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A munka előzményei, célkitűzések 

Magyarország belvíz- és aszályveszélyeztetettsége egyedülálló, (az ország 

területének 47% és 90%-a). A fenntartható és biztonságos biomassza-termelés 

egyik kulcskérdése a talajvízháztartásának hatékony szabályozása takarékosan 

fenntartható vízgazdálkodással. A klímamodellek a jövőben gyakoribb aszályokat 

jövendölnek egész Európában, így hazánkban is, de a helyi, intenzív záporok 

miatt a hirtelen áradások és vízelöntések szintén gyakoribbak lesznek. Az átlagos 

éves vízhiány 200-250 mm között mozog. A káros vízhiányok kivédése érdekében 

egyaránt biztosítani kell az ésszerű vízvisszatartást. A hazai jogszabályok a 

mentesítési sorrendet (10/1997. (VII. 17.) KHVM rendelet) és a belvízkár (2011. 

évi CLXVIII. törvény) részleteit határozzák meg, de nem rendelkeznek az 

elvezetési időről és mennyiségről. A dolgozat témája az átmeneti belvízborítottság 

őszi búzára gyakorolt hatásának vizsgálata kontrollált, liziméteres körülmények 

között. A kutatás célja az volt, hogy különböző vízmélységek (0, -30, -60 cm) és 

tartósságok (3, 6, 9, 12 nap) mellett elemezem a növény válaszreakcióit, mind 

mennyiségi (hozam), mind minőségi (pl. fehérje, sikér, Zeleny-érték) paraméterek 

szempontjából. Külön figyelmet kaptak a távérzékelés eszközeivel (UAV – drón) 

és kézi SPAD-méréssel nyert adatok is, amelyek a növény fiziológiai állapotának 

korai detektálását segítették. A dolgozat gyakorlati relevanciája abban áll, hogy 

segít pontosítani azokat a kezelési küszöbértékeket, amelyek mentén a 

gazdálkodó döntéseket hozhat a víz visszatartásáról vagy elvezetéséről. A kutatás 

kiterjedt azokra az összefüggésekre is, amelyek a vízstressz, a drónos 

légifelvételekkel vegetációs indexek (GNDVI, BNDVI) és a SPAD relatív 

klorofilltartalom index (RCI) érték között mutatkoznak, és ezeket regressziós 

modellek segítségével jellemezte. Mindez új módszertani alapot teremthet a 

precíziós vízgazdálkodási gyakorlat számára, különösen a klímaváltozás 

hatásainak mérséklése érdekében.A vizsgálatok komplexitása lehetővé tette 

annak feltárását is, hogy az egyes évjáratok közötti időjárási különbségek hogyan 

befolyásolják a kezelések eredményességét. A kutatás során alkalmazott 

statisztikai módszerek MANOVA, ANOVA, Welch-próba, Games-Howell post-

hoc teszt, valamint többváltozós korreláció- és görbeillesztés biztosították az 

eredmények tudományos megalapozottságát és validálhatóságát 
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Anyag és módszer 

Kísérleti helyszín liziméter telep 

A kísérleteket a Magyar Agrár- és Élettudományi Egyetem (MATE) szarvasi 

Öntözési és Vízgazdálkodási Kutatóközpontjának (ÖVKI) Liziméter Telepén 

végeztem. Egy-egy gravitációs liziméter térfogata 1 m3, amelynek 80%-át a 

vizsgált az edényekben lévő duzzadóagyagos talajtípusú talajoszlop tölti ki, ami 

egy 10 cm-es kavicsrétegen pihen a rendszeren esetlegesen átfolyó víz precíz 

összegyűjtéséhez. A liziméterek egyedi mérő edényekhez csatlakoznak a 

mérőpincékben, amelyek segítségével a közlekedő edények elvén vízszintet lehet 

beállítani. A gravitációs/kompenzációs liziméterek segítségével a szántóföldi 

körülményekhez hasonlóan, de részben zárt így pontosan nyomon követhető 

módon lehet vízszintet tartani az edényekben.  

Kísérleti növény: 

A vizsgálatokban a 'GK Déva' őszi búza fajtát használtam, amely egy szálkás, 

középérésű, malmi (A1 farinográfos) hasznosítású fajta. A Basilica és Izidor 

fajták keresztezéséből, DH (duplikált haploid) módszerrel nemesítették. 

Kiemelkedő a sárga- és szárrozsdával, valamint a fuzáriummal szembeni 

rezisztenciája. Az ország egész területén biztonsággal termeszthető, kiváló 

alkalmazkodóképességgel és magas terméshozammal rendelkezik. 

Kísérleti kezelések beállítása: 

A belvíz-szimulációs kísérletet 64 liziméter edényben állítottam be. Három fő 

vízszintet vizsgáltam: 

i. 0 cm: a talajfelszínig tartott vízszint (kétfázisú talajállapot), 

ii. -30 cm: a felszín alatt 30 cm-re tartott vízszint, 

iii. -60 cm: a felszín alatt 60 cm-re tartott vízszint. 

Ezeket a szinteket különböző időtartamokra (3, 6, 9, 12 nap) állították be, 

kiegészítve egy folyamatosan -60 cm-en tartott kezeléssel és egy öntözés nélküli 

kontrollal, így összesen 13 kezelést és a kontrollt vizsgáltam.  

Vetés és Növényápolás 

A búzát 2018, 2019 és 2020 októberében vetették el, minden 1 m²-es liziméter 

edénybe 17,5 g vetőmagot juttatva ki. Minden évben minden edény azonos 

mennyiségű kézi kijuttatással komplex NPK (15-15-15 %) alaptrágyát kapott és 

egységesen lett növényápolva. 
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Kezelések kezdete 

2019.05.07-én, 2020.01.27-én és 2021.04.29-én kezdődött a kísérlet. A 2020-as 

évet szándékosan korábban kezdtük, mert a régióban ez az „igazi” időszaka a 

télvégi-tavaszi belvizeknek. 

Adatgyűjtési módszereim I. 

Relatív Klorofilltartalom Index (RCI) mérése a Konica Minolta SPAD 502 Plus 

készülékkel 

A levél relatív klorofilltartalmát egy Konica Minolta SPAD 502 Plus 

készülékkel mértem. A műszer a levélen áthaladó fény sűrűségkülönbségét méri 

két hullámhosszon: 650 nm: a maximális klorofill-aktivitás tartományon és a 940 

nm: referencia mérés, amely kompenzálja a levél vastagságából és 

nedvességtartalmából adódó eltéréseket. A méréseket a fotoszintetikusan 

legaktívabb leveleken végeztem, liziméterenként 15-20 ismétlésben, majd az 

eredményeket átlagoltam. Ezt a részmérések átlagát jegyeztem fel a mérési 

jegyzőkönyvbe. 

Biometriai mérések és betakarítás 

Aratás előtt növénymagasság-mérést végeztem. A betakarítás kézzel történt, 

azonos tarlómagassággal, majd a föld feletti kévetömeget lemértem. A cséplést 

egy kisparcellás cséplőgéppel végeztem. 

Búza minőségi paramétereinek mérése 

A búza beltartalmi paramétereit egy Foss Infratec™ NOVA gabonaanalizátorral 

vizsgáltam, amely közeli infravörös transzmittancia (NIT) technológián alapul. A 

műszer őrlés nélkül, gyorsan és pontosan képes meghatározni a nedvesség-, 

fehérje-, sikér-, keményítő- és hamutartalmat. A készülék nemzetközi 

szabványoknak (pl. ISO 12099, EN 15948) megfelel, és a nemzetközi 

gabonakereskedelemben is elfogadott.  

A vizsgált főbb paraméterek a következők voltak: 

i. Fehérjetartalom: fontos minőségi mutató, melyet a nitrogéntrágyázás és a 

környezeti stressz (pl. aszály) is befolyásol. 

ii. Sikértartalom: a lisztből kimosható rugalmas fehérjék összessége. 

iii. Zeleny ülepítési érték (ZSV): a fehérjeminőség és sikérerősség mutatója 

iv. W-érték: a tészta nyújtásához szükséges deformációs munka. 
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Adatgyűjtési módszereim II. (Távérzékelés) 

Pilóta nélküli légifelvételezés (drón) 

A liziméter edényekről légifelvételeket egy DJI Phantom 4 „agro” drónnal 

készítettem, amely egy speciális, átalakított NGB (Near-infrared, Green, Blue) 

kamerával rendelkezett. A három év alatt (2019-2021) összesen 60 repülést 

hajtottam végre, melyekből 29 időpont felvételt értékeltem ki a dolgozatban. A 

szelektálás a képek minősége és a párhuzamos SPAD mérések megléte alapján 

történt. Míg 2019-ben manuálisan repültem, 2020-tól már Pix4D Capture 

repüléstervező szoftvert használtam az automatizált adatgyűjtéshez. 

Térinformatikai kiértékelésem és képfeldolgozásom (1. ábra) 

a) Georeferálás: A különböző időpontokban készült felvételek kb. 5 méteres 

térbeli pontatlansága miatt az első és legfontosabb lépés a képek georeferálása 

volt. Referenciaként egy 2025-ben, DJI Matrice 300 RTK drónnal készített, 

centiméteres pontosságú ortomozaik szolgált, amit a szarvasi kollégámmal 

készíttettem el.  

 

1. ábra A skálatényezőn alapuló PIF-normalizáció kiugróérték-kezeléssel vagy 

robusztus PIF-alapú normalizálás lineáris skálázással folyamatábrája a 

georeferálás után a képek relatív radiometrikus normalizálásán át, a vegetácisó 

idexek számolásáig 
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Az összes korábbi (2019-2021) képemet ehhez az RTK-pontos ortomozaikhoz 

illesztettem harmadrendű polinomiális transzformációval, legalább 10 kötőpont 

használatával. 

b) Relatív Radiometrikus Normalizálás (PIF-módszer): A különböző 

fényviszonyok között készült képek összehasonlíthatósága érdekében relatív 

radiometrikus normalizálást végeztem a Pszeudo-Invariáns Jellemzők (PIF) 

módszerével (1. ábra). 

1. Referenciakép kiválasztása: Egy statisztikailag stabil, kedvező 

fényviszonyok között készült képet (DJI_0093.tif) választottam referencia 

alapnak. 

2. Kvázi-invariáns jellemzőjű objektum (PIF-ek) azonosítása: Minden képen a 

beton járdalapokat jelöltem ki PIF-ként, mivel ezek spektrális tulajdonságai 

változtak a legkevésbé. 

3. Kiugróérték-szűrés: A PIF-ekről vett mintákból egy VBA kód és Excel 

képletek segítségével kiszűrtem a kiugró értékeket. 

4. Képek korrekciója: Python kódokkal, sávonkénti szorzótényezők 

(skálafaktorok) alkalmazásával minden képet a referenciaképhez igazítottam. 

c) Vegetációs Indexek Számítása: A normalizált képekből szintén Python 

szkriptekkel automatizáltan számoltam ki a GNDVI (Green Normalized 

Difference Vegetation Index) és a BNDVI (Blue Normalized Difference 

Vegetation Index) értékeket minden liziméter edényre.  

Adatfeldolgozási és modellezési módszereim 

1. Vegetációs indexek és spad adatok kapcsolatának modellezése 

A drónnal mért vegetációs indexek (GNDVI, BNDVI) és a terepen mért relatív 

klorofilltartalom (SPAD) közötti összefüggés leírására többféle matematikai 

modellt alkalmaztam.  

a) Másodfokú Regressziós Modell: A 2020-as adatokra egy másodfokú 

regressziós modellt (y = ax² + bx + c) illesztettem, hogy egy parabola alakú 

görbével írjam le az adatok közötti nemlineáris kapcsolatot. 

b) Michaelis–Menten Modell: A vegetációs indexek és a SPAD-értékek közötti 

telítődési jelenség modellezésére a Michaelis–Menten modellt is használtam. Ez 

a modell kiválóan alkalmas olyan biológiai folyamatok leírására, ahol a 
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válaszváltozó (SPAD) egy bizonyos szint felett már nem növekszik. A modell 

kulcsparaméterei a Vmax (a maximális elérhető SPAD-érték) és a Km (az a 

vegetációs index érték, amelynél a SPAD-érték eléri a Vmax felét). 

2. Modell validálás és hibaszámítás 

A létrehozott modellek pontosságának ellenőrzésére hibaszámítási mutatókat 

alkalmaztam. a) Átlagos Abszolút Hiba (MAE - Mean Absolute Error): A MAE a 

modell becslései és a ténylegesen mért értékek közötti átlagos eltérést mutatja. 

Kiszámításához a hibák abszolút értékét átlagoltam. Minél kisebb az értéke, annál 

pontosabb a modell. 

b) Méréstartományra Vetített Relatív Hiba (NMAE - Normalized Mean 

Absolute Error): Az NMAE az MAE értékét a mért adatok terjedelméhez 

viszonyítja, és százalékos formában fejezi ki. Ez lehetővé teszi a különböző 

skálájú adatokon futtatott modellek pontosságának összehasonlítását. 

Statisztikai elemzéseim módszertana 

Az adatok statisztikai kiértékeléséhez az R programnyelvet és az RStudio 

fejlesztői környezetet használtam, számos speciális csomag segítségével (pl. 

dplyr, Hmisc, car, rstatix). 

1. Elővizsgálatok és feltételek ellenőrzése 

A főbb statisztikai próbák előtt több feltételt is ellenőriztem. 

Korrelációvizsgálat: A függő változók (pl. fehérje, hozam) közötti lineáris 

kapcsolat erősségét Pearson-féle korrelációs együtthatóval mértem az Hmisc 

csomag rcorr() függvényével. 

Kiugró Értékek Szűrése: A többváltozós kiugró értékeket robusztus 

főkomponens-analízis (PCA) segítségével azonosítottam az mvoutlier R csomag 

használatával. 

Varianciahomogenitás Ellenőrzése: Annak tesztelésére, hogy a csoportok 

varianciái megegyeznek-e, a Bartlett-tesztet (normális eloszlású adatokra) és a 

robusztusabb Levene-tesztet is alkalmaztam. 

Normalitásvizsgálat: A modell-reziduálok eloszlását több teszttel is 

ellenőriztem: a Henze–Zirkler teszttel (többváltozós normalitás), a Shapiro–Wilk 

teszttel és a Lilliefors (Kolmogorov–Smirnov) teszttel (egyváltozós normalitás). 

2. Vizuális adatelemzésem 
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Kétutas Dobozdiagram (Boxplot): Az adatok eloszlásának, mediánjának és 

szórásának vizuális összehasonlítására használtam, hogy felmérjem a tényezők 

(vízszint, időtartam) hatását és az interakciókra utaló mintázatokat keressek. 

Kétutas Kölcsönhatás Diagram (Interaction Plot): Azt ábrázoltam vele, hogy az 

egyik tényező hatása hogyan változik a másik tényező szintjein. A nem 

párhuzamos vonalak a tényezők közötti kölcsönhatásra utaltak. 

Hipotézisvizsgálati módszereim 

1. Többváltozós Varianciaanalízis (MANOVA) 

A kísérletem fő hipotéziseinek tesztelésére egy két tényezős, véletlen blokkos 

elrendezésű többváltozós varianciaanalízist (MANOVA) alkalmaztam. Ezzel a 

módszerrel vizsgáltam a két független változó (vízszint és időtartam) és azok 

kölcsönhatásának együttes hatását több függő változóra (pl. fehérje-, 

sikértartalom, hozam). 

2. Post-hoc Tesztek és Csoport-összehasonlítások 

Amennyiben a MANOVA szignifikáns hatást jelzett, további tesztekkel 

azonosítottam, hogy pontosan mely csoportok között van szignifikáns különbség. 

Games-Howell Post-hoc Teszt: Ezt a tesztet akkor használtam, ha a varianciák 

nem voltak egyenlőek a csoportok között. Előnye, hogy nem feltételezi a 

varianciák homogenitását és az egyenlő mintaméreteket, így robusztusabb, mint 

más klasszikus tesztek. Welch-féle Kétmintás t-próba: Két független csoport 

átlagának összehasonlítására szolgált, szintén abban az esetben, ha a varianciák 

egyenlőségének feltétele nem teljesült. 
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Eredmények és azok megbeszélése 

A kutatásom célja az volt, hogy megértsem, hogyan befolyásolják a különböző 

vízszint- és időtartam-kezelések az őszi búza minőségét és hozamát a vizsgált 

három év során. Ezen túlmenően célom volt a drónnal számított vegetációs 

indexek és a SPAD relatív klorofilltartalom-mérések közötti kapcsolatok feltárása 

is. Az adatelemzés alapját 168 megfigyelés (56 liziméter edény × 3 év) képezte, 

amelyek a hozam- és minőségi paraméterekre vonatkoztak. Az drónos vegetációs 

indexek és SPAD relatív klorofill index mérések összevetésénél 2019-ben, n=448; 

2020-ban, n=440; 2021-ben, n=192 párhuzamos mérés történt, összesen n=1084. 

A függő változók közötti korreláció és a kiugró értékek meghatározása 

Első lépésként a válaszváltozók – fehérje, sikér, Zeleny-érték, W-érték és hozam 

– közötti lineáris kapcsolatokat vizsgáltam a Pearson-féle korrelációs 

együtthatóval. Az eredmények erős pozitív korrelációt mutattak a minőségi 

paraméterek között, különösen a fehérje és a sikér (r = 0,989, p < 0,001), a fehérje 

és a Zeleny-érték (r = 0,961, p < 0,001), valamint a Zeleny- és a W-érték (r = 

0,909, p < 0,001) esetében. Ez azt jelzi, hogy ezek a paraméterek a kezelések 

hatására szorosan együtt mozogtak. Ezzel szemben a hozam csak mérsékelt 

korrelációt mutatott a minőségi paraméterekkel. Ez az eredmény arra utal, hogy a 

vízszint- és időtartam-kezelések elsősorban a gabona minőségi tulajdonságait 

befolyásolták összehangoltan, míg a hozamra részben független hatások 

érvényesültek. 

A többváltozós kiugró értékek vizsgálatához az mvoutlier::aq.plot() függvényt 

alkalmaztam α = 0,001 szignifikanciaszinten. A módszer 54 kiugró értéket 

azonosított a 168 megfigyelésből, ami az adatok 32%-át tette ki. Az első két 

robusztus főkomponens a teljes variancia ~97,2%-át magyarázta, így a 

kétdimenziós pontfelhő jól tükrözte az adatok lényegi szerkezetét. A kiugró 

értékek főként a 113–146. és 148–168. sorokban koncentrálódtak, ami arra 

utalhat, hogy bizonyos kezelési kombinációk szokatlan eredményeket 

produkáltak, vagy adatminőségi problémák állhattak fenn, amelyek további 

ellenőrzést igényeltek. 

Az őszi búza termésének kétutas dobozdiagram (boxplot) elemzése 

A különböző kezelési kombinációk hatásait dobozdiagramokon vizsgáltam. A 

fehérjetartalom eloszlása jelentősen különbözött a kombinációk között. A 

mélyebb és/vagy hosszabb vízborítás több esetben növelte a fehérjét a kontrollhoz 

képest, míg a 0 cm-es vízszint 12 napos kezelésnél inkább csökkentette azt. A 
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sikértartalom a fehérje mintázatát követte, ami a két mutató közötti erős korreláció 

alapján várható volt. A Zeleny-érték eloszlása is nagyon hasonló volt a fehérje és 

a sikér ábráihoz, ami azt mutatta, hogy a minőségi index érzékeny a vízszint–

időtartam kombinációra. A „0 cm/12 nap” kezelés kedvezőtlenebbnek, míg a „-

60 cm/12 nap” és több „-30 cm” variáns kedvezőbbnek tűnt. A W-értékeknél a 

szórás volt a legnagyobb, ami összhangban van a mutató ismert 

változékonyságával. A kezelésekre ez a mutató is érzékenyen reagált: voltak 

gyengébb (pl. 0 cm/12 nap) és erősebb (pl. Kontroll, -60 cm/12 nap) állapotok. 

Végül, a hozam eloszlása jóval kiegyensúlyozottabbnak bizonyult, mint a 

minőségi jellemzőké. A vizuális elemzés alapján a hozamra a vízszint hatása 

markánsabbnak tűnt, míg az időtartam önmagában kevésbé volt egyértelmű. 

Az őszi búza termésének kétutas interakció diagram elemzése 

Az interakciós diagramok elemzése során azt vizsgáltam, hogy a vízszint és az 

időtartam hatása mennyire függ egymástól. A fehérje, a sikér, a Zeleny-érték és a 

W-érték esetében a görbék több helyen nem voltak párhuzamosak és részben 

keresztezték egymást, ami interakció jelenlétére utalt. Különösen a -60 cm-es 

vízszintnél rajzolódott ki egy U-alakú mintázat, ahol a 3 és 12 napos kezelések 

magasabb, míg a 9 napos alacsonyabb értékeket eredményezett. Ezzel szemben a 

hozam esetében a görbék többnyire párhuzamosak voltak, ami gyenge interakciót 

jelzett; itt a vízszint főhatása tűnt meghatározónak. A mélyebb vízszint a hozam 

csökkenésével járt. A 0 cm-es és -30 cm-es beállítások átlagosan magasabb 

hozamot adtak, míg a -60 cm-es és a kontroll alacsonyabbat. 

A statisztikai modellek feltételeinek vizsgálata 

A varianciaanalízis előtt ellenőriztem a feltételek teljesülését. A Bartlett-próba 

alapján az időtartam szintek között a legtöbb változónál heteroszkedaszticitást (a 

szórások eltérését) találtam, ami sérti a klasszikus ANOVA feltételeit. A vízszint 

szintjei között azonban a minőségi mutatók esetében nem találtam bizonyítékot 

varianciakülönbségre, egyedül a hozamnál volt heteroszkedaszticitás. 

Az átfogó többváltozós varianciaanalízis (MANOVA) eredményei szerint mind 

a vízmélység, mind az időtartam, mind az év, valamint a vízmélység és időtartam 

közötti interakció szignifikáns hatást gyakorolt a vizsgált öt változó együttes 

mintázatára. A hatások erősségének sorrendje a következő volt: Év >> 

(Vízmélység ≈ Időtartam) > Interakció. Ez megerősítette, hogy az évek közötti 

különbségek dominánsak, de a kezelések is kimutathatóan befolyásolják a 

minőségi mutatókat és a hozamot. 
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Különálló egyváltozós ANOVA-k eredményei 

A MANOVA által kimutatott általános hatások részletesebb megértéséhez 

különálló, egyváltozós ANOVA teszteket is futtattam. Ez az elemzés tárta fel a 

vizsgálat legizgalmasabb részleteit, mivel megmutatta, hogy a vizsgált tényezők 

nem egyformán hatnak mindenre. Az eredmények egyértelműen szétválasztották 

a minőségi és a mennyiségi mutatókat. 

A minőségi paraméterekre (fehérje, sikér, Zeleny, W) minden tényező 

szignifikáns hatást gyakorolt: a vízmélység, az időtartam, az év, és a vízmélység-

időtartam kölcsönhatás is. Ez azt jelenti, hogy a minőség komplexebben reagál, 

és a vízmélység, valamint az időtartam finomhangolása egyaránt számít. 

Különösen a Zeleny-szám esetében volt hangsúlyos a vízmélység és az időtartam 

együttes, kombinált hatása. 

Ezzel szemben a mennyiségi mutató (hozam) teljesen másképp viselkedett. A 

hozamot szignifikánsan befolyásolta a vízmélység és az év, de az időtartamnak és 

a vízmélység-időtartam kölcsönhatásnak nem volt szignifikáns hatása. Ez egy 

kulcsfontosságú felfedezés: míg a minőséget minden tényező befolyásolta, addig 

a mennyiséget a kezelés időtartama a vizsgált tartományban nem. 

Gyakorlati szempontból ez azt jelenti, hogy ha a cél a minőség javítása, akkor a 

vízmélységet és a kezelés időtartamát együtt, egymásra optimalizálva kell 

beállítani. Ha viszont a cél a hozam maximalizálása, akkor az adatok alapján a 

kezelés időtartama irreleváns lehet, ami költséghatékonysági lehetőségeket rejt 

magában. Fontos kiemelni, hogy minden egyes vizsgált paraméter esetében az év 

hatása volt a legdominánsabb, ami aláhúzza a környezeti tényezők 

mezőgazdaságban betöltött, sokszor a technológiát is felülíró szerepét. 

A modell-reziduálok normalitásának ellenőrzése 

A modellek megbízhatóságának ellenőrzéséhez a reziduálok eloszlását 

vizsgáltam. A grafikus ellenőrzések (hisztogram-, QQ- és sűrűségmátrixok) 

alapján az ANOVA normalitási feltételei elfogadhatónak tűntek, bár a szélső 

kvantiliseknél kisebb eltérések látszottak. A formális tesztek azonban árnyaltabb 

képet mutattak. Az átfogó Shapiro–Wilk teszt erős nem-normalitást jelzett, és a 

Henze–Zirkler (HZ) teszt is elutasította a multivariáns normalitás hipotézisét (p < 

0,001). Az egyváltozós Shapiro–Wilk tesztek szerint a reziduálok normalitását a 

legtöbb változónál nem kellett elutasítani, egyedül a fehérje mutatott gyenge 

szignifikanciát (p = 0,046). 



13 

 

A nem-normalitás okát a multivariáns kiugró értékek jelenthették. A robusztus 

Mahalanobis-távolság alapján 16-26 megfigyelést azonosítottam outlierként, 

amelyek erősen hozzájárulhattak a tesztek szignifikanciájához. Mivel a 

normalitás-tesztek nagy mintán kis eltérésekre is érzékenyek, és a probléma 

főként többváltozós jellegű volt, javasolt a MANOVA eredményeinek robusztus 

vagy permutációs módszerekkel történő ellenőrzése, illetve egy érzékenységi 

vizsgálat a kiugró értékek kizárásával. 

Részletes post-hoc elemzések 

Mivel a varianciahomogenitás feltétele több helyen sérült, a csoportok közötti 

különbségek részletes vizsgálatához a robusztus Games-Howell post-hoc tesztet 

és a Welch-féle kétmintás t-próbát alkalmaztam. 

A fehérjetartalom esetében az időtartam szerinti összehasonlítások komplex, év- 

és vízmélység-függő mintázatokat tártak fel (2. ábra).  

 

2.ábra Fehérjetartalom vízszint- és időtartam-kezelések szerint (2019–2021) 

átlag–szórás hibasávos oszlopdiagram (CLD jelöléssel) 
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A kontrollhoz képest a kezelések hatása is évjáratonként változott: 2021-ben 

egyes kezelések javították, 2020-ban viszont szinte mindegyik csökkentette a 

fehérjetartalmat. A vízmélység hatását vizsgálva a -60 cm-es szint gyakran társult 

alacsonyabb fehérjével, különösen a rövidebb (3-6 napos) kezeléseknél. Például 

2019-ben -60 cm-es vízmélységnél a hosszabb, folyamatos vízellátás adta a 

legjobb fehérjeeredményt, míg 2020-ban ugyanitt a 9 napos kezelés emelkedett 

ki. 

A 3. ábrán a Zeleny-érték vizsgálata során hasonlóan összetett eredményeket 

kaptam. Az időtartam hatása itt is év- és vízmélység-specifikus volt. Például 

2019-ben -60 cm-es mélységnél a 9 napos és a folyamatos kezelés is erősen jobb 

Zeleny-értéket eredményezett, mint a rövid, 3 napos kezelés.  

 

3. ábra A Zeleny-érték vízszint- és időtartam-kezelések szerint (2019–2021) 

átlag–szórás hibasávos oszlopdiagram (CLD jelöléssel) 
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A kontrollhoz viszonyítva a kezelések a 2021-es év néhány esetét leszámítva 

inkább negatívan hatottak, különösen 2020-ban, amikor széles körű, 

statisztikailag erős csökkenést figyeltem meg. 

A 4. ábrán a hozam esetében az időtartam szerinti összehasonlítások szintén év- 

és vízmélység-függő mintázatot mutattak, de az ANOVA-val ellentétben itt a 

post-hoc tesztek kimutattak szignifikáns különbségeket. Például 2021-ben -60 

cm-es mélységnél a folyamatos elárasztás szignifikánsan alacsonyabb hozamot 

adott, mint a 12 napos kezelés, míg 2020-ban éppen fordítva, a folyamatos kezelés 

volt a legjobb.  

 

4. ábra A hozam vízszint- és időtartam-kezelések szerint (2019–2021) átlag–

szórás hibasávos oszlopdiagram (CLD jelöléssel) 

A kontrollhoz képest a kezelések 2019-ben és 2020-ban következetesen 

növelték a hozamot, míg 2021-ben a hatásuk vegyesebb volt. A vízmélységek 

közötti különbségek főként a 9 napos kezeléseknél jelentkeztek 2020-ban és 

2021-ben, ahol a -60 cm-es szint hozama elmaradt a 0 cm-esétől. 



16 

 

Vegetációs indexek és SPAD relatív klorofilltartalom kapcsolatának 

vizsgálata 

A drónnal mért vegetációs indexek (GNDVI, BNDVI) és a SPAD értékek 

kapcsolatát is elemeztem. A három év összesített átlagai alapján a BNDVI 

nagyobb ingadozást mutatott a kezelések hatására, mint a stabilabb SPAD vagy a 

enyhén csökkenő tendenciát mutató GNDVI. Az évjárathatás a vegetációs 

indexek esetében is jelentős volt, ami arra utal, hogy érzékenyek az adott év 

időjárási körülményeire. 

 

A SPAD értékek becslésére alkalmas modellek kidolgozásához a 2020-as 

adatokat használtam, mivel ebben az évben teljesültek a metodikai 

követelmények: a kapcsolat fiziológiailag értelmezhető volt (pozitív korreláció), 

és a modellillesztés feltételei is megfelelőek voltak. Az illesztett másodfokú 

polinomiális regressziós modellek (GNDVI-re és BNDVI-re) a 2019-es és 2021-

es adatokon validálva is elfogadható pontosságot mutattak, átlagos abszolút 

hibával (MAE) (7. Tézis). 

Végül a Michaelis–Menten típusú görbék illesztésével vizsgáltam a két index 

érzékenységét. Az eredmények alapján a GNDVI a két vizsgált index közül 

érzékenyebb és pontosabb prediktornak bizonyult a levélklorofill-tartalom 

(SPAD) modellezésére, még ha a kapcsolat erőssége összességében korlátozott is 

volt. A GNDVI modell által becsült maximális SPAD-érték magasabb volt, és az 

illesztési hiba (RMSE) is alacsonyabbnak bizonyult a BNDVI-hez képest. 
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Következtetések és a javaslatok 

Az őszi búza vízszint- és időtartam-kezeléseinek hatását vizsgáló statisztikai 

elemzésem számos jelentős megfigyeléssel szolgált, amelyek mélyebb betekintést 

nyújtanak a hozam, valamint a minőségi mutatók – különösen a fehérjetartalom 

és a Zeleny-index – alakulásába. Az ANOVA-modellek által kimutatott 

kölcsönhatások alapján világosan kirajzolódik, hogy sem a vízszint, sem az 

elárasztás időtartama önmagában nem elegendő a termelési eredmények 

megbízható előrejelzésére, hanem azok együttes hatása, valamint az évjárat-

specifikus környezeti tényezők döntő szerepet játszanak az eredmények 

alakulásában. 

A multivariáns statisztikai vizsgálatok egyértelműen kimutatták, hogy az évjárat 

hatása rendkívül erős a vizsgált változók összességére nézve (Wilks = 0,02248, p 

< 2,2e-16), és ez minden egyes minőségi jellemzőre külön-külön is igaz. Emellett 

a vízszint és az időtartam főhatásai is szignifikánsan befolyásolták a fehérje-, 

sikér- és Zeleny-értékeket. Az ANOVA eredmények alapján például a vízszint 

hatása a fehérjetartalomra F = 14,85, p = 1,59e-08 értékkel jelentkezett, míg az 

időtartam hatása F =10,20, p = 2,41e-07 értékű volt. 

Az őszi búza minőségi tulajdonságai, mint a fehérjetartalom, a sikértartalom, a 

Zeleny-index és a W érték, szorosan együtt mozognak, amit a nagyon magas 

korrelációs értékek is alátámasztanak (r = 0,955–0,989, p < 0,001). Ez arra utal, 

hogy ezek a minőségi jellemzők együttesen reagálnak a vízszint- és időtartam-

kezelésekre, vagyis a kedvező hatások több mutatóban egyszerre érvényesülnek. 

A terméshozam ugyanakkor csak gyenge pozitív korrelációt mutat a minőségi 

paraméterekkel (r = 0,155–0,206), vagyis a hozam növekedése nem feltétlenül jár 

együtt a minőség javulásával. Ez a megfigyelés is megerősíti, hogy a mennyiségi 

és minőségi célok elérése eltérő stratégiákat igényelhet. 

A kontrollhoz viszonyított eltérések szinte minden esetben a vízszint és az 

időtartam együttes befolyásától függtek. Különösen a -60 cm-es vízszint, 

valamint a 9 napos kezelés kombinációja mutatott következetes pozitív hatást a 

fehérjetartalomra. Ez a kezelés ugyanis olyan mérsékelt stresszállapotot idézhet 

elő, amely serkenti a fehérjeszintézisért felelős fiziológiai mechanizmusokat, 

miközben nem csökkenti drasztikusan a terméshozamot. Ezzel szemben a rövid, 

3 napos kezelések rendre gyengébb eredményeket hoztak, akár hozam, akár 

minőségi paraméterek tekintetében. A folyamatos kezelések hatása évjáratonként 

eltért, ami tovább növeli a technológiai bizonytalanságot. 
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A hozamvizsgálat során a vízszint és időtartam hatása szintén változatos 

mintázatot mutatott. A 2020-as évben több kezelés is szignifikáns 

hozamnövekedést okozott a kontrollhoz képest, míg 2021-ben az eltérések 

többsége nem volt szignifikáns. A leghatékonyabb kezelések évjáratonként 

eltérőek voltak, ami ismételten a környezeti feltételek jelentőségére világít rá. A 

hozamra gyakorolt hatásnál azonban a szignifikancia ritkábban volt kimutatható, 

és azok is sokszor gyenge hatásnagyságot mutattak.  

A minőségi mutatók – különösen a Zeleny-index – vizsgálata során 

egyértelműen kirajzolódott, hogy a mérsékelt vízstressz pozitívan befolyásolja a 

sütőipari értéket. Ennek oka a koncentrációs hatás, mely során a növény kevesebb 

keményítőt termel, így a fehérjekomponensek aránya növekszik a szemben. Ezt 

támasztja alá a statisztikai elemzés is, mely szerint a 9 napos kezelés jellemzően 

magasabb Zeleny-értékhez vezetett, különösen -60 cm-es vízszint mellett. 

Ugyanakkor a kontrollhoz viszonyított eltérések évjáratonként erősen 

különböztek, amit az éves kontrollértékek (pl. 2019: 63,2; 2020: 72,6; 2021: 39,7) 

is alátámasztanak. A legszigorúbb összehasonlítási alapot a 2020-as év jelentette, 

ahol a kezelések hatásai jobban előtérbe kerültek. 

A multivariáns statisztikai elemzés tovább erősítette az évjárathatás 

jelentőségét: a MANOVA szerint az évjárat erősen szignifikáns hatással bírt mind 

a minőségi mutatók, mind a hozam szempontjából. Emellett a vízszint és 

időtartam főhatásai is szignifikánsak voltak, és a vízszint-időtartam interakciója 

szintén befolyásolta a vizsgált paramétereket, különösen a fehérjetartalom 

esetében. A varianciahomogenitás hiánya miatt a Welch-teszt és Games–Howell 

post-hoc eljárások alkalmazása indokolt volt, amelyek pontosabb különbségek 

kimutatását tették lehetővé a kezelések között.  

A fentiek alapján levonható a következtetés, hogy az őszi búza vízszint- és 

időtartam-kezelésének optimalizálása rendkívül kontextusfüggő. Egyetlen 

univerzálisan legjobb kezelés nem létezik; a célhoz (pl. hozammaximalizálás 

vagy minőségjavítás) igazított, évjárat- és talajállapot-specifikus stratégiákra van 

szükség. A 9 napos kezelés -60 cm-es vízszint mellett több évben is kedvező 

kompromisszumot kínált a hozam és a minőség között, míg a rövid (3 napos) és 

a folyamatos elárasztás gyakran kedvezőtlenebb eredményeket hozott. 

A vízszint és időtartam kölcsönhatása is szignifikáns volt több minőségi 

paraméter esetében – például a Zeleny-indexre vonatkozóan F = 3,21, p = 0,0054. 
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2020-ban például a -30 cm-es vízállás mellett a 6 és 12 napos kezelések között 

szignifikáns hozamkülönbség mutatkozott (p = 0,009), ami arra utal, hogy ebben 

az évjáratban a hosszabb ideig tartó mérsékelt vízstressz kedvezőbb feltételeket 

teremtett a hozam növekedéséhez. Ugyanez az év mutatta ki azt is, hogy a -60 

cm-es vízborítás 9 napos időtartama is szignifikáns hozamnövekedést 

eredményezett a kontrollhoz képest (p = 0,005). 

Ezek azt jelenti, hogy azonos vízszint mellett nem mindegy, hány napig tart a 

kezelés, és fordítva: ugyanazon időtartam mellett sem mindegy, milyen mély a 

vízállás. 

A kezelési döntések meghozatalánál tehát figyelembe kell venni az évjáratra 

jellemző meteorológiai körülményeket, a talaj vízgazdálkodási sajátosságait, 

valamint a kívánt termelési célt (pl. malmi vagy takarmánybúza). 

Végső soron az elemzés rávilágít arra, hogy a precíziós mezőgazdasági 

megközelítések és az UAV-alapú vegetációs indexek, különösen a GNDVI, 

bevonása lehetőséget ad arra, hogy a klorofilltartalom és vegetációs állapot 

pontosan nyomon követhető legyen. Ez különösen fontos lehet nagy területű 

szántóföldi kultúrák esetében, ahol a térbeli változékonyság és az évjárathatás 

kezelése kulcsfontosságú a hozam- és minőségoptimalizálás szempontjából. 
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Új tudományos eredmények 

A kutatás statisztikailag igazolt tézisei: 

1. Tézis: Megállapítottam, hogy az őszi búza minőségi és mennyiségi 

paramétereire gyakorolt vizes stressz hatását dominánsan az évjárat-hatás 

határozza meg, amelynek statisztikai ereje felülmúlja az alkalmazott (3,6,9,12 

napos időtartamon és 0 cm (kétfázisú talaj), -30 cm (a felszíntől -30 cm-en 

beállított vízszint) és -60 cm (a felszíntől -60 cm-en beállított vízszint)) 

kezelésekét. 

Statisztikai alátámasztás: A többváltozós varianciaanalízis (MANOVA) 

eredményei egyértelműen kimutatták, hogy az Év faktor Wilks-féle Lambda 

értéke (λ = 0,02248) és F-statisztikája (F = 167,834) nagyságrendekkel erősebb, 

mint a Vízmélység (λ = 0,56417, F = 6,282) vagy az Időtartam (λ = 0,55753, F = 

4,737) hatása (p < 2,2e-16 minden esetben) 

Ezt a dominanciát az összes egyváltozós ANOVA teszt is megerősíti, ahol az 

Év F-értéke minden egyes vizsgált paraméter (fehérje, sikér, Zeleny érték, W 

érték, hozam) esetében a legmagasabb volt (pl. Fehérje F=126,3082, Sikér 

F=81,8964; Zeleny F=11,7941; W F=80,0361, Hozam F=84,8474; mind p < 2,2e-

16). Az egyes évek kontrollcsoportjai között akkora a különbség (pl. Zeleny-érték 

2020 kontra 2021), amely gyakran meghaladja a kezelések éven belüli hatását. 

2. Tézis: Igazoltam, hogy az őszi búza minőségi és mennyiségi mutatói eltérő 

módon reagálnak 3,6,9,12 napos időtartamon és 0 cm (kétfázisú talaj), -30 cm (a 

felszíntől -30 cm-en beállított vízszint) és -60 cm (a felszíntől -60 cm-en beállított 

vízszint) időtartamra és vízmélységekre; míg a minőségi paraméterek (fehérje, 

sikér, Zeleny-, W-érték) együttesen és komplexen változnak, addig a hozam 

(mennyiség) válaszreakciója ettől részben független mintázatot mutat. 

Statisztikai alátámasztás: A Pearson-féle korrelációs mátrix magasan 

szignifikáns, erős pozitív korrelációt igazolt a minőségi mutatók között (r = 

0,955–0,989, p < 0,001), míg a hozam gyenge pozitív korrelációt mutatott a 

minőségi paraméterekkel (r = 0,155–0,206) 

Ezt a kettősséget az egyváltozós ANOVA tesztek is megerősítik: a minőségi 

paraméterek esetében mindhárom főhatás (év, vízmélység, időtartam) és a 

vízmélység×időtartam interakció is szignifikáns volt (p < 0,05). Ezzel szemben a 

hozam esetében az időtartam (p = 0,1885) és a vízmélység×időtartam interakció 

(p = 0,8095) nem volt szignifikáns az egyváltozós ANOVA szerint. 
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3. Tézis: Igazoltam, hogy a 3,6,9,12 napos időtartamon és 0 cm (kétfázisú 

talaj), -30 cm (a felszíntől -30 cm-en beállított vízszint) és -60 cm (a felszíntől -

60 cm-en beállított vízszint) kezelések minőségre (fehérjetartalomra és Zeleny-

értékre) gyakorolt hatása kontextusfüggő: kedvező évjáratokban a kezeletlen 

kontrollhoz képest minden stresszhatás minőségromlást okoz, míg kedvezőtlen 

évjáratokban a rövid idejű, mérsékelt stressz statisztikailag igazolható 

minőségjavulást (koncentrációs hatást) eredményezhet. 

Statisztikai alátámasztás: A Welch-féle t-próbák ezt a kettős hatást igazolják. 

A 2020-as, kiemelkedően jó minőségű évben szinte minden kezelés 

szignifikánsan (p < 0,05 a Holm-korrekció után is) alacsonyabb fehérje- és 

Zeleny-értéket eredményezett, mint a kontroll (pl. 2020, 0 cm, 3 nap: Zeleny diff 

= -18,55, p.adj = 3,1e-04). Ezzel szemben a 2021-es, gyenge évjáratban a 3 napos, 

-60 cm-es kezelés szignifikánsan növelte a fehérjetartalmat (diff = +2,65; p = 

0,0151, Holm korrekció után is), és a 6 napos -60 cm-es kezelés is (diff = +2,2, p 

= 0,0314). A Zeleny-érték 2021-ben, 3 napos, -60 cm-es kezelésnél pozitív irányú 

volt (diff = +15,05), bár a Holm-korrekció után nem maradt szignifikáns 

(p.adj=0,366). 

4. Tézis: Kimutattam, hogy az őszi búza terméshozamát a kedvező 

évjáratokban (2019, 2020) a legtöbb vizes kezelés (és 0 cm=kétfázisú talaj; -30 

cm=a felszíntől -30 cm-en beállított vízszint;-60 cm = a felszíntől -60 cm-en 

beállított vízszint) szignifikánsan növelte a kezeletlen kontrollhoz képest, míg a 

kedvezőtlen (2021) évben a hatásuk bizonytalanná és időtartam-függővé vált. 

Statisztikai alátámasztás: A Welch-féle t-próbák ezt a mintázatot egyértelműen 

mutatják 

A 2019-es és 2020-as években a kezelések túlnyomó többsége statisztikailag 

szignifikáns (p < 0,05), pozitív hozameltérést mutatott a kontrollhoz képest (pl. 

2019, 0 cm, 12 nap: p≈2,8e-04, 2020, 0 cm, 9 nap: p≈0,00035). Ezzel ellentétben 

2021-ben a hatás vegyes volt: a 0 cm-es vízszintnél a 6 napos kezelés 

szignifikánsan csökkentette (p = 0,04958), míg a 9 napos (p = 0,00905) és 12 

napos (p = 0,0341) kezelések szignifikánsan növelték a hozamot. A mélyebb 

vízszintek (-30 és -60 cm) esetében 2021-ben a kezelések többségénél nem volt 

szignifikáns eltérés a kontrollhoz képest. 

5. Tézis: Kimutattam, hogy az alkalmazott vizes kezelések (és 0 cm=kétfázisú 

talaj; -30 cm=a felszíntől -30 cm-en beállított vízszint;-60 cm = a felszíntől -60 

cm-en beállított vízszint) optimális stratégiájának megválasztása 

kompromisszumot igényel a terméshozam (mennyiség) és a minőség (pl. Zeleny-
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index) között, mivel a minőségjavító stresszhatások gyakran hozamcsökkenéssel 

járhatnak. 

Statisztikai alátámasztás: A Games-Howell post-hoc tesztek szerint a Zeleny-

érték esetében a mérsékelt stressz, különösen a 9 napos kezelés a -60 cm-es 

vízszintnél, szignifikánsan javította a minőséget (pl. 2021, -60 cm, 9 nap vs. 3 és 

6 nap: p = 0,031 és p = 0,004). Ugyanezen körülmények között (pl. 2021, -60 cm, 

9 nap), a hozam nem mutatott szignifikáns eltérést a kontrollhoz képest a Welch-

féle t-próba szerint (p = 0,4032). Ez azt jelzi, hogy a minőségjavulás nem 

feltétlenül társul hozamnövekedéssel, sőt, más esetekben a hozam csökkenhet is. 

A 2021-es évben a 0 cm-es vízszint mellett a 6 napos kezelés szignifikánsan 

csökkentette a hozamot (p = 0,0496), míg a 9 és 12 napos kezelések növelték (p 

= 0,009, p = 0,034). Ez a dilemmát hangsúlyozza a gazdálkodási döntésekben. 

6. Tézis: A vizsgálataimmal igazoltam, hogy a felszíntől mérve folyamatosan 

-60 cm-en tartott vízszint hatása az őszi búza minőségi és mennyiségi 

paramétereire nem konzisztensen kedvező, hanem erősen évjárat- és 

paraméterfüggő, gyakran kedvezőtlen, de kivételesen előnyös is lehet. 

Statisztikai alátámasztás: A Games-Howell és Welch-féle t-próbák 

eredményei alapján a „Folyamatos” kezelés hatása változatos: 

Fehérje: 2021-ben -60 cm-es vízszintnél a folyamatos kezelés szignifikánsan 

alacsonyabb fehérjetartalmat eredményezett, mint a 9 és 12 napos kezelések (p = 

0,009 és p = 0,035). Ezzel szemben 2019-ben -60 cm-en a folyamatos kezelés 

szignifikánsan magasabb fehérjetartalmat mutatott, mint a 3 és 12 napos 

kezelések (p < 0,001 és p = 0,038). 

Zeleny-érték: 2020-ban -60 cm-en a folyamatos kezelés szignifikánsan 

rosszabb volt, mint a 12 napos (p = 0,004). Míg 2019-ben ugyanezen 

vízmélységnél a folyamatos kezelés szignifikánsan jobb volt, mint a 3 napos (p < 

0,0001). 

Hozam: 2021-ben -60 cm-en a folyamatos elárasztás szignifikánsan 

alacsonyabb hozamot eredményezett, mint a 12 napos kezelés (p = 0,005). 

Viszont 2020-ban -60 cm-en a folyamatos elárasztás szignifikánsan jobb volt, 

mint a 3 napos (p = 0,026) és a 9 napos (p = 0,003) kezelés. Ez a mintázat aláhúzza 

a folyamatos kezelés kockázatos és évjárat-specifikus jellegét. 

7. Tézis: 2. fokú polinomiális regressziós modellel bizonyítottam, hogy a 

SPAD érték GNDVI (4,83 Átlagos Abszolút Hibával, MAE) indexszel és a 

BNDVI (4,71 MAE) indexszel becsülhető. 



23 

 

A függvények alapján, ha van egy UAV-ból származó GNDVI vagy BNDVI 

érték, akkor a SPAD értéket (relatív klorofilltartalmat) 4,83 átlagos abszolút 

hibával a GNDVI-ra és 4,71 átlagos abszolút hibával a BNDVI-ra becsülhetünk 

hasonló érzékenységű kamera használatával búzára. 

A SPAD és GNDVI kapcsolatára: 

2020 egész adathalmazra (n=440) 

GNDVI:=(-177.25*GNDVI ^2)+(235.27*GNDVI)+(-25.64) 

BNDVI:=(-167.54*BNDVI^2)+(246.17*BNDVI)+(-38.15) 
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