitude and shape values. Storage temperature significantly impacted amplitude 

(F = 477.176. Similarly, time and temperature interactions were significant for amplitude (F = 

45.506) and shape (F = 292.44). 

Table 24: Two- way ANOVA results showing the effects of storage time, temperature, and their 

interaction on the amplitude and shape values (N= 643). 

     

Factor LLBI parameters 

 

Amplitude                          Shape 

Time (A) 471.252s 1590.99 s 

Temperature (B) 477.176 s 14582.91 s 

Interaction A  B 45.506 s 292.44 s 

                  ‘s’ p<0.001 

Table 25 shows significant correlations between storage time, firmness, weight loss, and LLBI 

parameters. Amplitude positively correlated with firmness (r = 0.828 with beam, r = 0.684 with 

line) and negatively with weight loss (r = -0.883 with beam, r = -0.891 with line) and shape (r = -

0.968 with line), indicating that higher amplitude reflects firmer fruits with less moisture loss and 

surface shrinkage. Shape negatively correlated with firmness (r = -0.726 with beam, r = -0.745 with 
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line) and positively with weight loss (r = 0.946 with both beam and line), suggesting that ripening-

induced softening and moisture loss alter fruit structure. 

Table 25: Pearson’s correlation coefficients between storage time, firmness, weight loss, and 

LLBI profile variables measured using beam-based (n=261) and line-based (n=382) laser systems. 
 

System Amplitude Shape, mm Firmness, N Weight 

loss, % 

Time, 

days 

Amplitude beam 
 

-0.928 0.828 -0.883 -0.560  
line 

 
-0.968 0.684 -0.891 -0.380 

Shape, mm beam s 
 

-0.726 0.946 0.328  
line s 

 
-0.745 0.946 0.477 

Firmness, N beam s s 
 

-0.762 -0.836  
line s s 

 
-0.720 -0.869 

Weight loss, % beam s s s 
 

0.443  
line s s s 

 
0.525 

NB: upper triangle shows the correlation values, while the bottom triangle shows the significance level (s’ p< 0.05) 

 

 

Prediction models  

The performance of MVR and SVM models was evaluated for predicting weight loss and firmness 

of ‘Granny Smith’ apples using LLBI-derived parameters under spot and line illumination (Fig. 44, 

Table 26). SVM consistently outperformed MVR, effectively capturing both surface and subsurface 

changes. With three LLBI parameters from modified Cauchy fitting, SVM achieved high predictive 

accuracy for weight loss (R² > 0.96) and firmness (R² > 0.91). Line illumination enhanced weight 

loss prediction (R² = 0.971, RMSE = 0.608%, RPD = 6.035), while spot illumination gave the best 

firmness prediction (R² = 0.940, RMSE = 2.626 N, RPD = 4.100). Earlier studies reported lower 

accuracies: Lu (2004) used neural networks (R² = 0.87) for firmness; Qing et al. (2007b, 2008) 

applied PLSR with R² of 0.81–0.87 for ‘Elstar’ and other apples; Peng and Lu (2005) employed 

twelve Lorentzian parameters across four wavelengths, reaching r = 0.76 and SEV = 6.01 N; and 

Romano et al. (2011) predicted apple moisture during drying with a linear LLBI model (R² = 0.89, 

RMSECV = 8.9%). In comparison, the present SVM-based approach shows superior performance, 

with the beam-based SVM best for firmness (R² = 0.969, RMSEP = 1.919 N, RPD = 5.728) and the 

line-based SVM best for weight loss (R² = 0.972, RMSEP = 0.603%, RPD = 6.115 
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Figure 44: MVR (left) and SVM (right) prediction results for weight loss (top) and firmness 

(bottom) using datasets from beam and line LLBI. 

Table 26: Cross-validated performance metrics of MVR and SVM models using LLBI parameters 

from beam and line datasets (n₁ = 261, n₂ = 382) for predicting weight loss and firmness in ‘Granny 

Smith’ apples. 

 

  R2 RMSE RPD 

Models Parameters  Mean CI95min CI95max Mean CI95min CI95max Mean CI95min CI95max 

 WL, % 0.906  0.903  0.909 1.216 1.194 1.238 3.219  3.164  3.275 

MVR  0.903  0.901  0.905 1.127  1.116  1.1384 3.210 3.177  3.244 
 Firmness, N 0.705  0.693 0.7166 6.042  5.907  6.177 1.805 1.766  1.843 
  0.798 0.791 0.805 4.184 4.144 4.224 2.237 2.202 2.273 
 WL, % 0.968 0.966 0.970 0.679 0.658  0.701 5.781  5.616 5.945 

SVM  0.971  0.970  0.973 0.608 0.593  0.624 6.035  5.886 6.183 
 Firmness, N 0.940  0.937 0.944 2.626 2.551 2.701 4.100 3.982 4.218 
  0.912 0.909 0.916 2.769 2.720 2.817 3.390 3.321  3.458 
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7. NEW SCIENTIFIC RESULTS 

This study evaluated the application of non-destructive techniques to monitor quality changes in 

green asparagus, plums, and apples during post-harvest storage. The main scientific results from 

each practical experiment are presented as follows: 

1. An optimum set of wavelengths (907, 923, 1069, 1442, and 1696 nm) was selected for the 

quality assessment of green asparagus during storage and shelf life. Linear Discriminant 

Analysis (LDA) using the selected wavelengths successfully detected the quality change in 4 

days storage interval. The model achieved classification accuracies of 60.4% at 2 °C, 74.3% at 

10 °C, and 76.9% at 15 °C.  After 12 days, temperature-induced changes were detected with 

87.7% accuracy. The SVM model demonstrated enhanced predictive accuracy compared to the 

PLSR model when calibrated using NIR spectra at selected wavelengths for predicting weight 

loss and firmness. The SVM model achieved R² = 0.768, RMSE = 5.690%, and RPD = 2.080 

for weight loss, while for firmness, it achieved R² = 0.829, RMSE = 5.380 N, and RPD = 2.322.  

 

2. Line-based Laser Light Backscattering Imaging (LLBI) analysis with a single laser module 

emitting at 635 nm was applied, and diffusely illuminated surfaces were captured from three 

positions (base, middle, tip) on asparagus spears. LLBI parameters of amplitude, shape, and 

FWHM were extracted using Cauchy curve fitting. The LDA model based on LLBI parameters 

detected quality changes in asparagus spears after 4 days across all temperature groups with 

79.7% accuracy. For individual temperatures, accuracy was 81.4% at 2 °C, 89.6% at 10 °C, and 

93.4% at 15 °C. MVR and MARS models were developed to predict weight loss and firmness. 

MARS outperformed MVR, and predicted weight loss with R² = 0.846, RMSE = 6.401%, RPD 

= 2.558, and firmness with R² = 0.927, RMSE = 3.266 N, RPD = 3.775. 

 

3. An optimum set of wavelengths (909, 1064, 1323, 1447, 1650 nm) was selected for quality 

assessment of plum fruits during storage and shelf life. Using these wavelengths, PLSR 

predicted weight loss with R² = 0.738, RMSEP = 1.582%, and RPD = 1.953, and SSC with R² 

= 0.740, RMSEP = 0.980%, and RPD = 1.991. However, performance improved with the SVM 

model, which achieved R² = 0.917, RMSEP = 0.844%, and RPD = 3.492 for weight loss, and 

R² = 0.844, RMSEP = 0.780%, and RPD = 2.498 for SSC. 
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4. The beam-based LLBI technique with a Cauchy distribution function fitted on the signal of 

532 nm and 780 nm was able to detect quality changes of plum. Plums stored at 1 °C showed 

detectable quality changes within 4 days interval, with LDA models achieving classification 

accuracy of 92.3% for ‘Stanley’ and 91.9% for ‘Elena’. For storage at 5 °C, the models reached 

100% accuracy across all time points and cultivars. Cultivar-specific regression models 

outperformed combined models. The best cross-validation results were observed for ‘Elena’ 

(Minolta chroma-based chroma: R² = 0.866, RMSE = 0.634; SSC: R² = 0.818, RMSE = 

0.873%) and ‘Stanley’ (firmness: R² = 0.769, RMSE = 3.049 N; Minolta chroma-based hue 

angle: R² = 0.731, RMSE = 16.62°). This showed the potential of LLBI combined with 

multivariate models (i.e. LDA, MVR) for real-time quality assessment in postharvest handling 

and cold chain management. 

 

5. Optimized wavelengths (908, 1080, 1358, 1450, and 1650 nm) were used to assess storage 

quality and shelf-life of ‘Granny Smith ’apples. The SVM model showed better performance 

than PLSR, predicting weight loss (R² = 0.955, RMSEP = 0.708%, RPD = 4.852), firmness (R² 

= 0.958, RMSEP = 2.201 N, RPD = 5.088), and SSC (R² = 0.937, RMSEP = 0.249%, RPD = 

3.932). 

 

6. LLBI technique demonstrated the effectiveness of both line and beam laser configurations on 

apple quality assessment. The SVM with three LLBI parameters extracted from the modified 

Cauchy fitting on the LLBI profile, the system demonstrated good predictive performance for 

both weight loss (R² > 0.96) and firmness (R² > 0.91). Hence, line-based LLBI combined with 

SVM enhanced its performance in predicting weight loss (R² = 0.971, RMSEP = 0.608%, RPD 

= 6.035), while the beam laser setup yielded the best results for firmness prediction (R² = 0.940, 

RMSEP = 2.626 N, RPD = 4.100).  
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8. POSSIBLE APPLICATIONS AND SUGGESTIONS 

8.1 Possible applications 

The empirical findings of NIR and LLBI techniques demonstrate their potential applications for 

monitoring quality changes in fresh fruits and vegetables. Some of these applications are described 

as follows: - 

− NIR and LLBI enable real-time quality monitoring and sorting of fruits and vegetables based 

on firmness, weight loss, SSC, and color, helping reduce waste. 

− These techniques can predict shelf life and optimize storage conditions (temperature and 

duration) for produce such as asparagus, plums, and apples. 

− NIR and LLBI allow nondestructive assessment of ripeness and overall quality in stores or 

distribution centers, supporting optimal harvest timing and ensuring high-quality produce 

for consumers. 

8.2 Limitations and further research- 

8.2.1 Limitations 

− The seasonal nature of green asparagus, plums, and apples significantly limits the replication 

of experimental work for each crop. These fruits and vegetables are only available fresh 

during specific months of the year (i.e., April to June for green asparagus and July to October 

for plum and apple), which restricts the timeframe for conducting experiments that require 

fresh samples to accurately assess their quality and shelf life. 

− The humidity, and gas composition for each treatment was not evaluated due to laboratory 

limited facility and spaces  

− The maturity, cultivar differences, internal structural composition variation, and exposed 

storage temperature affect the consistency and accuracy of measurements, particularly for 

LLBI and NIR models.  

8.2.2 Further research 

− Expand the application of these nondestructive techniques to other fruits and vegetables. 

This would increase the applicability of these technologies to a broader range of agricultural 

products and make them more valuable for large-scale industrial adoption.  
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9. SUMMARY 

Apples, plums, and green asparagus are widely cultivated crops, with Hungary being a major 

producer. These fruits and vegetables are essential to a nutritious diet, offering health benefits 

including a reduced risk of cancer and cardiovascular diseases(Głąbska et al., 2020; Wang et al., 

2014). However, maintaining their quality during post-harvest storage poses challenges, as elevated 

temperature and long storage time accelerate degradation, leading to weight loss, reduced firmness, 

discoloration, and microbial infestation. Non-destructive methods such as NIR spectroscopy and 

LLBI were effective in predicting quality changes. Linear regression models like PLSR and MVR 

showed promising results, while non-linear models like SVM and MARS demonstrated better 

performance in predicting weight loss, SSC, firmness, and skin color. The full NIR spectra collected 

from green asparagus, plums (i.e., ‘Stanley’,’ Elena’), and apples (i.e., ‘Granny Smith’ ) were 

pretreated using SNV, and the standard deviation of the normalized spectra was computed. 

Wavelengths were manually selected based on the local maxima peaks. The multispectral technique, 

utilizing selected NIR wavelengths (907, 923, 1069, 1442, and 1696 nm), was applied to evaluate 

the firmness and weight loss of green asparagus. Similarly, five wavelengths (909, 1064, 1323, 

1447, and 1650 nm) were selected to assess the weight loss and SSC of plums. Additionally, 

multispectral data from five selected wavelengths (908, 1080, 1358, 1450, and 1650 nm) were used 

to evaluate weight loss, firmness, and SSC in ‘Granny Smith’ apples. 

A beam- and line-based LLBI system at different wavelengths was applied to monitor the quality 

changes of green asparagus, plums, and ‘Granny Smith’ apples. The beam-based LLBI system, 

using a multispectral range (532-1064 nm), was optimized based on ANOVA applied to LLBI 

parameters extracted from the Cauchy distribution function. The data extracted from wavelengths 

of 532 nm and 780 nm were applied as a non-destructive approach to evaluate the firmness, SSC, 

and color of plums during storage. Additionally, the line-based system at 635 nm was used to assess 

weight loss and firmness in green asparagus and ‘Granny Smith’ apples. These findings underscore 

the potential of, NIR spectroscopy, and LLBI, as effective and reliable tools for non-destructive 

quality monitoring of asparagus, plum, and apple during post-harvest storage, enabling better 

preservation and reduced waste. 
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12. APPENDIX 
 

Appendix 12. 1 – Pictures 

 

 

 
 

Figure 12.1.1: Green asparagus before storage (left) and exposed at different storage temperatures 

after 12 days of storage period (right) 

 



 
 

147 
 

 
 

Figure 12.1.2. Changes in firmness of green asparagus after exposure to different temperatures and 

durations, shown at the middle (top) and peak (bottom) positions of the spears. 
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 Figure 12.1.3. LDA plot (left) of the training set and confusion matrix tables (right) for both training 

and validation sets, showing classification performance across storage temperature groups for 

detecting quality changes in green asparagus at 4-day storage intervals using three LLBI parameters. 
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Figure 12.1.4: Photos of plums (top-‘Stanley’, bottom- Elena’) taken before storage (left) and after 

storage (right) at different temperatures. 
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Figure 12.1.5 Changes in sample plums' NDI (top) and QI (bottom) with storage time and 

temperature at 1650 nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

151 
 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.1.6. PLSR model predictions for SSC (left) and WL (right) using full spectra (top) and 

selected wavelengths (bottom). 
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Figure 12.1.7: Cross-validated LDA model performance (left) in detecting quality changes in 

plum cultivars ‘Stanley’ and ‘Elena’ stored at 1 °C (top row) and 5 °C (bottom row), based on 

four-day storage intervals. The confusion matrix tables (right) summarize the training and 

validation set accuracies across different storage durations. 

 

 

 
 

Figure 12.1.8 ‘Granny Smith’ apple stored at room, cold and cold-ambient at room temperature  
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Figure 12.1.9 Changes in skin color and corresponding hue spectra of ‘Granny Smith’ apples 

under different storage durations and temperatures: Hue-saturation of samples at storage . 
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Figure 12.1.10 Decayed green asparagus(a) and plums (b) and ‘Granny Smith’ apple(c) during  

Storage 
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Appendix 12.2 – Tables  

 

Table 12.2.1: Performance metrics for the PLS-DA model, including equations for sensitivity, 

specificity, precision, accuracy, and F-score. 

Equation  Description  

Sensitivity  = 
TP

TP +  FN
 

Sensitivity indicates the model's ability to 

correctly identify true positives out of all positive 

observations.  

Specificity = 
TN

TN +  FP
 

Specificity is a measure of a model's ability to 

correctly identify true negatives from all negative 

observations. 

Precision = 
TP

TP +  FP
 

Precision reflects the accuracy of positive 

predictions, measuring the ratio of true positives 

to all predicted positive cases.  

Accuracy  = 
(TP + TN)

(TP +  TN + FP +  FN)
 

Accuracy assesses the overall correctness of a 

model by calculating the ratio of correctly 

predicted cases to the total number of cases. 

 

F-score = 
2 × Precision ×  Sensitivity

Precision +  Sensitivity
 

 

F-score is used for evaluating the model's ability to 

correctly classify both positive and negative cases 

by considering precision and sensitivity. 
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Table 12.2.2: Cross-validation performance metrics of the PLS-DA model using full spectra in 

detecting quality changes of green asparagus within 4-day storage intervals at different storage 

temperature groups. 

2 °C 

Metric 

Training set (n=182) Validation set (n=46) 

Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max 

Accuracy 47.9% 44.4% 51.1% 46.6% 40.4% 53.2% 

Sensitivity 38.9% 27.8% 49.9% 39.0% 24.0% 59.2% 

Specificity 85.0% 84.0% 86.1% 84.8% 81.9% 87.7% 

Precision  49.2% 45.8% 52.3% 47.7% 41.4% 54.2% 

F-score 43.7% 34.8% 55.5% 50.8% 39.1% 66.6% 

Balanced Accuracy 62.5% 56.4% 68.3% 62.0% 54.4% 74.6% 

10 ℃ 

 Training set (n=187) Validation set(n=47) 

Metric Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max 

Accuracy 50.5% 48.1% 53.3% 49.2% 44.5% 54.3% 

Sensitivity 52.1% 40.2% 62.4% 46.7% 28.6% 68.5% 

Specificity 86.7% 85.9% 87.3% 86.5% 84.1% 88.1% 

Precision  50.4% 48.1% 53.1% 49.2% 44.5% 54.2% 

F-score 48.7% 37.4% 56.1% 57.8% 46.3% 71.2% 

Balanced Accuracy 70.9% 64.4% 76.4% 68.7% 57.9% 69.8% 

15 ℃ 

Metric 

Training set(n=177) Validation set(n=45) 

Mean CI95.Min CI95.ax Mean CI95.Min CI95.Max 

Accuracy 52.1% 46.9% 57.9% 51.9% 42.2% 54.4% 

Sensitivity 55.9% 41.6% 62.5% 57.4% 38.9% 74.8% 

Specificity 86.1% 84.4% 88.0% 86.2% 82.2% 90.5% 

Precision  51.0% 45.7% 56.9% 51.0% 41.1% 63.7% 

F-score 57.5% 49.3% 65.6% 57.9% 44.1% 75.3% 

Balanced Accuracy 73.5% 63.6% 77.3% 72.7% 62.3% 74.4% 

 

 

Table 12.2.3: Cross-validation performance metrics of the LDA model using spectra at selected 

wavelengths in detecting quality changes of green asparagus within 4-day storage intervals at 

different storage temperature groups. 

2 °C 

Metric 

Training set (n=182) Validation set (n=46) 

Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max 

Accuracy 63.9% 59.6% 67.5% 60.4% 48.9% 68.9% 

Sensitivity 61.8% 57.4% 66.2% 59.2% 46.4% 69.4% 

Specificity 88.3% 86.8% 89.5% 87.3% 83.1% 90.7% 

Precision  63.1% 58.8% 66.9% 59.8% 48.1% 68.4% 
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F-score 61.9% 57.9% 65.6% 58.6% 47.7% 67.4% 

Balanced Accuracy 75.1% 72.1% 77.7% 73.2% 65.4% 79.6% 

10 ℃ 

 Training set (n=187) Validation set(n=47) 

Metric Mean CI95.Min CI95.Max Mean CI95.Min CI95.Max 

Accuracy 75.5% 72.2% 78.6% 74.3% 66.0% 84.1% 

Sensitivity 76.1% 72.5% 79.6% 75.8% 64.4% 85.7% 

Specificity 91.8% 90.8% 92.9% 91.6% 88.8% 94.9% 

Precison  75.2% 71.8% 78.6% 74.1% 65.1% 84.1% 

F-score 75.4% 72.0% 78.8% 73.9% 63.7% 84.0% 

Balanced Accuracy 83.9% 81.7% 86.3% 83.7% 76.8% 90.3% 

15 ℃ 

Metric 

Training set(n=177) Validation set(n=45) 

Mean CI95.Min CI95.ax Mean CI95.Min CI95.Max 

Accuracy 81.1% 77.7% 84.1% 76.9% 67.4% 88.1% 

Sensitivity 80.4% 76.7% 83.3% 77.0% 65.9% 89.5% 

Specificity 93.8% 92.7% 94.8% 92.5% 89.3% 96.3% 

Precision  80.4% 76.9% 83.4% 76.4% 66.3% 87.8% 

F-score 80.3% 76.8% 83.3% 76.0% 65.6% 87.6% 

Balanced Accuracy 87.1% 84.7% 89.0% 84.7% 77.7% 92.9% 

 

 

 

 

 

 

 

 

 

 


