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1. INTRODUCTION, OBJECTIVES 

The deployment of solar photovoltaic (PV) systems, covering both large utility-scale and small 

residential installations, has been increasing rapidly worldwide. Forecasts show that utility-

scale PV installations will account for approximately 66.7% of the global energy mix by 2050. 

Similarly, the adoption and utilization of residential PV are skyrocketing, as buildings, once 

primary energy consumers, have become energy producers. Declining costs of home batteries 

and PV components are driving consumers to generate their own power locally, reducing their 

grid reliance. However, extensive deployment of these resources challenges the grid, as large-

scale integration requires complex system adaptations. Key issues include intermittency, 

matching, forecast uncertainty, adequacy, and grid stability. To overcome these challenges, 

various solutions have been proposed in the literature, including energy storage, resource 

complementarity, curtailment, resource diversity, and advanced forecasting. 

In the context of large-scale PV integration, it is crucial to evaluate the combined impact of 

multiple enabling tools, including the PV-wind mix, storage capacity and duration, curtailment 

strategies, and balancing requirements. Considering these factors together provides a more 

comprehensive understanding of system design and operation, as focusing on PV alone fails to 

capture the full complexity and interdependencies inherent in modern power system dynamics. 

A well-balanced PV-wind mix can increase RE penetration while reducing storage and 

curtailment compared to standalone PV systems.  Integrating large-scale PV requires diverse 

energy storage solutions, which are essential for enhancing grid flexibility, increasing 

renewable penetration, and accelerating the transition to 100% RE.  

Understanding how penetration, storage capacity and duration, curtailment, PV-wind mix, and 

balancing requirements interact provides key insights for managing the transition to a 

renewable-dominated grid and anticipating its operational requirements. However, empirical 

data showing the interaction between these parameters with sufficient detail does not exist. The 

majority of the current energy transition studies are primarily driven by least-cost optimization 

(techno-economic) models, often overlooking these critical technical factors in favour of 

extensive economic data. This work, therefore, aims to develop a flexible modelling framework 

that assesses interactions among key system design parameters and supports optimized PV 

integration while leveraging the benefits of residential PV and advanced PV generation 

forecasting and optimization.  

The primary objectives of this research are to:  

• Maximize the share of PV in the electricity grid with high reliability and operational 

efficiency, contributing to a sustainable energy system; 

• Investigate the complex interaction among the various system design parameters, such 

as PV-wind mix, storage capacity and duration, curtailment strategies, and balancing 

requirements, and their impact on system design and performance;  

• Formulate a relationship among the major design parameters and system efficiency, 

supported by robust empirical data, to develop practical guidelines for achieving high 

levels of renewable integration. 

• Enhance the contribution of residential PV on the power mix by exploring the impact 

of feed-in constraints on promoting higher local consumption of residential PV in low-

voltage local networks; 

• Leverage machine learning-based PV generation forecasting to enhance real-time 

operational management and optimization of PV systems, mitigating uncertainties and 

limitations inherent in the design phase of PV integration.  
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2. MATERIALS AND METHODS 

This chapter provides a comprehensive explanation of the materials, techniques, and equipment 

utilized.  

2.1. PV integration modelling 

The study is conducted in Eritrea, North East Africa, located in the arid and semi-arid regions 

of the Sahel region in Africa at a latitude between 12 ° 22′ and 18° 02′ N and a longitude 

between 36° 26′ and 43° 13′ E.  

Data for this study were sourced from multiple sources. Solar irradiation and wind speed data 

from Ministry of Energy and Mines, Eritrea, supplemented with data from Photovoltaic 

Geographical Information System (PVGIS) and the Global Wind Atlas (GWA), and load data 

from Ethiopia, along with experimental data.  

The wind and solar generation capacity are evenly distributed between the six locations, with 

the total generation normalized to a peak capacity of 1 MW.   

The generation mix at each hour of the year is calculated according to: 

 𝑃rew(𝑡) = 𝑝 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)),  

where 𝑡  is a time step,  𝑝PV(𝑡)  is the PV production, 𝑝wind(𝑡) is the wind turbine generation,  

𝑟 is the PV ratio, 𝑝  is the minimum no-dump capacity (in MWp). And 𝛼(𝑟) is a factor that is 

determined from a requirement that:  

 ∑ 𝛼(𝑟)(𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡))𝑡 = const ,   

and that 𝛼(0.5) = 1.  

 The net load (𝑃mix), the mismatch between renewable generation and load can be computed 

as: 

 𝑃mix(𝑡) = 𝛽 𝑃nd 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)) − 𝑃load(𝑡),  

where 𝛽 is a multiplier that enables oversizing the generation.   

2.2. Storage modelling 

Based on the generation mix (𝑃mix), the storage is modelled according to:  

 𝑆(𝑡) = {
𝑆(𝑡 − Δ𝑡) +  min ( 𝜂ch 𝑃mix(𝑡), 𝑃room_d(t))  Δ𝑡,        if 𝑃mix ≥ 0

𝑆(𝑡 − Δ𝑡) +  min (
𝑃mix(𝑡)

𝜂dis
, 𝑃room_d(t)) Δ𝑡 ,                 if 𝑃mix < 0

  

 ∀t ∈  |1, 𝑁| , and  S(0) = 0 

where S(𝑡) is the stored energy (MWh) at time 𝑡, Δ 𝑡 = 1 h is the time step,  𝑁 is the number 

of hours in a normal year, 8760, and  𝑃room_dΔ𝑡  is the hourly remaining capacity of storage 

during charging and discharging. 

Seasonal storage is introduced when penetration surpasses 80% curtailment (𝐸p) is greater or 

equal to 5%.  

Seasonal storage 𝑆ℎ at each hour of the year is computed according to 
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 𝑆ℎ(𝑡) = {
𝑆ℎ(𝑡 − Δ𝑡) +  min ( 𝜂ch_s 𝐸p(𝑡), 𝑃room_s(t))  Δ𝑡,   if 𝑃mix ≥ 0

𝑆ℎ(𝑡 − Δ𝑡) −  min (
𝑃u(𝑡)

𝜂dis_s
, −𝑃room_s(t)) Δ𝑡 ,                 if 𝑃mix < 0

  

where:   𝑆maxh is the maximum capacity of the hydrogen storage (seasonal storage),  𝜂ch_s  is 

the electrolyser efficiency,  𝜂dis_s is fuel cell efficiency, and 𝑃room_s is the available capacity at 

each hour  

Renewable penetration (P) is computed according.  

 P =
∑ 𝑃con Δ𝑡

∑ 𝑃load Δ𝑡
,   where  𝑃con(𝑡) is the total consumed RE  

The balancing capacity (unmet demand, 𝑃BC) needed can be computed:  

 𝑃BC(𝑡) = −𝑃mix(𝑡) − min(−𝑃mix(𝑡) , −𝜂dis𝑃room(𝑡)),  

The two newly introduced are: 

The two newly introduced indices are computed according to:  

Storage utilization (SU)  

 𝑆𝑈 =
− ∑(𝑆(𝑡)−𝑆(𝑡−Δ𝑡))

𝑆𝑚𝑎𝑥
,       if   𝑆(𝑡) < 𝑆(𝑡 − Δ𝑡)   

System-use index (SUI) is computed as follows:    

        SUI = SU ×  𝑘 × 𝑚 × 𝑢        

where:  𝑘, 𝑚 𝑎𝑛𝑑 𝑢 – are calculated by dividing annual energy discharge by the total consumed 

RE, average charging power by power capacity (PC), and total consumed RE by total 

RE generation, respectively: 

This study examines the impact of complementarity on system performance by creating various 

solar and wind mix, from which PV ratio of 0%, 50%, and 100% of the total renewable 

generation.   

2.3. Residential PV integration 

For maximizing the integration of direct consumption of residential PV a simplified algorithm 

shown in Fig.1 is employed.  

At the distribution side of the network, the following dispatch algorithms are computed at each 

time step: 

The power that is directly fed (𝑃inj) to the grid at a time, 𝑡 is: 

 𝑃inj(𝑡) =  min (  𝑃gen(𝑡), 𝑃limit),   

where:   𝑃gen is the generated PV power at time 𝑡 and    𝑃limit is the injection limit.  

The battery energy storage (BES) is modelled with charging and discharging efficiencies 

(𝜂ch = 𝜂dis = √0.9), according to  

 BES(𝑡) = BES(𝑡 − 1) + min ( 𝜂ch (𝑃excess(𝑡), 𝑃room(t))) Δ𝑡 − 𝑃bat,inj(𝑡),  

Where,  𝑃excess is the excess generation above the feed-in limit and 𝑃room is the remaining 

capacity,  𝑃bat,inj denotes the constant night-time battery discharge and  BESmax is battery 

rated capacity. 
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Fig. 1. An illustrative diagram showing the PV-battery dispatch strategy in the proposed 

method, with a feed-in limit applied (for June 1st) 

2.4. PV power generation forecasting 

Renewable forecasting is crucial for balancing the grid system and enhancing operational 

performance. Fig. 2 provides the general schematic diagram of the methodological approach 

followed in this section.  

The study utilizes 17 years of hourly weather data from the PVGIS data assimilation platform, 

along with one year of measured data from the actual plant, to develop a forecasting model for 

predicting hours ahead of PV power generation.  Two engineered features were introduced to 

help the models capture seasonal and time-related patterns: the sine and cosine transformations 

of the timestamp.  

 

Fig. 2. Graphical abstract of the proposed methodological approach followed  

This study explores several deep learning models for accurate PV power forecasting, including 

LSTM, GRU, (XGBoost) and SARIMAX, as well as advanced models such as CNN, TCN, 

and transformers and their hybrids by developing three different scenarios.  We employed a 

modified version of the Z-score transformation to align satellite-derived solar data with ground-

based measurements by linking the mean and standard deviation of both datasets. For each 
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value in satellite-derived data, we find the standard normal form using the Z-score 

transformation (z).  

 𝑧 =
𝑃𝑠𝑎𝑡,𝑖− µ𝑠𝑎𝑡

𝜎𝑠𝑎𝑡
  

The rescaled value (𝑃𝑠𝑎𝑡,𝑖
′ ) is computed to match the distribution of the measured data using:  

 𝑃𝑠𝑎𝑡,𝑖
′ = 𝑧 ∗ 𝜎𝑚𝑒𝑎𝑠 + µ𝑚𝑒𝑎𝑠  

where: 𝑃𝑠𝑎𝑡,𝑖 is satellite-derived hourly PV generation, µ𝑠𝑎𝑡  is mean of the satellite-derived 

data, 𝜎𝑠𝑎𝑡  is the standard deviation of the satellite-derived data, µ𝑚𝑒𝑎𝑠 is the mean of the 

measured data, and 𝜎𝑚𝑒𝑎𝑠  standard deviation of the measured data.  

Reinforcement Learning (RL), RL is used to optimize battery dispatch in PV integration. The 

agent learns to manage energy flows-charging, discharging, and curtailment-based on hourly 

PV and wind generation and load demand.  

2.5. Experimental setup for power quality analysis 

The experiment was conducted in the Szent István Campus (coordinates 47°35ʹ40.7ʺN and 

19°21ʹ42.3ʺE), at the grid-connected PV system located in front of the Aula building. 

Measurements were taken at the point of common coupling, where the transparent glass 

modules of the monocrystalline Si connected to the grid through the SolarEdge inverter. 

Connectors were installed to safely facilitate measurements using a standard power quality 

analyser, the Wally ‘A’ Power Quality Analyzer as shown in Fig 3. The PV system, with a total 

capacity of 3.3 kW, is installed at an inclination of 400 and an azimuth of 1800, directly facing 

south. The specification of the PV system and inverter is given in Appendix A7. Fig. 3.4 shows 

the complete set of measurement setups.  

Measurements were conducted on October 12 and 13, 2025, under partly sunny conditions. 

These dates were deliberately selected to assess the impact of varying weather conditions on 

power quality.  

 

Fig. 3. Power quality analyser measurement setup 
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3. RESULTS AND DISCUSSION  

This chapter presents the detailed results of the newly developed methodological framework 

for integrating large-scale PV, which aligns with the thesis objective.   

3.1. Generation and demand variability 

Fig. 4 illustrates how mismatch power varies with changes in the PV fraction when RE-to-load 

ratio of 1 is applied. The vertical axis represents the frequency, indicating the number of hours 

within each 100 MW mismatch interval.  

 

 Fig. 4.  Variable generation mismatch as a function of PV fraction and frequency 

Understanding these variabilities is crucial for designing a system that addresses all the 

uncertainties of a VRE-dominated grid. The optimum ratio should have high frequency at lower 

mismatch or low frequency at higher mismatch.  

Table 1 outlines the key components of selected renewable energy scenarios designed to study 

system design issues and associated performance.  

Table 1. Description of the different scenarios analysed  

Scenarios Names  Solar share (%) Wind share (%) Hours of storage  Storage 

technology 

Solar only 100 0 1,2,4,6,8,10 Li-ion battery 

50-50 scenario 50 50 1,2,4,6,8,10 Li-ion battery 

Wind only 0 100 1,2,4,6,8,10 Li-ion battery 

 

3.2. Renewable use without storage 

For mathematical simplicity and reference, the analysis starts with determining the no-dump 

capacity, the threshold above which the system requires storage or curtailment or both. The 
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lowest no-dump capacity occurs in the wind-only scenario (100% wind), while the highest is 

observed in the 100% PV ratio (solar-only scenario).  

Fig. 5 shows the penetration and curtailment for different PV-wind mix when no storage is 

employed. A wind-dominated mix achieves higher penetration across all RE-to-load ratios and 

thus experiences lower curtailment. The maximum penetration, even though the gain over the 

wind-only scenario was small, is reached at around 20-25% of the PV ratio when curtailment 

remains less than 30%.  

 
Fig. 5. Renewable energy a) penetration and b) curtailment as function PV ratio  

3.3. Renewable use with energy storage application 

Fig. 6 shows how the penetration and curtailment vary with varying PV–wind mixes at fixed 

storage capacity of 0.41 average daily demand.  The impact of storage showed a marked 

difference as RE to load ratio increases to 1.1 at 0.41 average daily demand, where we already 

observe approximately 96% penetration for only 9% curtailment at 80% PV mix.

 
Fig. 6. Renewable energy:  a) Penetration, b) Curtailment as a function PV ratio, with 0.41 of 

average daily demand 

The interaction between VRE penetration, storage capacity, and curtailment is analysed for all 

scenarios. The effect of curtailment is more dominant in wind wind-only scenario, whereas in 

the solar-only scenario, the impact of storage surpasses that of curtailment. For the 50-50 PV-

                                        a                                                                                         b                                                                             

                                        a                                                                                         b                                                                             
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wind scenario, however, penetration is the result of considerable effect of both storage and 

curtailment. The 50-50 PV-wind scenario demonstrates superior performance, allowing us to 

easily achieve a 90% penetration with reasonable storage and curtailment. The solar-only 

scenario shown in Fig. 7 shows a different pattern from the previous two scenarios, regardless 

of the generation capacity, the penetration remains low at lower storage capacities, with 

significant curtailment. 

 

Fig. 7. Solar-only scenario with 6 hours storage, interaction between, a) Penetration, 

curtailment, and storage capacity, b) Storage capacity and penetration 

Diurnal storage is suitable up to 80-90% penetration level, beyond which seasonal storage 

becomes essential to mitigate seasonal fluctuation. Satisfying the final 10% demand requires 

significantly increased installed capacity and storage as shown in Fig. 8.   

 

Fig. 8. Illustration of renewable energy requirements at different stages of renewable 

penetration 

                                        a                                                                                         b                                                                             
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3.4. Storage utilization and system-use index 

In this section, two new indices were introduced to identify optimal system design parameters. 

Fig. 9 shows that storage utilization is significantly high at low storage capacity, particularly 

for some suitable curtailment ranges. However, the utilization index decreases as the storage 

capacity increases. This observation suggests that deploying large storage for diurnal 

applications with wind energy may not be advisable due to the risk of underutilization.  To 

address these limitations, we introduced a new index called the system-use index (SUI). This 

index provides a more comprehensive evaluation of system performance by linking storage 

utilization and RE consumption and generation with other factors, such as storage 

charging/discharging, and energy and power. System-use index offers deeper insights into how 

effectively storage is integrated within the broader energy system and its role in enhancing the 

system’s ability to manage variability and optimize resource deployment. Fig.3.6b illustrates 

the system-use index for the wind-only scenario. The figure presents various combinations of 

storage and curtailment, along with their corresponding system-use index values.  

 
Fig. 9. System performance indicators: a) Storage utilisation, b) System-use index for 50-50 

wind-solar scenario at 6 hours of storage 

The storage and curtailment combination that leads to the top plateau region of the system-use 

index represents the optimal values that effectively maximize the overall system performance. 

For example, the maximum system-use index value occurs at 8.9 GWh storage capacity and 

16% curtailment at an RE-to-load ratio of 1.1. The Maximum system use index in solar and 

wind-only scenarios requires a higher storage and curtailment, respectively. Overall, it is worth 

noting that the graph in these figures builds a hill with a plateau top, showing several 

combinations with almost equal system benefits as shown in the contour plot Fig. 10.  

Based on these results, I conclude that well-utilized storage capacity of approximately 0.2 of 

average daily demand, coupled with a reasonable curtailment of 16%, can effectively achieve 

a penetration target of 90%.  

The observed SUI value increases (discussed in reference to the peak plateau region of each 

plot) when we increase hours of storage from 1h to 6h, showing that hours of storage value 

impacts system role of the storage. Beyond 6h, SUI gradually decreases. The small decrease 

may be because the high storage hours (like 10 h) allow the system some seasonal role in 

combination with curtailment. Fig. 11 presents SUI values for 2h, 6h and 10h storage for 50-

50 PV-wind scenario. 

               a                                                                                           b 
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Fig. 10. Contour plot of the System Use Index (SUI) across a range of storage capacities and 

curtailment levels for 50-50 PV–wind Scenario 

 

Fig. 11. System–use index: a) 2 hours, b) 6 hours, c) 10 hours 

c 

a      b         
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3.5. Seasonal storage application for seasonal mismatch 

Fig. 12 illustrates the penetration levels achieved when seasonal storage, along with diurnal 

storage with a 6-hour duration, is applied across the three scenarios analysed at a RE-to-load 

ratio of 1.3. When seasonal storage is applied penetration reaches approximately 100% and 

98% at 180 GWh ( equivalent to 4 average daily demand) for the 50-50 and wind-only 

scenarios, respectively. In contrast, the solar-only scenario requires a larger storage capacity to 

achieve the same penetration level. In this scenario, increasing diurnal storage from 0.16 to 0.5 

average daily demand (3.12b) enables 100% penetration at significantly reduced seasonal 

storage.  

Fig. 12. RE penetration using seasonal storage combined with diurnal storage of capacities: a) 

0.16, b) 0.5 times the average daily demand 

3.6. Dispatchable balancing requirements  

Fig. 13 shows the contribution of all system input variables, including balancing generators 

and curtailed energy, over the first week of January (50-50 PV–wind scenario, with a 1.1 RE-

to-load ratio and storage capacity equal to 0.41 times the average daily demand). The balancing 

requirement required for balancing the system reaches up to 80% of the peak load.  

 
Fig. 13. Contribution of all deployed technologies in meeting the demand 

                                        a                                                                      b 
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3.7.  Evaluating the potential of residential PV integration 

The contribution of residential PV to overall renewable integration is quantified by evaluating 

its share in meeting national electricity demand under varying feed-in limits. The annual 

generated power increases with the feed-in limit, peaking when all generated energy is directly 

injected into the grid at a limit of 0.8 kW/kWp and above (Fig. 14).  

 
Fig. 14. Annual average energy generation and energy loss for varying feed-in limit 

Allowing a high feed-in limit increases penetration and decreases losses; however, it can lead 

to an excess of generation over consumption in the local network, resulting in reverse power 

flow. Feed-in limit above 0.7 kW/kWp demonstrates a negligible impact as shown in the figure.  

At the ideal feed-in limit, almost all energy rejected from the grid due to feed-in constraints is 

stored in the battery for nighttime use. Consequently, battery storage below 2 kWh/kWp is 

found sufficient enough to maximize the overall system performance when fitted with this ideal 

feed-in limit, as shown in Fig. 15.  

  

Fig. 15. Penetration as function of Feed-in limit for different pairs of PV capacity and battery 

sizes 
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3.8. Power quality issues in grid-connected PV systems 

In this section, experimental data is analysed focusing on selected parameters – active power 

output, current total harmonic distortion (ThdI), voltage total harmonic distortion (ThdV), and 

voltage deviation (V_Dev) – measured at 3-second intervals to examine the impact of the 

temporal variability of weather conditions on PV power output and its quality.  

Fig.16 presents the active power output normalized to its peak capacity of 3.3 kW. The plot 

shows a gradual increase in power output from morning until noon, followed by a decline in 

the afternoon, and remains zero in the night hours. The maximum PV output recorded was 

approximately 0.72 kW/kWp, corresponding to the normalized peak capacity (P/Prated). This 

shows that there are a few hours in the year when power generation is above 0.72 kW/kWp and 

this offers insignificant benefit to the system in increasing the aggregate annual generation. 

This aligns closely with the findings in Section 4.2.1, which indicate that applying a feed-in 

limit above 0.7 kW/kWp yields negligible gains in annual energy generation. 

 

Fig. 16. The active PV power out as normalized to its peak capacity 3.3 kWp 

To investigate the total harmonic characteristics of the PV inverter at various operating 

conditions of power generation, the generated power relative to its rated capacity (P/Pr) is 

divided into three categories: lightly loaded inverter (0-0.3), medium loaded inverter (0.31 - 

0.5), and heavily loaded inverter (0.51- 0.74). The current harmonic distortion exhibits a strong 

correlation with inverter loading; however, the data provides limited evidence on how voltage 

harmonic distortion is affected by inverter loading.  

Fig. 17 illustrates the relationship between current total harmonic distortion (ThdI) and active 

power. The figure shows a strong correlation between the two parameters. This indicates that 

inverter loading has a greater impact on ThdI than on the other power quality indicators, such 

as ThdV and voltage deviation. In heavily loaded inverters, ThdI remains relatively low, with 

only a few points exceeding the permissible limit of 5%. However, as the inverter load 

decreases, ThdI gradually exceeds this limit and rises further, reaching values of around 10%. 

The change in ThdI becomes more pronounced under lightly loaded conditions. This suggests 

that inverter loading plays a decisive role in the injection of current harmonics into the grid, 

with a strong caution that lightly loaded (underutilized) inverters contribute significant 

waveform distortion. 
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A cubic polynomial function fits the curve well, achieving an R² value of 0.926. At higher 

loading levels, inverter behaviour becomes more stable, likely because MPPT and control 

mechanisms operate more actively and consistently when PV generation is higher. These 

results highlight the importance of designing inverters that maintain robust control and 

predictable power-quality performance across a wide range of loading conditions. 

Accordingly, the total current harmonic distortion (𝑦) as a function of active power (𝑥) of the 

three inverter loading categories can be reliably estimated using a single cubic polynomial 

model: 

𝑦 = 1.3546 + (−0.2973) 𝑥 + (0.0239) 𝑥2 +(-0.00063) 𝑥3  

 

Fig. 17. Active power versus total harmonic distortion under different loading conditions 

The greater variation in ThdI observed in lightly loaded inverters implies that they are more 

sensitive to harmonic distortion when underutilized. Lightly and medium-loaded inverters 

exhibit higher variability per unit change in active power, whereas heavily loaded inverters 

show less variability. By associating these distinct regression behaviours with specific sites, 

utilities can tailor inverter deployment strategies and better anticipate grid stress based on 

localized loading profiles. 

This suggests that inverter behaviour becomes more stable at higher loading levels, likely due 

to more effective control operation under these conditions. Consequently, oversizing an 

inverter for a given design can negatively impact power quality – not only cost – because an 

oversized inverter tends to operate predominantly under medium or light loading, where 

harmonic distortion is more pronounced. These findings highlight the need for inverter designs 

that ensure stronger control capability and more predictable interactions among power-quality 

parameters across varying load conditions. 
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3.9. Advancing large-scale PV integration with accurate forecasting 

In this section an improved forecasting model is proposed to maximize PV penetration. The 

performance of various models (LSTM, GRU, CNN, XG Boost, SARIMAX, TCN, and 

informer and their hybrid) in predicting uni-step and multi-step PV generation is compared by 

developing different scenarios. To address the data scarcity challenges, a modified Z-score 

transformation was introduced. The results demonstrate a significant improvement compared 

to those obtained without the modified Z-score transformation. The findings further reveal that 

the proposed transformation improves forecasting accuracy by up to 24% in LSTM-GRU and 

29.4% for Informer in six-step prediction, based on RMSE. Such improved forecasting 

enhances grid stability, optimizes energy dispatch, and offers a scalable solution for regions 

with limited measurement infrastructure. Fig. 3.15 showed the performance comparison of the 

selected models.  

 

Fig. 3.15. Performance comparison of the three models' prediction of actual PV generation 

across four seasons in 1-step prediction horizons 

The study demonstrates that satellite-trained models effectively predict PV generation, 

overcoming data scarcity issues by utilizing extensive satellite datasets. The findings show the 

importance of considering weather variability for reliable forecasting, especially in multi-step 

predictions, which are vital for long-term renewable energy planning.  Moreover, the RL-based 

optimization showed an improved performance compared to the rule-based approach, 

demonstrating its capability in optimizing renewable integration.  
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4. NEW SCIENTIFIC RESULTS 

This section presents the new scientific findings from this research work as follows: 

1. A methodological approach for integrating large-scale PV 

I have introduced a novel methodological framework aimed at maximizing PV penetration in 

the power grid. This approach systematically examines the interplay between key system 

design parameters and overall efficiency by varying these parameters to generate diverse 

operational scenarios and assess their sensitivities. For the first time, it explicitly incorporates 

the interactions among critical factors–such as PV–wind mix, storage capacity, storage 

duration, penetration level, curtailment, and balancing capacity needs–across a wide range of 

scenarios, thereby providing deeper insights into system design and performance. 

The methodological framework I developed, which is the basis for designing and modelling 

the system with all its interacting system parameters, is presented as follows:  

The different mixes of solar PV and wind-generated power can be computed by: 

𝑃rew(𝑡) = 𝑃nd 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)),     

 𝛼(𝑟) is a factor that is determined from a requirement that:  

∑ 𝛼(𝑟)(𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡))𝑡 = const ,    

and that 𝛼(0.5) = 1.  

The no-dump capacity is, consequently, determined according to: 

𝑃nd = min
𝑃load(𝑡)

  (𝑟 𝑝PV(𝑡)+(1−𝑟) 𝑝wind(𝑡))
 ,        

The mismatch energy between renewable generation and load can be computed as: 

𝑃mix(𝑡) = 𝛽 𝑃nd 𝛼(𝑟) (𝑟 𝑝PV(𝑡) + (1 − 𝑟) 𝑝wind(𝑡)) − 𝑃load(𝑡),    

where 𝛽 is a multiplier that enables oversizing the generation. Based on the values extracted 

from these empirical relationships, the model computes the optimal range of various parameters 

to ensure an optimal system efficiency that ultimately maximizes PV integration.  

2. Storage utilisation and system-use index 

I have introduced new and novel indices that identify the optimal system design parameters, 

and an optimal range of these parameters yields an optimal system performance. These indices 

provide deeper insights into the effectiveness of curtailment and storage integration within the 

broader energy infrastructure, enhancing the system's capacity to manage variability and 

optimize resource utilization.  

The empirical relationship developed for defining the system boundaries is:  

𝑆𝑈 =
− ∑(𝑆(𝑡) − 𝑆(𝑡−Δ𝑡))

𝑆𝑚𝑎𝑥
,    if 𝑆(𝑡) < 𝑆(𝑡 − Δ𝑡)      

The system-use index (SUI) is computed as follows:   

SUI = SU 𝑘 𝑚 𝑢       

where 𝑘, 𝑚 and 𝑢  are calculated by dividing annual energy discharge by the total consumed 

RE, average charging power by power capacity (PC), and total consumed RE by total RE 

generation, respectively:  
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𝑘 =
− ∑(𝑆(𝑡) − 𝑆(𝑡−Δ𝑡)

∑ 𝑃𝑢𝑠𝑒𝑓𝑢𝑙
,  if  (𝑆(𝑡) < 𝑆(𝑡 − Δ𝑡)    

𝑚 =
∑ 𝑆(𝑡) − (𝑆(𝑡−Δ𝑡)

𝑃.𝐶
,  if (𝑆(𝑡) > 𝑆(𝑡 − Δ𝑡)     

where    𝑃𝐶 =
Smax

Δ𝑡full
⁄  

𝑢 =
∑ 𝑃𝑢𝑠𝑒𝑓𝑢𝑙

∑ 𝑃𝑟𝑒𝑤
,          

This approach enables me to create a novel and improved 3D visualization of the intricate 

relationships among these various interactive factors, providing a more comprehensive 

understanding of their interactions to improve PV integration.   

3. Storage optimisation and its link to penetration   

I have established clear boundaries of renewable penetration by linking them with storage type 

and application, resolving longstanding ambiguities in the literature. Through systematic 

analysis, I structured storage use into three distinct configurations, defined by their application 

and degree of penetration. This optimized categorization simplifies system design and 

modelling and provides actionable boundaries that overcome previous inconsistencies in 

renewable–dominated grid studies: 

i. First configuration: This represents the no-dump capacity range–the threshold below 

which the system operates without requiring any form of storage or curtailment. While 

the exact no-dump capacity varies with the PV-wind mix, the maximum penetration 

achievable without storage or curtailment in the solar-only (PV) scenario is about 23.6%. 

ii. Second configuration: Any increase in renewable penetration beyond this level 

necessitates storage and/or curtailment to manage fluctuations, enabling penetration up 

to 80%. Within this range, diurnal storage plays the key role in balancing short-term 

variability. 

iii. Third configuration: Beyond 80% penetration, renewable deployment rises sharply even 

with slight increases in penetration. Thus, meeting the final 20% of demand presents a 

distinct challenge, which I addressed through seasonal storage capable of resolving long-

term seasonal mismatches. 

4. Maximizing the direct consumption of residential PV by imposing feed-in constraints  

I have explored strategies for maximizing direct consumption of PV power in the low-voltage 

network. I have introduced a distinctive approach that proposes tailored grid-expansion and 

management solutions to enhance local network PV consumption. Building on this analysis, I 

have identified remarkably effective strategies that maximize the direct use of generated PV. 

The most efficient configuration combines a feed-in limit of 0.4–0.5 kW/kWp with battery 

storage capacities below 2 kWh/kWp, a setup that sharply reduces curtailment and achieves 

the highest levels of direct PV utilization. 

Using the new approach – supported and validated with laboratory experiment – I have 

demonstrated that feed-in limits above 0.7 kW/kWp offer only negligible improvements in 

annual energy output. This confirms that the common practice of sizing inverters at 80–90% 

of the PV array capacity is not only economically inefficient but can also degrade system 

operation and power quality. 

 



 

21 

 

5. Addressing the data scarcity challenge in PV power forecasting 

I found a practical solution to the data scarcity challenge in PV generation forecasting by 

developing a method that bridges satellite-derived and ground-measured data. Using a 

modified Z-score transformation, I have approximated satellite data to measured data based on 

their respective means and standard deviations. This approach enables the integration of widely 

available satellite data with the reliability of ground-based measurements by establishing a 

transparent empirical relationship, using transformation formulas derived from observed 

correlations. The resulting adjusted dataset is used to train the forecasting model. At the same 

time, testing is conducted on actual measured PV output, ensuring both accuracy and 

applicability in regions with limited monitoring infrastructure.  

For each value in satellite-derived data, I found the standard normal form using the Z-score 

transformation (z):  

 𝑧 =
𝑃𝑠𝑎𝑡,𝑖− µ𝑠𝑎𝑡

𝜎𝑠𝑎𝑡
  and     

 the rescaled satellite value (𝑃𝑠𝑎𝑡,𝑖
′ ) is determined to match the distribution of the measured data 

using:  

 𝑃𝑠𝑎𝑡,𝑖
′ = 𝑧 𝜎𝑚𝑒𝑎𝑠 + µ𝑚𝑒𝑎𝑠      

where, 𝑃𝑠𝑎𝑡,𝑖, µ𝑠𝑎𝑡 and 𝜎𝑠𝑎𝑡  are the hourly PV generation, mean, and standard deviation of the 

satellite-derived data, whereas,  µ𝑚𝑒𝑎𝑠 and 𝜎𝑚𝑒𝑎𝑠 are the mean and standard deviation of the 

measured data.  

The proposed transformation has been rigorously validated against various well-established 

forecasting models. It demonstrates significant improvements in forecasting accuracy, 

achieving up to 24% in the LSTM-GRU model and 29.4% in the Informer model for six-step 

forecasts, based on RMSE metrics. For one-step predictions, the hybrid LSTM-GRU model 

yields a 43% increase in accuracy using the R² coefficient, confirming the effectiveness of the 

transformation approach. The method offers a scalable solution for regions with limited 

measurement infrastructure, reinforcing the role of satellite-based forecasting in advancing PV 

integration and shaping renewable energy policy development. Moreover, these forecasting 

improvements contribute to enhanced grid stability, optimize storage dispatch, and improve 

load balancing by offering flexibility to system operators.  

The newly introduced methodological framework was validated against a well-established RL-

based machine learning algorithm, showing negligible disparities. This strong agreement 

confirms the reliability of the framework and its underlying indices, reinforcing its accuracy 

and positioning it as a promising alternative for energy system optimization. 

6. Impact of inverter loading on power quality 

I have investigated the total harmonic characteristics of the PV inverter at various inverter 

loading conditions and I identified that inverter loading has a greater impact on the current total 

harmonic distortion (ThdI) than on the other power quality indicators. In heavily loaded 

inverters, ThdI remains relatively low, with only a few points exceeding the permissible limit 

of 5%. However, as the inverter load decreases, ThdI gradually exceeds this limit and rises 

further, reaching values of around 10%. The change in ThdI becomes more pronounced under 

lightly loaded conditions.  

 



 

22 

 

Accordingly, I have shown that the total current harmonic distortion (𝑦) as a function of active 

power (P/Prated) (𝑥) for the three inverter loading conditions can be reliably estimated using a 

cubic polynomial model, achieving an R² value of 0.926.  

 𝑦 = 1.3546 + (−0.2973) 𝑥 + (0.0239) 𝑥2 +(-0.00063) 𝑥3  

The greater variation in ThdI observed in lightly loaded inverters implies that they are more 

sensitive to harmonic distortion when underutilized. Lightly and medium-loaded inverters 

exhibit higher variability per unit change in active power, whereas in heavily loaded conditions, 

inverter behaviour becomes more stable, likely because MPPT and control mechanisms operate 

more actively and consistently when PV generation is higher. By associating these distinct 

regression behaviours with specific sites, utilities can tailor inverter deployment strategies and 

better anticipate grid stress based on localized loading profiles. 

This suggests oversizing an inverter for a given design can negatively impact power quality – 

not only cost – because an oversized inverter tends to operate predominantly under medium or 

light loading, where harmonic distortion is more pronounced. These findings highlight the need 

for inverter designs that ensure stronger control capability and more predictable interactions 

among power-quality parameters across varying load conditions. 
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5. CONCLUSION AND RECOMMENDATION 

In this thesis, strategies have been investigated for maximizing PV integration into the power 

grid through three complementary approaches: large-scale PV deployment, residential PV 

integration, and PV generation forecasting and optimization.  

To support large - scale PV integration, a novel methodological framework has been developed 

that flexibly captures the interactions between key system design parameters, such as storage 

capacity, storage duration, penetration, curtailment, wind-solar mix, and balancing 

requirements, while linking these parameters to a newly developed System–use index (SUI), 

which serves as a proxy of system efficiency. Various scenarios have been evaluated by fixing 

the PV share at 0%, 50%, and 100% of total RE capacity and applying different storage 

durations. Results show that penetration, curtailment, and storage all increase simultaneously; 

however, penetration gains diminish once storage or curtailment exceeds certain thresholds. 

Nevertheless, reaching 80–90% penetration is feasible with diurnal storage below 0.5 average 

daily demand with 6 hours of storage, alongside moderate curtailment. Achieving 100% 

renewable penetration is, however, challenging in the last 10–20% of the transition due to 

seasonal mismatches. Incorporating seasonal storage, about 8 average daily demand with a RE-

to-load ratio of 1.2, enables complete decarbonization without balancing (back-up) needs. 

These findings highlight that an optimal mix of curtailment, storage, and wind-solar mix is 

essential for maximizing system efficiency, forming multidimensional constraints that are 

difficult to implement in existing techno-economic tools but critical for guiding policy 

development and regulation.  

The role of residential PV in large-scale PV integration has been investigated by introducing a 

new concept of direct PV injection into low-voltage networks, overcoming the limitations of 

conventional self-sufficiency models. Findings reveal that imposing a feed-in limit and 

integrating battery storage significantly reduce curtailment, with a feed-in limit of 0.4 to 0.5 

kW/kWp and battery storage below 2 kWh/kWp. This setup maximizes photovoltaic 

integration and enables renewable energy penetration of up to 30%. The study further examined 

the impact of inverter loading on power quality and found that highly loaded inverters operate 

more stably, while underutilized inverters exhibit significant distortion.  

Machine learning based forecasting and optimization models have been proposed to maximize 

PV integration. To achieve this, a modified Z-score transformation and an RL model have been 

applied to align satellite-derived data with measured values to improve generation forecasting 

and optimize the system configuration. The findings reveal that the proposed transformation 

improves forecasting accuracy by up to 43%, demonstrating the effectiveness of the approach 

in providing a scalable solution for regions with limited measurement infrastructure.   

These approaches collectively establish a comprehensive framework for addressing both 

system design and operational challenges in maximizing PV integration. By combining 

optimized PV–wind–storage configurations, effective residential PV deployment, and 

enhanced forecasting, the study provides valuable insights for achieving high levels of PV 

penetration in future renewable-dominated grids. Adopting, technical-first perspective, the 

study outlines multiple transition pathways by defining boundary conditions that can guide 

more detailed economic analyses and policy development. Furthermore, improved 

transmission planning and demand-side management will be essential for achieving more 

optimal system configurations and understanding parameter interactions. Incorporating more 

fine-tuned household data in residential PV analysis could further improve accuracy. This study 

emphasizes the importance of understanding the future renewable energy grid, using Eritrea as 

a case study; nevertheless, the methodology employed can be applied to a broader range of 

applications in a global perspective.  
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6. SUMMARY 

MODELLING AND OPTIMIZATION OF LARGE-SCALE GRID-CONNECTED 

PHOTOVOLTAIC SYSTEMS WITH ENABLING TECHNOLOGIES 

A holistic and innovative multifunctional simulation model is developed to maximize PV 

integration and offer a broader perspective on system design under interacting factors. Using 

hourly weather data from PVGIS and GWA, geographically distributed solar and wind sites in 

Eritrea were analysed to explore scenarios achieving 90% and beyond renewable penetration 

with and without storage. The results offer important insights of global importance by linking 

parameters in a uniquely broad way, while also addressing the context-specific requirements.   

The analysis focuses on enabling large-scale PV integration through resource complementarity, 

energy storage, curtailment strategies, balancing capacity and improved forecasting, 

recognising that PV alone cannot capture full system complexity. Two new indicators, Storage 

Utilisation (SU) and SUI (SUI) are introduced to reveal the interactions between these 

variables. Results show that variable renewable penetration, curtailment and storage capacity 

increase simultaneously across all scenarios. The framework provides multiple options for 

combining storage and curtailment to achieve specific penetrations (including 100%), tailored 

to individual priorities and policy preferences, with the optimal approach lying in determining 

approximate optimal sizes to balance technical and economic feasibility. 

Findings show that with a storage capacity below 0.5 of average daily demand, grid penetration 

exceeding 90% can be achieved while keeping curtailment under 20%, except in wind-only 

scenarios, which require higher curtailment. Diurnal storage manages short-term fluctuations 

and facilitates high renewable penetration of 80-90%, but its limitations become evident 

beyond this range. Meeting the final 10–20% of demand requires solutions beyond diurnal 

storage, as seasonal mismatches necessitate large storage and generation capacities. 

Incorporating seasonal storage of about 8 average daily demand with a RE-to-load ratio of 1.2 

enables complete decarbonisation without balancing back-up needs. Overall, the study 

highlights that an optimal mix of curtailment, storage and wind–solar complementarity is 

essential for maximising system efficiency and for shaping policies and regulations that support 

deep decarbonisation. 

Two additional approaches are introduced to maximise PV integration into the grid: expanding 

rooftop PV adoption (residential PV) and applying advanced PV generation forecasting. Using 

simulation techniques, the study examined the optimal deployment of residential PV and 

battery storage to boost PV penetration while minimising curtailment, applying a simple 

algorithm for PV injection, battery charging, and discharging. Key results show that imposing 

a feed-in limit and adding battery storage markedly cut curtailment, with limits of 0.4–0.5 

kW/kWp and storage below 2 kWh/kWp giving the best outcomes. Furthermore, the study 

reveals that the power quality of grid-connected PV systems is strongly influenced by loading 

conditions, showing that highly loaded inverters maintain stable operation, while lightly loaded 

(underutilized) inverters exhibit increased distortion. The advantages of Effective PV 

forecasting for increasing renewable energy integration are studied, as it allows better 

management of generation and system operations. The new PV forecasting approach raises 

accuracy by up to 43%, enhancing generation management. When combined with resource 

complementarity and storage adoption, this improved forecasting strengthens grid stability, 

optimises scheduling, improves storage dispatch, reduces balancing needs, and boosts overall 

system efficiency, ultimately maximising renewable energy integration. 
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