

Az erdei szamócából (*Fragaria vesca* L. Rügen) izolált SPATULA és SPIRAL gének és promótereinek azonosítása és funkcionális jellemzése

Doktori (PhD) értekezés

Hidvégi Norbert Tibor

Gödöllő 2023

A doktori iskola

Megnevezés:	Növénytudományi Doktori Iskola
Tudományága:	Növénytermesztési és kertészeti tudományok
Vezetője:	Dr. Helyes Lajos Egyetemi tanár, DSc. MATE, Mezőgazdaság- és Környezettudományi Kar Kertészeti Technológiai Intézet
Témavezető:	Dr. Kiss Erzsébet Professor emeritus, CSc. MATE, Genetika és Biotechnológia Intézet Mezőgazdaság- és Környezettudományi Kar

Dr. Kiss Erzsébet Témavezető Dr. Helyes Lajos Iskolavezető

Rövidítések listája	5
1. Bevezetés és célkitűzés	
2. Irodalmi áttekintés	
2.1. Klimaktérikus és nem klimaktérikus gyümölcsérés	10
2.2. A gyümölcsérés molekuláris genetikai háttere	11
2.2.1. A szamóca gyümölcsérésének genetikai szabályozása	11
2.2.2. A paradicsom gyümölcsérésének genetikai szabályozása	15
2.3. A SPATULA gén	19
2.4. A SPIRAL gén	21
2.5. Transzformációs technikák	21
2.5.1. Az Agrobacterium tumefaciens közvetítette transzformáció	21
2.5.2. Az in planta transzformációs technikák	
2.6. A promóter és elemzésének technikái	27
2.6.1. A promóter szerepe a növényi génregulációban	27
2.6.2. Az in silico promóter adatbázisok	30
2.6.3. A promóter deléciós vonalak	
2.7. Gateway™ bináris vektor rendszer	
3. Anyag és módszer	
3.1. A felhasznált növényanyag	
3.2. A növények nevelési körülményei	
3.2.1. Az Arabidopsis thaliana (L.) növények nevelési körülményei	34
3.2.2. A szamóca, a paradicsom és a dohány növények nevelési körülményei	34
3.3. A Fragaria vesca L. cv. 'Rügen' növény SPATULA (FvSPT) és SPIRAL (Fv génjeinek azonosítása és felszaporítása PCR technikával	<i>SPR</i>) 35
3.4. Az <i>FvSPT</i> , <i>FvSPR1-like1</i> és <i>FvSPR1-like2</i> gének és promótereik klónozása vektorba	bináris 36
3.5. Az Arabidopsis thaliana (L.) transzformációja Agrobacterium tumefaciens-e	2
3.6. Az Arabidopsis thaliana (L.) növények T3 és T4 generációinak RT-qPCR viz	zsgálata 37

3.7. Az Arabidopsis thaliana (L.) növények T ₃ és T ₄ generációinak fenotípusos vizsgálatai	38
3.8. A promóterek in silico analízise	38
3.9. A promóter deléciós vonalak felszaporítása PCR technikával	39
3.10. TOPO [®] és gateway [®] LR klónozás	41
3.11. A promóter deléciós vonalak Agrobacterium közvetített transzformációja	41
3.12. Az agroinfiltráció paradicsomba és dohányba	42
3.13. A GFP fluoresszencia kimutatása UV fénnyel	43
3.14. Az sGFP expresszió mennyiségi meghatározása qPCR módszerrel	43
4. Eredmények és megvitatásuk	44
4.1. A promóter szekvencia elemzés	44
4.2. A promóter deléciós vonalak létrehozása	48
4.3. A promóter deléciós vonalak RT-qPCR vizsgálata	52
4.4. Az A. thaliana (L.) spt és spr1-2 mutáns növények komplementációs tesztje	55
5. Következtetések és javaslatok	66
6. Új tudományos eredmények	68
7. Összefoglalás	69
7. Összefoglalás 8. Summary	69 70
7. Összefoglalás 8. Summary Melléklet	69 70 71
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék 	69 70 71 71
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék M2.1. FvSPT gén promóterén elhelyezkező TFBS 	69 70 71 71 92
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék M2.1. <i>FvSPT</i> gén promóterén elhelyezkező TFBS M2.2. <i>FvSPR1-like2</i> gén promóterén elhelyezkező TFBS 	69 70 71 71 92 102
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék M2.1. <i>FvSPT</i> gén promóterén elhelyezkező TFBS M2.2. <i>FvSPR1-like2</i> gén promóterén elhelyezkező TFBS M2.3. <i>MtSPR1_2</i> gén promóterén elhelyezkező TFBS 	69 70 71 71 92 102 110
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék M2.1. <i>FvSPT</i> gén promóterén elhelyezkező TFBS M2.2. <i>FvSPR1-like2</i> gén promóterén elhelyezkező TFBS M2.3. <i>MtSPR1_2</i> gén promóterén elhelyezkező TFBS M2.4. <i>FvSPR1_1</i> gén promóterén elhelyezkező TFBS 	69 70 71 71 92 102 110 115
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék M2.1. <i>FvSPT</i> gén promóterén elhelyezkező TFBS M2.2. <i>FvSPR1-like2</i> gén promóterén elhelyezkező TFBS M2.3. <i>MtSPR1_2</i> gén promóterén elhelyezkező TFBS M2.4. <i>FvSPR1_1</i> gén promóterén elhelyezkező TFBS M2.5. <i>AtSPR1_2</i> gén promóterén elhelyezkező TFBS 	69 70 71 71 92 102 110 115 118
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék M2.1. <i>FvSPT</i> gén promóterén elhelyezkező TFBS M2.2. <i>FvSPR1-like2</i> gén promóterén elhelyezkező TFBS M2.3. <i>MtSPR1_2</i> gén promóterén elhelyezkező TFBS M2.4. <i>FvSPR1_1</i> gén promóterén elhelyezkező TFBS M2.5. <i>AtSPR1_2</i> gén promóterén elhelyezkező TFBS M2.6. <i>MtSPT</i> gén promóterén elhelyezkező TFBS 	69 70 71 71 92 102 110 115 118 122
 7. Összefoglalás	69 70 71 71 92 102 110 115 118 122 129
 7. Összefoglalás 8. Summary Melléklet M1. Irodalomjegyzék M2.1. <i>FvSPT</i> gén promóterén elhelyezkező TFBS M2.2. <i>FvSPR1-like2</i> gén promóterén elhelyezkező TFBS M2.3. <i>MtSPR1_2</i> gén promóterén elhelyezkező TFBS M2.4. <i>FvSPR1_1</i> gén promóterén elhelyezkező TFBS M2.5. <i>AtSPR1_2</i> gén promóterén elhelyezkező TFBS M2.6. <i>MtSPT</i> gén promóterén elhelyezkező TFBS M2.7. <i>FvSPT</i> gén promóterén elhelyezkező TFBS M2.8. <i>AtSPT</i> gén promóterén elhelyezkező TFBS 	69 70 71 71 92 102 110 115 118 122 129 140

Rövidítések listája

A: Adenin **ABA:** Abszcizinsav (Abscisic acid) **ABAR:** Abszcizinsav receptor (Abscisic receptor) **ABF:** ABA-reszponzív transzkripciós faktor (ABA-responsive transcription factor) ABI4: Abszcizinsav érzéketlen 4 (Abscisic Acid Insensitive 4) **ABI5:** Abszcizinsav érzéketlen 5 (Abscisic Acid Insensitive 5) ACC: 1-aminociklopropán-1-karbonsav (1-Aminocyclopropane-1-carboxylate) ACO: ACC oxidáz (1-Aminocyclopropane-1-carboxylic acid oxidase) ACS: ACC szintáz (1-Aminocyclopropane-1-carboxylate synthase) AGP-áz: ADP-glükóz pirofoszforiláz (ADP-glucose pyrophosphorylase) ALC: ALCATRAZ **AREB:** ABA-érzékeny elemkötő fehérje (ABA-responsive element-binding protein) **ARF:** Auxin-válasz faktor (Auxin response factor) AtGAPDH: Arabidopsis thaliana (L.) gliceraldehid-3-foszfát-dehidrogenáz (Arabidopsis *thaliana* (L.) glyceraldehyde-3-phosphate dehydrogenase) AtSPR: Arabidopsis thaliana (L.) SPIRAL AtSPR1-like2: Arabidopsis thaliana (L.) SPIRAL1-like2 AtSPT: Arabidopsis thaliana (L.) SPATULA AUX: Auxin AuxRE: Auxin válaszért felelős motívum (Auxin responsive element) **bHLH:** Bázikus hélix-hurok-hélix (Basic-helix-loop-helix) **bp:** Bázispár **BR:** Brasszinoszteroidok (Brassinosteroids) CaMV35S: Karfiol mozaikvírus promóter **Cm**^r: Kloramfenikol-rezisztencia (Chloramphenicol resistance) CNR: Színtelen nem érő (Colorless non-ripening) **CRC:** CRABS CLAW **CRE:** Cis-szabályozó elem (Cis-acting replication element) CTR1: Konstitív hármas válasz 1 (Constitutive Triple Response1) **CUC1:** CUP-SHAPED COTYLEDON 1 CUC2: CUP-SHAPED COTYLEDON 2 EIL: EIN3-like fehérjék (EIN3-like protein)

EIN2: Etilénre érzéketlen 2 (Ethylene Insensitive 2) **EIN3:** Etilénre érzéketlen 3 (Ethylene Insensitive 3) **ERF:** Etilén-válasz faktor (Ethylene Response Factor) **ETR:** Etilén receptorok (Ethylene receptor) FaACO1: Fragaria x ananassa Duch. cv. Elsanta ACC oxidáz 1 (Fragaria x ananassa Duch. cv. Elsanta 1-Aminocyclopropane-1-carboxylic acid oxidase 1) FaACO2: Fragaria x ananassa Duch. cv. Elsanta ACC oxidáz 2 (Fragaria x ananassa Duch. cv. Elsanta 1-Aminocyclopropane-1-carboxylic acid oxidase 2) FaOMT: Fragaria x ananassa Duch. O-metiltranszferáz (Fragaria x ananassa Duch. O*methyltransferase*) FaPAO5: Fragaria x ananassa Duch. poliamin oxidáz 5 (Fragaria x ananassa Duch. polyamine oxidase 5) FaSPT: Fragaria x ananassa Duch. cv. Elsanta SPATULA FvGAPDH: Fragaria vesca L. gliceraldehid-3-foszfát-dehidrogenáz (Fragaria vesca L. glyceraldehyde-3-phosphate dehydrogenase) FvSPR: Fragaria vesca L. SPIRAL **FvSPR1-like1:** Fragaria vesca L. SPIRAL1-like1 FvSPR1-like2: Fragaria vesca L. SPIRAL1-like2 FvSPT: Fragaria vesca L. SPATULA **GA3:** Gibberellin gDNS: Genomi DNS GFP: Zöld fluoreszcens fehérje (Green fluorescent protein) GOI: Célgén (Gene of interest) **GUS:** β-D-glükuronidáz (β-glucuronidase) **HEC1:** HECATE 1 IAA: Indol-3-ecetsav (Indole-3-acetic acid) **IND:** INDEHISCENT JA: Jázmonsav (Jasmonic acid) **kb:** Kilóbázis **LB:** Luria-Bertani LFC: Logarithmic fold change Met: Metionin MtSPR1-like2: Solanum lycopersicum L. cv. Micro Tom SPIRAL1-like2 MtSPT: Solanum lycopersicum L. cv. Micro Tom SPATULA

NbGAPDH: Nicotiana benthamiana L. gliceraldehid-3-foszfát-dehidrogenáz (Nicotiana benthamiana L. glyceraldehyde-3-phosphate dehydrogenase) NOR: Nem érő (Non-ripening) PCR: Polimeráz-láncreakció (Polymerase chain reaction) **PPC2:** 2C típusú fehérje foszfatáz (Protein phosphatase 2C) **PYL:** Pirabaktin rezisztencia-szerű (Pyrabactin resistance like) **PYR**: Pirabaktin rezisztencia (Pyrabactin resistance) **qPCR:** Kvantitatív polimeráz-láncreakció (Quantitative polymerase chain reaction) RCAR: Abszcizinsav receptor szabályozó komponense (Regulatory component of ABA receptor) Ri: Gyökér-indukáló plazmid **RIN:** Érésgátló (Ripening inhibitor) RIPK1: Receptorokkal kölcsönhatásba lépő szerin/treonin-protein kináz 1 (Receptor-interacting serine/threonine-protein kinase 1) RT-qPCR: Reverz transzkripciós kvantitatív polimeráz-láncreakció (Quantitative reverse transcription polymerase chain reaction) **SAM:** S-adenozil-L-metionin (S-adenosyl-L-methionine) sGFP: Szintetikus zöld fluoreszcens fehérje siRNS: Kis interferáló RNS (Small intering RNA) SNF1: Nem erjesztő szacharóz 1 (Sucrose non-fermenting 1) SnRK2: SNF1-hez kapcsolódó protein kináz 2 (SNF1-related protein kinase 2) SPR1: SPIRAL1 SPR2: SPIRAL2 SPR3: SPIRAL3 SPT: SPATULA T: Timin **TAE:** Tris-acetate-EDTA (Tris-acetate-EDTA) **T-DNS:** Transzfer DNS **TF:** Transzkripciós faktor (Transcription factor) TFBS: Transzkripciós faktor kötőhelyek (Transcription factor binding site) **Ti:** Tumorindukáló (Tumor-inducing) TSS: Transzkripciós start hely (Transcription start site) vir: Virulencia WT: Vad típus (Wild type)

YFP: Sárga fluorescens fehérje (Yellow fluorescent protein)

1. Bevezetés és célkitűzés

A Magyar Agrár- és Élettudományi Egyetem Genetika és Biotechnológiai Intézet és jogelődje korábbi kutatásai során *Fragaria x ananassa* Duch. cv. Elsanta (szamóca) receptákulum (vacok) és aszmag szövetek mRNS transzkriptumait tanulmányozták. A cDNS-AFLP módszerrel génexpressziós intenzitás változást mutató géneket azonosítottak a gyümölcsérés zöld, fehér, rózsaszín és piros érési fázisaiban. A 130 transzkriptumból részleges cDNS-t izoláltak és szekvenálták.

A szekvenált transzkriptumok között szerepeltek a *SPATULA* és *SPIRAL* gének is. A *SPATULA* és *SPIRAL* gének tanulmányozása számos publikációban fellelhető, ugyanakkor ezen gének szerepe teljes mértékben nem tisztázott. Az *Arabidopsis thaliana* (L.)-ban a *SPATULA* gén szerepet játszik az összes szövet fejlődésében, és egy transzkripciós faktort kódol, amely a nagy bázikus hélix-hurok-hélix (bHLH) család tagja (HEIM és mtsai., 2003, TOLEDO-ORTIZ és mtsai., 2003).

Az Arabidopsis thaliana (L.)-ból származó SPATULA gén fontos szerepet tölt be a termőlevél és becő fejlődésében, ezen kívül olyan szövetekben is mutat expressziót, ahol a fejlődést és a szövetek abszcisszióját segíti elő. Az Arabidopsis thaliana (L.) SPATULA (AtSPT) a levél méretet is szabályozza, továbbá megmutatkozik a becők (gyümölcsök) leválási zónáiban, fejlődő portokokban, embriókban, a gyökércsúcsok bőrszövetében is.

A SPIRAL1 (SPR1) és SPIRAL2 (SPR2) géneket mutáns Arabidopsis növényekben azonosították először, ahol a gyökerek jobbra csavarodnak, nem balra. Az spr1 mutáns növények abnormális helikális gyökérnövekedést mutattak, mely kiegészült a hipokotil abnormális fejlődésével is. Az spr2 mutáns növények esetében a levélnyél és virágszirmok is csavarodottak voltak. Az spr2 mutánsok gyökér epidermális sejtjeiben a bazális elongációs zónában lévő mikrotubulusok kortikális tömbjei abnormálisan helikálisak voltak.

Genomi szinten a transzkripcionális szabályozásban azonosíthatóak fontos szerepet betöltő regulátor elemek (transzkripciós faktorok, enhancerek, silencerek). A transzkripciós faktorok a DNS-hez kötődve a genetikai információ DNS-ről RNS-re történő átírását szabályozó fehérjék.

Céljaink között szerepelt, hogy a *Fragaria vesca* L. *SPATULA (FvSPT), Fragaria vesca* L. *SPIRAL1-like1 (FvSPR1-like1)* és *Fragaria vesca* L. *SPIRAL1-like2 (FvSPR1-like2)* gének promóter régióin TF (transzkripciós faktor) kötőhely és CRE (*cis-szabályozó* elem) szekvenciákat azonosítsunk, melyeket a paradicsom (*Solanum lycopersicum* L. cv. Micro Tom) és a lúdfű (*A. thaliana* (L.) Heynh.) *SPATULA* és *Arabidopsis thaliana* (L.) *SPIRAL (AtSPR)* gének promóter régióival hasonlítsuk össze. Az összehasonlítás *in silico* elemzésekkel kívántuk elvégezni a JASPAR és PLACE adatbázisokban.

További terveink között szerepelt, hogy az *in silico* promóter elemzések alapján elkészítsük az *FvSPT*, *FvSPR1-like1* és *FvSPR1-like2* gének promótereinek deléciós vonalait, és azokat *sGFP* (szintetikus zöld fluoreszcens fehérje) riporter génnel fúzionáltatva meghatározzuk a riporter gén expressziójának intenzitását a dohány növény (*Nicotiana benthamiana* L.) levelében és *Solanum lycopersicum* L. cv. Micro Tom bogyótermésben tranziens expresszió hatására.

Az FvSPT, FvSPR1-like1 és FvSPR1-like2 gének funkcionális jellemzéséhez komplementációs tesztet terveztünk elvégezni az Arabidopsis thaliana (L.) Col-0 spt és spr1-2 mutáns növényeken.

2. Irodalmi áttekintés

2.1. Klimaktérikus és nem klimaktérikus gyümölcsérés

A növények fiziológiai állapota és a termés betakarítás utáni eltarthatósága, valamint a romlásuk egymással összefüggésben vannak. Mindegyik folyamatot a gyümölcsérés befolyásolja, mely az érés utolsó fázisa. A gyümölcsérés különböző fiziológiai, biokémiai, valamint fejlődési változásokkal jár, amelyek irányítottan és genetikailag szabályozottan mennek végbe (BARRY és GIOVANNONI, 2007). Az érés során a gyümölcsök általában két különböző légzési mintát mutatnak, ami alapján klimaktérikus és nem klimaktérikus csoportokba sorolják őket (ABELES és mtsai., 2012).

A klimaktérikus gyümölcsök fejlődése során az érés kezdetéig fokozatosan csökken a légzésintenzitás a növekedési időszak végéig, majd utána hirtelen megemelkedik az érés kezdetén és egy csúcs elérése után újra lassú csökkenést tapasztalhatunk a légzésintenzitásban. Az emelkedés előtti minimumot preklimaktérikus minimumnak, az ez utáni legnagyobb légzésintenzitást pedig klimaktérikus maximumnak nevezzük, mely minden növényfaj esetében eltér.

A klimaktérikus gyümölcsök érése folyamán hirtelen beindul az etilén termelése. Az etilén egy növényi hormon, mely a növényi fejlődési folyamatok és a környezeti reakciók széles skáláját szabályozza (YANG, 1985).

Az etilén növényi hormon termelésének szabályozását elsősorban a klimaktérikus növények gyümölcsérése során lehet a legjobban modellezni. A nem klimaktérikus növényekkel ellentétben, a klimaktérikus gyümölcsérést egy légzési csúcs és ezzel párhuzamosan az etiléntermelés hirtelen történő megnövekedése kíséri (ALEXANDER és GRIERSON, 2002). Az etilén termelésben kimutatható csúcs az üregedő szervekre jellemző autokatalitikusan serkentett bioszintézis eredménye. Az etilén bioszintézis megismerésének elengedhetetlen lépése volt az ACC szintáz (ACS) és ACC oxidáz (ACO) enzimek és azokat kódoló gének felfedezése. Az etilén termelésének csökkentése az *ACO* és *ACS* gének kiütésével, a paradicsom gyümölcsérésének erős gátlását eredményezte (GRAY és mtsai., 1992). Az etilén több érésben szerepet játszó gén szabályozásában részt vesz, ugyanakkor kevésbé kutatott terület az etilén független szabályozás a klimaktérikus növények esetében. Számos kutatócsoport alkalmazza a paradicsomot, mint modellnövényt a klimaktérikus gyümölcsérés tanulmányozására, mivel a genomja nem túl nagy, a fejlődésbeli mutánsok jól karakterizáltak, könnyen transzformálható és rövid életciklussal rendelkezik (ZEGZOUTI és mtsai., 1999).

A nem klimaktérikus légzésű gyümölcsök légzésintenzitása folyamatosan csökken, utóérésre nem képesek. Az etiléntermelésben az érés folyamán nincs jelentős növekedés a

respirációs görbén (ALEXANDER és GRIERSON, 2002). A nem klimaktérikus gyümölcsök érési folyamatainak mechanizmusa egyelőre még nem teljesen ismert a kutatók számára.

Egyre több tanulmány jelenik meg arról, hogy ez a csoportosítás nem megfelelő, mivel míg például a banánt (*Musa balbisiana* Colla), az avokádót (*Persea americana* Mill.) és a almát (*Malus* × *domestica* Borkh.) is be lehet sorolni a klimaktérikus csoportba, illetve a szőlőt (*Vitis vinifera* L.) és az ananászt (*Ananas comosus* (L.) a nem klimaktérikus csoportba, addig a sárgadinnye (*Cucumis melo* L.) klimaktérikus és nem klimaktérikus viselkedést is mutat (SALADIÉ és mtsai., 2015). Hasonló jelleget mutat a kivi (*Actinidia chinensis* var. *deliciosa*) is, mivel az érés első szakasza független az etiléntől, míg a második szakasz már függ tőle (MCATEE és mtsai., 2015).

Összességében kijelenthető, hogy a gyümölcsérést mind a klimaktérikus és nem klimaktérikus növényekben a növényi hormonok (etilén, abszcizinsav, auxin, jázmonsav (JA), brasszinoszteroid, szalicilsav és melatonin), transzkripciós és környezeti faktorok szabályozzák. Az etilén kulcsfontosságú szabályozó elem a klimaktérikus gyümölcsérés folyamataiban, míg az ABA (abszcizinsav) a nem klimaktérikus gyümölcsök érési folyamatiban játszik központi szerepet. A TF-ek, mint például az ERF, WRKY, MYB és bHLH a gyümölcsérés folyamatiban aktíválódnak (KOU és mtsai., 2021a). A NAC TF fontos szerepet játszik az etilén szintézisben és etilén jelátadásban a paradicsom gyümölcsérése során (YANG és mtsai., 2021).

2.2. A gyümölcsérés molekuláris genetikai háttere

2.2.1. A szamóca gyümölcsérésének genetikai szabályozása

A szamóca nem klimaktérikus növény, bár kis mennyiségben képes endogén etilént termelni, az érés folyamán nem az etilén koncentráció a meghatározó. A szamóca virág sziromhullása során is kimutatható az etilén jelenléte (KNEE és mtsai., 1977). A megemelkedett etilén szint pozitív visszacsatolási mechanizmus szabályozása alatt áll, ennek időbeni megnyilvánulása azonben különbözik a klimaktérikus növények autokatalitikus etilén termelésétől (TISZA és mtsai., 2010). Az etilén bioszintézisében résztvevő géneket már a szamócában is izolálták, és ezek expressziós mintázatát megvizsgálva megállapították, hogy ezek a gének a virágban és a gyümölcsérés folyamán is működnek (BALOGH és mtsai., 2005).

A nem klimaktérikus gyümölcsérés modellnövényeként széles körben használt a szamóca. Külső etilén kezelésnek nincs befolyása a szamóca zöld gyümölcsének érésére (GIVEN és mtsai., 1988). Ugyanakkor számos publikáció igazolja azt, hogy az etilénnek fontos szerepe van a nem klimaktérikus gyümölcsök érésének szabályozásában, mint például a szamóca és a szőlő (CHERVIN és mtsai., 2004, MERCHANTE és mtsai., 2013). A szamóca gyümölcsérése közben az etilén koncentráció ingadozása figyelhető meg: a zöldérés során tapasztalt emelkedett etilén koncentráció lecsökkent a fehér érésben majd újra megnőtt a piros érés stádiumában (IANNETTA és mtsai., 2006). A *FaACO1 (Fragaria* x *ananassa* Duch. cv. Elsanta *ACC oxidáz 1*) és *FaACO2 (Fragaria* x *ananassa* Duch. cv. Elsanta *ACC oxidáz 2*) gének expresszióját közvetlen szabályozza az etilén (SUN és mtsai., 2012). Mindkét gén esetében nagyobb génexpresszió figyelhető meg a virágban, míg kisebb a fejlődő termésben. A *FaACO1* gén expressziójának növekedése megfigyelhető a zöld érési fázist követő fehér érésben, majd egy folyamatos egyenletes csökkenést tapasztaltak a génkifejeződésben a rózsaszín és piros érésben lévő gyümölcsben. A *FaACO2* a zöldérést követően kisebb intenzitást mutat, mint a *FaACO1*, ugyanakkor ez az intenzitás folyamatosan növekszik a fehér érés stádiumától kezdve (1. ábra) (TRAINOTTI és mtsai., 2005). A két fő gén esetében, amelyek az etilén bioszintézisében részt vesznek (*ACS* és *ACO*), megállapították, hogy a génkifejeződés fejlődési állapot és szövetspecifikus. A legnagyobb expressziót a zöld szamóca termésben figyeltek meg (MERCHANTE és mtsai., 2013).

 ábra: Szamóca abszcizinsav-függő (ABA-függő) érésének molekuláris genetikai folyamatai. A szimbólumok (→ és →) jelölik a serkentést, valamint a gátlást. A szaggatott vonallal jelölt szabályozási irány feltételezett szabályozás, amely további tudományos bizonyítást igényel. Abszcizinsav (ABA); abszcizinsav receptor (ABAR); receptorokkal kölcsönhatásba lépő szerin/treonin-protein kináz 1 (RIPK1); abszcizinsav érzéketlen 4/5 (ABI4/5); pirabaktin rezisztencia (PYR); pirabaktin rezisztencia-szerű (PYL); abszcizinsav receptor szabályozó komponense (RCAR); 2C típusú fehérje foszfatáz (PP2C); SNF1-hez kapcsolódó protein kináz 2 (SnRK2); ABA-érzékeny elemkötő fehérje (AREB); ABA-reszponzív transzkripciós faktor (ABF); ACC oxidáz (ACO); ACC szintáz (ACS) (Saját ábra)

A mezifurán fontos összetevője a szamóca gyümölcs aromájának, amelyet a *Fragaria* x *ananassa* Duch. *O-metiltranszferáz* gén (*FaOMT*) szabályoz. A *FaOMT* promóterében ABA függő elemeket azonosítottak, ami az ABA és az etilén szintézisben szerepet játszó gének kapcsolatát igazolják (MERCHANTE és mtsai., 2013). A nem klimaktérikus gyümölcsöket összehasonlítva a klimaktérikus gyümölcsökkel, megállapítható, hogy az érési folyamataik főleg ABA által szabályozottak az etiléntől függetlenül (BAI és mtsai., 2021). A szamóca

gyümölcsérésében az ABA, az IAA (indol-3-ecetsav), valamint az etilén és a poliaminok kölcsönhatása fontos szerepet játszik (GUO és mtsai., 2018, BAI és mtsai., 2021). A poliamin oxidáz 5 (FaPAO5) negatív szabályozója a szamóca gyümölcsérésének és a növényi poliamin szintek, mint jelátvivők hatással vannak az ABA szabályozására (MO és mtsai., 2020). ZHU és mtsai. (2020) megfigyelték, hogy az ABA nélkülözhetetlen pozitív szabályozója a gyümölcsérésnek és az etilén termelés indukciójának a mandarinban (Citrus reticulata cv. Suavissima). Az ABA szabályzása Arabidopsis növényekben vált ismeretessé, amelyeket két fő szabályzási útvonal irányít. Az egyik az ABA-PYR (pirabaktin rezisztencia)/PYL (pirabaktin rezisztencia-szerű)/RCAR (abszcizinsav receptor szabályozó komponense)- 2C típusú fehérje foszfatáz (PP2C; 2C típusú fehérje foszfatáz)-SNF1(nem erjesztő szacharóz 1)-hez kapcsolódó protein kináz 2 (SnRK2) (FUJII és mtsai., 2009), míg a másik az ABA-ABAR (abszcizinsav receptor) -RIPK1 (receptorokkal kölcsönhatásba lépő szerin/treonin-protein kináz 1)-ABI4/5 (abszcizinsav érzéketlen 4/5) útvonal (SHANG és mtsai., 2010). A PYR1-PP2C-SnRK2 útvonal esetében az ABA szabályozza és indítja a PYR1 és PP2C közötti kölcsönhatást, amely a PP2C gátlását és az SnRK2 aktivációját eredményezi, ami pedig az ABA jelátvitelhez vezet az utólagos faktorok foszforilációján keresztül, mint amilyen az AREB (ABA-érzékeny elemkötő fehérje)/ABF (ABA-reszponzív transzkripciós faktor) bZIP-típusú transzkripciós faktor (FUJII és mtsai., 2009, UMEZAWA és mtsai., 2010). A másik útvonalban az ABA stimulálja az ABAR-WRKY kölcsönhatást és csökkenti az ABI4/5 gén gátlását a WRKY40 expressziójának gátlásával (SHANG és mtsai., 2010). Az ABA hiányakor a PP2C inaktiválja az SnRK2-t közvetlen defoszforilációval. A környezeti vagy fejlődési állapotok során az ABA indukálja a PYR/PYL/RCAR és PP2C kölcsönhatást, amely a PP2C gátlását és SnRK2 aktivációját eredményezi (UMEZAWA és mtsai., 2010). A szamóca esetében két β-glükozidáz, a FaBG3 és a FaBG1 gének az endogén ABA folyamatokat szabályozzák (FIGUEROA és mtsai., 2021).

DELGADO és mtsai. (2018) megfigyelték, hogy a szamóca termésének metiljázmonsavval történő kezelése után a *FaMYC2* és a *FaJAZ1* gének expressziója indukálódik, ami antociánok felhalmozódását eredményezi a szamóca termésében. A jázmonsav hatással van a termés színére, ízére és puhaságára (ZHANG és mtsai., 2014b, COELHO és mtsai., 2019, FRESNO és MUNNÉ-BOSCH, 2021). Az ABA, IAA és JA kölcsönhatása fontos szerepet játszik a gyümölcsérésben, amely szabályozási rendszernek a mélyebb megismerése hozzájárulhat mind a klimaktérikus és nem klimaktérikus gyümölcsök érési mechanizmusainak a megértéséhez (BÖTTCHER és mtsai., 2015).

A brasszinoszteroidok (BR) a nem klimaktérikus szamóca termés érésében fontos szerepet játszanak. A BR műkődésbe lépése során a *FaBRI1* indukálódik, ami a *FaBIN2* és *FaBRZ1* gének expresszióinak növekedését eredményezi (AYUB és mtsai., 2018a). A BR csökkenti a fenolos vegyületek mennyiségét és az oxidatív stresszt, valamint növeli az antioxidáns aktivitást a szamóca termésében (AYUB és mtsai., 2018b). Az exogén BR szignifikánsan növeli a termés tömegét, cukor és antocián tartalmát a szamócában, valamint csökkenti a szerves savak mennyiségét (ZHENG és mtsai., 2020).

2.2.2. A paradicsom gyümölcsérésének genetikai szabályozása

A paradicsom klimaktérikus növény, amely gyümölcsének érésében fontos szerepet játszik az etilén (KOU és mtsai., 2021c). A növények esetében az 1-aminociklopropán-1-karbonsav (ACC) az etilén prekurzora, amely metioninból (Met) alakul ki. Az S-adenozilmetionint (SAM) a SAM-szintáz enzim szintetizálja (FLUHR és MATTOO, 1996). A SAM ACC és 5'metiltioadenozin vegyületekké alakul az ACS enzim révén. Az 5'-metiltioadenozin újra hasznosul Met-é a Met vagy másnéven Yang ciklusban az újabb etilén bioszintézishez (VAN DE POEL és mtsai., 2012). Az ACC tovább alakul etilénné az ACO révén. Az ACS és ACO enzimek aktivitásának szabályozása hatással van a gyümölcsérés sebességére az etilén által szabályozott érési folyamatokban (2. ábra) (CARA és GIOVANNONI, 2008). Az ACS és ACO géncsaládnak számos tagja van, amelyek az etilén termelését kétféle módon szabályozzák a növényekben (LELIÈVRE és mtsai., 1997). Paradicsomban az egyik mód során etilén jelenlétében a növény gátolja a jövőbeni etilén termelést vagy annak bioszintézisét (BARRY és GIOVANNONI, 2007). A másik módot automatikus katalitikus folyamat jellemzi, mely során etilén jelenlétében fokozódik az etilén szintézis (YOKOTANI és mtsai., 2009).

2. ábra: Paradicsom etilén-függő érésének molekuláris genetikai folyamatai. A → szimbólum jelöli a serkentést. S-adenozil-L-metionin (SAM); 1-aminociklopropán-1-karbonsav (ACC); Etilén receptorok (ETR); Etilén-válasz faktor (ERF) (Saját ábra)

Az etilén receptorokat (ETR) a paradicsomban összesen hét gén kódolja, név szerint LeETR1-7 (KLEE, 2002). A LeETR4-6 gének magas expresszióját figyelték meg virágban és gyümölcsben, míg a vegetatív szövetekben alacsony intenzitást mértek (TIEMAN és KLEE, 1999). Az ETR-ek membrán fehérjék, amelyek az endoplazmatikus retikulumhoz kapcsolódnak és negatív szabályozással hatnak az etilén jelátviteli útban (SEYMOUR és mtsai., 2013). A jelátviteli útban az etilén receptorok negatív szabályozójaként egy másik gént is azonosítottak, a Constitutive Triple Response 1 (CTR1) gént, amely az ETR-ek szabályozásában vesz részt (KIEBER és mtsai., 1993). Paradicsomban négy CTR homológot (SlCTR1-4) izoláltak, melyek közül - az SICTR2 kivételével - mindegyik teljesen komplementálja a AtCTR1 gén mutációját Arabidopsis-ban (LIN és mtsai., 2008). Az Ethylene Insensitive 2 (EIN2) gén szabályozza az etilén jelátadást transzkripciós faktorokon keresztül, mint amilyen az Ethylene Insensitive 3 (EIN3). Az EIN3 és EIN3-like fehérjék (EIL) családja a DNS-kötő fehérjékhez tartoznak és az etilén-válasz elemhez kötődnek, amelyek az etilén-érzékeny gének szabályozásában játszanak szerepet (YOKOTANI és mtsai., 2009). Az etilén-válasz faktorok (ERF), mint az ERF1, növényi transzkripciós szabályozók és szerepet játszanak az EIN3 szabályozásában, valamint számos etilén-válasz gént aktiválnak az Arabidopsis növényben (YU és mtsai., 2004).

Az etilén-ABA interakciónak fontos szerepe van a klimaktérikus gyümölcsérésben. Az ABA felhalmozódik a klimaktérikus gyümölcsben mielőtt az etilén termelődés megkezdődne (ÁLVAREZ-FLÓREZ és mtsai., 2017). Az ABA indukálja az etilén bioszintézist, az etilén bioszintézis génjeinek felülszabályozásával, amelyek serkentik az etilén által szabályozott érési folyamatokat (MENG és mtsai., 2016) és szinergistaként játszik szerepet a paradicsom színének kialakításában (LIU és mtsai., 2015b). Etilén hiányában az exogén ABA nincs hatással a paradicsom színének fejlődésére. A paradicsom érése során az ABA szinergistaként hat az etilénnel közvetlen vagy közvetve a flavonoid bioszintézisre a paradicsom érése során (WU és mtsai., 2018a). A gyümölcs puhaságát olyan szinergistaként aktiválódó enzimek kölcsönhatásai okozzák, mint például a celluláz, galaktozidáz, pektin metil észteráz, pektin liáz, poliglakturonáz, xiloglükán transzuronidáz, dilatáz és hidroláz (IQBAL és mtsai., 2017). Az ABA közvetlenül részt vesz a sejtfal katabolizmusában, azzal, hogy szabályozza az ebben résztvevő enzimek és gének működését a paradicsom termésének érése során (KOU és mtsai., 2021d). Az ABA útvonalak szorosan kapcsolódnak TF-ekhez. A paradicsom TF SINAC1 gátolja az SIACS2, SIACS4, SIACO1 és SIPSY1 gének expresszióját és szabályozzák a paradicsom termés érését az etilén-ABA-függő útvonalakon keresztül (MENG és mtsai., 2016). Az SINOR-like1 és SINAC4 pozitív szabályozója a paradicsom termés színének kialakításában (GAO és mtsai., 2018, ZHANG és mtsai., 2018). Az ABA β-glükozidáz DKBG1 szabályozza az ABA szintet a paradicsomban, az ABA-glükóz észter hidrolízise révén és résztvesz az ABA által irányított érés szabályozásában is (LIANG és mtsai., 2020). Az SIPYL9 gén részt vesz az ABA jelátviteli útvonalban és annak szabályozásában a paradicsom termés érése során (KAI és mtsai., 2019). Az ABA válaszelem kötő faktor (SIAREB1) egy ABA jelátviteli útvonalhoz köthető TF. Kutatások azt igazolták, hogy az SIAREB1 indukálja az etilén bioszintézisben résztvevő géneket, amelyek az ABA jelátvitelt közvetítik. Mind az SlAREB1 és NOR (non-ripening) expressziója ABA szabályozás alatt áll. A paradicsom termésének érése során az SlAREB1 transzkripciójának maximumát a NOR előtt éri el. Az SIAREB1-NOR szabályozás kulcsfontosságú az ABA-indukált etilén szintézis szabályozásában a paradicsom termésének érése során (MOU és mtsai., 2018).

Az etilén és auxin szorosan kapcsolódik a gyümölcsérés és az öregedés (szeneszcencia) folyamataihoz. Tanulmányok igazolták, hogy az etilén és auxin közötti kölcsönhatás leginkább a klimaktérikus gyümölcsérés folyamán figyelhető meg. Az auxin részt vesz a gyümölcsfejlődésben és a gyümölcsérés gátlásában (IQBAL és mtsai., 2017). Etilén szabályozza az auxin beáramlási vektor fehérjét kódoló gén (*SlLAX1*) és az auxin kiáramlási vektor fehérje gén (*SlPIN7*) expresszióját (LI és mtsai., 2017). Az auxin szerepet játszik a sejtfal lebontásában, a karotinok metabolizmusában (SU és mtsai., 2015a), valamint az energia anyagcseréjében és a gyümölcséréshez vezetnek

(WU és mtsai., 2018b). Az SIPIN7, SISAUR69, SIIAA13, SIIAA29 és SIMYB86 gének esetében tanulmányok igazolták, hogy az auxin és etilén kölcsönhatás ezen gének szabályozása alatt áll (LI és mtsai., 2017). Az auxin sejten belüli folyamatait az AUX (auxin)/IAA transzkripciós modulátorok szabályozzák az auxin válasz faktor (ARF) TF-ekhez kötődve (BUSATTO és mtsai., 2017). Az ARF az auxin jelátvitel központi eleme. Az SIIAA3, SIIAA4, SIIAA9, SIIAA15 és SlIAA27 gének szorosan köthetőek az auxin szintű gyümölcsérési folyamatokhoz (CRUZ és mtsai., 2018). Tanulmányok azt bizonyították, hogy az ARF2, ARF4, ARF5, IAA3 és IAA27 kulcsfontosságú elemei az auxin és etilén közötti interakciós folyamatoknak. Az SlARF2A gén az auxin, etilén és ABA jelátviteli folyamatok szabályozásában vesz részt a gyümölcsérés során (KOU és mtsai., 2021b). Az SlARF2A gén csendesítése során az ETR expressziójához köthető, ERF gének és etilén bioszintézishez köthető gének alulszabályozottak voltak. Alulszabályozottak voltak a kulcsfontosságú érési szabályozó elemek, mint például a RIN (érésgátló), CNR (colorless non-ripening) és NOR (HAO és mtsai., 2015). Az SlARF7 negatív szabályozója a gyümölcsérés folyamatainak, ugyanakkor a mögötte lévő molekuláris genetikai folyamatok még nem tisztázottak (KUMAR és mtsai., 2013, HU és mtsai., 2018). Az SIIAA3 pozitívan szabályozza az ERF gének expresszióját, amely az etilén hatására indukálódik a gyümölcsérés folyamán (LI és mtsai., 2017). Az SIERF.B3 gén szabályozza az etilén választ, gyümölcsérést és auxin-etilén interakciókat, valamint az SIIAA27 gén expresszióját is befolyásolja, ugyanakkor a teljes molekuláris genetikai szabályozás még nem ismert (LIU és mtsai., 2018).

Az etilén útvonalon keresztül számos TF és azokat kódoló gének vesznek részt a gyümölcsérés folyamataiban. Az *SIMYB70* negatívan szabályozza a gyümölcsérés folyamatait az etilén bioszintézis génjeinek gátlásával (CAO és mtsai., 2020). Az *SIGRAS4*, amely a GRAS családhoz tartozó TF-eket kódolja, serkenti a paradicsom termésének érését. A termésérés serkentését az etilén bioszintézis, valamint az *SIMADS1* gén expressziójának szabályozásával éri el (LIU és mtsai., 2021). Az *SIFERL* (MADS-box TF célgén) pozitív szabályozója az etilén termelésnek és a gyümölcsérésnek, valamint az *SISAM1* génnel kölcsönhatásba lép az etilén bioszintézis útvonalában. A kölcsönhatás eredménye a SAM és etilén termelésének növekedése (JI és mtsai., 2020). Az SIHY5, a bZIP TF-ek családjába tartozó TF, amely részt vesz a gyümölcsérés folyamataiban, mivel szabályozza az etilén jelátvitelben és a karotinok bioszintézisében részt vevő gének expresszióját (WANG és mtsai., 2021).

A klimaktérikus gyümölcsérés folyamataiban fontos hormoncsoport a polihidroxiszteroidok közé tartozó brasszinoszteroidok (BR). HU és mtsai. (2020) megfigyelték, hogy a BR bioszintézis kulcsenzimét kódoló gén (*SlCYP90B3*) szabályozza a paradicsom termésének érését az etilén-függő útvonalon keresztül. Az *SlCYP90B3* gén fontos szerepet játszik a gyümölcs állagának, ízének és beltartalmának kialakításában.

A gibberellin (GA₃) növényi hormon negatív szabályozója a gyümölcsérés és etilén bioszintézis folyamatainak a paradicsom termésben. Az endogén GA₃ koncentrációja csökken, amikor a zöld bogyótermésben fokozódik az etilén termelés az érési folyamat kezdetekor. A GA₃ szint csökkenését az *SlGA2ox1* gén túltermelése okozza (LI és mtsai., 2019).

2.3. A SPATULA gén

Az elmúlt évtizedekben számos gént sikerült azonosítani, melyek a nem klimaktérikus gyümölcsök fejlődésében és érésében vesznek részt, köztük a bHLH fehérjéket kódoló *SPATULA* (*SPT*) géneket. Az alapvető bázikus bHLH fehérjék a növények TF-jeinek egyik legnagyobb családját alkotják (BAILEY és mtsai., 2003), és mindhárom eukarióta birodalomban megtalálhatók (RIECHMANN és mtsai., 2000, LEDENT és VERVOORT, 2001). A bHLH fehérjéket a bHLH domén jellemzi, amely körülbelül 60 aminosav hosszúságú, és egy bázikus DNS-kötő doménből, majd egy hélix-hurok-hélix dimerizációs doménből áll (ZHANG és mtsai., 2013).

A kukorica (*Zea mays* L.) Lc fehérje volt az első növényi bHLH fehérje, melyet publikáltak (LUDWIG és mtsai., 1989). Az *Arabidopsis* esetében összesen 162 bHLH gént sikerült azonosítani. A *SPT* egy 15 génből álló csoportba tartozik, amelyekben a bHLH C-terminális régió konzervált (HEIM és mtsai., 2003, TOLEDO-ORTIZ és mtsai., 2003).

A SPATULA gén, amelyek szabályozzák a morfogenezist, különösen a virágok organogenezisét (ALVAREZ és SMYTH, 1999). Az SPT gén szerepet játszik még a magok csírázásában, a termések és levelek fejlődésében (PENFIELD és mtsai., 2005, ICHIHASHI és mtsai., 2010, TISZA és mtsai., 2010, TANI és mtsai., 2011). Bár az AtSPT gén szabályzó hatása minden szövetben megnyilvánul, leginkább a virágzás és a termésfejlődés során vizsgálták (HEISLER és mtsai., 2001, GROSZMANN és mtsai., 2008).

A szamóca esetében ma is folynak a kutatások a gének és funkcióik meghatározására. SÁNCHEZ-GÓMEZ és mtsai. (2022) összesen 92 gént gyűjtöttek össze az elmúlt évtizedből, amelyeket a szamóca fejlődésénél és érésénél azonosítottak. A *FaSPT (Fragaria x ananassa* Duch. cv. Elsanta *SPATULA*) is közte szerepelt (ALVAREZ és SMYTH, 1999), amely hasonlóságot mutat az *A. thaliana* (L.)-ban azonosított *AtSPT* génnel (TISZA és mtsai., 2010).

Az A. *thaliana* (L.)-ból származó *SPATULA* gén fontos szerepet tölt be a termőlevél és becő fejlődésében, ezen kívül más szövetekben is mutat expressziót, ahol a fejlődést és a szövetek abszcisszióját segíti elő (HEISLER és mtsai., 2001, GROSZMANN és mtsai., 2008). Az *AtSPT* a levél méretet is szabályozza (ICHIHASHI és mtsai., 2010), továbbá megmutatkozik a becők (gyümölcsök) leválási zónáiban, fejlődő portokokban, embriókban, a gyökércsúcsok bőrszövetében is (GROSZMANN és mtsai., 2008). GIRIN és mtsai. (2011) kutatásaikkal

összefüggésbe hozták az SPT gén működését egy másik bHLH transzkripciós faktort kódoló INDEHISCENT (IND) génnel. Az IND bHLH fehérje nélkülözhetetlen a gyümölcsfejlődésben és a maghozásban (LILJEGREN és mtsai., 2004). Az SPT és IND transzkripciós faktorok genetikai és fehérje-fehérje kapcsolatokon keresztüli interakciója fontos szerepet játszik a gynoecium- és gyümölcsfejlődésben. Az IND közvetlenül indukálja az SPT expresszióját. Az SPT és IND funkciói részben auxin szabályozás alatt állnak a termőtáj (gynoeceum)- és gyümölcsfejlődés során, amely azt feltételezi, hogy együttműködve kapcsolódnak a szabályozó szekvenciákhoz (GIRIN és mtsai., 2011). Az SPT negatív kölcsönhatásban áll a CUP-SHAPED COTYLEDON 1 (CUC1) és CUC2 (CUP-SHAPED COTYLEDON2) génekkel a termő (carpel) fejlődése során. Az SPT, CUC1 és CUC2 közötti ellentétes kölcsönhatás szabályozza a termőtáj domén-specifikus struktúra kialakulását (NAHAR és mtsai., 2012). GROSZMANN és mtsai. (2011) az ALCATRAZ (ALC) és SPT gének expressziós átfedését fedezték fel a termőtáj korai és a becőtermés fal, álválaszfal (replum) kései fejlődésében. Az SPT elengedhetetlen a korai termőtáj fejlődéséhez, míg az ALC a későbbi dehiszcenciás zóna fejlődésében.

SCHUSTER és mtsai. (2015) igazolták, hogy a HECATE 1 (HEC1) bHLH transzkripciós faktor, amely auxin és citokinin szabályozás alatt áll a reproduktív szövetek fejlődése során, interakcióban áll az SPT-vel. A HEC1 és SPT interakció szabályozza a termő fejlődését a termőtájban. Az *A. thaliana* (L.) termőtájának fejlődésében az SPT-IND-HEC interakciók fontos szerepet játszanak (ZÚÑIGA-MAYO és mtsai., 2019).

A funkció vesztett *SPT* mutáns *A. thaliana* (L.) tanulmányozása során bizonyították, hogy az *Arabidopsis* virág két szárnya nem olvad össze, a sziklevelek nagyobbak lesznek, hosszabb a hipokotil, míg a túlzott mértékű expresszió hatására kisebb méretű becők fejlődtek (ALVAREZ és SMYTH, 1999). Az *SPT* és *CRABS CLAW* (*CRC*) génekben mutáns *A. thaliana* (L.) növényekben a termőtáj fejlődése megállt. A termőtáj hosszanti irányában az átlagtól kevesebb, de nagyobb méretű sejtek voltak megfigyelhetőek. A *crc* mutáns növény termőtájában minden típusú sejt kifejlődött (vad és mutánsok) és a vaszkuláris differenciálódás korábban történt meg (ALVAREZ és SMYTH, 2002).

Ezenkívül a gyökérmerisztéma mérete nagyobb a megnövekedett osztódás miatt, ami hosszabb elsődleges gyökérhez vezet (MAKKENA és LAMB, 2013). Az *ind* és *spt* mutáns *A*. *thaliana* (L.) növények kombinációja drasztikusan növelte mindkét mutáns fenotípusos abnormitásait (GIRIN és mtsai., 2011).

TISZA és mtsai. (2010) a *FaSPT* kutatásai során azt figyelték meg, hogy a gén szeneszcenciával és stresszválaszokkal kapcsolatos folyamatokat is szabályozhat, mivel az auxin, etilén és mechanikai sebzés hatására a *FaSPT* expressziója csökken. Megállapították azt is, hogy a gyümölcsfejlődés előrehaladtával a zöld és fehér szamócákból származó receptákulumokban és

aszmagokban nőtt a *FaSPT* transzkriptum mennyisége. Eltérő szövettípusokban végzett expressziós kísérleteikkel igazolták, hogy a gén a sziromlevelekben expresszál a legnagyobb mértékben.

2.4. A SPIRAL gén

Az SPR géncsaládot három fő (SPR1, SPR2 és SPR3) és öt alcsoportba osztják fel, SPR1-1–SPR1-5 (SMYTH, 2016). A SPR1 és SPR2 géneket a mutáns Arabidopsis növényekben azonosították először, ahol a gyökerek jobbra csavarodnak, nem balra. Az spr1 mutáns növények abnormális helikális gyökérnövekedést mutattak, mely kiegészült a hipokotil abnormális fejlődésével is. Az spr2 mutáns növények esetében a levélnyél és virágszirmok is csavarodott állapotot mutattak. Az spr2 mutánsok gyökér epidermális sejtjeiben a bazális elongációs zónában lévő mikrotubulusok kortikális tömbjei abnormálisan helikálisak voltak (FURUTANI és mtsai., 2000).

Számos mikrotubulushoz kapcsolódó fehérje is szerepet játszik a helikális növekedésben. Az *SPR1* esetében kimutatták, hogy egy olyan fehérjét kódol, amely a mikrotubulusok növekvő végén lokalizálódik (NAKAJIMA és mtsai., 2004). Az *SPR2* mikrotubulusokhoz kapcsolódnak a fehérje-fehérje interakciót kiváltó domének révén (BUSCHMANN és mtsai., 2004). Az *SPR3* (*SPIRAL3*) gén esetében a mikrotubulusok magképződéséhez szükséges γ-tubulin-t tartalmazó komplex fehérje komponensét kódolja, amely egy jobb-irányú helikális gyökérnövekedést eredményez (NAKAMURA és HASHIMOTO, 2009). A *FvSPR* (*Fragaria vesca* L. *SPIRAL*) gén indukálja és szabályozza a sejtmegnyúlást és a növényi szervek fejlődését. Az *FvSPR* gén 69%-os hasonlóságot mutat az ortológ *AtSPR* génnel.

2.5. Transzformációs technikák

2.5.1. Az Agrobacterium tumefaciens közvetítette transzformáció

Az Agrobacterium tumefaciens az Agrobacterium nemzetséghez tartozó növény-patogén gram negatív baktérium, amely főként kétszikű fajokat képes megfertőzni. Az Agrobacterium nemzetségébe tartozó más törzsek képesek egyszikű, kétszikű (ANDERSON és MOORE, 1979, BARON és mtsai., 2001) és gomba (BUNDOCK és mtsai., 1995, DE GROOT és mtsai., 1998) fajokat is megfertőzni. Az A. tumefaciens baktériummal történő kutatások 1907-óta folynak, amióta a Bacterium tumefaciens felfedezése megtörtént (SMITH és TOWNSEND, 1907). A baktérium a Ti (tumor inducing) plazmidja segítségével képes bejuttatni a benne lévő géneket (T-DNS régió) a növény genomjába (3. ábra). A fertőzni képes fajokat a Ti plazmid határozza meg (LOPER és KADO, 1979). Számos vir (virulencia) lókusz fordulhat elő a Ti plazmidon, mint például a virC (YANOFSKY és mtsai., 1985) és virF (MELCHERS és mtsai., 1990), amelyek

meghatározzák, hogy mely fajokat képes fertőzni. A *virH* lókusz jelenlétében az *Agrobacterium* képes fertőzni a kukoricát (JARCHOW és mtsai., 1991). Más *vir* gének, mint amilyen például a *virG*, "hipervirulenciát" okoznak az egyes törzsekben (HOOD és mtsai., 1986).

Az Agrobacterium közvetítette növényi sejt transzformációjának molekuláris genetikai alapját a baktériumból származó Ti vagy Ri (gyökér-indukáló) plazmid genetikai információjának átjutása és integrálódása a növény génállományába jelenti. A transzfer DNS-t (T-DNS) a Ti vagy Ri plazmidban T-régiónak (T-DNS régió) nevezzük. A T-régió a natív Ti vagy Ri plazmidban körülbelül 10 – 30 kbp nagyságú (BARKER és mtsai., 1983). Ez a méret körülbelül csak a 10%-a a Ti plazmid méretének. A legtöbb Ti plazmid csak egy T-régiót tartalmaz, ugyanakkor előfordulnak olyan Ti plazmidok, amelyek több T-régióval is rendelkezhetnek (SUZUKI és mtsai., 2000). A T-DNS bejutását a baktériumból a növényi sejtbe a Ti plazmidban lévő vir gének aktivitása szabályozza (GARFINKEL és NESTER, 1980). A T-régió a T-DNS határoló szekvenciái között helyezkedik el (3. ábra). Ezek a határoló szekvenciák 25 bp hosszúak és homológok (JOUANIN és mtsai., 1989). A T-DNS határoló szekvenciái meghatározzák a T-DNS szekvenciáját, mivel ezek a határoló szekvenciák felismerőhelyek a VirD1/VirD2 restrikciós endonukleázoknak, amelyek kivágják a Ti plazmidból a T-DNS régiót. A határoló régiók nem csak a VirD1/VirD2 specifikus endonukleázok felismerőhelyeiként szolgálnak, hanem kovalens kötőhelyként is szolgálnak a VirD2 fehérjének. A Ti és Ri plazmidok esetében a T-DNS határoló szakaszai duplaszálú DNS-t alkotnak. A duplaszálú DNS hasításhoz szükség van a VirD1 és VirD2 fehérjékre in vitro (SCHEIFFELE és mtsai., 1995) és in vivo (YANOFSKY és mtsai., 1986) körülmények között is. In vitro, a VirD2 fehérje önmagában csak az egyszálú T-DNS határoló szekvenciát tudja hasítani (JASPER és mtsai., 1994). A határoló régiók hasítása a VirD2 fehérje szoros kovalens kötésével jár, a tirozin 29-en keresztül (VOGEL és DAS, 1992), a létrejövő egyszálú T-DNS molekula 5['] végéhez kapcsolódva, amelyet T-szálnak hívnak (DÜRRENBERGER és mtsai., 1989). Korábbi tanulmányok igazolták, hogy a T-DNS határoló szekvenciák mentén történő hasítási folyamatokat elősegíti a VirC1 fehérje (TORO és mtsai., 1989). A virCl és virC2 gének funkciói fontosak a virulenciához, mivel az ezen génekre mutáns Agrobacterium törzsek elvesztik fertőzőképességüket számos növényfajban (STACHEL és NESTER, 1986).

A VirA és VirG fehérjék egy kétkomponensű szenzoros jelátviteli genetikai szabályozó rendszer tagjaiként működnek. A VirA egy periplazmatikus antenna, amely érzékeli bizonyos növényi fenolos vegyületek jelenlétét, amelyek a sebzéskor indukálódnak (WINANS, 1991). A ChvE monoszacharid transzporterrel együttműködve és a megfelelő fenol- és cukormolekulák jelenlétében a VirA autofoszforilálja, majd transzfoszforilálja a VirG fehérjét (JIN és mtsai., 1990). A VirG nem foszforilált formában inaktív, a foszforiláció során azonban a fehérje segít

aktiválni vagy növelni a vir gének transzkripciójának szintjét, valószínűleg a vir-box szekvenciákkal való kölcsönhatás révén, amelyek a vir gén promótereinek alkotórészét képezik (DAS és PAZOUR, 1989). A VirD4 fehérjével együtt a 11 VirB fehérje egy IV. típusú szekréciós rendszert alkot, amely a T-DNS és számos más Vir fehérje, köztük a VirE2 és VirF átviteléhez szükséges (CHRISTIE és mtsai., 1988, VERGUNST és mtsai., 2000). A VirD4 "linker"-ként szolgálhat a T-DNS/VirD2 komplex és a VirB által kódolt szekréciós apparátus kölcsönhatásának elősegítésére (HAMILTON és mtsai., 2000). A VirD2 és VirE2 fehérjék alapvető és talán kiegészítő szerepet játszanak az Agrobacterium által közvetített transzformációban. Erről a két fehérjéről azt feltételezik, hogy a T-szállal egy "T-komplexet" alkot, amely a T-DNS átviteli formája (HOWARD és CITOVSKY, 1990). Ugyanakkor ez a feltevés továbbra is vitatott, hogy ténylegesen összeáll-e a komplex. CITOVSKY és mtsai. (1992) kimutatták, hogy a VirE2 képes működni egy növényi sejtben: a transzgénikus VirE2-t expresszáló dohánynövények "komplementálni" tudják a fertőzést egy virE2 mutáns Agrobacterium törzsben. Számos laboratóriumi kísérlet bizonyította, hogy a VirE2 átjuthat a növényi sejtbe T-szál hiányában (BINNS és mtsai., 1995, LEE és mtsai., 1999), és lehetséges, hogy a VirE2 komplexet képez a Tszállal akár a baktérium, akár a növényi sejten belül. A T-szál 5' végéhez való kapcsolódása miatt a VirD2 "célba juttató" fehérjeként szolgálhat, amely a T-szálat a IV-es típusú exportkészülékhez vezeti, illetve azon keresztül vezeti. A növényi sejtben a VirD2 a transzformációs folyamat további lépéseiben is működhet. A VirD2 nukleáris lokalizációs szignál szekvenciákat tartalmaz, amelyek segíthetnek irányítani a hozzá kapcsolódó T-DNS-t a növényi sejtmaghoz (HOWARD és mtsai., 1992, CITOVSKY és mtsai., 1994, MYSORE és mtsai., 1998). A VirD2 fontos szerepet játszhat továbbá a T-DNS növényi sejtbe történő integrációjában. Különböző mutációk a VirD2-ben befolyásolják a T-DNS integrációjának hatékonyságát (TINLAND és mtsai., 1995, MYSORE és mtsai., 1998).

A VirE2 szerepe a T-DNS nukleáris transzportban szintén vitatott. A VirE2 egy nem szekvencia-specifikus egyszálú DNS-kötő fehérje (CHRISTIE és mtsai., 1988). Az *Agrobacterium* sejtekben a VirE2 valószínűleg kölcsönhatásba lép a VirE1 molekuláris chaperone-al, ezért előfordulhat, hogy nem áll rendelkezésre a T-szálak megkötésére (DENG és mtsai., 1999). A kutatások azt igazolják, hogy a VirE2 nem képes a megkötött egyszálú DNS-t sem növényi, sem állati sejtek magjaihoz irányítani, amelyek permeabilizáltak a DNS-felvétel befolyásolása érdekében (ZHOU és CHRISTIE, 1999). A VirE2 megvédheti a T-szálakat a nukleolitikus lebomlástól, amely a növényi citoplazmában és esetleg a sejtmagban is előfordulhat (ROSSI és mtsai., 1993, YOUNG és mtsai., 2001).

Bár a Ti plazmid által kódolt vir gének szerepét gyakran elsődleges fontosságúnak tartják a transzformációban, számos *Agrobacterium* kromoszómális gén is nélkülözhetetlen ehhez a

folyamathoz. A kromoszómális gének szerepét először a teljes *Agrobacterium* genom véletlenszerű inszerciós mutagenezisével állapították meg (GARFINKEL és NESTER, 1980). Ezen gének funkciói közé tartozik az exopoliszacharid termelés, módosítás és szekréció (*pscA/exoC*, *chvA* és *chvB*) (DOUGLAS és mtsai., 1982, DOUGLAS és mtsai., 1985, CANGELOSI és mtsai., 1987, THOMASHOW és mtsai., 1987, CANGELOSI és mtsai., 1989), szerepet játszanak továbbá a baktériumok növényi sejtekhez való kötődésében (*att* gének) (MATTHYSSE, 1987), a szénhidrátanyagcserében, ezen belül a cukortranszporterek részt vesznek a *vir* gének indukciójában (*chvE*) (DOTY és mtsai., 1993), a *vir* gén indukció szabályozásában (*chvD*) (LIU és mtsai., 1999) és a T-DNS transzportban (*acvB*) (KALOGERAKI és WINANS, 1995).

A T-DNS régióba be lehet építeni az általunk választott géneket (GOI: gene of interest). A géntranszformációs kutatásokban gyakran alkalmazzák az *Agrobacterium* közvetítette transzformációt.

3. ábra: A lefegyverzett Ti plazmid (pTi) szerkezete (Saját ábra)

MCCORMICK és mtsai. (1986)elsőként végezték el sikeresen az Agrobacteriumközvetítette transzformációt paradicsom növényben. Azóta számos protokollt dolgoztak ki különböző fajokra explantátumoknál (GERSZBERG és mtsai., 2015). A sikeres transzformációhoz a protokoll szempontjából több szabályozható paramétert is optimalizálni kell. Ezek a tényezők lehetnek az acetosziringon koncentrációja, az Agrobacterium törzs, a tenyészet denzitása, a vektorkonstrukció felépítése és a tápoldat összetétele (GERSZBERG és mtsai., 2015). Az Agrobacterium közvetítette transzformációt más kutatásokban is sikeresen optimalizálták, melyben stabil transzformációt hoztak létre (EL-SIDDIG és mtsai., 2011).

A növényi transzformáció nem mindig eredményez hatékony transzgén-expressziót. A szakirodalomban több példa is fellelhető a transzgének változó expressziós szintjére, amelyek gyakran nem korreláltak a transzgén kópiaszámával (PEACH és VELTEN, 1991). A hatékonyság csökkenését kezdetben a pozícióhatásoknak tulajdonították, azaz a genomon belüli pozíciót, amelybe a T-DNS integrálódott. A T-DNS különböző távolságokban integrálódhat a transzkripciót aktiváló elemekhez vagy fokozókhoz, ami a T-DNS által hordozott transzgének aktiválódását (vagy ezek hiányát) eredményezheti (SUNDARESAN és mtsai., 1995). A pozícióhatások feltételezett problémáira megoldás lehet a T-DNS integrálása a növényi genom ismert, transzkripcionálisan aktív régióiba. A növényekben azonban a homológ rekombinációval végzett génbevitel a legjobb esetben is rendkívül hatástalan volt (RISSEEUW és mtsai., 1995). A helyspecifikus integrációs rendszerek, például a Cre-lox alkalmazása alternatív megoldásként szolgálhat, azonban a növényi genom azonos pozíciójában lévő lox-helyre bevitt egykópiás transzgének is változó szintű expressziót mutattak a független transzformánsokban. A transzgén elcsendesítése ezekben az esetekben a transzgén DNS metilációjából származhatott (DAY és mtsai., 2000). Ilyen metilációval összefüggő elcsendesítésről korábban beszámoltak a természetben előforduló T-DNS génekről (HEPBURN és mtsai., 1983, VANSLOGTEREN és mtsai., 1984). Így a transzkripciós elcsendesítés, a transzgének a növényi genom DNS-metilációra fogékony régióiba történő integrációjából fakadhat, amely a növényi transzformációs folyamat természetes következménye lehet.

Későbbi tanulmányok igazolták, hogy a transzgén csendesítése "transzkripciós" mechanizmusokból ered, amelyek általában a transzgén promoterének metilációjával járnak együtt (MEYER, 2000), valamint azt is, hogy a transzgén csendesítése gyakran "poszt-transzkripcionális", azaz a transzgén átíródik, de a keletkező RNS instabil (MEINS, 2000). Az ilyen poszt-transzkripciónális géncsendesítés gyakran több transzgén kópiával jár egy sejten belül. A közvetlen DNS-transzfer módszerekkel (például a polietilénglikol vagy a liposzóma által közvetített transzformáció, elektroporáció vagy részecskebombázás) előállított transzgenikus növények gyakran a transzgén nagyszámú másolatát integrálják tandem vagy fordított ismétlődő

tömbökbe, akár több, akár egyetlen lókuszba (KOHLI és mtsai., 1999). Bár az *Agrobacterium* által közvetített transzformáció általában alacsonyabb kópiaszámot eredményez az integrált transzgénekben, gyakori, hogy néhány T-DNS tandem kópiáját találják egyetlen lókuszban integrálva (JORGENSEN és mtsai., 1987).

2.5.2. Az in planta transzformációs technikák

Az Arabidopsis thaliana (L.) volt az első növény, amit sikeresen transzformáltak *in planta* transzformációval, amely nem igényel semmilyen szövettenyésztési és növényregenerálási lépést. Az első sikeres *in planta* transzformációt FELDMANN és MARKS (1987) írták le tanulmányukban. BECHTOLD és PELLETIER (1998) továbbfejlesztették ezt a módszert, amely során a transzformáció sikerességét növelték. További tanulmányok igazolták, hogy az *Arabidopsis* többféle *in planta* transzformációs módszerrel is sikeresen transzformálható, mint például a vákuum infiltráció (CLOUGH és BENT, 1998), csírázó növények transzformációja (FELDMANN és MARKS, 1987), valamint a virágbemártásos ("floral dip") módszer (CLOUGH és BENT, 1998). CLOUGH és BENT (1998) kísérletük során megállapították, hogy a tápanyagok, hormonok, a baktériumsűrűség nem befolyásolják a transzformáció szintjét.

A növény egészségügyi állapota és a virágzási szakasz azonban befolyásolják a transzformáció eredményességét (DESFEUX és mtsai., 2000). A módszer alkalmazásának három feltétele van:

- 1. Megfelelő virágzási szakasz és növényegyed kiválasztása: legtöbb bontatlan virágbimbófürttel rendelkező növény.
- 2. Megfelelő cukorkoncentráció kiválasztása, mert a szacharóz, illetve glükóz koncentrációja kulcsszerepet játszik a baktérium a növénybe történő beszivárgásában.
- Felületaktív anyag (Silwet L-77) vagy a vákuum használata, mert ezek elősegítik a baktériumok növényi felületen történő megtapadást.

A mártogatás után a virágos növényeket 12-24 óráig le kell fedni (műanyaggal) és inkubálni kell. Azért fontos, hogy műanyaggal fedjék le, mert az tartja a felszíni vizet, és a baktérium egyszerűbben elérheti a célsejteket. A hosszú ideig tartó merítés azonban destabilizálhatja a virágfürtöket.

A virágbemártásos módszer hátrányai közé tartozik, hogy alacsony a transzformációs hatékonyság (körülbelül 3%), sok virág és mag szükséges hozzá. Jelenleg ezt a módszert az *Arabidopsis thaliana* (L.) (CLOUGH és BENT, 1998) mellett több növényfaj esetében is sikeresen

alkalmazzák, mint például a paradicsom (*Solanum lycopersicum* L.) (YASMEEN és mtsai., 2009) és a búza (*Triticum aestivum* L.) (ZALE és mtsai., 2009) esetében.

DESFEUX és mtsai. (2000) virágbemártásos módszert alkalmazva, nőivarú reprodukciós szöveteket célozták a transzformáció során, melynél 4%-ra tudták növelni a transzformáció sikerességét. TJOKROKUSUMO és mtsai. (2000) vákuum infiltrációt alkalmaztak *Petunia hybrida* pollenek transzformációjához. A transzformáció sikeressége 7,5% - 9% között volt.

A növények transzformációja magába foglalja az idegen gének integrációját a gazda genomjába, ami a kívánt tulajdonságokkal rendelkező haszonnövények létrehozásához vezet. A tranziens expresszió esetében a gén bejuttatása után rövid időn belül expresszálódik, ez az oka az agroinfiltációs módszer alkalmazásának. Agroinfiltrációt elsőként leveleken alkalmazták, például a *Nicotiana benthamiana* L., a *Solanum lycopersicum* L. és az *Arabidopsis thaliana* (L.) növényeknél (WROBLEWSKI és mtsai., 2005, ORZAEZ és mtsai., 2006). Az *Agrobacterium* infiltrációja a levél parenchima intracelluláris tereibe a T-DNS átviteléhez és integrációjához vezet a sejtmagban, így biztosítva az expresszió lehetőségét.

ORZAEZ és mtsai. (2006) új módszert fejlesztettek ki a növények termésein és levelein át történő tranziens expresszióra agroinfiltrációval (agroinjekció) az *Agrobacterium* közvetlen injektálásával. A transzgén expresszióját bizonyították, melyben a paradicsom cv. Micro Tom gyümölcsbe egy bináris vektorban *CaMV35S* (karfiol mozaikvírus promóter) promótert *GUS* (β *glükuronidáz*), és *YFP* (*sárga fluorescens fehérje*) riporter génekkel fúzionáltattak, majd működtettek. Amikor metilénkéket adtak az *Agrobacterium* tenyészetekhez, a szövetekben kapott kék színnel jelezték, hogy a baktériumtenyészeteket sikeresen injektálták a gyümölcsbe.

2.6. A promóter és elemzésének technikái

2.6.1. A promóter szerepe a növényi génregulációban

A promóter a génreguláció központi vezérlőegysége, amely a gén transzkripciós start hely (TSS) előtt 5' irányban helyezkedik el. A promóteren az RNS polimeráz fehérje komplexhez szükséges kötőhelyek találhatóak, amelyek elengedhetetlenek a génátírás folyamatához (GRIFFITHS és mtsai., 2000). Eukarióta szervezetekben az RNS polimeráz I az rRNS prekurzorát szintetizálja, az RNS polimeráz II az mRNS prekurzorát és az RNS polimeráz III a tRNS, 5S-rRNS prekurzorait szintetizálják. Növényekben az RNS polimeráz IV és V játszik fontos szerepet a miRNS-ek szintézisében, amelyek a géncsendítésben vesznek részt (HAAG és PIKAARD, 2011).

Szerkezetileg a promóter disztális és proximális régióra osztható. A proximális régió a TSS melletti régiót foglalja magába, amely körülbelül -250-től +250-ig található. A promóter további régiója elengedhetetlen a megfelelő transzkripció megindításához, ezen rész foglalja magába a TSS-t a -35 és +35 nukleotid közötti régiókkal. Ez a régió rendszerint konzerválódott régiókat

tartalmaz (pl.: T (timin) /A (adenin) vagy A/T), amely körülbelül 25-30 bp (bázispár) távolságra helyezkednek el a TSS-től, melyet TATA-box-nak nevezünk. A proximális promóter régió elemei a *cis*-elemek, melyek körülbelül 100 (CCAAT-box) és 200 bp (GC-box) között helyezkednek el a TSS előtt (BUTLER és KADONAGA, 2002). A TATA-box volt az első elem, amit azonosítottak eukarióta szervezetekben (GOLDBERG, 1979) mint transzkripciós faktor kötőhelyet. A TATA-box A és T nukleotidokból álló konszenzus szekvencia, amelyek körülbelül 8 bp nagyságú.

A CAAT-box, mint *cis*-szabályozó elem, a konszenzus szekvenciájáról kapta a nevét. Rendszerint a -80 bp régióban helyezkedik el. Könnyen mutálódik, így a promóter hatékonyságának fő szabályozója és meghatározója. Az *Arabidopsis thaliana* (L.) növényen végzett kutatás igazolta, hogy a CAAT-box meghatározza a transzkripció hatékonyságát (TIWARI és mtsai., 2010).

A konstitutív promóterek által szabályozott gének aktívak a legtöbb sejtben a fejlődés során, ugyanakkor a génexpressziós intenzitásuk eltérő lehet a különböző sejttípusokban (PARK és mtsai., 2010). A növényi transzgénikus kísérletekben a CaMV35S széles körben használják, mivel a legtöbb szövetben és fejlődési szakaszban aktív (RANJAN és mtsai., 2011). A CaMV35S expressziója gyakran alacsony a reproduktív szövetekben, ami limitálja a felhasználását. Emiatt a kutatók számos növényi konstitutív promótert azonosítottak sikeresen, mint amilyen a rizs (*Oryza sativa* L.) poliubiquitin gén promótere (LU és mtsai., 2008), *APX*, *SCP1*, *PGD1*, *R1G1B* és *EIF5* promóterek (PARK és mtsai., 2010, PARK és mtsai., 2012), *ibAGP1* burgonya promóter (KWAK és mtsai., 2007), az *Arabidopsis* β-karotin hidroxiláz gén promótere (LIANG és mtsai., 2009).

A szövetspecifikus promóterek működésének megértéséhez elengedhetetlen a génexpresszióban és a szöveti differenciálódásban szerepet játszó mechanizmusok megértése. A szövetspecifikus promóterek felfedezése előrelépés volt a növényi biotechnológiai fejlesztésekben, mivel ezek a promóterek indukálják a transzgének expresszióját olyan specifikus szövetekben, ahol ezek a promóterek aktívak (NAIN és mtsai., 2008). Sikeresen azonosították az AGP-áz (ADP-glükóz pirofoszforiláz) enzimet kódoló gén promóterét az endospermiumból, amely csak a dohány magjaiban expresszál (CHEN és mtsai., 2007). MARRACCINI és mtsai. (1999) azonosították a *11S* promóterét, amely a magban lévő tartalék fehérjék génexpresszióját szabályozza (LI és mtsai., 2005), sikeresen izolálták a gyapot (*Gossypium hirsutum* L.) *ACT1* promóterét, amely a gyapotszál hosszát határozza meg. YE és mtsai. (2012) azonosították a *PDX1* promótert, amely csak a zöld növényi szövetekben expresszál.

A génexpresszió szabályozásához két típusú szabályozó elemre van szükség: a transzszabályozó faktorokra és a cisz-szabályozó elemekre, amelyek a tanszkripció iniciációs komplexét szabályozzák. YILMAZ és mtsai. (2011) tanulmányukban megállapították, hogy az *Arabidopsis thaliana* (L.) genomjában a fehérjét kódoló gének 6%-a TF-eket kódol. A transz-szabályozó faktorok szabályozzák a gén expresszióját a gén aktiváció (aktivátor vagy ko-aktivátor) vagy represszió (represszor vagy ko-represszor) hatása révén (TAATJES és mtsai., 2002, KAPLAN és mtsai., 2003). Az aktivátor aktiválja a transzkripciót a fehérje egy másik osztályának, a ko-aktivátornak az aktiválásával, amely részt vesz a transzkripció szabályozásában az aktivátorral és más TF-ekkel a fehérje-fehérje kölcsönhatáson keresztül (HAHN és YOUNG, 2011). A represszor ellensúlyozza az aktivátor hatását azáltal, hogy blokkolja a transzkripciót más represszor molekulákkal való kölcsönhatáson keresztül (GASTON és JAYARAMAN, 2003). Az aktivátorok modulátor szerkezettel rendelkeznek, amelyek a szekvencia-specifikus DNS-kötő fehérjékből áll (ALBERTS és mtsai., 2002). Az aktivátorok szabályozzák a génexpressziót a *core* promóterhez, a proximális promóterekhez és az 5' fehérjékre nem átíródó régiókhoz (UTR-ekhez) vagy enhanszerekhez kötve. Az aktivátorok elsődleges célpontjai a ko-aktivátorok, amelyek fokozzák a génexpressziót a transzkripciós komplex-el való közvetlen érintkezés vagy a kromatin módosítás révén (BANNISTER és KOUZARIDES, 2011, SRIVASTAVA és mtsai., 2016).

A ko-aktivátor fehérjékből jellemzően hiányzik a szekvencia-specifikus DNS-kötés, de hidat képeznek az aktivátorok és a transzkripciós komplex között, valamint részt vesznek a transzkripció szabályozásában (NÄÄR és mtsai., 2001). A ko-aktivátorok szerepet játszanak a gén szabályozásában a kromatin újrarendeződésen keresztül is (KADONAGA, 2004).

A represszorok, olyan DNS-kötő fehérjék, amelyek a silencer-hez kötődnek és gátolják a gén transzkripcióját a represszor doménjén keresztül (GASTON és JAYARAMAN, 2003). A represszor többféleképpen is ellátja funkcióját: blokkolja a közeli aktivátor kötődését, vagy közvetlenül verseng ugyanazért a kötőhelyért, fenntartja a represszív kromatin szerkezetét, blokkolva az enhanszer és az inzulátor kölcsönhatását (LODISH és mtsai., 2000).

A ko-represszorok azok a nem DNS-kötő fehérjemolekulák, amelyek gátolják a transzkripciót fehérje-fehérje kölcsönhatásokon keresztül (HAHN és YOUNG, 2011). Részt vesznek a kromatin szerkezetének átrendeződésében, valamint kötődnek az aktivátorhoz/ko-aktivátorhoz, így megakadályozzák, hogy a DNS-hez kötődjenek. A ko-represszor számos különböző mechanizmust használ, beleértve a ko-aktivátorral való versengést, a transzkripciós komplex interferenciát, a hiszton-deacetiláz aktivitással rendelkező komplexek kialakítását és a DNS-metilációt (JEPSEN és ROSENFELD, 2002).

A *cis*-reguláló elemek a nem kódoló DNS-szekvenciák rövid szakaszai, amelyeket a *transz*szabályozó faktor (aktivátor vagy represszor) használ. Ez a szakasz tartalmazza a gén megfelelő spatiotemporális expressziójához szükséges TF-ek kötőhelyét (NARLIKAR és OVCHARENKO, 2009). Az *A. thaliana* (L.) növényben számos *cis*-reguláló elemet azonosítottak. Ilyen például az M46RE, amely az *AtC3H14* gén egyik *cis*-reguláló eleme. Az M46RE-t a MYB46 ismeri fel, amelynek 8 nukleotidos RKTWGGTR motívuma van. Ez a motívum szükséges a MYB46-válasz transzkripcióhoz (KIM és mtsai., 2012). További szabályozó elemek például a *cis*-aktiváló elem és *cis*-represszív elem, amely a *LEAFY COTYLEDONS 2* (*LEC2*) gén transzkripciójának szabályozásában vesznek részt (BERGER és mtsai., 2011). A *cis*-elemek kombinatorikus kölcsönhatását a fény által szabályozott promóter esetében is kimutatták az *A. thaliana* (L.) növényben. Számos olyan konszenzus szekvenciát azonosítottak, amelyek a fényben való nagyobb aktivitáshoz szükségesek a fotoszintézissel társult sejtmagi gének promótereiben (például *rbcS* és *cab*), ezeket fényre reagáló elemeknek (light responsive elements) nevezik (PUENTE és mtsai., 1996). Az *SBP2* promóter szövetspecifikusságának meghatározása a disztális *cis*-szabályozó A doménben található, amely moduláris szerkezetbe szerveződött, hogy elnyomja a promóter aktivitását a szállítószöveteken kívüli szövetekben (FREITAS és mtsai., 2007).

Az inszulátorok (határoló elemek), azok a DNS-szekvenciák, amelyek megakadályozzák a génszabályozást azáltal, hogy korlátozzák az enhanszer/silencer és a promóter közötti kölcsönhatást (RAAB és KAMAKAKA, 2010). A gén expressziója blokkolható, ha egy inszulátor kerül a promóter és a gén enhanszere közé, amelyet "enhancer-blokkolónak" nevezünk. Valamint lehet "csendesítő gát", ha a promóter és a silencer közé kerül az inszulátor (MAJUMDER és CAI, 2003, MAKSIMENKO és mtsai., 2008).

Az enhancerek voltak az első olyan DNS-szekvenciák között, amelyekről kiderült, hogy szövetspecifitást mutatnak, valamint a géntranszkripció hosszú távú aktivátoraiként azonosították a magasabb rendű eukariótákban (SERFLING és mtsai., 1985). Az általuk szabályozott génhez képest messzire (akár több tíz vagy száz kb-ig) elhelyezkedhet, valamint orientációtól független módon szabályozhatnak (KLEINJAN és VAN HEYNINGEN, 2005). Kukoricában egy távoli enhanszer szekvencia, amely a *tb1* géntől 5'-irányban >41 kb-nál upstream helyezkedik el, szabályozza annak expresszióját (CLARK és mtsai., 2006). A transzlációs start kodontól körülbelül -470 és -2808 bp-nál upstream található több enhanszer régió kritikus fontosságú az *AtKP1* gén aktiválása szempontjából (LAI és mtsai., 2009).

2.6.2. Az in silico promóter adatbázisok

A DNS szekvenciák predikciójára és elemzésére szolgáló *in silico* algoritmusok úgy működnek, hogy megpróbálják feltárni az ismert kötőhelyek szekvenciáját és elhelyezkedését, amelyek segítségével azonosíthatóak a promóter szekvenciák, illeszthetőek egy adott ismeretlen szekvenciához és pozíciójához (STORMO, 2000). Számos online elérhető promóter régió elemzős és prediktáló algoritmus vagy adatbázis érhető el. Az *in silico* elemzéseket mindig laboratóriumi kísérletekkel igazoljuk vagy ellenőrizzük (KOMARNYTSKY és BORISJUK, 2003).

A TRANSFAC (Transzkripciós faktor adatbázis) egy online elérhető TF adatbázis, amely specifikus kötőhelyeken alapszik az eukarióta szervezetekben. A pozíció specifikus súlymátrixok

alapján azonosíthatóak a TF-ek. Az adatbázis számos publikációval validált DNS szekvenciát tartalmaz, melyet laboratóriumi kísérletekkel is igazoltak (WINGENDER és mtsai., 1996). A JASPAR az online elérhető legfejlettebb adatbázis, összesen 741 növényi TF-et tartalmaz (STORMO, 2013), amelyeket pozíció specifikus frekvencia mátrixokba rendeztek (NAIN és mtsai., 2011).

A *cis*-szabályozó elemek azonosítására a PLACE online adatbázis a legelterjedtebb. A PLACE nukleotid szekvencia motívumokat tartalmaz. A motívumok már publikált növényi gének promóter régióiról származnak (HIGO és mtsai., 1999).

2.6.3. A promóter deléciós vonalak

A promóter bashing módszer egy molekuláris biológiában alkalmazott módszer, amit arra használnak, hogy meghatározzák promóteren található TF és *cis*-szabályozó elemek helyzetét (KOMARNYTSKY és BORISJUK, 2003). Génklónozás módszerével a PCR-el felszaporított régiót riporter génnel fúzionálják (BOULIN és mtsai., 2006). A riportergén expresszióját alkalmazzák a genetikai szabályozó elem jelenlétének azonosítására. A transzformáció után rövid ideig expresszálódó konstrukciót nevezzük tranziens expressziónak. A sikeres genetikai tarnszformáció azonosítására könnyen alkalmazható módszer. Tranziens expresszió során riporter gént és marker gént használnak indikátorként az azonnali expresszió azonosítására a sejtekben és szövetekben. Általában β -D-glükuronidáz gént (JEFFERSON és mtsai., 1987) és a green fluorescent protein (GFP; zöld fluoreszcens fehérje) gént (CHALFIE, 1995) alkalmazzák a tranziens expresszióhoz. A GUS kék színű expressziója hisztokémiai reakcióval detektálható, míg a zöld színnel expresszáló GFP UV fénnyel mutatható ki.

A promóter bashing módszer során a promóter szekvenciából egyre hosszabb szakaszokat szaporítanak fel 5'irányba haladva, ezzel meghatározva a TF motívumokat (CHALFIE és KAIN, 2005). A riporter gén expresszió mértékét a specifikus gén promóter régió deléciós vonalai szabályozzák.

2.7. Gateway™ bináris vektor rendszer

A GatewayTM klónozó rendszer (Invitrogen, Gaithersburg, MD, USA) a λ fág által közvetített helyspecifikus rekombinációs reakción alapul (WALHOUT és mtsai., 2000). A rekombinációs helyekkel (*att*) szegélyezett DNS-fragmentumok átvihetőek olyan vektorba, amelyek kompatibilis rekombinációs helyeket (*att*B x *att*P vagy *att*L x *att*R) tartalmaznak a GatewayTM BP ClonaseTM vagy az LR ClonaseTM Enzyme Mix (Invitrogen) segítségével. Az integráció során az λ fág *att*P helye (242 bp) és az *Escherichia coli att*B helye (25 bp) rekombinálódik, és a λ fág genom integrálódik az *E. coli* genomba. Ennek eredményeként a λ fág genomját az *att*L (100 bp) és *att*R (168 bp) helyek szegélyezik (BP reakció). A fordított reakcióban a fág DNS-t kivágják az *E. coli* genomból az *att*L és az *att*R helyek közötti rekombinációval (LR reakció).

A BP reakcióhoz két fehérjére van szükség, a fág integrázra (Int) és az *E. coli* integrációs gazdafaktorra (IHF). E két fehérje keverékét a Gateway[™] rendszerben BP klonáznak nevezik. Az LR reakcióban Int, IHF és még egy fág fehérje, excizionáz (Xis) szükséges, és ezt a keveréket LR klonáznak nevezik. A Gateway klónozási módszer ezeket az *att* helyeket és klonázokat használja a plazmid *in vitro* megalkotásához (HARTLEY és mtsai., 2000, WALHOUT és mtsai., 2000).

A GatewayTM rendszer korai verziójában négy pár módosított *att* helyet hoztak létre az irányított klónozáshoz. Ezek az *att*B1 és az *att*B2, az *att*P1 és az *att*P2, az *att*L1 és az *att*L2, az attR1 és az attR2, és a rekombinációs reakció csak *att*B1 és *att*P1, *att*B2 és *att*P2, *att*L1 és *att*R1 vagy *att*L2 és *att*R2 kombinációja esetén fordulhat elő, mivel ez szigorúan függ az *att* szekvenciáktól (HARTLEY és mtsai., 2000, WALHOUT és mtsai., 2000). Ezen *att* helyek mellett a *ccd*B-t, amelynek fehérje terméke gátolja a DNS-girázt, és egy kloramfenikol-rezisztencia (Cm^r) markert használnak a GatewayTM vektorok szelekciójára.

Nagyszámú Gateway[™] klónozással kompatibilis bináris vektort (Destination vector) fejlesztettek ki több laboratóriumban, és ezeket a KARIMI és mtsai. (2007) foglalták össze tanulmányukban. Közülük a pW (KARIMI és mtsai., 2002), a pMDC (CURTIS és GROSSNIKLAUS, 2003, BRAND és mtsai., 2006) és a pEarleyGate (EARLEY és mtsai., 2006) sorozatok sokféle vektort tartalmaznak számos célra. A pW sorozat vektorai a karfiol mozaikvírus *35S* promóterével túltermeltetésre vagy antiszensz expresszióhoz, a luciferáz, GUS vagy GFP-GUS segítségével pedig promóter elemzésekhez alkalmazhatóak. A pW sorozat a hairpin RNS-t az RNSi-hez történő expresszálására szolgáló vektort is tartalmaz. A pMDC széria vektorai a 35Ssel történő túltermeléshez, a hősokk-promóterrel vagy ösztrogén kezeléssel indukálható expresszióhoz, a GFP-6xHis-t vagy GUS-t használó promoterelemzéshez, valamint a GFP-vel, GFP-6xHis-szel vagy GUS-szal történő génfűziókhoz alkalmazhatóak. A pEarleyGate egy Basta rezisztenciát hordozó sorozat (EARLEY és mtsai., 2006).

A promóter analízishez használt vektorok általános szerkezete *att*R1-Cm^r-*ccd*B-*att*R2-tagterminátor, és az *att*L1-promóter-*att*L2 "entry" klónnal végzett LR reakció után *att*B1-promóter*att*B2-tag-terminátor konstrukciót eredményeznek. A jelölt fúziós fehérjék expresszálására szolgáló vektorok általános szerkezete: promóter-*att*R1-Cm^r-*ccd*B-*att*R2-tag-terminátor (Cterminális fúziókhoz) vagy promóter-tag-*att*R1-Cm^r-*ccd*B-*att*R2-terminátor (N-terminális fúziókhoz), valamint az *att*L1-ORF-*att*L2 "entry" klónnal végzett LR reakció után a promóter*att*B1-ORF-*att*B2-tag-terminátort vagy a promóter-tag-*att*B1-ORF-*att*B2-terminátort eredményezik úgy, hogy a jelölés hozzáadódik az N-terminális részhez (NAKAGAWA és mtsai., 2007).

Az RNSi (RNS-interferencia) vektorai (KARIMI és mtsai., 2002, HELLIWELL és WATERHOUSE, 2003, HILSON és mtsai., 2004, MIKI és SHIMAMOTO, 2004) általában rendelkeznek egy Gateway[™] kazettával, amely a promóter-*att*R1-*ccd*B-*att*R2-linker-*att*R2-*ccd*B-*att*R1-terminátor részekből állnak. Az *att*L1-trigger-*att*L2-vel végzett LR-reakció során a trigger szekvencia mindkét helyre ellentétes irányban épül be, ami egy promóter-*att*B1-trigger-*att*B2-linker-*att*B2-komplementer trigger-*att*B1-terminátor konstrukciót eredményez. A hairpin RNS-t ebből a konstrukcióból expresszálják, amit siRNS-é (kis interferáló RNS, small interfering RNA) alakítanak át a géncsendesítés céljából.

3. Anyag és módszer

3.1. A felhasznált növényanyag

A kísérleteink során az *FvSPT*, *FvSPR1-like1* és *FvSPR1-like2* géneket és promótereiket a *Fragaria vesca* L. cv. Rügen diploid szamócából izoláltuk. A promóter deléciós vonalak létrehozása során az *sGFP* riporter génnel fúzionáltatott *FvSPT*, *FvSPR1-like1* és *FvSPR1-like2* géneket tranziens expresszióval a dohány (*Nicotiana tabacum* L.) növény leveleiben és paradicsom (Solanum lycopersicum L. cv. Micro Tom) bogyó termésében expresszáltattuk. A komplementációs tesztekhez a lúdfű (*Arabidopsis thaliana* L.) *spt* és *spr1-2* mutáns növényeket használtuk.

3.2. A növények nevelési körülményei

3.2.1. Az Arabidopsis thaliana (L.) növények nevelési körülményei

A növények magjait általános virágföldbe vetettük el, 6 cm átmérőjű cserepekbe. Az *A. thaliana* (L.) magokat elvetésük után 4°C-on 4 napig inkubáltuk a hűtőben. A növényeket 22°C-on klímakamrában (Binder KBWF 240, Tuttlingen, Németország) neveltük 8 órás megvilágítás és 37 μmol m⁻² s⁻¹ fényerősség mellett, melyet Biolux fénycsövekkel (Osram L58W, Markham, Kanada) biztosítottunk. Az *A. thaliana* (L.) növényeken megjelenő első virágokat eltávolítottuk (körülbelül 14-16 nappal a csírázás után) (SMYTH és mtsai., 1990). Az első virágok megjelenése után 16 órás megvilágítást biztosítottunk a növényeknek 37 μmol m⁻² s⁻¹ fényerősség és 22°C hőmérséklet mellett.

3.2.2. A szamóca, a paradicsom és a dohány növények nevelési körülményei

A növényeke magjait egyenként 50 mm átmérőjű Jiffy-7[®] tőzegkorongokba vetettük el. A magoncokat klímakamrában (Binder KBWF 240, Tuttlingen, Németország) neveltük 22°C-n, 8 órás megvilágítás és 37 µmol m⁻² s⁻¹ fényerősség mellett (Biolux fénycső: Osram L58W, Markham, Kanada). Amikor a növények gyökerei átszőtték a tőzegkorongot és legalább két teljesen kifejlődött leveles állapotba kerültek, akkor ültettük a növényeket 9 cm átmérőjű cserepekbe általános virágföldbe. A cserepes növények nevelési körülményei azonosak voltak a tőzegkorongba nevelt növényekével.

3.3. A *Fragaria vesca* L. cv. 'Rügen' növény *SPATULA* (*FvSPT*) és *SPIRAL* (*FvSPR*) génjeinek azonosítása és felszaporítása PCR technikával

A komplementációs tesztekhez használt *Fragaria x ananassa* Duch. cv. Elsanta *SPATULA* (*FaSPT*), *SPIRAL1-like1* (*FaSPR1-like1*) és *SPIRAL1-like2* (*FaSPR1-like2*) gének kódoló szekvenciáit BALOGH és mtsai. (2005) és TISZA és mtsai. (2010) azonosították cDNS-AFLP módszerrel. A *Fragaria vesca* L. *SPIRAL1-like1* (*FvSPR1-like1*; XM_004297177; LOC01307108), *SPIRAL1-like2* (*FvSPR1-like2*; XM_004299243; LOC101309836), *Arabidopsis thaliana* (L.) *SPIRAL1-like2* (*AtSPR1-like2*; BT024676), *F. vesca* L. *SPATULA* (*FvSPT*; XM_004287975 és AY679615) és *A. thaliana* (L.) *SPATULA* (*AtSPT*; BT026462) gének homológiájának azonosítására a ClustalO (https://www.ebi.ac.uk/Tools/msa/clustalo/) programot és algoritmust használtuk. A primerek tervezéséhez és promóter elemzéséhez a "*Fragaria vesca* L. Whole Genome v2.0a1 assembly & annotation" genomot használtuk a GDR (http://www.rosaceae.org/) weboldalról a CLC Main Workbench v7.0 programmal.

Genomi DNS-t (gDNS) 100 mg fagyasztott (-80°C) *F. vesca* L. cv. Rügen növényből izoláltunk NucleoSpin Plant II kittel (Macherey-Nagel, Düren, Németország) a gyártói utasítások szerint. A *SPT* gén és promótere (6600 bp), az *SPR1-1* és *SPR1-2* gének és promótereik (9647 bp és 2443 bp) felszaporítása GoTaq Long PCR Master Mix (Promega, Madison, WI, USA) enzimmel történt PCR (polimeráz-láncreakció) technikával. Összesen 100 ng gDNS-t használtunk templátként 50 µL végtérfogatban a PCR mixhez. A PCR mix 25 µL térfogatú GoTaq Long PCR Master Mix (2x)-et és 40 pmol primerpárt (1. táblázat) tartalmazott. A PCR-hez elődenaturációként 95°C-on alkalmaztunk 2 percig, majd 35 cikluson keresztül 95°C-on 30 másodperc denaturációt, 65°C-on 7 perc kapcsolódás és meghosszabbítás, végül 72°C-on 10 perc végső meghosszabbítás. A PCR termékeket 1,0 %-os agaróz gélen választottuk el gélelektroforézissel 1x TAE (Tris-acetate-EDTA) pufferben (SAMBROOK és mtsai., 1989) és UV fénnyel (302 nm) detektáltuk 0,1 %-os etídium-bromiddal jelölve. Molekulatömeg markerként 1 kb (kilóbázis) Plus DNA Ladder-t (ThermoFisher Scientific, Carlsbad, CA, USA) használtuk. A PCR termékeket Wizard[®] SV Gel and PCR Clean-Up System kittel (Promega, Madison, WI, USA) izoláltuk vissza az agaróz gélből.

3.4. Az FvSPT, FvSPR1-like1 és FvSPR1-like2 gének és promótereik klónozása bináris vektorba

A tisztított PCR termékeket a pDONR221 entry vektorba (Life Technologies, Carlsbad, CA, USA) klónoztuk a gyártó utasításai szerint. A pGWB401 vektort (NAKAGAWA és mtsai., 2007, TANAKA és mtsai., 2011) használtuk az *A. thaliana* (L.) *spt* és *spr* mutáns növények (Col) transzformálására. Az *spr1-2* Col mutáns (NASC ID: N6547) növénynek jobb oldali helikális gyökérnövekedést, sejt megnyúlást és abnormális funkciójú kortikális mikrotubulus működést produkálnak, melyet az *SPR1-like2* allél (At1g69230; GenBank: BT26462) mutációja okozza egy T-DNS inszercióval. Az *spt* Col mutáns (NASC ID: N857133) egy T-DNS inszerciót tartalmaz az *SPT* génben (At4g36930; GenBank: BT024676) a 4-es kromoszómán.

3.5. Az Arabidopsis thaliana (L.) transzformációja Agrobacterium tumefaciens-el.

Az spr1-1/spr1-2 és spt mutáns növények genetikai tarnszformációja az A. thaliana (L.) növények másodlagos virágzatának megjelenésekor történt (körülbelül 1 hónappal a magok csírázása után). Az A. tumefaciens GV3101 törzsével floral dip (CLOUGH és BENT, 1998) módszerrel kerültek transzformálásra a növények, amit megismételtünk a harmadlagos virágzatok megjelenésekor. A magokat begyűjtöttük az érett növényekről. A sikeresen transzformált növényeket kanamicin (Duchefa, Haarlem, Hollandia) oldattal kezeltük. Az A. thaliana (L.) növényeket két leveles állapotukban 100, 200 és 400 mg/mL koncentrációjú kanamicin oldattal permeteztük le, majd ezt megismételtük 3 nappal, 1 héttel és 2 héttel az előző kezelés után. Azokat a növényegyedeket, amelyek túlélték a négy kanamicin kezelést, direkt PCR módszerrel vizsgáltuk meg specifikus primerekkel. A direkt PCR-hez Phire Plant Direct PCR Kitet (ThermoFisher Scientific, Carlsbad, CA, USA) használtunk. A PCR mix összetételéhez 10 µL térfogatú Phire Plant PCR Buffer-t (2x), 40 pmol primerpárt, 0,4 µL tárfogatú Phire Hot Start II DNA Polymerase enzimet és 0,5 µL térfogató növényi lizátumot mértünk ki. A PCR-hez 98°C 5 perc elődenaturációt, 40 cikluson keresztül 98°C 5 másodperc denaturációt, 60°C 5 másodperc kapcsolódási fázist, 72°C 20 másodperc meghosszabbítási fázist és 72°C 1 perc végső meghosszabbítási fázist alkalmaztunk. A PCR termékeket elektroforézissel választottuk el, mint a cDNS klónokhoz is alkalmaztunk. A pozitív direkt PCR eredményt adott T1 növényegyedeket klímakamrában neveltük T4 generációig.
Primer neve	Primer pozíciója	Szekvencia (5 ¹ - 3 ¹)	Amplikon hossza		
FvSPR1	forward	TGCAGATGGCTCAACTCAA	280 bp		
	reverse	ACCTGGGAAAGGGTGGAGTA	2 00 op		
FvSPR2	forward	TGTATGAATTACGTAACCAT	178 bp		
	reverse	TTCTCTTTCGACACTCGTC	110 0p		
FvSPT	forward	ACTATTTAAAATTAAAAGAA	- 197 bp		
	reverse	ATTAGGAAATCCACTCAGACA			
FvGAPDH	forward	AGGTTGTGCTGGTAATGGAA	218 bp		
	reverse	ATTGCAGTGGTGGATACCTT			

1. Táblázat: A transzformációs kísérletekhez használt primerek adatai

3.6. Az Arabidopsis thaliana (L.) növények T3 és T4 generációinak RT-qPCR vizsgálata

Az A. thaliana (L.) növények T₃ és T₄ generációit RT-qPCR (valós idejű kvantitatív polimeráz-láncreakció) módszerrel vizsgáltuk meg, hogy az FvSPT, FvSPR1-like1 és FvSPR1like2 gének milyen intenzitással működnek a transzgénikus növényekben. Az RT-qPCR vizsgálatokhoz totál RNS-t izoláltunk Direct-zol[™] (Zymo Research, Irvinie, CA, USA) kittel TRIzol reagensben lizált növénymintákból, a gyártói utasítások szerint. A tisztított RNS-ek mennyiségét és minőségét Implen n50 mikrokapilláris spektofotométerrel (Implen, München, Németroszág), agaróz gélelktroforézissel és Agilent Bioanalyzer 2100 készülékkel (Agilent Technologies, Santa Clara, CA, USA) ellenőriztük. A cDNS szintézishez 120 ng totál RNS-t használtunk a FIREScript RT cDNA Synthesis Mix-hez (Solis BioDyne, Tartu, Észtország). A qPCR (kvantitatív polimeráz-láncreakció) reakcióhoz 5 x HOT FIREPol EvaGreen qPCR Supermix-et (Solis BioDyne, Tartu, Észtország) használtunk az ABI 7300 real-time PCR rendszeren (ThermoFisher Scientific, Carlsbad, CA, USA) a gyártói utasítások szerint. Normalizációs referenciaként FvGAPDH (Fragaria vesca L. gliceraldehid-3-foszfátdehidrogenáz) és AtGAPDH (Arabidopsis thaliana (L.) gliceraldehid-3-foszfát-dehidrogenáz) primereket használtunk, melyeket a háztartási gének optimális expressziós szintjei alapján választottunk ki (EXPOSITO-RODRIGUEZ és mtsai., 2008, LIU és mtsai., 2012, LIU és mtsai., 2020).

Az RT-qPCR eredmények kiértékeléséhez a $2^{-\Delta\Delta Ct}$ módszert alkalmaztuk (LIVAK és SCHMITTGEN, 2001). A szignifikánsan eltérő génexpressziójú növényegyedek kiválasztásához Student's t-tesztet használtunk a GraphPad Prism 9.0 programmal (GraphPad Software, San Diego, CA, USA) (p < 0,05).

3.7. Az Arabidopsis thaliana (L.) növények T3 és T4 generációinak fenotípusos vizsgálatai

Az A. thaliana (L.) vadtípusú, mutáns és transzformáns növények T₃ és T₄ generáció egyedei esetében meghatároztuk a habitus, a gyökér, a becő (háromszoros biológiai és technikai ismétlésben) és a mag/becő számát (háromszoros biológiai és technikai ismétlésben). A becő hosszát T3 és T4 generáció növényegyedeinél SMZ-BL sztereómikroszkóppal (Motic, Hong Kong, Kína) mértük meg. Az eredmények statisztikai értékelésére az SPSS v22 (SPSS Inc., IBM Corp., Armonk, NY, USA) programot használtuk. ANOVA analízissel és Tukey teszt alkalmazásával kimutattuk a kontrolltól szignifikánsan eltérő növényegyedeket (p < 0,001).

3.8. A promóterek in silico analízise

A Micro Tom genom tanulmányozásához a Tomato Genome Consortium teljes genom szekvenálásából származó eredményeket használtuk a *S. lycopersicum* L. cv. Micro Tom *SPATULA (MtSPT)* (Gene ID: 101,266,791, NC_015439.3) és *SPIRAL1-like2 (MtSPR1-like2)* (Gene ID: 101,257,849, NC_015440.3) gének esetében. Az erdei szamóca genom tanulmányozásához az *Fragaria vesca* Whole Genome v2.0a1 assembly & annotation (http://www.rosacea.org/) használtuk az *FvSPT* (XM_004287975; LOC101290893), *FvSPR1-like1* (XM_004297177; LOC01307108) és *FvSPR1-like2* (XM_004299243; LOC101309836) gének promótereihez. Az *A. thaliana* (L.) teljes genom szekvenálást (SWARBRECK és mtsai., 2008) használtuk az *AtSPT* (BT024676) és *AtSPR1-like2* (BT026462) gének promótereinek elemzéséhez. Az *FvSPR1-like1, FvSPR1-like2* és *FvSPT* géneket azonosítottuk a promótereikkel együtt, majd *A. thaliana* (L.) és *S. lycopersicum* L. szekvenciákra illesztettük homológ szekvenciákat keresve, melyhez az NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) algoritmust használtuk. A sikeresen azonosított promóter régiókat JASPAR2020 (FORNES és mtsai., 2020) és PLACE 30.0 (HIGO és mtsai., 1999) adatbázisokon vizsgáltuk meg transzkripciós kötőhelyeket és *cis*-reguláló elemek keresése végett.

3.9. A promóter deléciós vonalak felszaporítása PCR technikával

A start kodon előtti régiókat azonosítva az *FvSPT* (3100 bp) és *FvSPR1-like2* (2800 bp) gének promótereinek esetében PCR technikával készítettük el az 500 bp (FvSPR500, FvSPT500), 1000 bp (FvSPR1000, FvSPT1000), 2000 bp (FvSPR2000, FvSPT2000) és 3000 bp (FvSPT3000) deléciós vonalakat a start kodon előtti régiókról (4.ábra). A PCR reakciót GoTaq Long PCR Master Mix-et (Promega, Madison, WI, USA) használtuk. A gDNS-ből 100 ng mennyiséget használtunk templát DNS-ként 50 µL végtérfogatban. A PCR-hez 25 µL mennyiséget a GoTaq Long PCR Master Mix-ből (2x) és 30 pmol mennyiséget mértünk ki a primerekből (2. táblázat). A PCR körülményeként 95°C 2 perc elődenaturációt, 35 ciklus 95°C 30 másodperc denaturációt, 65°C 1 perc (500 bp és 1000 bp promóter deléciós vonalak esetében) vagy 3 perc (2000 bp és 3000 bp promóter deléciós vonalak esetében) vagy 3 perc (2000 bp és 100 prec végső meghosszabbítási fázist alkalmaztunk. A PCR termékeket 1,0 %-os agaróz gélen és 1X TAE pufferben választottuk el elektroforézissel. A PCR termékeket UV fénnyel (302 nm) 0,1%-os etídium-bromiddal megfestve detektáltuk VWR[®] Smart3 géldokumentációs rendszerben (IBI Scientific, Dubuque, IA, USA).

4. ábra: Promóter deléciós vonalak felépítése. Az ATG jelöli a start kodont. A: *Fragaria vesca*L. *SPIRAL (FvSPR)* gén promóter deléciós vonalainak szerkezete. B: *Fragaria vesca* L. *SPATULA (FvSPT)* gén promóter deléciós vonalainak szerkezete (Saját kép)

 Táblázat: A promóter deléciós vonalak felszaporításához és az RT-qPCR vizsgálatokhoz használt primerek adatai

Primer neve	Primer pozíciója	Szekvencia (5' - 3')
FvSPR1-like2:500	forward	CACCGACATGGTTTCGTGCTTTTG
FvSPR1-like2:1000	forward	CACCACATCAGCCCACCTCACA
FvSPR1-like2:2000	forward	CACCCTGGTTGTTCTCTGTGTCCT
FvSPR1-like2	reverse	AATCGAGAGATGAACCCC
FvSPT:500	forward	CACCAGTGGTTCCAACGTATTG
FvSPT:1000	forward	CACCGTTTCCCAAGTGTCCGTA
FvSPT:2000	forward	CACCTTTGTAGGTCCTGATTG
FvSPT:3000	forward	CACCGTTTAAAGTCCACAGT
FvSPT	reverse	GGTTACCTTTCCAGTCCATTT
M12	forward	GTAAAACGACGGCCAG
10113	reverse	CAGGAAACAGCTATGAC
EvCADDU	forward	TCCATCACTGCCACCCAGAAGACTG
IWOAFDII	reverse	AGCAGGCAGAACCTTTCCGACAG
NICADDU	forward	AGCTCAAGGGAATTCTCGATG
NUCAPDII	reverse	AACCTTAACCATGTCATCTCCC
	forward	GGCTGCAATCAAGGAGGAA
MICAIDII	reverse	AAATCAATCACACGGGAACTG
CED	forward	GAGCTGAAGGGCATCGACTT
5017	reverse	TTCTGCTTGTCGGCCATGAT
GV3101/GlyA	forward	CCACCACCACGACGCACAAGTCT
G v 5101/OlyA	reverse	TGCCGAGACGGACACCCGAC

3.10. TOPO® és gateway® LR klónozás

Az FvSPT500, FvSPT1000, FvSPT2000 és FvSPT3000 deléciós vonalakat az FvSPT promóterrégióról és az FvSPR500, FvSPR1000 és FvSPR2000 deléciós vonalakat az FvSPR promóterrégióról a pENTR[™] Directional TOPO[®] vektorba irányítottan klónoztuk a pENTR[™] Directional TOPO® Cloning Kittel (Invitrogen, Carlsbad, CA, USA) a gyártói utasítás szerint. Az összeszerelt TOPO® vektort One Shot® TOP10 Escherichia coli törzsbe klónoztuk a One-Shot Chemical transformation protokoll használatával (Invitrogen pENTR[™] Directional TOPO[®] Cloning Kit használati útmutatója szerint). Az E. coli törzseket Luria-Bertani (LB) (BERTANI, 1951) táptalajban neveltük fel 100 mg/mL koncentrációjú kanamicinnel (Duchefa, Haarlem, Hollandia). A pozitív kolóniák (melyek tartalmazzák megfelelő orientációban a deléciós vonalakat) szelekciójára kolónia PCR-t alkalmaztunk. A PCR-hez M13 univerzális primerpárt használtunk (Invitrogen pENTR[™] Directional TOPO[®] Cloning Kit használati útmutatója szerint). Az E. coli kolóniákat, amelyek tartalmazták a vektorkonstrukciót, egy éjszakán át (overnight) növesztettük szilárd LB táptalajon 100 mg/mL koncentrációjú kanamicin jelenlétében, melyről a felnőtt kolóniákat steril fogpiszkálóval 5 mL folyékony LB táptalajba oltottuk át 5 µL kanamicin (100 mg/mL) jelenlétében. A folyékony LB táptalajt egy éjszakán át rázattuk 37°C hőmérsékleten és 140 rpm sebességgel. A plazmid DNS-t az E. coli törzsekből a PureYield[™] Plasmid Miniprep Kittel (Promega, Madison, WI, USA) izoláltuk a gyártói utasítás szerint. Az izolált plazmidot pGWB604 (NAKAGAWA és mtsai., 2007) (GenBank: AB543113.1) bináris vektorba építettük a Gateway[®] LR Clonase[™] II Enzyme Mix (Invitrogen) segítségével a gyártói utasítások szerint. A pGWB604 bináris vektor sGFP (NIWA, 2003) génjét tartalmazza. Pozitív kontrollként pGWB405 bináris vektort (NAKAGAWA és mtsai., 2007) (GenBank: AB294429.1) használtunk CaMV35S promóterrel és sGFP génnel a tranziens expresszióhoz. Klónozással az FvSPR500::pGWB604, FvSPR2000::pGWB604, FvSPT500::pGWB604, FvSPR1000::pGWB604, és *FvSPT1000::pGWB604*, FvSPT2000::pGWB604, FvSPT3000::pGWB604 vektorkonstrukciókat hoztuk létre.

3.11. A promóter deléciós vonalak Agrobacterium közvetített transzformációja

A transzformációhoz *Agrobacterium tumefaciens* GV3101 törzsét (Intact Genomics, Creve Coeur, MI, USA) használtuk. A törzseket LB táptalajon 10 μg/mL gentamicin (10 mg/mL törzsoldat; Duchefa) jelenlétében inkubáltuk 28°C hőmérsékleten 2 napig. Egy kolóniát steril fogpiszkálóval átoltottunk 5 mL folyékony LB táptalajba 5 μL gentamicin (10 mg/mL törzsoldat; Duchefa) szelekciós ágens jelenlétében, valamint egy éjszakán át 140 rpm és 28°C hőfokon rázattuk. A kultúrát 30 percig jégen inkubáltuk és 10 percig 4000 rpm 4°C hőfokon centrifugáltuk. A felülúszót eltávolítottuk és 5 mL 20 mM CaCl₂ oldatban szuszpendáltuk a kultúrát jégen. Majd újra centrifugáltuk 5 percig 4000 rpm fordulaton 4°C hőmérsékleten. A felülúszót ismételten eltávolítottuk, majd 1 mL 20 mM CaCl₂ oldatban szuszpendáltuk a kultúrát jégen. A 200 µL végtérfogatú kultúrát 1,5 mL centrifugacsövekben (Eppendorf, Hamburg, Németország) előhűtöttük transzformáláshoz. A plazmid DNS-t (3 µL, 500 ng) hozzáadtuk a pGWB604 vektorral a kultúrákhoz és 20 percig jégen tartottuk az elegyet, majd 5 percre folyékony nitrogénbe helyeztük, illetőleg 37°C hőmérsékletre 5 percre, ezzel kiváltva a hőstresszt. Az elegyhez 1 mL folyékony LB táptalajt adtunk és 28°C hőmérsékleten 140 rpm sebességen 3-4 órát rázattuk. Az elegyből 100-150 µL mennyiséget szilárd LB táptalajra szélesztettünk 10 µg/mL gentamicin (10 mg/mL törzsoldat; Duchefa) és 50 µg/mL spektinomicin (50 mg/mL törzsoldat; Duchefa) és 50 µg/mL spektinomicin (50 mg/mL törzsoldat; Duchefa) szelekciós ágensek jelenlétében. A BERGKESSEL és GUTHRIE (2013) tanulmány alapjául szolgáló protokoll szerint kolónia PCR-t használtunk a pozitív kolóniák kiválasztásához.

3.12. Az agroinfiltráció paradicsomba és dohányba

A vektorkonstrukciót tartalmazó A. tumefaciens kolóniákat 5 mL folyékony LB táptalajban 5 μL gentamicin (10 mg/mL törzsoldat) és 5 μL spektinomicin (50 mg/mL törzsoldat) szelekciós ágens jelenlétében egy éjszakán át 28°C hőmérsékleten 140 rpm rázattuk. A kultúrákat 50 mL indító folyékony táptalajba oltottuk át (10,5 g K₂HPO₄, 4,5 g KH₂PO₄, 1 g (NH₄)₂SO₄, 0,5 g Nacitrát, 1 g glükóz, 1 g fruktóz, 4 mL glicerin, 0,12 g MgSO₄, 1,95 g MES (10 mM); pH 5,6) (SINGER és mtsai., 2012), valamint 100 µM acetosziringon (Duchefa) oldatot adtunk hozzá. A tenyészeteket 5-6 órán keresztül rázattuk 140 rpm 30°C hőmérsékleten. Inkubáció után 4000 rpm fordulaton, 4°C hőmérsékleten 10 percig ülepítettük a kultúrákat. A felülúszót eltávolítottuk, majd infiltrációs oldatban (10 mM MgSO₄, 10 mM MES; pH 5,6) szuszpendáltuk a kultúrákat 200 µM acetosziringon hozzáadásával (SINGER és mtsai., 2012). Zöld és piros érésben lévő paradicsom bogyóterméseket (kora: 60 nap a csírázástól; mintaszám: 20 bogyótermés/vektor konstrukció, 2 bogyótermés/növény) és dohányleveleket (kora: 45 nap a csírázás után; mintaszám: 20 levél/vektor konstrukció, 2 levél/növény) agroinjektáltuk 1 mL fecskendővel (Z683531; Sigma-Aldrich, St. Louis, MI, USA) és 0,5 x 1,6 mm tűvel (Sigma-Aldrich, St. Louis, MI, USA). A növényeket 3 nappal az agroinjektálás után Phire Plant Direct PCR Kittel (ThermoFisher Scientific) direkt PCR módszerrel vizsgáltuk meg. A primerpárokként sGFP és GlyA specifikus primereket alkalmaztunk a vektorkonstrukció és A. tumefaciens azonosítására. A PCR-hez 10 uL térfogatú Phire Plant Buffert, 40 pmol primerpárt, 0,4 µL térfogatú Phire HotStart II DNA polimeráz enzimet 0,5 µL növény szuszpenziót mértünk össze. A PCR körülményekként 98°C 5

perc elődenaturációt, 40 ciklus 98°C 5 másodperc elődenaturációt, 60°C 5 másodperc kapcsolódási fázist, 72°C 20 másodperc meghosszabbítási fázist és 72°C 1 perc végső meghosszabbítási fázist alkalmaztunk. A PCR termékeket agaróz gélelektroforézissel választottuk el. Csak az *sGFP* pozitív növényegyedeket vizsgáltuk RT-qPCR módszerrel.

3.13. A GFP fluoresszencia kimutatása UV fénnyel

A GFP fluoresszencia meglétét FastGene[®] blue/green LED lámpával (FG-11; NIPPON Genetics, Tokyo, Japán) állapítottuk meg 489 nm gerjesztés és 520 nm emisszió mellett. Három nappal az agroinjekció után ellenőriztük a GFP fluoreszencia meglétét a paradicsom bogyótermések és a dohánylevelek esetében. A lámpát minden esetben körülbelül 10 cm-re tartottuk a vizsgált növénytől. Fotózáshoz sárga UV szűrőt (NIPPON Genetics, Tokyo, Japán) használtunk, az UV lila fényének kiszűréséhez.

3.14. Az sGFP expresszió mennyiségi meghatározása qPCR módszerrel

Azon növényegyedek esetében, ahol UV fénnyel sikeresen detektáltuk az sGFP jelenlétét, azokat qPCR módszerrel is megvizsgáltuk (WANG és mtsai., 2004). Totál RNS-t izoláltunk a növényekből Direct-zolTM (Zymo Research, Irvine, CA, USA) kittel és TRIzol reagens lízis pufferrel, a gyártói utasítások szerint. A totál RNS minőségének ellenőrzése megegyezett az *A*. *thaliana* (L.) növények T₃ és T₄ generációinak RT-qPCR vizsgálatainál végzett ellenőrzéssel. A cDNS szintézis és az RT-qPCR körülményei megegyeztek az *A. thaliana* (L.) növények T₃ és T₄ generációinak RT-qPCR körülményeivel. Az RT-qPCR vizsgálatoknál referencia génként az *MtGAPDH* (At1g13440), *FvGAPDH* (ID07104) és *NbGAPDH* (*Nicotiana benthamiana* L. gliceraldehid-3-foszfát-dehidrogenáz) (At1g12900) géneket használtuk.

4. Eredmények és megvitatásuk

4.1. A promóter szekvencia elemzés

A promóter szekvencia elemzés során összehasonlítottuk a JASPAR2020 és a PLACE 30.0 által kapott adatokat. Az adatok összehasonlítása után különböző feltételezett TFBS-eket és CREket elemeztünk az *AtSPR1-like2*, *AtSPT*, *FvSPR1-like1*, *FvSPR1-like2*, *FvSPT*, *MtSPR1-like2* és *MtSPT* gének promóter szekvenciáiban. Sikeresen azonosítottunk 222, 364, 117, 186, 323, 473 és 484 transzkripciós faktor kötőhelyet (TFBS), valamint találtunk 473, 645, 248, 30, 548, 733 és 719 CRE-t az *AtSPR1-like2*, *AtSPT*, *FvSPR1-like1*, *FvSPR1-like2*, *FvSPT*, *MtSPR1-like2* és *MtSPT* gének promóter szekvenciáiban (HIDVÉGI és mtsai., 2021).

Összehasonlítottuk a paradicsom virágzásával, gyümölcsfejlődésével és érésével kapcsolatos különböző promóter régiókat (TF és CRE) *S. lycopersicum*, *A. thaliana* (L.) és *F. vesca* L. növényekben. A 3. táblázat a TFBS gyakoriságát mutatja a virágzásban és a gyümölcs érésében szerepet játszó promóter szekvenciákban. Az *MtSPR1-like2*, *FvSPR1-like2*, *FvSPR1-like2*, *FvSPR1-like2*, *FvSPR1-like1*, *AtSPR1-like2*, *MtSPT*, *FvSPT* és *AtSPT* gének promóter szekvenciáiban 16, 25, 7, 5, 34, 24 és 29 TFBS volt (HIDVÉGI és mtsai., 2021).

3. táblázat: A transzkripciós faktor kötőhelyek eloszlása az MtSPR1-like2, FvSPR1-like1, FvSPR1-like2, AtSPR1-like2, MtSPT, FvSPT és AtSPT gének promóter régióiban

	Eloszlás								
TFBS	MtSPR1-	FvSPR1-	FvSPR1-	AtSPR1-	M+CDT	FuCDT	AtSDT		
	like2	like1	like2	like2		1 1 1 1	AISTI		
ARF1		1							
ARF2	2	1	1		1		2		
ARF34							1		
ARF5		1							
ARF8		1							
ARR10		4	2		3	1	1		
ARR11			1		2				
ARR14					2				
ARR18					1				
ARR2	1				1				
ATHB15							1		
ATHB20		1			1		1		
ATHB23	1	1			6	2	2		
ATHB53	1	1			1		2		
BEE2						2	2		
CAMTA1		1							
CMTA3		2					1		
DREB26						1			
EDT1					2	1			
ERF13						1			
FaEOBII						1			
HAT2	1	1		1	1	2	2		
KAN1	1	4	2	2	4	2	3		
KUA1					2				
MYB124	1						1		
MYB59		1			1	1	1		
MYB73		1							
OBP3		1							
OsRR22					1				
PIF5	1				1	1	1		
RVE1		1							
SGR5							1		
SPT						7	2		
TGA1A	1		1	1			1		
TGA2	1			1					
WRKY25	2	1			2		2		
WRKY8	3	1			2	2	2		

A 4. táblázat a CRE-k gyakoriságát mutatja a promóter szekvenciákban, amelyek szerepet játszottak a virágzásban és a gyümölcs érésében. Az *MtSPR1-like2*, *FvSPR1-like2*, *FvSPR1-like2*, *FvSPR1-like2*, *MtSPT*, *FvSPT* és *AtSPT* gének szekvenciáiban 11, 25, 6, 1, 27, 26 és 16 CRE volt. A PLACE 30.0 adatbázis alapján az auxin, etilén, GA₃ és citokinin által szabályozott CRE-ket osztályoztuk. Az etilén esetében 1, auxinnál 8 és GA₃-nál 1 CRE-t azonosítottunk (HIDVÉGI és mtsai., 2021).

4. táblázat: A *cis*-reguláló elemek eloszlása az *MtSPR1-like2*, *FvSPR1-like2*, *FvSPR1-like2*, *FvSPR1-like2*, *FvSPT*, *AtSPT és MtSPT* gének promótereiben

	Eloszlás						
CRE	MtSPR1- like2	FvSPR1- like2	FvSPR1- like1	AtSPR1- like2	FvSPT	AtSPT	MtSPT
ARFAT		1			3	2	
ASF1MOTIFCAMV	2	5	1		3	4	1
AUXRETGA1GMGH3		1	1		1		
CACGCAATGMGH3							1
CARGATCONSENSUS		2					
CATATGGMSAUR						6	2
CRTDREHVCBF2		2					
D4GMAUX28					1		
ERELEE4	2	2	1			1	4
GARE1OSREP1							1
GAREAT	2	6	3			3	2
NTBBF1ARROLB	2	3	1		9	4	4
SEBFCONSSTPR10A					3	2	
SURECOREATSULTR11	3	4		1	8	4	1

A JASPAR2020 összesen 572 profilt tartalmaz a TFBS-okról, amelyek kifejezetten a növényfajokban azonosíthatóak (STORMO, 2013). A szamóca és paradicsom gyümölcsérése etilén szabályozása alatt áll, amely meghatározza a színét a zöld (éretlen) és piros (érett) átmenetek között (TISZA és mtsai., 2010, LI és mtsai., 2017). Az auxin és etilén egyensúly befolyásolhatja a gyümölcsérés folyamatait (SU és mtsai., 2015b). Az *FvSPR1-like2* és *FvSPT* gének promóterein azonosítottunk ARF1, ARF2, ARF34, ARF5, ARF8, ATHB15, ATHB20, ATHB53, CAMTA1, EDT1, HAT2, KAN1, KUA1, MYB124, MYB73, OBP3, RVE1, SGR5, TGA1A és TGA2 kötőhelyeket. Az auxin-válasz faktorok (ARF) specifikusan az 5'-TGTCTC-3' DNS szekvencia helyekhez tudnak kötődni az auxin responsive promóter elemek mentén (AuxRE; MAJER *et al.*, 2012). Az ARF TF-eket *A. thaliana* (L.) növényekben azonosították először (MAYER és mtsai., 2005, NAGPAL és mtsai., 2005, VIDAURRE és mtsai., 2007, ZHANG és

mtsai., 2014a). Azonosítottunk ARFAT és SURECOREATSULTR11 *cis*-reguláló elemeket is, amelyek ARF kötőhelyű szekvenciákat tartalmaznak (MARUYAMA-NAKASHITA és mtsai., 2005) az *FvSPR1-like2* és *FvSPT* gének promóterein. Az AUXRETGA1GMGH3 CRE egy kötőhely az AuxRE fehérjékhez, amelyek az ARF-eket szabályozzák (GUILFOYLE és mtsai., 1998). Az auxin és etilén egyensúly fenntartásához és szabályozásához köthető ATHB, EDT1, HAT2, KAN1, KUA1, MYB, OBP, RVE1, SGR5, és TGA2 TF-eket először *A. thaliana* (L.) növényekben azonosították (SAWA és mtsai., 2002, JOHNSON és mtsai., 2003, KANG és mtsai., 2003, MATTSSON és mtsai., 2003, BOWMAN, 2004, HAWKER és BOWMAN, 2004, SON és mtsai., 2004, PRIGGE és mtsai., 2005, MORITA és mtsai., 2006, KIM és mtsai., 2013, MEISSNER és mtsai., 2013, LU és mtsai., 2014, CAI és mtsai., 2015, CHEN és mtsai., 2015) míg a CAMTA1 TF-et repcében (*Brassica napus* L.) (BOUCHÉ és mtsai., 2002) és a TGA1A TF-et dohány növényben (*Nicotiana tabacum* L.) (PASCUZZI és mtsai., 1998).

Az AGL42 (DORCA-FORNELL és mtsai., 2011), ARR2 (WEIRAUCH és mtsai., 2014), CMTA3 (BOUCHÉ és mtsai., 2002), DREB26 (KRISHNASWAMY és mtsai., 2011), ERF13 (SINGH és mtsai., 2002), KUA1 (LU és mtsai., 2014), MYB59 (LI és mtsai., 2006), PIF5 (KHANNA és mtsai., 2007), WRKY25 (LI és mtsai., 2011) és WRKY8 (CHEN és mtsai., 2013) helyeket azonosítottuk az *FvSPR1-like2* és *FvSPT* gének promóterein. Az AGL42 egy MADS-box TF, amely a virágzási időt szabályozza, valamint elősegíti a virágzás folyamatát. Azok a gének, melyeket az AGL42 szabályoz, leggyakrabban a levelekben, virágbimbókban, szirmokban és az *A. thaliana* (L.) becőiben expresszálnak (DORCA-FORNELL és mtsai., 2011). Az AGL42 TF-et azonosítottuk az *MtSPR1-like2, AtSPR1-like2, MtSPT, FvSPT* és *AtSPT* gének promóterein.

Az ARR1, ATHB34, BEE2, FUS3, MYB33, MYR2, SOC1, SRM1 és STZ TF-eket azonosítottunk az *FvSPR1-like2* és *FvSPT* gének promóterein. A GARE1OSREP1 CRE szabályozza a gibberellin-responsive elemeket a MYB33 TF-al együtt (SUTOH és YAMAUCHI, 2003). Emellett azonosítottunk ARR10 (HWANG és SHEEN, 2001), ARR11, ARR14, ARR18 és OsRR22 (TSAI és mtsai., 2012) helyeket az *FvSPR1-like2* és *FvSPT* géne promóterein. A gibberellin szabályozásában résztvevő TF-ek motívumait és működését elsősorban *A. thaliana* (L.) és *Oryza sativa* L. növényekben igazolták az ARR1 (SAKAI és mtsai., 2001), ATHB34 (HENRIKSSON és mtsai., 2005), BEE2 (FRIEDRICHSEN és mtsai., 2002), FUS3 (TSUCHIYA és mtsai., 2004), MYB33 (GOCAL és mtsai., 2001), MYR2 (ZHAO és mtsai., 2011), SOC1 (LEE és mtsai., 2008), SRM1 (WANG és mtsai., 2015) és STZ (MITTLER és mtsai., 2006), ARR10 (HWANG és SHEEN, 2001), ARR11 (IMAMURA és mtsai., 2003), ARR14 (MASON és mtsai., 2004), ARR18 (LIANG és mtsai., 2012) és OsRR22 (TSAI és mtsai., 2012) TF-ok esetében.

4.2. A promóter deléciós vonalak létrehozása

In silico módszerekkel sikeresen azonosítottuk a promóter régiókat, mely után PCR módszerrel felszaporítottuk a rövidebb promóter-szakaszokat (5. ábra).

5. ábra: A: FvSPR (Fragaria vesca L. SPIRAL) és B: FvSPT (Fragaria vesca L. SPATULA) gén promóter-szakaszainak futtatása gélben. M: DNA ladder 100 bp plus (Thermo Fisher Scientific) molekulatömeg marker

A PCR termékeket bináris vektorba klónoztuk, ezzel kialakítva az *FvSPR500::pGWB604*, *FvSPR1000:pGWB604*, *FvSPR2000::pGWB604*, *FvSPT500::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604* deléciós vonal konstrukciókat. A sikeres *E. coli* transzformációkat kolónia PCR-el ellenőriztük deléciós vonal specifikus primerekkel (6. ábra).

6. ábra: Kolónia PCR eredményei. M: DNA ladder 100 bp plus (Thermo Fisher Scientific) molekulatömeg marker. A számok (1-24) az egyes kolóniákat jelölik

Azokat az *E. coli* kolóniákat, amelyekben a megfelelő méretű fragmentum szaporodott fel a PCR során, kiválasztottuk plazmid izoláláshoz, hogy *A. tumefaciens* baktériumba klónozzuk a deléciós konstrukciókat. Az *A. tumefaciens* baktériumokat is kolónia PCR módszerrel vizsgáltuk meg, hogy kiválasszuk a pozitív kolóniákat (7. ábra).

7. ábra: A. tumefaciens kolónia PCR eredményei. M: DNA ladder 100 bp plus (Thermo Fisher Scientific) molekulatömeg marker. A számok (1-17) az egyes kolóniákat jelölik

Az *sGFP* gén fluoresszencia az *FvSPR2000::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604*, *FvSPT3000::pGWB604* és *CaMV35S::sGFP* (pGWB405) dohány vonalak esetében volt csak detektálható UV lámpával (8. ábra). A paradicsom zöld bogyóterméseiben az *sGFP* azonosítható volt az *FvSPR2000::pGWB604*, *FvSPT2000::pGWB604*, *FvSPT3000::pGWB604* és *CaMV35S::sGFP* (pGWB405) vonalakban (9. ábra).

8. ábra: Az sGFP riportergén azonosítása UV fénnyel dohány növényekben.
A: Vektorkonstrukció nélküli A. tumefaciens, B: Kontroll kezeletlen növény,
C: CaMV35S::sGFP (pGWB405), D: FvSPR500::pGWB604, E: FvSPR1000::pGWB604,
F: FvSPR2000::pGWB604, G: FvSPT500::pGWB604, H: FvSPT1000::pGWB604,
I: FvSPT2000::pGWB604, J: FvSPT3000::pGWB604

9. ábra: Transzformáns paradicsom növény bogyóterméseiben azonosított sGFP ripotergén UV fénnyel megvilágítva. A: Kontroll kezeletlen növény, B: CaMV35S::sGFP (pGWB405), C: FvSPR2000::pGWB604, D: FvSPT1000::pGWB604, E: FvSPT2000::pGWB604, F: FvSPT3000::pGWB604

4.3. A promóter deléciós vonalak RT-qPCR vizsgálata

Az RT-qPCR módszerrel sikeresen azonosítottuk az *sGFP* gén jelenlétét, meghatároztuk az expressziójának intenzitását a paradicsom bogyóterméseiben és a dohány leveleiben. A dohánylevelekben az *sGFP* génexpressziós intenzitása 0,072, 0,006, 0,099 és 2,532 volt az *FvSPR2000::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604* vonalak esetében, a *CaMV35S::sGFP* pozitív kontrollhoz viszonyítva. Az expressziós logarithmic fold change (LFC) értékek -3,8, -7,29, -3,33 és 1,34 voltak az *FvSPR2000::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604*, *FvSPT2000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604*, *FvSPT1000::pGWB604*, *FvSPT2000::pGWB604* és *FvSPT3000::pGWB604* vonalak esetében (10. ábra).

10. ábra: A dohánylevelekben detektált sGFP gén LFC értékei. Csillaggal (*) jelölt értékek statisztikailag szignifikánsan (p < 0,05) eltérőek voltak a kontrollhoz képest</p>

A paradicsom bogyótermésben az sGFP génexpressziós intenzitása 0,026, 0,024 és 1,028 volt az FvSPR2000::pGWB604, FvSPT2000::pGWB604 és FvSPT3000::pGWB604 vonalakban a $\Delta\Delta$ Ct értékek alapján. Az expressziós LFC értékek -5,28, -5,36 és 0,04 voltak az FvSPR2000::pGWB604, FvSPT2000::pGWB604 és FvSPT3000::pGWB604 vonalakban a CaMV35S::sGFP pozitív kontrollhoz viszonyítva (11. ábra).

11. ábra: Paradicsom bogyótermésében detektálható sGFP gén LFC értékei.
Csillaggal (*) jelölt értékek statisztikailag szignifikánsan (p < 0,001) eltérőek voltak a kontrollhoz képest. Az *FvSPR2000::pGWB604*, *FvSPT1000::pGWB604* és *FvSPT2000::pGWB604* vonalak ΔΔCt értékei statisztikailag szignifikánsan eltérőek (p < 0,05) a kontrollhoz képest. Ugyanakkor az *FvSPT3000::pGWB604* ΔΔCt értékei voltak statisztikailag szignifikánsan eltérőek (p < 0,05) a kontrollhoz képest. Ugyanakkor az *FvSPT3000::pGWB604* ΔΔCt értékei voltak statisztikailag szignifikánsan eltérőek (p < 0,05) a pozitív kontrollhoz viszonyítva (*CaMV35S::sGFP*) a dohány növény leveleiben, de a paradicsom bogyóban nem

A kísérlet az *FvSPR1-like2* és *FvSPT* gének promótereire irányult elsősorban, amelyek fontos szerepet játszanak a sejtek fejlődésében, virágzásában és a gyümölcs fejlődésében (NAKAJIMA és mtsai., 2004, REYES-OLALDE és mtsai., 2017, HIDVÉGI és mtsai., 2020). A tranziens expressziót meghatározza a ripotergén (*sGFP*) kizárólagos expressziója az infiltrált területen, valamint az expressziós kazetta (vektor konstrukció) összetétele, az *Agrobacterium* törzs és a tenyészet denzitása szintén befolyásolhatja a ripotergén expresszióját (TYURIN és mtsai., 2020).

Az *FvSPR500::pGWB604* és *FvSPR1000::pGWB604* konstrukciók nem működtek a dohánylevelekben, míg az *FvSPR2000::pGWB604* működött. Az *FvSPR2000::pGWB604* konstrukcióban az *sGFP* expresszált a paradicsom gyümölcsben. Sikeresen azonosítottunk ARF1, ARF2, ARF5 és ARF8 TF kötőhelyeket az *FvSPR1-like2* gén promóterének -1067 bp és -1059 bp

közötti deléciós vonalán. Ezek a TF-ek nem voltak azonosíthatóak a -500 és -1 bp közötti és -501 és -1000 bp közötti deléciós vonalakban. A TF-ek ARF családja fontos szerepet játszik az ARFirányított auxin szabályozásban a gyümölcstermések érése során (LIU és mtsai., 2015a). Talán ez magyarázatot szolgálhat arra, hogy miért csak az FvSPR2000::pGWB604 konstrukció tudta indukálni az sGFP expresszióját a dohánylevelekben és a paradicsom bogyótermésekben. Az FvSPT1000::pGWB604, FvSPT2000::pGWB604 és FvSPT3000::pGWB604 konstrukciók működtek dohánylevélben, ugyanakkor az FvSPT1000::pGWB604 konstrukció nem működött a paradicsom bogyótermésben. Az FvSPT500::pGWB604 konstrukció nem működött paradicsom bogyótermésben és a dohányleveleiben. Az FvSPT1000::pGWB604 konstrukciónak alacsonyabb sGFP expressziója volt, mint az FvSPT2000::pGWB604 konstrukciónak. Ezt a génexpressziós intenzitás különbséget a MYB59, WRKY25 és WRKY8 TF kötőhelyek okozhatják, amelyet az etilén szabályoz (LI és mtsai., 2006, CHEN és mtsai., 2013). Az etilén-auxin interakció fontos szerepet játszhat az FvSPT gén promóterének szabályozásában, ami a paradicsomban antagonista hatást okoz az etilén és auxin között a paradicsom bogyótermésének érése során (LI és mtsai., 2017). Az FvSPT1000::pGWB604 konstrukcióban nincs MYB59, WRKY25 és WRKY8 TF kötőhelyek, mert ezek csak a -1256 és -1248, -1609 és -1602 és -1610 és -1602 között helyezkednek el, amelyek csak az FvSPT2000::pGWB604 konstrukcióban találhatóak meg. Az FvSPT1000::pGWB604, FvSPT2000::pGWB604 és FvSPT3000::pGWB604 konstrukciók működtek a dohányleveleiben, de az FvSPT1000::pGWB604 konstrukció nem működött a paradicsom bogyótermésben.

4.4. Az A. thaliana (L.) spt és spr1-2 mutáns növények komplementációs tesztje

A gyümölcsérésben feltételezhetően fontos szerepet játszó *F. vesca* L. *FvSPT*, *FvSPR1-like1* és *FvSPR1-like2* géneket sikeresen izoláltuk (BALOGH és mtsai., 2005, POLGÁRI és mtsai., 2010). Kísérletünk során az *A. thaliana* (L.) *spt* és *spr1-2* mutáns növényeket komplementáltunk az *F. vesca SPT* és *SPR* génjeivel. Az *in silico* elemzések során azonosítottuk a promóter régiókat és géneket az *FvSPT*, *FvSPR1-like1* és *FvSPR1-like2* gének esetében, amelyek homológiát mutattak az At1g69230 és At4g36930 génekkel az *F. vesca* L. genomszekvencia alapján (http://www.rosaceae.org) (SHULAEV és mtsai., 2011). A homológia 84,03%, 69,45% és 74,24% volt az *FvSPT* (XM_004287975) és *AtSPT* (At4g36930), *FvSPR1-like1* (XM_004297177) és *AtSPR1-like2* (At1g69230), valamint az *FvSPR1-like2* (XM_004299243) és *AtSPR1-like2* (At1g69230) között (12. és 13. ábra).

12. ábra: Homológia az FvSPT (Fragaria vesca L. SPATULA) (XM_004287975), FvSPT cDNS (AY679615) és AtSPT (Arabidopsis thaliana (L.) SPATULA) (BT026462) gének között (CLC Main Workbench v7)

13. ábra: Homológia az FvSPR1-like1 (Fragaria vesca L. FvSPR1-like1) (XM_004297177),
 FvSPR (Fragaria vesca L. SPIRAL) (AY695666), AtSPR1-like2 (BT024676) és FvSPR1-like2 (XM_004299243) gének között (CLC Main Workbench v7)

A PCR módszer alkalmazásával sikeresen felszaporítottuk az *FvSPT* (6600 bp), *FvSPR1-like1* (9647 bp) és az *FvSPR1-like2* (2443 bp) géneket és promótereiket. Az *FvSPT::pGWB401*, *FvSPR1-like1::pGWB401* és *FvSPR1-like2::pGWB401* vektorkonstrukciók összeépítése után kolónia PCR-el igazoltuk a gének és promótereik megfelelő beépülését (14. ábra).

14. ábra: *E. coli* kolónia PCR eredménye. M: DNA ladder 100 bp plus (Thermo Fisher Scientific) molekulatömeg marker

Az A. thaliana (L.) spt és spr mutáns növényeket (60 növényegyed/vektorkonstrukció) "floral dip" módszerrel transzformáltuk. A transzformált növényegyedeket kanamicin szelekciós ágenssel kezeltük 3 napos, 1 hetes és 2 hetes állapotban a transzformáció elvégzése után, 100 mg/mL, 200 mg/mL és 400 mg/mL koncentrációval. A szelekciós kezelést túlélő *A. thaliana* (L.) növényegyedeket direkt PCR módszerrel is megvizsgáltuk, igazolva, hogy a promóter és gén megfelelően található meg a növényben (15. ábra).

15. ábra: Direkt PCR eredményei az A. thaliana (L.) növényekből. M: DNA ladder 100 bp plus (Thermo Fisher Scientific) molekulatömeg marker. A számok (1-40) az egyes növényegyedeket jelölik. Az 500 bp-nál felszaporodott fragmentum jelöli a transzgénikus A. thaliana (L.) növényegyedeket

Az átlagos transzformációs hatékonyság 7,6%-os volt a másodlagos virágzatok ismételt "floral dip" transzformációval. A 6 hetes transzformáns növények fenotípusos tulajdonságait összehasonlítottuk a vadtípusú Col-0 *A. thaliana* (L.) növényekéivel. Az *spt* mutáns növények statisztikailag szignifikánsan kisebbek voltak, mint a vadtípus (16. ábra).

16. ábra: 8 hetes A. thaliana (L.) növények habitusa. A: Col-0 vadtípus, B: spr mutáns, C: spt mutáns és D: FvSPT1-like2::pGWB401 komplementált növények

Az *FvSPT::pGWB604* transzformáns növényegyedek szignifikánsan magasabbak voltak, mint az *spt* mutáns növényegyedek, míg a vadtípushoz képest nem mutattak eltérést (16. ábra). Ezzel igazoltuk, hogy az *spt* mutáns növényt komplementálni lehetett az *F. vesca* L. növény *SPT* génjével és promóterével.

17. ábra: A. *thaliana* (L.) növények becőinek összehasonlítása. A: Col-0 vadtípusú növény,
B: *FvSPT::pGWB401* komplementált növény, C: *spt* mutáns növény

A becőhossz vizsgálata során a vadtípus, *spt*, *spr* mutáns és komplementált növényeket hasonlítottuk össze (átlagosan 12 darab becő/növényegyed) (17. ábra). Az összehasonlítás során az *spt* mutáns növénynek volt a legrövidebb becőhossza (3,8 mm), míg a vadtípusnak és az *FvSPT/FvSPR1-like1/FvSPR1-like2* komplementált vonalaknak szignifikánsan hosszabb becőtermésük volt (12,8 – 13,3 mm). Az *spr* mutáns növényhez viszonyítva csak az *FvSPR1-like1* komplementált növény esetében volt szignifikáns becőhossz növekedés (18. ábra).

18. ábra: A. *thaliana* (L.) növények becőhossza (mm). Col WT (vad típus): Col-0 vadítpus, spt mutáns: *spatula* mutáns, *spr* mutáns: *spiral* mutáns, *FvSPT: FvSPT::pGWB401* komplementált

Col-0, FvSPR1-1: FvSPR1-like1::pGWB401 komplementált Col-0 és FvSPR1-2: FvSPR1like2::pGWB401 komplementált Col-0. Az oszlopokban lévő számok melletti betűk jelölik a statisztikailag szignifikánsan eltérő egyedeket a Col-0 vadtípusú növényekhez képest az ANOVA (p < 0,001) analízis során (80 növényegyed/kísérlet/vonal és három biológiai ismétlés)</p>

Az *spt* mutáns növényegyedek kisebb mag/becő (7,7) arányt produkáltak, mint a vadtípus (47,7) (19. ábra). Az *spr* mutáns növényegyedek szignifikánsan rövidebb becőket növesztettek a vadtípushoz képest (18. ábra) és szignifikánsan kisebb mag/becő arányt is produkáltak (37,5) mint a vadtípus (47,7) (19. ábra). A becőnkénti magszám az *FvSPT::pGWB401* komplementált növényegyedekben a vártnak megfelelően szignifikánsan nagyobb volt, mint az *spt* mutáns növényegyedekben, de szignifikánsan kevesebb mag fejlődött egy becőben, mint a vadtípusban (19. ábra).

19. ábra: Az A. *thaliana* (L.) növények átlagos meghozama becőnként. Columbia WT: Col-0 vadtípus, *spt* mutáns: *spatula* mutáns, *spr* mutáns: *spiral* mutáns, *FvSPT: FvSPT::pGWB401* komplementált Col-0, *FvSPR1-1: FvSPR1-like1::pGWB401* komplementált Col-0, *FvSPR1-2: FvSPR1-like2::pGWB401* komplementált Col-0. Az oszlopokban lévő számok melletti betűk jelölik a statisztikailag szignifikánsan eltérő egyedeket a Col-0 vadtípusú növényekhez képest az ANOVA (p < 0,001) analízis során (80 növényegyed/kísérlet/vonal és három biológiai ismétlés)

Az *FvSPR1-like1::pGWB401* és *FvSPR1-like2::pGWB401* komplementált növények terméseiben szignifikánsabb nagyobb volt a magszám, mint az *spr* mutáns növényekben, ugyanakkor szignifikánsan kevesebb, mint a vadtípusban (19. ábra).

20. ábra: A gyökér fejlődési eltérései az 1 hetes *A. thaliana* (L.) magoncokban.
A: *FvSPR1-like2::pGWB401* komplementált Col-0, B: Col-0 vadtípus, C: *spr* mutáns,
D: *FvSPR1-like1:: pGWB401* komplementált (Mérce: 5 mm)

21. ábra: A gyökér fejlődés eltérései a 2 hetes A. thaliana (L.) növényekben. A: spr mutáns,
B:FvSPR1-like1:: pGWB401 komplementált C: FvSPR1-like2::pGWB401 komplementált Col-0,
D: Col-0 vadtípus (Mérce: 5 mm)

A vadtípus és *spr* mutáns növényegyedek között a gyökérnövekedési különbségek megfigyelhetőek a 20. és a 21. ábrán. Az *spr* mutációt egyedül az *FvSPR1-like2::pGWB401* vektorkonstrukció tudta helyreállítani (20. és 21. ábra). Az *FvSPR1-like1* növények esetében hasonló helikális gyökérnövekedés volt megfigyelhető, mint amilyennel az *spr* mutáns növény is rendelkezik. A jelenlegi kutatások azt igazolják, hogy három recesszív *A. thaliana* (L.) *spr* mutáns növény létezik, *spr1-1, spr1-2* és *spr1-3* (NAKAJIMA és mtsai., 2006). Kutatásainkhoz az *spr1-2* mutáns növényeket használtuk, így várhatóan ezt a mutációt csak az *FvSPR1-like2::pGWB401* konstrukció tudja komplementálni, míg az *FvSPR1-like1::pGWB401* konstrukció nem. Ezzel kísérletben igazolható, hogy az *FvSPR1-like1* és az *FvSPR1-like2* gének nem azonos funkcióval rendelkeznek. A komplementált *A. thaliana* (L.) növények esetében RT-qPCR módszerrel igazoltuk és mértük meg az *FvSPT, FvSPR1-like1* és *FvSPR1-like2* gének expressziós intenzitását. A primereket exon-exon határra terveztük, amely különböző méretű fragmentumokat szaporít fel gDNS-ből és cDNS-ből. Az RT-qPCR eredményeink igazolják, hogy az *FvSPT::pGWB401*,

FvSPR1-like1::pGWB401 és *FvSPR1-like2::pGWB401* konstrukciók működnek és expresszálnak a komplementált *A. thaliana* (L.) növényekben.

Eredményeink igazolták, hogy az oktoploid *F. x ananassa* Duch. cv. Elsanta szamócából cDNS-AFLP módszerrel izolált *FaSPT* és *FaSPR* gének (BALOGH és mtsai., 2005) nemcsak az *AtSPT*, *AtSPR1-like1* és *AtSPR1-like2* génekkel mutatnak hasonlóságot, hanem a diploid szamóca (*F. vesca* L.) *FvSPT*, *FvSPR1-like1* és *FvSPR1-like2* génekkel is, valamint képesek komplementálni az *A. thaliana* (L.) *spt* és *spr1-2* mutáns növényeket, a fenotípusos elváltozásaikat a vadtípushoz képest, hasonlóan HEISLER és mtsai. (2001) eredményeihez, ahol az *AtSPT2* allél *spt2* mutációját *AtSPT* génnel komplementálták. Egy korábbi szakirodalomben ugyanazon fenotípusos elváltozásokat közöltek az *A. thaliana* (L.) *SPR1-1, SPR1-2* és *SPR1-3* mutációk esetében a gyökér fejlődésében (FURUTANI és mtsai., 2000). Kutatásunkkal ugyanakkor igazoltuk, hogy az *spr1-2* mutációt csakis az *FvSPR1-like2* génnel lehetséges komplementálni.

5. Következtetések és javaslatok

Kutatásaink során összehasonlítottuk az AtSPR1-like1, AtSPT, FvSPR1-like1, FvSPR1like2, FvSPT, MtSPR1-like2 és MtSPT gének promótereit a JASPAR2020 és PLACE 30.0 adatbázisok alapján. Érésspecifikus gének révén elsősorban a virágzással, gyümölcsfejlődéssel és éréssel kapcsolatos promóter régiókat azonosítottunk (TFBS és CRE). A CRE-k funkcióit tekintve auxin, etilén, GA3 és citokinin hormonok által voltak szabályozva. Kutatásaink során az FvSPR1gén promóter régióján ARF specifikus kötőhelyeket, valamint ARFAT és like2 SUPERCOREATSULTR11 cis-reguláló elemeket azonosítottunk, melyek az auxin szabályozása alatt állnak. Az FvSPR1-like2 és FvSPT gének promóter régióin AGL42 kötőhelyet azonosítottunk, amely a szakirodalomban fellelhető adatok alapján a virágbimbóban és szirmokban expresszálódó géneket szabályozza az A. thaliana (L.) növényben. Ugyanezen AGL42-t azonosítottuk az FvSPR1-like2 és FvSPT génekkel homológiát mutató MtSPR1-like2, AtSPR1-like2, MtSPT és AtSPT gének promóterein.

Az *FvSPR* és *FvSPT* gének promóterein azonosítottuk a MYB59, WRKY25 és WRKY8 kötőhelyeket, melyek a szakirodalom szerint etilén szabályozása alatt vannak. A tudományos publikációk azt igazolják, hogy az etilén-auxin interakció fontos szerepet játszik a gyümölcsérés során. Kutatásunk is azt igazolta, hogy az *FvSPT* gén promóterének deléciós vonalaival fúzionáltatott *sGFP* riporter gén nem kapcsolt be, ha az etilén szabályozása alatt lévő kötőhelyek (MYB59, WRKY25 és WRKY8) nem voltak megtalálhatóak a szekvenciában.

Kutatásaink során sikeresen komplementáltuk az *spt* és *spr1-2* mutáns *A. thaliana* (L.) növényeket az *FvSPT* és *FvSPR1-like2* génekkel. A homológia 84,03% és 74,23% volt az *FvSPT* és *AtSPT*, valamint *FvSPR1-like2* és *AtSPR1-like2* gének között. A mutáns gének komplementálásának sikerességét biztosította a nagyobb arányú homológia is. A "floral dip" transzformációs módszer átlagos hatékonysága 7,6% volt a másodlagos virágzatok ismételt transzformációjával. A fellelhető szakirodalomnak megfelelően várható transzformációs hatékonysági eredményeket kaptunk az *A. thaliana* (L.) esetében. Az FvSPT::pGWB604 transzformáns növényegyedek azonos magasságot és becőhosszt, magszám/becő arányt mutattak a Col-0 WT (vad típus) növényekkel. Az FvSPR1-like2::pGWB604 transzformáns növényegyedek esetében volt csak megfigyelhető a WT és *spr* mutáns növények közötti gyökér növekedési különbségek helyreállítása. A jelenlegi kutatások azt igazolják, hogy három recesszív *A. thaliana* (L.) *spr* mutáns növény létezik, *spr1-1, spr1-2* és *spr1-3*. Az *spr1-1, spr1-2* és *spr1-3* mutációk a szakirodalom szerint ugyanolyan fenotípusos elváltozásokat okoznak a gyökér fejlődésében, ugyanakkor kutatásainkkal igazoltuk, hogy az *spr1-2* mutációt az *FvSPR1-like2* génnel komplementálható, míg az *FvSPR1-like1* génnel nem.

Az elmúlt években a transzgénikus módszerek és technikák gyors fejlődésnek indultak számos gén funkcionális jellemzése révén. Molekuláris genetikai kutatóknak számos lehetősége van szövetspecifikus promótereket izolálniuk, mely a transzgén működését hatékonyabbá teszi. A transzkripciós szabályozás megértésének legfontosabb eszköze a transzkripciós faktorok és *cis*-reguláló elemek azonosítása a promóter régióban. Számos adatbázis érhető el ezen régiók azonosításához és szabályozásának megértéséhez, melyek különböző növényfajokat összesítenek referenciaként. Az újabb promóterek és azok szabályozó régióinak azonosítása fontos területe a mezőgazdasági cégeknek és kutatóinak, ami újabb lehetőséget teremthet a szövet- és sejt-specifikus promóterek használatára a genetikailag módosított kultúrnövények újabb generációjában.

6. Új tudományos eredmények

- A diploid szamóca (*Fragaria vesca* L.) *FvSPT*, *FvSPR1-like1* és *FvSPR1-like2* gének promóter régiójában, valamint az *AtSPT*, *AtSPR1-like2*, *MtSPT* és *MtSPR1-like2* gének promóter régióiban azonosítottunk *in silico* módszerekkel TFBS és CRE szabályozó elemeket. Ezeket a szabályozó elemeket funkcionálisan hozzá tudtuk rendelni auxin, etilén, GA₃ és citokinin hormonok által szabályozott régiókhoz, amelyek a virágbimbóban és szirmokban expresszálódó géneket szabályozza.
- 2. Az FvSPT és FvSPR gének promóter deléciós vonalait létrehozva, igazoltuk, hogy ezen promóter régiók sGFP riporter génnel fúzionáltatva expresszálódnak a deléció nagyságától függően a dohány növény levelében és cv. Micro Tom paradicsom növény bogyó termésében. Az FvSPR gén promóter deléciós vonalaival igazoltuk, hogy az sGFP riporter gén nem kapcsol be, ha az auxin vagy etilén hormon szabályozásához szükséges TFBS vagy CRE elemek hiányoznak a promóter régióban.
- Az A. thaliana (L.) spt mutáns növény esetében bizonyítottuk, hogy a diploid szamóca FvSPT génje komplementálni tudja a fenotípusosan jelentkező alacsonyabb növénymagasságot, becőhosszt és becőnkénti maghozamot.
- 4. Az A. thaliana (L.) spr1-2 mutáns növény esetében bizonyítottuk, hogy a diploid szamóca FvSPR1-like1 gén nem képes komplementálni a fenotípusos elváltozásokat, míg az FvSPR1-like2 gén teljesen képes komplementálni a fenotípusosan jelentkező gyökér fejlődési elváltozásokat.

7. Összefoglalás

Az *FvSPR1-like1*, *FvSPR1-like2* és *FvSPT* gének promótereinek esetében sikeresen azonosítottunk *in silico* módszerekkel TFBS és CRE szabályozó elemeket, amelyek auxin, etilén, GA₃ és citokinin szabályozás alatt állnak, és a virágzás, gyümölcsfejlődés és érés génjeit szabályozzák. Sikeresen azonosítottunk homológ TFBS és CRE szabályozó elemeket az *MtSPR1-like2*, *AtSPR1-like2* és *MtSPT* gének promóter régióiban, amelyek átfedésben voltak az *FvSPR1-like1*, *FvSPR1-like2* és *FvSPT* gének promóter régióival.

In silico módszerekkel sikeresen azonosítottuk az FvSPR és FvSPT gének promóter régióit, melyek után PCR módszerrel elkészítettük a promóter deléciós vonalakat, amelyeket sGFP riporter génnel fúzionáltattunk. Az A. tumefaciens közvetítette transzformációval dohány növény leveleiben, valamint cv. Micro Tom paradicsom bogyó termésében tranziens expresszióval működtettük a vektorkonstrukciókat. Az FvSPR500::pGWB604 és FvSPR1000::pGWB604 konstrukciók nem működtek a dohánylevelekben, míg az FvSPR2000::pGWB604 működött. Ennek magyarázata, hogy az FvSPR1-like2 gén promóter régiójában ARF1, ARF2, ARF5 és ARF8 TF helyeket azonosítottunk, amelyek a -1067 bp és -1059 bp közötti deléciós vonalon helyezkedtek el, ugyanakkor ez nem volt megtalálható az FvSPR500::pGWB604 konstrukció sGFP expressziója kisebb volt, mint az FvSPT2000::pGWB604 konstrukciók esetében. Ennek magyarázata, hogy a MYB59, WRKY25 és WRKY8 TF helyek nem találhatóak meg a deléciós vonalakban, amelyek szabályozzák az FvSPT gén expresszióját a gyümölcs érése során.

Kutatásaink során izoláltuk az FvSPT, FvSPR1-like1 és FvSPR1-like2 géneket és promótereiket. A gének funkcionális jellemzéséhez A. thaliana (L.) spt és spr1-2 mutáns növényeket komplementáltunk az FvSPT, FvSPR1-like1 és FvSPR1-like2 génekkel és promótereikkel. A komplementált FvSPT, FvSPR1-like1 és FvSPR1-like2 gének expressziós intenzitását RT-qPCR módszerrel vizsgáltuk. Az RT-qPCR vizsgálatok igazolták, hogy az FvSPT::pGWB401, FvSPR1-like1::pGWB604 és FvSPR1-like2::pGWB401 konstrukciók expresszálódnak a komplementált A. thaliana (L.) növényekben. Eredményeink igazolták, hogy az oktoploid F. x ananassa Duch. cv. Elsanta szamócából cDNS-AFLP módszerrel izolált FaSPT és FaSPR gének nem csak az A. thaliana (L.) AtSPT, AtSPR1-like1 és FvSPR1-like2 génekkel mutatnak hasonlóságot, hanem a diploid szamóca FvSPT, FvSPR1-like1 és FvSPR1-like2 génekkel is, valamint képesek komplementálni az A. thaliana (L.) spt és spr1-2 mutáns növényeket. Kutatásunkkal igazoltuk, hogy az spr1-2 mutációt csakis az FvSPR1-like2 génel lehetséges komplementálni.

8. Summary

In the case of promoters of *FvSPR1-like1*, FvSPR1-like2, and *FvSPT* genes, we successfully identified TFBS and CRE regulatory elements using *in silico* methods, which are regulated by auxin, ethylene, GA₃, and cytokinin. Also, these genes regulate flowering, development, and ripening processes. We successfully identified homologous TFBS and CRE regulatory elements in the promoter regions of *MtSPR1-like2*, *AtSPR1-like2*, and *MtSPT* genes, which overlapped with the promoter regions of *FvSPR1-like1*, *FvSPR1-like2*, and *FvSPT* genes.

Using *in silico* methods, we successfully identified the promoter regions of *FvSPR* and *FvSPT* genes. We prepared the promoter deletion lines using PCR methods. We fused the promoter deletion lines with the *sGFP* reporter gene. The vector constructs were operated by transient expression in the leaves of the tobacco plant and in the fruit of the cv. Micro Tom tomato berry with the *A. tumefaciens*-mediated transformation. Constructs of *FvSPR500::pGWB604* and *FvSPR1000::pGWB604* did not function in tobacco leaves, whereas *FvSPR2000::pGWB604* worked. We identified ARF1, ARF2, ARF5, and ARF8 TF binding sites in the promoter region of the *FvSPR1-like2* gene, which were located on the deletion line between -1067 bp and -1059 bp, but these were not found in *FvSPR500::pGWB604* and *FvSPR1000::pGWB604* construct did not function in tomato berry fruit and tobacco leaves. The *sGFP* expression of the FvSPT1000::pGWB604 construct. This is explained by the absence of MYB59, WRKY25, and WRKY8 TF binding sites in the deletion lines, which regulate *FvSPT* gene expression during the fruit development.

In our research, we isolated the *FvSPT*, *FvSPR1-like1*, and *FvSPR1-like2* genes and their promoters. For the functional characterization of the genes, *spt* and *spr1-2* mutant of *A. thaliana* (L.) plants were complemented with *FvSPT*, *FvSPR1-like1*, and *FvSPR1-like2* genes and their promoters. The expression intensity of complemented *FvSPT*, *FvSPR1-like1*, and *FvSPR1-like2* genes and their genes were examined using RT-qPCR method. RT-qPCR tests confirmed that *FvSPT::pGWB401*, *FvSPR1-like1::pGWB401*, and *FvSPR1-like2::pGWB401* constructs were expressed in the complemented *A. thaliana* (L.) plants. Our results confirmed that *FaSPT* and *FaSPR* genes isolated from octoploid strawberry using cDNA-AFLP method show similarity not only with *AtSPT*, *AtSPR1-like1*, and *AtSPR1-like2* genes, but also with the *FvSPT*, *FvSPR1-like1*, and *FvSPR1-like2* genes of diploid strawberry. These genes are able to complement *spt* and *spr1-2* mutant *A. thaliana* (L.) plants. Our research proved that *spr1-2* mutation can only be complemented with *FvSPR1-like2* gene.

Melléklet

M1. Irodalomjegyzék

- ABELES, F. B., MORGAN, P. W., SALTVEIT JR, M. E. (2012): Ethylene in Plant Biology, Academic press.
- ALBERTS, B., JOHNSON, A., LEWIS, J., RAFF, M., ROBERTS, K., WALTER, P. (2002): DNA-binding motifs in gene regulatory proteins. *Molecular Biology of the Cell. 4th Edition.* Garland Science.
- ALEXANDER, L., GRIERSON, D. (2002): Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. *Journal of Experimental Botany*, 53, 2039-2055. <u>https://doi.org/10.1093/jxb/erf072</u>
- ÁLVAREZ-FLÓREZ, F., LÓPEZ-CRISTOFFANINI, C., JÁUREGUI, O., MELGAREJO, L., LÓPEZ-CARBONELL, M. (2017): Changes in ABA, IAA and JA levels during calyx, fruit and leaves development in cape gooseberry plants (*Physalis peruviana* L.). *Plant Physiology and Biochemistry*, 115, 174-182. https://doi.org/10.1016/j.plaphy.2017.03.024
- ALVAREZ, J., SMYTH, D. R. (1999): *CRABS CLAW* and *SPATULA*, two *Arabidopsis* genes that control carpel development in parallel with *AGAMOUS*. *Development*, 126, 2377-2386. <u>https://doi.org/10.1242/dev.126.11.2377</u>
- ALVAREZ, J., SMYTH, D. R. (2002): CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. International Journal of Plant Sciences, 163, 17-41. <u>https://doi.org/10.1086/324178</u>
- ANDERSON, A., MOORE, L. (1979): Host specificity in the genus Agrobacterium. *Phytopathology*, 69, 320-323.
- AYUB, R., REIS, L., BOSETTO, L., LOPES, P., GALVÃO, C., ETTO, R. (2018a): Brassinosteroid plays a role on pink stage for receptor and transcription factors involved in strawberry fruit ripening. *Plant Growth Regulation*, 84, 159-167. <u>https://doi.org/10.1007/s10725-017-0329-5</u>
- AYUB, R. A., REIS, L., LOPES, P. Z., BOSETTO, L. (2018b): Ethylene and brassinosteroid effect on strawberry ripening after field spray. *Revista Brasileira de Fruticultura*, 40. https://doi.org/10.1590/0100-29452018544
- BAI, Q., HUANG, Y., SHEN, Y. (2021): The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. *Frontiers in Plant Science*, 11, 619953. <u>https://doi.org/10.3389/fpls.2020.619953</u>
- BAILEY, P. C., MARTIN, C., TOLEDO-ORTIZ, G., QUAIL, P. H., HUQ, E., HEIM, M. A., JAKOBY, M., WERBER, M., WEISSHAAR, B. (2003): Update on the basic helix-loophelix transcription factor gene family in *Arabidopsis thaliana*. *Plant Cell*, 15, 2497-2501. <u>https://doi.org/10.1105/tpc.151140</u>
- BALOGH, A., KONCZ, T., TISZA, V., KISS, E., HESZKY, L. (2005): The effect of *1-MCP* on the expression of several ripening-related genes in strawberries. *HortScience*, 40, 2088-2090. <u>https://doi.org/10.21273/HORTSCI.40.7.2088</u>
- BANNISTER, A. J., KOUZARIDES, T. (2011): Regulation of chromatin by histone modifications. *Cell Research*, 21, 381-395. <u>https://doi.org/10.1038/cr.2011.22</u>
- BARKER, R., IDLER, K., THOMPSON, D., KEMP, J. (1983): Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Molecular Biology, 2, 335-350. <u>https://doi.org/10.1007/BF01578595</u>
- BARON, C., DOMKE, N., BEINHOFER, M., HAPFELMEIER, S. (2001): Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. Journal of Bacteriology, 183, 6852-6861. <u>https://doi.org/10.1128/jb.183.23.6852-6861.2001</u>

- BARRY, C. S., GIOVANNONI, J. J. (2007): Ethylene and fruit ripening. *Journal of Plant Growth Regulation*, 26, 143-159. <u>https://doi.org/10.1007/s00344-007-9002-y</u>
- BECHTOLD, N., PELLETIER, G. (1998): In planta Agrobacterium mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Arabidopsis Protocols, 259-266. <u>https://doi.org/10.1385/0-89603-391-0:259</u>
- BERGER, N., DUBREUCQ, B., ROUDIER, F., DUBOS, C., LEPINIEC, L. (2011): Transcriptional regulation of *Arabidopsis LEAFY COTYLEDON*₂ involves *RLE*, a *cis*element that regulates trimethylation of histone H₃ at lysine-27. *The Plant Cell*, 23, 4065-4078. <u>https://doi.org/10.1105/tpc.111.087866</u>
- BERGKESSEL, M., GUTHRIE, C. (2013): Colony PCR. Methods in enzymology. Elsevier.
- BERTANI, G. (1951): Studies on lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62, 293-300. <u>https://doi.org/10.1128/jb.62.3.293-300.1951</u>
- BINNS, A. N., BEAUPRE, C. E., DALE, E. M. (1995): Inhibition of VirB-mediated transfer of diverse substrates from *Agrobacterium-Tumefaciens* by the IncQ plasmid RSF1010. *Journal of Bacteriology*, 177, 4890-4899. <u>https://doi.org/10.1128/jb.177.17.4890-4899.1995</u>
- BOUCHÉ, N., SCHARLAT, A., SNEDDEN, W., BOUCHEZ, D., FROMM, H. (2002): A novel family of calmodulin-binding transcription activators in multicellular organisms. *Journal of Biological Chemistry*, 277, 21851-21861. <u>https://doi.org/10.1074/jbc.M200268200</u>
- BOULIN, T., ETCHBERGER, J. F., HOBERT, O. (2006): Reporter gene fusions. *WormBook: The Online Review of C. elegans Biology* <u>https://doi.org/10.1895/wormbook.1.106.1</u>
- BOWMAN, J. L. (2004): Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? *Bioessays*, 26, 938-942. <u>https://doi.org/10.1002/bies.20103</u>
- BÖTTCHER, C., BURBIDGE, C. A., DI RIENZO, V., BOSS, P. K., DAVIES, C. (2015): Jasmonic acid-isoleucine formation in grapevine (*Vitis vinifera* L.) by two enzymes with distinct transcription profiles. *Journal of Integrative Plant Biology*, 57, 618-627. <u>https://doi.org/10.1111/jipb.12321</u>
- BRAND, L., HÖRLER, M., NUESCH, E., VASSALLI, S., BARRELL, P., YANG, W., JEFFERSON, R. A., GROSSNIKLAUS, U., CURTIS, M. D. (2006): A versatile and reliable two-component system for tissue-specific gene induction in *Arabidopsis*. *Plant Physiology*, 141, 1194-1204. https://doi.org/10.1104/pp.106.081299
- BUNDOCK, P., DEN DULK-RAS, A., BEIJERSBERGEN, A., HOOYKAAS, P. (1995): Transkingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO Journal, 14, 3206-3214. <u>https://doi.org/10.1002/j.1460-2075.1995.tb07323.x</u>
- BUSATTO, N., TADIELLO, A., TRAINOTTI, L., COSTA, F. (2017): Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin. *Plant Signaling & Behavior*, 12, e1268312. https://doi.org/10.1080/15592324.2016.1268312
- BUSCHMANN, H., FABRI, C. O., HAUPTMANN, M., HUTZLER, P., LAUX, T., LLOYD, C. W., SCHÄFFNER, A. R. (2004): Helical growth of the *Arabidopsis* mutant tortifolia1 reveals a plant-specific microtubule-associated protein. *Current Biology*, 14, 1515-1521. <u>https://doi.org/10.1016/j.cub.2004.08.033</u>
- BUTLER, J. E., KADONAGA, J. T. (2002): The RNA polymerase II core promoter: a key component in the regulation of gene expression. *Genes & Development*, 16, 2583-2592. https://doi.org/10.1101/gad.1026202
- CAI, X. T., XU, P., WANG, Y., XIANG, C. B. (2015): Activated expression of AtEDT1/HDG11 promotes lateral root formation in *Arabidopsis* mutant edt1 by upregulating jasmonate biosynthesis. *Journal of Integrative Plant Biology*, 57, 1017-1030. <u>https://doi.org/10.1111/jipb.12347</u>
- CANGELOSI, G. A., HUNG, L., PUVANESARAJAH, V., STACEY, G., OZGA, D. A., LEIGH, J. A., NESTER, E. W. (1987): Common loci for *Agrobacterium tumefaciens* and
Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. *Journal of Bacteriology*, 169, 2086-2091. <u>https://doi.org/10.1128/jb.169.5.2086-2091.1987</u>

- CANGELOSI, G. A., MARTINETTI, G., LEIGH, J. A., LEE, C. C., THEINES, C., NESTER, E. W. (1989): Role of Agrobacterium tumefaciens ChvA Protein in Export of β-1, 2-Glucan. Journal of Bacteriology, 171, 1609-1615. <u>https://doi.org/10.1128/jb.171.3.1609-1615.1989</u>
- CAO, H., CHEN, J., YUE, M., XU, C., JIAN, W., LIU, Y., SONG, B., GAO, Y., CHENG, Y., LI, Z. (2020): Tomato transcriptional repressor MYB70 directly regulates ethylenedependent fruit ripening. *The Plant Journal*, 104, 1568-1581. <u>https://doi.org/10.1111/tpj.15021</u>
- CARA, B., GIOVANNONI, J. J. (2008): Molecular biology of ethylene during tomato fruit development and maturation. *Plant Science*, 175, 106-113. https://doi.org/10.1016/j.plantsci.2008.03.021
- CHALFIE, M. (1995): Green fluorescent protein. *Photochemistry and Photobiology*, 62, 651-656. <u>https://doi.org/10.1111/j.1751-1097.1995.tb08712.x</u>
- CHALFIE, M., KAIN, S. R. (2005): Green fluorescent protein: properties, applications and protocols, *John Wiley & Sons*.
- CHEN, L., ZHANG, L., LI, D., WANG, F., YU, D. (2013): WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in *Arabidopsis*. *Proceedings of the National Academy of Sciences*, 110, E1963-E1971. <u>https://doi.org/10.1073/pnas.1221347110</u>
- CHEN, Q., LIU, Y., MAERE, S., LEE, E., VAN ISTERDAEL, G., XIE, Z., XUAN, W., LUCAS, J., VASSILEVA, V., KITAKURA, S. (2015): A coherent transcriptional feedforward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. *Nature Communications*, 6, 8821. <u>https://doi.org/10.1038/ncomms9821</u>
- CHEN, X., WANG, Z., WANG, J., WANG, M., ZHAO, L., WANG, G. (2007): Isolation and characterization of Brittle2 promoter from *Zea mays* and its comparison with *Ze19* promoter in transgenic tobacco plants. *Plant Cell, Tissue and Organ Culture,* 88, 11-20. https://doi.org/10.1007/s11240-006-9165-4
- CHERVIN, C., EL-KEREAMY, A., ROUSTAN, J.-P., LATCHÉ, A., LAMON, J., BOUZAYEN, M. (2004): Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. *Plant Science*, 167, 1301-1305. <u>https://doi.org/10.1016/j.plantsci.2004.06.026</u>
- CHRISTIE, P. J., WARD, J. E., WINANS, S. C., NESTER, E. W. (1988): The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. Journal of Bacteriology, 170, 2659-2667. https://doi.org/10.1128/jb.170.6.2659-2667.1988
- CITOVSKY, V., WARNICK, D., ZAMBRYSKI, P. (1994): Nuclear import of *Agrobacterium* VirD2 and VirE2 proteins in maize and tobacco. *Proceedings of the National Academy of Sciences*, 91, 3210-3214. <u>https://doi.org/10.1073/pnas.91.8.3210</u>
- CITOVSKY, V., ZUPAN, J., WARNICK, D., ZAMBRYSKI, P. (1992): Nuclear localization of *Agrobacterium* VirE2 protein in plant cells. *Science*, 256, 1802-1805. <u>https://doi.org/10.1126/science.1615325</u>
- CLARK, R. M., WAGLER, T. N., QUIJADA, P., DOEBLEY, J. (2006): A distant upstream enhancer at the maize domestication gene *tb1* has pleiotropic effects on plant and inflorescent architecture. *Nature Genetics*, 38, 594-597. <u>https://doi.org/10.1038/ng1784</u>
- CLOUGH, S. J., BENT, A. F. (1998): Floral dip: a simplified method for *Agrobacterium*mediated transformation of *Arabidopsis thaliana*. *The plant journal*, 16, 735-743. <u>https://doi.org/10.1046/j.1365-313x.1998.00343.x</u>
- COELHO, J., ALMEIDA-TRAPP, M., PIMENTEL, D., SOARES, F., REIS, P., REGO, C., MITHÖFER, A., FORTES, A. M. (2019): The study of hormonal metabolism of

Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with *Botrytis cinerea*. *Plant Science*, 283, 266-277. <u>https://doi.org/10.1016/j.plantsci.2019.01.024</u>

- CRUZ, A. B., BIANCHETTI, R. E., ALVES, F. R. R., PURGATTO, E., PERES, L. E. P., ROSSI, M., FRESCHI, L. (2018): Light, ethylene and auxin signaling interaction regulates carotenoid biosynthesis during tomato fruit ripening. *Frontiers in Plant Science*, 9, 1370. <u>https://doi.org/10.3389/fpls.2018.01370</u>
- CURTIS, M. D., GROSSNIKLAUS, U. (2003): A gateway cloning vector set for highthroughput functional analysis of genes in planta. *Plant Physiology*, 133, 462-469. https://doi.org/10.1104/pp.103.027979
- DAS, A., PAZOUR, G. J. (1989): Delineation of the regulatory region sequences of *Agrobacterium tumefaciens vir* B operon. *Nucleic Acids Research*, 17, 4541-4550. <u>https://doi.org/10.1093/nar/17.12.4541</u>
- DAY, C. D., LEE, E., KOBAYASHI, T., HOLAPPA, L. D., ALBERT, H., OW, D. W. (2000): Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. *Genes & Development*, 14, 2869-2880. <u>https://doi.org/10.1101/gad.849600</u>
- DE GROOT, M. J., BUNDOCK, P., HOOYKAAS, P. J., BEIJERSBERGEN, A. G. (1998): Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 16, 839-842. <u>https://doi.org/10.1038/nbt0998-839</u>
- DELGADO, L. D., ZÚÑIGA, P. E., FIGUEROA, N. E., PASTENE, E., ESCOBAR-SEPÚLVEDA, H. F., FIGUEROA, P. M., GARRIDO-BIGOTES, A., FIGUEROA, C. R. (2018): Application of a JA-Ile biosynthesis inhibitor to methyl jasmonate-treated strawberry fruit induces upregulation of specific MBW complex-related genes and accumulation of proanthocyanidins. *Molecules*, 23, 1433. <u>https://doi.org/10.3390/molecules23061433</u>
- DENG, W. Y., CHEN, L. S., PENG, W. T., LIANG, X. Y., SEKIGUCHI, S., GORDON, M. P., COMAI, L., NESTER, E. W. (1999): VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in *Agrobacterium. Molecular Microbiology*, 31, 1795-1807. <u>https://doi.org/10.1046/j.1365-2958.1999.01316.x</u>
- DESFEUX, C., CLOUGH, S. J., BENT, A. F. (2000): Female reproductive tissues are the primary target of *Agrobacterium*-mediated transformation by the *Arabidopsis* floral-dip method. *Plant Physiology*, 123, 895-904. <u>https://doi.org/10.1104/pp.123.3.895</u>
- DORCA-FORNELL, C., GREGIS, V., GRANDI, V., COUPLAND, G., COLOMBO, L., KATER, M. M. (2011): The *Arabidopsis* SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. *The Plant Journal*, 67, 1006-1017. <u>https://doi.org/10.1111/j.1365-313X.2011.04653.x</u>
- DOTY, S. L., CHANG, M., NESTER, E. W. (1993): The chromosomal virulence gene, chvE, of *Agrobacterium tumefaciens* is regulated by a LysR family member. *Journal of Bacteriology*, 175, 7880-7886. https://doi.org/10.1128/Jb.175.24.7880-7886.1993
- DOUGLAS, C., HALPERIN, W., GORDON, M., NESTER, E. (1985): Specific attachment of *Agrobacterium tumefaciens* to bamboo cells in suspension cultures. *Journal of Bacteriology*, 161, 764-766. <u>https://doi.org/10.1128/Jb.161.2.764-766.1985</u>
- DOUGLAS, C. J., HALPERIN, W., NESTER, E. W. (1982): Agrobacterium tumefaciens mutants affected in attachment to plant cells. *Journal of Bacteriology*, 152, 1265-1275.
- DÜRRENBERGER, F., CRAMERI, A., HOHN, B., KOUKOLÍKOVÁ-NICOLA, Z. (1989): Covalently bound VirD2 protein of *Agrobacterium tumefaciens* protects the T-DNA from exonucleolytic degradation. *Proceedings of the National Academy of Sciences*, 86, 9154-9158. <u>https://doi.org/10.1073/pnas.86.23.9154</u>
- EARLEY, K. W., HAAG, J. R., PONTES, O., OPPER, K., JUEHNE, T., SONG, K., PIKAARD, C. S. (2006): Gateway-compatible vectors for plant functional genomics and proteomics. *The Plant Journal*, 45, 616-629. <u>https://doi.org/10.1111/j.1365-313X.2005.02617.x</u>

- EL-SIDDIG, M. A., EL-HUSSEIN, A. A., SAKER, M. M. (2011): *Agrobacterium*-mediated transformation of tomato plants expressing defensin gene. *International Journal of Agricultural Research*, 4, 323-334. <u>http://doi.org/10.3923/ijar.2011.323.334</u>
- ELLIS, C. M., NAGPAL, P., YOUNG, J. C., HAGEN, G., GUILFOYLE, T. J., REED, J. W. (2005): AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in *Arabidopsis thaliana*. *Development*, 132, 4563– 4574. <u>https://doi.org/10.1242/dev.02012</u>
- EXPOSITO-RODRIGUEZ, M., BORGES, A. A., BORGES-PEREZ, A., PEREZ, J. A. (2008): Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. *BMC Plant Biology*, 8, 1-12. <u>https://doi.org/10.1186/1471-2229-8-131</u>
- FELDMANN, K. A., MARKS, M. D. (1987): *Agrobacterium*-mediated transformation of germinating seeds of *Arabidopsis thaliana*: a non-tissue culture approach. *Molecular and General Genetics MGG*, 208, 1-9. <u>https://doi.org/10.1007/BF00330414</u>
- FIGUEROA, N. E., HOFFMANN, T., OLBRICHT, K., ABRAMS, S. R., SCHWAB, W. (2021): Contrasting dynamics in abscisic acid metabolism in different *Fragaria* spp. during fruit ripening and identification of the enzymes involved. *Journal of Experimental Botany*, 72, 1245-1259. <u>https://doi.org/10.1093/jxb/eraa503</u>
- FLUHR, R., MATTOO, A. K. (1996): Ethylene Biosynthesis and perception. *Critical Reviews* in Plant Sciences, 15, 479-523. <u>https://doi.org/10.1080/07352689609382368</u>
- FORNES, O., CASTRO-MONDRAGON, J. A., KHAN, A., VAN DER LEE, R., ZHANG, X., RICHMOND, P. A., MODI, B. P., CORREARD, S., GHEORGHE, M., BARANASIC, D., SANTANA-GARCIA, W., TAN, G., CHENEBY, J., BALLESTER, B., PARCY, F., SANDELIN, A., LENHARD, B., WASSERMAN, W. W., MATHELIER, A. (2020): JASPAR 2020: update of the open-access database of transcription factor binding profiles. *Nucleic Acids Research*, 48, D87-D92. <u>https://doi.org/10.1093/nar/gkz1001</u>
- FREITAS, R. L., CARVALHO, C. M., FIETTO, L. G., LOUREIRO, M. E., ALMEIDA, A. M., FONTES, E. P. (2007): Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs. Plant Molecular Biology, 65, 603-614. <u>https://doi.org/10.1007/s11103-007-9225-0</u>
- FRESNO, D. H., MUNNÉ-BOSCH, S. (2021): Differential tissue-specific jasmonic acid, salicylic acid, and abscisic acid dynamics in sweet cherry development and their implications in fruit-microbe interactions. *Frontiers in Plant Science*, 12, 640601. <u>https://doi.org/10.3389/fpls.2021.640601</u>
- FRIEDRICHSEN, D. M., NEMHAUSER, J., MURAMITSU, T., MALOOF, J. N., ALONSO, J., ECKER, J. R., FURUYA, M., CHORY, J. (2002): Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. *Genetics*, 162, 1445-1456. <u>https://doi.org/10.1093/genetics/162.3.1445</u>
- FUJII, H., CHINNUSAMY, V., RODRIGUES, A., RUBIO, S., ANTONI, R., PARK, S.-Y., CUTLER, S. R., SHEEN, J., RODRIGUEZ, P. L., ZHU, J.-K. (2009): *In vitro* reconstitution of an abscisic acid signalling pathway. *Nature*, 462, 660-664. <u>https://doi.org/10.1038/nature08599</u>
- FURUTANI, I., WATANABE, Y., PRIETO, R., MASUKAWA, M., SUZUKI, K., NAOI, K., THITAMADEE, S., SHIKANAI, T., HASHIMOTO, T. (2000): The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development, 127, 4443-4453. <u>https://doi.org/10.1242/dev.127.20.4443</u>
- GAO, Y., WEI, W., ZHAO, X., TAN, X., FAN, Z., ZHANG, Y., JING, Y., MENG, L., ZHU, B., ZHU, H. (2018): A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. *Horticulture Research*, 5. <u>https://doi.org/10.1038/s41438-018-0111-5</u>

- GARFINKEL, D. J., NESTER, E. W. (1980): *Agrobacterium tumefaciens* mutants affected in crown gall tumorigenesis and octopine catabolism. *Journal of Bacteriology*, 144, 732-743. <u>https://doi.org/10.1128/jb.144.2.732-743.1980</u>
- GASTON, K., JAYARAMAN, P.-S. (2003): Transcriptional repression in eukaryotes: repressors and repression mechanisms. *Cellular and Molecular Life Sciences CMLS*, 60, 721-741. <u>https://doi.org/10.1007/s00018-003-2260-3</u>
- GERSZBERG, A., HNATUSZKO-KONKA, K., KOWALCZYK, T. (2015): *In vitro* regeneration of eight cultivars of *Brassica oleracea* var. capitata. *In Vitro Cellular & Developmental Biology-Plant*, 51, 80-87. <u>https://doi.org/10.1007/s11627-014-9648-7</u>
- GIRIN, T., PAICU, T., STEPHENSON, P., FUENTES, S., KÖRNER, E., O'BRIEN, M., SOREFAN, K., WOOD, T. A., BALANZA, V., FERRANDIZ, C. (2011): *INDEHISCENT* and *SPATULA* interact to specify carpel and valve margin tissue and thus promote seed dispersal in *Arabidopsis*. *The Plant Cell*, 23, 3641-3653. <u>https://doi.org/10.1105/tpc.111.090944</u>
- GIVEN, N., VENIS, M., GIERSON, D. (1988): Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. *Planta*, 174, 402-406. <u>https://doi.org/10.1007/BF00959527</u>
- GOCAL, G. F., SHELDON, C. C., GUBLER, F., MORITZ, T., BAGNALL, D. J.,
 MACMILLAN, C. P., LI, S. F., PARISH, R. W., DENNIS, E. S., WEIGEL, D. (2001):
 GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant
 Physiology, 127, 1682-1693. <u>https://doi.org/10.1104/pp.010442</u>
- GOLDBERG, M. L. (1979): Sequence analysis of *Drosophila* histone genes, *Stanford University*.
- GRAY, J., PICTON, S., SHABBEER, J., SCHUCH, W., GRIERSON, D. (1992): Molecular biology of fruit ripening and its manipulation with antisense genes. *10 Years Plant Molecular Biology*, 69-87. <u>https://doi.org/10.1007/978-94-011-2656-4_5</u>
- GRIFFITHS, A. J., GELBART, W., MILLER, J., LEWONTIM, R. (2000): Regulation of gene transcription In: Modern Genetic Analysis. WH Freeman and Company, New York, NY.
- GROSZMANN, M., PAICU, T., ALVAREZ, J. P., SWAIN, S. M., SMYTH, D. R. (2011): SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. The Plant Journal, 68, 816-829. <u>https://doi.org/10.1111/j.1365-313X.2011.04732.x</u>
- GROSZMANN, M., PAICU, T., SMYTH, D. R. (2008): Functional domains of *SPATULA*, a bHLH transcription factor involved in carpel and fruit development in *Arabidopsis*. *The Plant Journal*, 55, 40-52. <u>https://doi.org/10.1111/j.1365-313X.2008.03469.x</u>
- GUILFOYLE, T., HAGEN, G., ULMASOV, T., MURFETT, J. (1998): How does auxin turn on genes? *Plant Physiology*, 118, 341-347. <u>https://doi.org/10.1104/pp.118.2.341</u>
- GUO, J., WANG, S., YU, X., DONG, R., LI, Y., MEI, X., SHEN, Y. (2018): Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. *Plant Physiology*, 177, 339-351. <u>https://doi.org/10.1104/pp.18.00245</u>
- HAAG, J. R., PIKAARD, C. S. (2011): Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. *Nature Reviews Molecular Cell Biology*, 12, 483-492. <u>https://doi.org/10.1038/nrm3152</u>
- HAHN, S., YOUNG, E. T. (2011): Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189, 705-736. https://doi.org/10.1534/genetics.111.127019
- HAMILTON, C. M., LEE, H., LI, P. L., COOK, D. M., PIPER, K. R., VON BODMAN, S. B., LANKA, E., REAM, W., FARRAND, S. K. (2000): TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. *Journal of Bacteriology*, 182, 1541-8. <u>https://doi.org/10.1128/JB.182.6.1541-</u> 1548.2000

- HAO, Y., HU, G., BREITEL, D., LIU, M., MILA, I., FRASSE, P., FU, Y., AHARONI, A., BOUZAYEN, M., ZOUINE, M. (2015): Auxin response factor *SlARF2* is an essential component of the regulatory mechanism controlling fruit ripening in tomato. *PLoS Genetics*, 11, e1005649. <u>https://doi.org/10.1371/journal.pgen.1005649</u>
- HARTLEY, J. L., TEMPLE, G. F., BRASCH, M. A. (2000): DNA cloning using *in vitro* sitespecific recombination. *Genome Research*, 10, 1788-1795. https://doi.org/10.1101/gr.143000
- HAWKER, N. P., BOWMAN, J. L. (2004): Roles for class III HD-Zip and *KANADI* genes in *Arabidopsis* root development. *Plant Physiology*, 135, 2261-2270. https://doi.org/10.1104/pp.104.040196
- HEIM, M. A., JAKOBY, M., WERBER, M., MARTIN, C., WEISSHAAR, B., BAILEY, P. C. (2003): The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. *Molecular Biology and Evolution*, 20, 735-747. <u>https://doi.org/10.1093/molbev/msg088</u>
- HEISLER, M. G., ATKINSON, A., BYLSTRA, Y. H., WALSH, R., SMYTH, D. R. (2001): SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development, 128, 1089-1098. <u>https://doi.org/10.1242/dev.128.7.1089</u>
- HELLIWELL, C., WATERHOUSE, P. (2003): Constructs and methods for high-throughput gene silencing in plants. *Methods*, 30, 289-295. <u>https://doi.org/10.1016/S1046-2023(03)00036-7</u>
- HENRIKSSON, E., OLSSON, A. S., JOHANNESSON, H., JOHANSSON, H., HANSON, J., ENGSTRÖM, P., SÖDERMAN, E. (2005): Homeodomain leucine zipper class I genes in *Arabidopsis*. Expression patterns and phylogenetic relationships. *Plant Physiology*, 139, 509-518. <u>https://doi.org/10.1104/pp.105.063461</u>
- HEPBURN, A., CLARKE, L., PEARSON, L., WHITE, J. (1983): The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor. *Journal of Molecular and Applied Genetics*, 2, 315-329.
- HIDVÉGI, N., GULYÁS, A., TEIXEIRA DA SILVA, J. A., WICAKSONO, A., KISS, E. (2021): Promoter analysis of the SPATULA (FvSPT) and SPIRAL (FvSPR) genes in the woodland diploid strawberry (Fragaria vesca L.). Biologia Futura, 72, 373-384. <u>https://doi.org/10.1007/s42977-021-00089-x</u>
- HIDVÉGI, N. T., GULYÁS, A., TEIXEIRA DA SILVA, J. A., POSTA, K., KISS, E. (2020): Complementation of wild strawberry (*Fragaria vesca* L.) SPATULA (*FvSPT*) and SPIRAL (*FvSPR*) genes in Arabidopsis thaliana. Columella: Journal of Agricultural and Environmental Sciences, 7, 23-34. <u>https://doi.org/10.18380/SZIE.COLUM.2020.7.1.23</u>
- HIGO, K., UGAWA, Y., IWAMOTO, M., KORENAGA, T. (1999): Plant cis-acting regulatory DNA elements (PLACE) database: 1999. *Nucleic Acids Research*, 27, 297-300. <u>https://doi.org/10.1093/nar/27.1.297</u>
- HILSON, P., ALLEMEERSCH, J., ALTMANN, T., AUBOURG, S., AVON, A., BEYNON, J., BHALERAO, R. P., BITTON, F., CABOCHE, M., CANNOOT, B. (2004): Versatile gene-specific sequence tags for *Arabidopsis* functional genomics: transcript profiling and reverse genetics applications. *Genome Research*, 14, 2176-2189. <u>https://doi.org/10.1101/gr.2544504</u>
- HOOD, E. E., HELMER, G., FRALEY, R., CHILTON, M. D. (1986): The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriology, 168, 1291-1301. <u>https://doi.org/10.1128/jb.168.3.1291-1301.1986</u>
- HOWARD, E., CITOVSKY, V. (1990): The Emerging Structure of the Agrobacterium T-DNA Transfer Complex. *Bioessays*, 12, 103-108. <u>https://doi.org/10.1002/bies.950120302</u>
- HOWARD, E. A., ZUPAN, J. R., CITOVSKY, V., ZAMBRYSKI, P. C. (1992): The VirD2 protein of *A. tumefaciens* contains a C-terminal bipartite nuclear localization signal:

Implications for nuclear uptake of DNA in plant cells. *Cell*, 68, 109-118. <u>https://doi.org/10.1016/0092-8674(92)90210-4</u>

- HU, J., ISRAELI, A., ORI, N., SUN, T.-P. (2018): The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. *The Plant Cell*, 30, 1710-1728. <u>https://doi.org/10.1105/tpc.18.00363</u>
- HU, S., LIU, L., LI, S., SHAO, Z., MENG, F., LIU, H., DUAN, W., LIANG, D., ZHU, C., XU, T. (2020): Regulation of fruit ripening by the brassinosteroid biosynthetic gene *SlCYP90B3* via an ethylene-dependent pathway in tomato. *Horticulture Research*, 7. https://doi.org/10.1038/s41438-020-00383-0
- HWANG, I., SHEEN, J. (2001): Two-component circuitry in *Arabidopsis* cytokinin signal transduction. *Nature*, 413, 383-9. <u>https://doi.org/10.1038/35096500</u>
- IANNETTA, P. P., LAARHOVEN, L. J., MEDINA-ESCOBAR, N., JAMES, E. K., MCMANUS, M. T., DAVIES, H. V., HARREN, F. J. (2006): Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. *Physiologia Plantarum*, 127, 247-259. https://doi.org/10.1111/j.1399-3054.2006.00656.x
- ICHIHASHI, Y., HORIGUCHI, G., GLEISSBERG, S., TSUKAYA, H. (2010): The bHLH transcription factor *SPATULA* controls final leaf size in *Arabidopsis thaliana*. *Plant Cell Physiology*, 51, 252-61. https://doi.org/10.1093/pcp/pcp184
- IMAMURA, A., KIBA, T., TAJIMA, Y., YAMASHINO, T., MIZUNO, T. (2003): In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiology, 44, 122-31. <u>https://doi.org/10.1093/pcp/pcg014</u>
- IQBAL, N., KHAN, N. A., FERRANTE, A., TRIVELLINI, A., FRANCINI, A., KHAN, M. (2017): Ethylene role in plant growth, development and senescence: interaction with other phytohormones. *Frontiers in Plant Science*, 8, 475. <u>https://doi.org/10.3389/fpls.2017.00475</u>
- JARCHOW, E., GRIMSLEY, N., HOHN, B. (1991): virF, the host-range-determining virulence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proceedings of the National Academy of Sciences, 88, 10426-10430. https://doi.org/10.1073/pnas.88.23.10426
- JASPER, F., KONCZ, C., SCHELL, J., STEINBISS, H.-H. (1994): Agrobacterium T-strand production *in vitro*: sequence-specific cleavage and 5'protection of single-stranded DNA templates by purified VirD2 protein. Proceedings of the National Academy of Sciences, 91, 694-698. <u>https://doi.org/10.1073/pnas.91.2.694</u>
- JEFFERSON, R. A., KAVANAGH, T. A., BEVAN, M. W. (1987): *GUS* fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. *The EMBO Journal*, 6, 3901-3907. <u>https://doi.org/10.1002/j.1460-2075.1987.tb02730.x</u>
- JEPSEN, K., ROSENFELD, M. G. (2002): Biological roles and mechanistic actions of corepressor complexes. *Journal of Cell Science*, 115, 689-698. <u>https://doi.org/10.1242/jcs.115.4.689</u>
- JI, D., CUI, X., QIN, G., CHEN, T., TIAN, S. (2020): SIFERL interacts with Sadenosylmethionine synthetase to regulate fruit ripening. Plant Physiology, 184, 2168-2181. <u>https://doi.org/10.1104/pp.20.01203</u>
- JIN, S., PRUSTI, R. K., ROITSCH, T., ANKENBAUER, R. G., NESTER, E. W. (1990): Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. Journal of Bacteriology, 172, 4945-4950. https://doi.org/10.1128/jb.172.9.4945-4950.1990
- JOHNSON, C., BODEN, E., ARIAS, J. (2003): Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in *Arabidopsis*. *The Plant Cell*, 15, 1846-1858. <u>https://doi.org/10.1105/tpc.012211</u>

- JORGENSEN, R., SNYDER, C., JONES, J. D. G. (1987): T-DNA is organized predominantly in inverted repeat structures in plants transformed with *Agrobacterium tumefaciens* C58 derivatives. *Molecular and General Genetics MGG*, 207, 471-477. <u>https://doi.org/10.1007/Bf00331617</u>
- JOUANIN, L., BOUCHEZ, D., DRONG, R. F., TEPFER, D., SLIGHTOM, J. L. (1989): Analysis of TR-DNA/plant junctions in the genome of a *Convolvulus arvensis* clone transformed by *Agrobacterium rhizogenes* strain A4. *Plant Molecular Biology*, 12, 75-85. https://doi.org/10.1007/BF00017449
- KADONAGA, J. T. (2004): Regulation of RNA polymerase II transcription by sequencespecific DNA binding factors. *Cell*, 116, 247-257. <u>https://doi.org/10.1016/S0092-8674(03)01078-X</u>
- KAI, W., WANG, J., LIANG, B., FU, Y., ZHENG, Y., ZHANG, W., LI, Q., LENG, P. (2019): PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. *Journal of Experimental Botany*, 70, 6305-6319. <u>https://doi.org/10.1093/jxb/erz396</u>
- KALOGERAKI, V. S., WINANS, S. C. (1995): The octopine-type Ti plasmid pTiA6 of Agrobacterium tumefaciens contains a gene homologous to the chromosomal virulence gene acvB. Journal of Bacteriology, 177, 892-897. <u>https://doi.org/10.1128/jb.177.4.892-897.1995</u>
- KANG, H. G., FOLEY, R. C., OÑATE-SÁNCHEZ, L., LIN, C., SINGH, K. B. (2003): Target genes for OBP3, a Dof transcription factor, include novel basic helix-loop-helix domain proteins inducible by salicylic acid. *The Plant Journal*, 35, 362-372. <u>https://doi.org/10.1046/j.1365-313X.2003.01812.x</u>
- KAPLAN, C. D., LAPRADE, L., WINSTON, F. (2003): Transcription elongation factors repress transcription initiation from cryptic sites. *Science*, 301, 1096-1099. <u>https://doi.org/10.1126/science.1087374</u>
- KARIMI, M., DEPICKER, A., HILSON, P. (2007): Recombinational cloning with plant gateway vectors. *Plant Physiology*, 145, 1144-1154. https://doi.org/10.1104/pp.107.106989
- KARIMI, M., INZÉ, D., DEPICKER, A. (2002): GATEWAY[™] vectors for Agrobacteriummediated plant transformation. *Trends in Plant Science*, 7, 193-195. <u>https://doi.org/10.1016/S1360-1385(02)02251-3</u>
- KHANNA, R., SHEN, Y., MARION, C. M., TSUCHISAKA, A., THEOLOGIS, A., SCHAFER, E., QUAIL, P. H. (2007): The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. *The Plant Cell*, 19, 3915-3929. <u>https://doi.org/10.1105/tpc.107.051508</u>
- KIEBER, J. J., ROTHENBERG, M., ROMAN, G., FELDMANN, K. A., ECKER, J. R. (1993): CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell, 72, 427-441. https://doi.org/10.1016/0092-8674(93)90119-B
- KIM, J. H., NGUYEN, N. H., JEONG, C. Y., NGUYEN, N. T., HONG, S.-W., LEE, H. (2013): Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in *Arabidopsis. Journal of Plant Physiology*, 170, 1461-1465. <u>https://doi.org/10.1016/j.jplph.2013.05.011</u>
- KIM, W.-C., KO, J.-H., HAN, K.-H. (2012): Identification of a *cis*-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. *Plant Molecular Biology*, 78, 489-501. <u>https://doi.org/10.1007/s11103-012-9880-7</u>
- KLEE, H. J. (2002): Control of ethylene-mediated processes in tomato at the level of receptors. *Journal of Experimental Botany*, 53, 2057-2063. <u>https://doi.org/10.1093/jxb/erf062</u>
- KLEINJAN, D. A., VAN HEYNINGEN, V. (2005): Long-range control of gene expression: emerging mechanisms and disruption in disease. *The American Journal of Human Genetics*, 76, 8-32.

- KNEE, M., SARGENT, J. A., OSBORNE, D. J. (1977): Cell wall metabolism in developing strawberry fruits. *Journal of Experimental Botany*, 28, 377-396. <u>https://doi.org/10.1093/jxb/28.2.377</u>
- KOHLI, A., GAHAKWA, D., VAIN, P., LAURIE, D. A., CHRISTOU, P. (1999): Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. *Planta*, 208, 614-614. <u>https://doi.org/10.1007/s004250050538</u>
- KOMARNYTSKY, S., BORISJUK, N. (2003): Functional analysis of promoter elements in plants. *Genetic Engineering: Principles and Methods*, 113-141. https://doi.org/10.1007/978-1-4615-0073-5_6
- KOU, J., ZHAO, Z., ZHANG, Q., WEI, C., FERENCE, C. M., GUAN, J., WANG, W. (2021a): Comparative transcriptome analysis reveals the mechanism involving ethylene and cell wall modification related genes in *Diospyros kaki* fruit firmness during ripening. *Genomics*, 113, 552-563. <u>https://doi.org/10.1016/j.ygeno.2021.01.002</u>
- KOU, X., FENG, Y., YUAN, S., ZHAO, X., WU, C., WANG, C., XUE, Z. (2021b): Different regulatory mechanisms of plant hormones in the ripening of climacteric and nonclimacteric fruits: a review. *Plant Molecular Biology*, 1-21. <u>https://doi.org/10.1007/s11103-021-01199-9</u>
- KOU, X., YANG, S., CHAI, L., WU, C., ZHOU, J., LIU, Y., XUE, Z. (2021c): Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. *Scientia Horticulturae*, 281, 109999. <u>https://doi.org/10.1016/j.scienta.2021.109999</u>
- KOU, X., ZHOU, J., WU, C. E., YANG, S., LIU, Y., CHAI, L., XUE, Z. (2021d): The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening: a review. *Plant Molecular Biology*, 106, 223-238. <u>https://doi.org/10.1007/s11103-021-01128-w</u>
- KRISHNASWAMY, S., VERMA, S., RAHMAN, M. H., KAV, N. N. (2011): Functional characterization of four APETALA2-family genes (RAP2. 6, RAP2. 6L, DREB19 and DREB26) in Arabidopsis. Plant Molecular Biology, 75, 107-127. https://doi.org/10.1007/s11103-010-9711-7
- KUMAR, R., KHURANA, A., SHARMA, A. K. (2013): Role of plant hormones and their interplay in development and ripening of fleshy fruits. *Journal of Experimental Botany*, 65, 4561-4575. <u>https://doi.org/10.1093/jxb/eru277</u>
- KWAK, M. S., OH, M. J., LEE, S. W., SHIN, J. S., PAEK, K. H., BAE, J. M. (2007): A strong constitutive gene expression system derived from *ibAGP1* promoter and its transit peptide. *Plant Cell Reports*, 26, 1253-1262. https://doi.org/10.1007/s00299-007-0349-0
- LAI, C., XIONG, J., LI, X., QIN, X. (2009): A 43-bp A/T-rich element upstream of the kinesin gene AtKP1 promoter functions as a silencer in Arabidopsis. Plant Cell Reports, 28, 851-860. <u>https://doi.org/10.1007/s00299-009-0689-z</u>
- LEDENT, V., VERVOORT, M. (2001): The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis. *Genome Research*, 11, 754-770. https://doi.org/10.1101/gr.177001
- LEE, J., OH, M., PARK, H., LEE, I. (2008): SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. *The Plant Journal*, 55, 832-843. <u>https://doi.org/10.1111/j.1365-313X.2008.03552.x</u>
- LEE, L. Y., GELVIN, S. B., KADO, C. I. (1999): pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export. *Journal of Bacteriology*, 181, 186-196. <u>https://doi.org/10.1128/Jb.181.1.186-196.1999</u>
- LELIÈVRE, J. M., LATCHÈ, A., JONES, B., BOUZAYEN, M., PECH, J. C. (1997): Ethylene and fruit ripening. *Physiologia Plantarum*, 101, 727-739. <u>https://doi.org/10.1034/j.1399-3054.1997.1010408.x</u>

- LI, H., WU, H., QI, Q., LI, H., LI, Z., CHEN, S., DING, Q., WANG, Q., YAN, Z., GAI, Y. (2019): Gibberellins play a role in regulating tomato fruit ripening. *Plant and Cell Physiology*, 60, 1619-1629. <u>https://doi.org/10.1093/pcp/pcz069</u>
- LI, J., LI, X., GUO, L., LU, F., FENG, X., HE, K., WEI, L., CHEN, Z., QU, L.-J., GU, H. (2006): A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in *Arabidopsis* and rice. *Journal of Experimental Botany*, 57, 1263-1273. <u>https://doi.org/10.1093/jxb/erj094</u>
- LI, J., TAO, X., BU, J., YING, T., MAO, L., LUO, Z. (2017): Global transcriptome profiling analysis of ethylene-auxin interaction during tomato fruit ripening. *Postharvest Biology and Technology*, 130, 28-38. <u>https://doi.org/10.1016/j.postharvbio.2017.03.021</u>
- LI, S., FU, Q., CHEN, L., HUANG, W., YU, D. (2011): *Arabidopsis thaliana* WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. *Planta*, 233, 1237-1252. <u>https://doi.org/10.1007/s00425-011-1375-2</u>
- LI, X.-B., FAN, X.-P., WANG, X.-L., CAI, L., YANG, W.-C. (2005): The cotton *ACTIN*¹ gene is functionally expressed in fibers and participates in fiber elongation. *The Plant Cell*, 17, 859-875. <u>https://doi.org/10.1105/tpc.104.029629</u>
- LIANG, B., ZHENG, Y., WANG, J., ZHANG, W., FU, Y., KAI, W., XU, Y., YUAN, B., LI, Q., LENG, P. (2020): Overexpression of the persimmon abscisic acid β-glucosidase gene (*DkBG1*) alters fruit ripening in transgenic tomato. *The Plant Journal*, 102, 1220-1233. <u>https://doi.org/10.1111/tpj.14695</u>
- LIANG, Y., WANG, X., HONG, S., LI, Y., ZUO, J. (2012): Deletion of the initial 45 residues of ARR18 induces cytokinin response in *Arabidopsis*. *Journal of Genet Genomics*, 39, 37-46. <u>https://doi.org/10.1016/j.jgg.2011.12.004</u>
- LIANG, Y. S., BAE, H. J., KANG, S. H., LEE, T., KIM, M. G., KIM, Y. M., HA, S. H. (2009): The *Arabidopsis* beta-carotene hydroxylase gene promoter for a strong constitutive expression of transgene. *Plant Biotechnology Reports*, 3, 325-331. <u>https://doi.org/10.1007/s11816-009-0106-7</u>
- LILJEGREN, S. J., ROEDER, A. H., KEMPIN, S. A., GREMSKI, K., ØSTERGAARD, L., GUIMIL, S., REYES, D. K., YANOFSKY, M. F. (2004): Control of fruit patterning in *Arabidopsis* by INDEHISCENT. *Cell*, 116, 843-853. <u>https://doi.org/10.1016/S0092-8674(04)00217-X</u>
- LIN, Z., ALEXANDER, L., HACKETT, R., GRIERSON, D. (2008): *LeCTR2*, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. *The Plant Journal*, 54, 1083-1093. <u>https://doi.org/10.1111/j.1365-313X.2008.03481.x</u>
- LIU, D. C., HUANG, X. R., LIN, Y., WANG, X. J., YAN, Z. M., WANG, Q. Z., DING, J., GU, T. T., LI, Y. (2020): Identification of reference genes for transcript normalization in various tissue types and seedlings subjected to different abiotic stresses of woodland strawberry *Fragaria vesca*. *Scientia Horticulturae*, 261, 108840. https://doi.org/10.1016/j.scienta.2019.108840
- LIU, D. S., SHI, L. D., HAN, C. G., YU, J. L., LI, D. W., ZHANG, Y. L. (2012): Validation of Reference Genes for Gene Expression Studies in Virus-Infected *Nicotiana benthamiana* Using Quantitative Real-Time PCR. *PLos One*, 7, e46451. https://doi.org/10.1371/journal.pone.0046451
- LIU, K., YUAN, C., LI, H., LIN, W., YANG, Y., SHEN, C., ZHENG, X. (2015a): Genomewide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (*Carica papaya* L.). *BMC Genomics*, 16, 901. <u>https://doi.org/10.1186/s12864-015-2182-0</u>
- LIU, M., CHEN, Y., CHEN, Y., SHIN, J. H., MILA, I., AUDRAN, C., ZOUINE, M., PIRRELLO, J., BOUZAYEN, M. (2018): The tomato Ethylene Response Factor SI-ERF. B3 integrates ethylene and auxin signaling via direct regulation of *Sl-Aux/IAA 27. New Phytologist*, 219, 631-640. <u>https://doi.org/10.1111/nph.15165</u>

- LIU, M., PIRRELLO, J., CHERVIN, C., ROUSTAN, J.-P., BOUZAYEN, M. (2015b): Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. *Plant physiology*, 169, 2380-2390. <u>https://doi.org/10.1104/pp.15.01361</u>
- LIU, Y.-G., SHIRANO, Y., FUKAKI, H., YANAI, Y., TASAKA, M., TABATA, S., SHIBATA, D. (1999): Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. *Proceedings of the National Academy of Sciences*, 96, 6535-6540. <u>https://doi.org/10.1073/pnas.96.11.6535</u>
- LIU, Y., SHI, Y., SU, D., LU, W., LI, Z. (2021): SIGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and *SlMADS1* in tomato. *Horticulture Research*, 8. <u>https://doi.org/10.1038/s41438-020-00431-9</u>
- LIVAK, K. J., SCHMITTGEN, T. D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-ΔΔCT} method. *Methods*, 25, 402-408. <u>https://doi.org/10.1006/meth.2001.1262</u>
- LODISH, H., BERK, A., ZIPURSKY, S. L., MATSUDAIRA, P., BALTIMORE, D., DARNELL, J. (2000): Molecular cell biology 4th edition. *National Center for Biotechnology Information, Bookshelf*, 9.
- LOPER, J. E., KADO, C. I. (1979): Host range conferred by the virulence-specifying plasmid of *Agrobacterium tumefaciens. Journal of Bacteriology*, 139, 591-596. https://doi.org/10.1128/jb.139.2.591-596.1979
- LU, D., WANG, T., PERSSON, S., MUELLER-ROEBER, B., SCHIPPERS, J. H. (2014): Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development. *Nature Communications*, 5, 3767. <u>https://doi.org/10.1038/ncomms4767</u>
- LU, J., SIVAMANI, E., LI, X., QU, R. (2008): Activity of the 5' regulatory regions of the rice polyubiquitin *rubi3* gene in transgenic rice plants as analyzed by both *GUS* and *GFP* reporter genes. *Plant Cell Reports*, 27, 1587-1600. <u>https://doi.org/10.1007/s00299-008-0577-y</u>
- LUDWIG, S. R., HABERA, L. F., DELLAPORTA, S. L., WESSLER, S. R. (1989): Lc, a Member of the Maize R-Gene Family Responsible for Tissue-Specific Anthocyanin Production, Encodes a Protein Similar to Transcriptional Activators and Contains the Myc-Homology Region. *Proceedings of the National Academy of Sciences of the United States of America*, 86, 7092-7096. <u>https://doi.org/10.1073/pnas.86.18.7092</u>
- MAJUMDER, P., CAI, H. N. (2003): The functional analysis of insulator interactions in the Drosophila embryo. Proceedings of the National Academy of Sciences, 100, 5223-5228. <u>https://doi.org/10.1073/pnas.0830190100</u>
- MAKKENA, S., LAMB, R. S. (2013): The bHLH transcription factor *SPATULA* regulates root growth by controlling the size of the root meristem. *BMC Plant Biology*, 13, 1-15. https://doi.org/10.1186/1471-2229-13-1
- MAKSIMENKO, O., GOLOVNIN, A., GEORGIEV, P. (2008): Enhancer-promoter communication is regulated by insulator pairing in a *Drosophila model* bigenic locus. *Molecular and Cellular Biology*, 28, 5469-5477. <u>https://doi.org/10.1128/MCB.00461-08</u>
- MARRACCINI, P., DESHAYES, A., PÉTIARD, V., ROGERS, W. J. (1999): Molecular cloning of the complete 11S seed storage protein gene of *Coffea arabica* and promoter analysis in transgenic tobacco plants. *Plant Physiology and Biochemistry*, 37, 273-282. <u>https://doi.org/10.1016/S0981-9428(99)80025-4</u>
- MARUYAMA-NAKASHITA, A., NAKAMURA, Y., WATANABE-TAKAHASHI, A., INOUE, E., YAMAYA, T., TAKAHASHI, H. (2005): Identification of a novel cis-acting element conferring sulfur deficiency response in *Arabidopsis* roots. *The Plant Journal*, 42, 305-314. <u>https://doi.org/10.1111/j.1365-313X.2005.02363.x</u>

- MASON, M. G., LI, J., MATHEWS, D. E., KIEBER, J. J., SCHALLER, G. E. (2004): Type-B response regulators display overlapping expression patterns in *Arabidopsis*. *Plant Physiology*, 135, 927-37. <u>https://doi.org/10.1104/pp.103.038109</u>
- MATTHYSSE, A. G. (1987): Characterization of nonattaching mutants of *Agrobacterium tumefaciens*. *Journal of Bacteriology*, 169, 313-323. <u>https://doi.org/10.1128/jb.169.1.313-323.1987</u>
- MATTSSON, J., CKURSHUMOVA, W., BERLETH, T. (2003): Auxin signaling in *Arabidopsis* leaf vascular development. *Plant Physiology*, 131, 1327-1339. <u>https://doi.org/10.1104/pp.013623</u>
- MAYER, K., SCHÜLLER, C., WAMBUTT, R., MURPHY, G., VOLCKAERT, G., POHL, T., DÜSTERHÖFT, A., STIEKEMA, W., ENTIAN, K.-D., TERRYN, N. (1999): Sequence and analysis of chromosome 4 of the plant *Arabidopsis thaliana*. *Nature*, 402, 769-777. <u>https://doi.org/10.1038/47134</u>
- MCATEE, P. A., RICHARDSON, A. C., NIEUWENHUIZEN, N. J., GUNASEELAN, K., HOONG, L., CHEN, X., ATKINSON, R. G., BURDON, J. N., DAVID, K. M., SCHAFFER, R. J. (2015): The hybrid non-ethylene and ethylene ripening response in kiwifruit (*Actinidia chinensis*) is associated with differential regulation of MADS-box transcription factors. *BMC Plant Biology*, 15, 1-16. <u>https://doi.org/10.1186/s12870-015-0697-9</u>
- MCCORMICK, S., NIEDERMEYER, J., FRY, J., BARNASON, A., HORSCH, R., FRALEY, R. (1986): Leaf disc transformation of cultivated tomato (*L. esculentum*) using *Agrobacterium tumefaciens*. *Plant Cell Reports*, 5, 81-84. <u>https://doi.org/10.1007/BF00269239</u>
- MEINS, F. (2000): RNA degradation and models for post-transcriptional gene silencing. *Plant Molecular Biology*, 43, 261-273. <u>https://doi.org/10.1023/A:1006443731515</u>
- MEISSNER, M., ORSINI, E., RUSCHHAUPT, M., MELCHINGER, A. E., HINCHA, D. K., HEYER, A. G. (2013): Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of *Arabidopsis thaliana* accessions tenela and C24 reveals reveille1 as negative regulator of cold acclimation. *Plant, Cell & Environment*, 36, 1256-1267. <u>https://doi.org/10.1111/pce.12054</u>
- MELCHERS, L. S., MARONEY, M. J., DEN DULK-RAS, A., THOMPSON, D. V., VAN VUUREN, H. A., SCHILPEROORT, R. A., HOOYKAAS, P. J. (1990): Octopine and nopaline strains of *Agrobacterium tumefaciens* differ in virulence; molecular characterization of the *virF* locus. *Plant Molecular Biology*, 14, 249-259. <u>https://doi.org/10.1007/BF00018565</u>
- MENG, C., YANG, D., MA, X., ZHAO, W., LIANG, X., MA, N., MENG, Q. (2016): Suppression of tomato *SlNAC1* transcription factor delays fruit ripening. *Journal of Plant Physiology*, 193, 88-96. <u>https://doi.org/10.1016/j.jplph.2016.01.014</u>
- MERCHANTE, C., VALLARINO, J. G., OSORIO, S., ARAGÜEZ, I., VILLARREAL, N., ARIZA, M. T., MARTÍNEZ, G. A., MEDINA-ESCOBAR, N., CIVELLO, M. P., FERNIE, A. R. (2013): Ethylene is involved in strawberry fruit ripening in an organspecific manner. *Journal of Experimental Botany*, 64, 4421-4439. <u>https://doi.org/10.1093/jxb/ert257</u>
- MEYER, P. (2000): Transcriptional transgene silencing and chromatin components. *Plant Molecular Biology*, 43, 221-234. <u>https://doi.org/10.1023/A:1006483428789</u>
- MIKI, D., SHIMAMOTO, K. (2004): Simple RNAi vectors for stable and transient suppression of gene function in rice. *Plant and Cell Physiology*, 45, 490-495. https://doi.org/10.1093/pcp/pch048
- MITTLER, R., KIM, Y., SONG, L., COUTU, J., COUTU, A., CIFTCI-YILMAZ, S., LEE, H., STEVENSON, B., ZHU, J. K. (2006): Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. *FEBS Lett*, 580, 6537-42. <u>https://doi.org/10.1016/j.febslet.2006.11.002</u>

- MO, A., XU, T., BAI, Q., SHEN, Y., GAO, F., GUO, J. (2020): *FaPAO5* regulates *Spm/Spd* levels as a signaling during strawberry fruit ripening. *Plant Direct*, 4, e00217. https://doi.org/10.1002/pld3.217
- MORITA, M. T., SAKAGUCHI, K., KIYOSE, S. I., TAIRA, K., KATO, T., NAKAMURA, M., TASAKA, M. (2006): A C₂H₂-type zinc finger protein, SGR5, is involved in early events of gravitropism in *Arabidopsis* inflorescence stems. *The Plant Journal*, 47, 619-628. <u>https://doi.org/10.1111/j.1365-313X.2006.02807.x</u>
- MOU, W., LI, D., LUO, Z., LI, L., MAO, L., YING, T. (2018): SIAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. *Plant Science*, 276, 239-249. <u>https://doi.org/10.1016/j.plantsci.2018.07.015</u>
- MYSORE, K. S., BASSUNER, B., DENG, X. B., DARBINIAN, N. S., MOTCHOULSKI, A., REAM, W., GELVIN, S. B. (1998): Role of the *Agrobacterium tumefaciens* VirD2 Protein in T-DNA Transfer and Integration. *Molecular Plant-Microbe Interactions*, 11, 668-683. <u>https://doi.org/10.1094/Mpmi.1998.11.7.668</u>

NÄÄR, A. M., LEMON, B. D., TJIAN, R. (2001): Transcriptional coactivator complexes. *Annual Review of Biochemistry*, 70, 475-501. https://doi.org/10.1146/annurev.biochem.70.1.475

- NAGPAL, P., ELLIS, C. M., WEBER, H., PLOENSE, S. E., BARKAWI, L. S., GUILFOYLE, T. J., HAGEN, G., ALONSO, J. M., COHEN, J. D., FARMER, E. E. (2005): Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. *Development*, 132, 4107–4118. <u>https://doi.org/10.1242/dev.01955</u>
- NAHAR, M. A.-U., ISHIDA, T., SMYTH, D. R., TASAKA, M., AIDA, M. (2012): Interactions of *CUP-SHAPED COTYLEDON* and *SPATULA* genes control carpel margin development in *Arabidopsis thaliana*. *Plant and Cell Physiology*, 53, 1134-1143. <u>https://doi.org/10.1093/pcp/pcs057</u>
- NAIN, V., SAHI, S., KUMAR, P. A. (2011): *In silico* identification of regulatory elements in promoters. *Computational Biology and Applied Bioinformatics*, 47-66. https://doi.org/10.5772/22230
- NAIN, V., VERMA, A., KUMAR, N., SHARMA, P., RAMESH, B., KUMAR, P. A. (2008): Cloning of an ovule specific promoter from *Arabidopsis thaliana* and expression of βglucuronidase. *Indian Journal of Experimental Biology*, 46, 207-211.
- NAKAGAWA, T., KUROSE, T., HINO, T., TANAKA, K., KAWAMUKAI, M., NIWA, Y., TOYOOKA, K., MATSUOKA, K., JINBO, T., KIMURA, T. (2007): Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. *Journal of Bioscience and Bioengineering*, 104, 34-41. <u>https://doi.org/10.1263/jbb.104.34</u>
- NAKAJIMA, K., FURUTANI, I., TACHIMOTO, H., MATSUBARA, H., HASHIMOTO, T. (2004): SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. The Plant Cell, 16, 1178-1190. <u>https://doi.org/10.1105/tpc.017830</u>
- NAKAJIMA, K., KAWAMURA, T., HASHIMOTO, T. (2006): Role of the *SPIRAL1* gene family in anisotropic growth of *Arabidopsis thaliana*. *Plant and Cell Physiology*, 47, 513-522. <u>https://doi.org/10.1093/pcp/pcj020</u>
- NAKAMURA, M., HASHIMOTO, T. (2009): A mutation in the *Arabidopsis* γ-tubulincontaining complex causes helical growth and abnormal microtubule branching. *Journal of Cell Science*, 122, 2208-2217. <u>https://doi.org/10.1242/jcs.044131</u>
- NARLIKAR, L., OVCHARENKO, I. (2009): Identifying regulatory elements in eukaryotic genomes. *Briefings in Functional Genomics and Proteomics*, 8, 215-230. https://doi.org/10.1093/bfgp/elp014
- NIWA, Y. (2003): A synthetic green fluorescent protein gene for plant biotechnology. *Plant Biotechnology*, 20, 1-11. <u>https://doi.org/10.5511/plantbiotechnology.20.1</u>

- ORZAEZ, D., MIRABEL, S., WIELAND, W. H., GRANELL, A. (2006): Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. *Plant Physiology*, 140, 3-11. <u>https://doi.org/10.1104/pp.105.068221</u>
- PARK, S.-H., BANG, S. W., JEONG, J. S., JUNG, H., REDILLAS, M. C. F. R., KIM, H. I., LEE, K. H., KIM, Y. S., KIM, J.-K. (2012): Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta, 235, 1397-1408.
- PARK, S.-H., YI, N., KIM, Y. S., JEONG, M.-H., BANG, S.-W., CHOI, Y. D., KIM, J.-K. (2010): Analysis of five novel putative constitutive gene promoters in transgenic rice plants. *Journal of experimental botany*, 61, 2459-2467. <u>https://doi.org/10.1093/jxb/erq076</u>
- PASCUZZI, P., HAMILTON, D., BODILY, K., ARIAS, J. (1998): Auxin-induced stress potentiates trans-activation by a conserved plant basic/leucine-zipper factor. *Journal of Biological Chemistry*, 273, 26631-26637. <u>https://doi.org/10.1074/jbc.273.41.26631</u>
- PEACH, C., VELTEN, J. (1991): Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. *Plant Molecular Biology*, 17, 49-60. <u>https://doi.org/10.1007/Bf00036805</u>
- PENFIELD, S., JOSSE, E. M., KANNANGARA, R., GILDAY, A. D., HALLIDAY, K. J., GRAHAM, I. A. (2005): Cold and light control seed germination through the bHLH transcription factor SPATULA. Current Biology, 15, 1998-2006. <u>https://doi.org/10.1016/j.cub.2005.11.010</u>
- POLGÁRI, D., KALAPOS, B., TISZA, V., KOVÁCS, L., KERTI, B., HESZKY, L., KISS, E. (2010): *In silico* analysis of a putative *SPIRAL* gene related to strawberry ripening. *Acta Agronomica Hungarica*, 58, 267-272. <u>https://doi.org/10.1556/AAgr.58.2010.3.9</u>
- PRIGGE, M. J., OTSUGA, D., ALONSO, J. M., ECKER, J. R., DREWS, G. N., CLARK, S. E. (2005): Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in *Arabidopsis* development. *The Plant Cell*, 17, 61-76. <u>https://doi.org/10.1105/tpc.104.026161</u>
- PUENTE, P., WEI, N., DENG, X. W. (1996): Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in *Arabidopsis*. *The EMBO Journal*, 15, 3732-3743.
- RAAB, J. R., KAMAKAKA, R. T. (2010): Insulators and promoters: closer than we think. *Nature Reviews Genetics*, 11, 439-446. <u>https://doi.org/10.1038/nrg2765</u>
- RANJAN, R., PATRO, S., KUMARI, S., KUMAR, D., DEY, N., MAITI, I. B. (2011): Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of *Figwort mosaic virus* (FMV). *Journal of Biotechnology*, 152, 58-62. <u>https://doi.org/10.1016/j.jbiotec.2011.01.015</u>
- REYES-OLALDE, J. I., ZÚÑIGA-MAYO, V. M., SERWATOWSKA, J., CHAVEZ MONTES, R. A., LOZANO-SOTOMAYOR, P., HERRERA-UBALDO, H., GONZALEZ-AGUILERA, K. L., BALLESTER, P., RIPOLL, J. J., EZQUER, I. (2017): The bHLH transcription factor *SPATULA* enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. *PLoS Genetics*, 13, e1006726. https://doi.org/10.1371/journal.pgen.1006726
- RIECHMANN, J. L., HEARD, J., MARTIN, G., REUBER, L., JIANG, C. Z., KEDDIE, J., ADAM, L., PINEDA, O., RATCLIFFE, O. J., SAMAHA, R. R., CREELMAN, R., PILGRIM, M., BROUN, P., ZHANG, J. Z., GHANDEHARI, D., SHERMAN, B. K., YU, C. L. (2000): *Arabidopsis* transcription factors: Genome-wide comparative analysis among eukaryotes. *Science*, 290, 2105-2110. https://doi.org/10.1126/science.290.5499.2105
- RISSEEUW, E., OFFRINGA, R., FRANKEVANDIJK, M. E. I., HOOYKAAS, P. J. J. (1995): Targeted recombination in plants using *Agrobacterium* coincides with additional

rearrangements at the target locus. *The Plant Journal*, 7, 109-119. https://doi.org/10.1046/j.1365-313X.1995.07010109.x

- ROSSI, L., HOHN, B., TINLAND, B. (1993): The VirD2 protein of *Agrobacterlum tumefaciens* carries nuclear localization signals important for transfer of T-DNA to plants. *Molecular* & *General Genetics*, 239, 345-353. <u>https://doi.org/10.1007/Bf00276932</u>
- SAKAI, H., HONMA, T., AOYAMA, T., SATO, S., KATO, T., TABATA, S., OKA, A. (2001): ARR1, a transcription factor for genes immediately responsive to cytokinins. *Science*, 294, 1519-1521. <u>https://doi.org/10.1126/science.1065201</u>
- SALADIÉ, M., CAÑIZARES, J., PHILLIPS, M. A., RODRIGUEZ-CONCEPCION, M., LARRIGAUDIÈRE, C., GIBON, Y., STITT, M., LUNN, J. E., GARCIA-MAS, J. (2015): Comparative transcriptional profiling analysis of developing melon (*Cucumis melo* L.) fruit from climacteric and non-climacteric varieties. *BMC Genomics*, 16, 1-20. <u>https://doi.org/10.1186/s12864-015-1649-3</u>
- SAMBROOK, J., FRITSCH, E. F., MANIATIS, T. (1989): Molecular cloning: a laboratory manual. (No. Ed. 2.), *Cold spring harbor laboratory press*.
- SÁNCHEZ-GÓMEZ, C., POSÉ, D., MARTÍN-PIZARRO, C. (2022): Insights into transcription factors controlling strawberry fruit development and ripening. *Frontiers in Plant Science*, 13. <u>https://doi.org/10.3389/fpls.2022.1022369</u>
- SAWA, S., OHGISHI, M., GODA, H., HIGUCHI, K., SHIMADA, Y., YOSHIDA, S., KOSHIBA, T. (2002): The *HAT2* gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in *Arabidopsis. The Plant Journal*, 32, 1011-1022. <u>https://doi.org/10.1046/j.1365-313X.2002.01488.x</u>
- SCHEIFFELE, P., PANSEGRAU, W., LANKA, E. (1995): Initiation of Agrobacterium tumefaciens T-DNA processing: Purified proteins VirD1 and VirD2 catalyze site-and strand-specific cleavage of superhelical T-border DNA in vitro. Journal of Biological Chemistry, 270, 1269-1276. <u>https://doi.org/10.1074/jbc.270.3.1269</u>
- SCHUSTER, C., GAILLOCHET, C., LOHMANN, J. U. (2015): Arabidopsis HECATE genes function in phytohormone control during gynoecium development. Development, 142, 3343-3350. <u>https://doi.org/10.1242/dev.120444</u>
- SERFLING, E., JASIN, M., SCHAFFNER, W. (1985): Enhancers and eukaryotic gene transcription. *Trends in Genetics*, 1, 224-230. <u>https://doi.org/10.1016/0168-9525(85)90088-5</u>
- SEYMOUR, G. B., CHAPMAN, N. H., CHEW, B. L., ROSE, J. K. (2013): Regulation of ripening and opportunities for control in tomato and other fruits. *Plant Biotechnology Journal*, 11, 269-278. <u>https://doi.org/10.1111/j.1467-7652.2012.00738.x</u>
- SHANG, Y., YAN, L., LIU, Z.-Q., CAO, Z., MEI, C., XIN, Q., WU, F.-Q., WANG, X.-F., DU, S.-Y., JIANG, T. (2010): The Mg-chelatase H subunit of *Arabidopsis* antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. *The Plant Cell*, 22, 1909-1935. <u>https://doi.org/10.1105/tpc.110.073874</u>
- SHULAEV, V., SARGENT, D. J., CROWHURST, R. N., MOCKLER, T. C., FOLKERTS, O., DELCHER, A. L., JAISWAL, P., MOCKAITIS, K., LISTON, A., MANE, S. P., BURNS, P., DAVIS, T. M., SLOVIN, J. P., BASSIL, N., HELLENS, R. P., EVANS, C., HARKINS, T., KODIRA, C., DESANY, B., CRASTA, O. R., JENSEN, R. V., ALLAN, A. C., MICHAEL, T. P., SETUBAL, J. C., CELTON, J. M., REES, D. J. G., WILLIAMS, K. P., HOLT, S. H., ROJAS, J. J. R., CHATTERJEE, M., LIU, B., SILVA, H., MEISEL, L., ADATO, A., FILICHKIN, S. A., TROGGIO, M., VIOLA, R., ASHMAN, T. L., WANG, H., DHARMAWARDHANA, P., ELSER, J., RAJA, R., PRIEST, H. D., BRYANT, D. W., FOX, S. E., GIVAN, S. A., WILHELM, L. J., NAITHANI, S., CHRISTOFFELS, A., SALAMA, D. Y., CARTER, J., GIRONA, E. L., ZDEPSKI, A., WANG, W. Q., KERSTETTER, R. A., SCHWAB, W., KORBAN, S. S., DAVIK, J., MONFORT, A., DENOYES-ROTHAN, B., ARUS, P., MITTLER, R.,

FLINN, B., AHARONI, A., BENNETZEN, J. L., SALZBERG, S. L., DICKERMAN, A. W., VELASCO, R., BORODOVSKY, M., VEILLEUX, R. E., FOLTA, K. M. (2011): The genome of woodland strawberry (*Fragaria vesca*). *Nature Genetics*, 43, 109-116. https://doi.org/10.1038/ng.74010.1038/ng.740

- SINGER, K., SHIBOLETH, Y. M., LI, J. M., TZFIRA, T. (2012): Formation of Complex Extrachromosomal T-DNA Structures in Agrobacterium tumefaciens-Infected Plants. *Plant Physiology*, 160, 511-522. <u>https://doi.org/10.1104/pp.112.200212</u>
- SINGH, K. B., FOLEY, R. C., OÑATE-SÁNCHEZ, L. (2002): Transcription factors in plant defense and stress responses. *Current Opinion in Plant Biology*, *5*, 430-436. https://doi.org/10.1016/S1369-5266(02)00289-3
- SMITH, E. F., TOWNSEND, C. O. (1907): A plant-tumor of bacterial origin. *Science*, 25, 671-673. https://doi.org/10.1126/science.25.643.671
- SMYTH, D. R. (2016): Helical growth in plant organs: mechanisms and significance. *Development*, 143, 3272-3282. <u>https://doi.org/10.1242/dev.134064</u>
- SMYTH, D. R., BOWMAN, J. L., MEYEROWITZ, E. M. (1990): Early flower development in *Arabidopsis. The Plant Cell*, 2, 755-767. <u>https://doi.org/10.1105/tpc.2.8.755</u>
- SON, O., CHO, H.-Y., KIM, M.-R., LEE, H., LEE, M.-S., SONG, E., PARK, J. H., NAM, K. H., CHUN, J.-Y., KIM, H.-J. (2004): Induction of a homeodomain–leucine zipper gene by auxin is inhibited by cytokinin in *Arabidopsis* roots. *Biochemical and Biophysical Research Communications*, 326, 203-209. <u>https://doi.org/10.1016/j.bbrc.2004.11.014</u>
- SRIVASTAVA, R., SINGH, U. M., DUBEY, N. K. (2016): Histone Modifications by different histone modifiers: insights into histone writers and erasers during chromatin modification. *Journal of Biological Sciences and Medicine*, 2, 45-54.
- STACHEL, S. E., NESTER, E. W. (1986): The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of *Agrobacterium tumefaciens*. *The EMBO Journal*, 5, 1445-1454. <u>https://doi.org/10.1002/j.1460-2075.1986.tb04381.x</u>
- STORMO, G. D. (2000): DNA binding sites: representation and discovery. *Bioinformatics*, 16, 16-23. <u>https://doi.org/10.1093/bioinformatics/16.1.16</u>
- STORMO, G. D. (2013): Modeling the specificity of protein-DNA interactions. *Quantitative Biology*, 1, 115-130. <u>https://doi.org/10.1007/s40484-013-0012-4</u>
- SU, L., DIRETTO, G., PURGATTO, E., DANOUN, S., ZOUINE, M., LI, Z., ROUSTAN, J.-P., BOUZAYEN, M., GIULIANO, G., CHERVIN, C. (2015a): Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. *BMC Plant Biology*, 15, 1-12. <u>https://doi.org/10.1186/s12870-015-0495-4</u>
- SU, Y. H., LIU, Y. B., BAI, B., ZHANG, X. S. (2015b): Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during *Arabidopsis* somatic embryogenesis. *Frontiers in Plant Science*, 5, 792. https://doi.org/10.3389/fpls.2014.00792
- SUN, L., SUN, Y., ZHANG, M., WANG, L., REN, J., CUI, M., WANG, Y., JI, K., LI, P., LI, Q. (2012): Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. *Plant Physiology*, 158, 283-298. <u>https://doi.org/10.1104/pp.111.186866</u>
- SUNDARESAN, V., SPRINGER, P., VOLPE, T., HAWARD, S., JONES, J. D. G., DEAN, C., MA, H., MARTIENSSEN, R. (1995): Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. *Genes & Development*, 9, 1797-1810. <u>https://doi.org/10.1101/gad.9.14.1797</u>
- SUTOH, K., YAMAUCHI, D. (2003): Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. *The Plant Journal*, 34, 635-45. <u>https://doi.org/10.1046/j.1365-313X.2003.01753.x</u>
- SUZUKI, K., HATTORI, Y., URAJI, M., OHTA, N., IWATA, K., MURATA, K., KATO, A., YOSHIDA, K. (2000): Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. *Gene*, 242, 331-336. <u>https://doi.org/10.1016/S0378-1119(99)00502-8</u>

- SWARBRECK, D., WILKS, C., LAMESCH, P., BERARDINI, T. Z., GARCIA-HERNANDEZ, M., FOERSTER, H., LI, D., MEYER, T., MULLER, R., PLOETZ, L., RADENBAUGH, A., SINGH, S., SWING, V., TISSIER, C., ZHANG, P., HUALA, E. (2008): The *Arabidopsis* Information Resource (TAIR): gene structure and function annotation. *Nucleic Acids Research*, 36, D1009-D1014. <u>https://doi.org/10.1093/nar/gkm965</u>
- TAATJES, D. J., NÄÄR, A. M., ANDEL, F., NOGALES, E., TJIAN, R. (2002): Structure, function, and activator-induced conformations of the CRSP coactivator. *Science*, 295, 1058-1062. <u>https://doi.org/10.1126/science.1065249</u>
- TANAKA, K., NAKAMURA, T., KAWAMUKAI, M., KOIZUMI, N., NAKAGAWA, T. (2011): Developmentof a series of gateway binary vectors possessing a tunicamycin resistance gene as a marker for thetransformation of *Arabidopsis thaliana*. *Bioscience*, *Biotechnology and Biochemistry*, 75, 804-807. <u>https://doi.org/10.1271/bbb.110063</u>
- TANI, E., TSABALLA, A., STEDEL, C., KALLONIATI, C., PAPAEFTHIMIOU, D., POLIDOROS, A., DARZENTAS, N., GANOPOULOS, I., FLEMETAKIS, E., KATINAKIS, P., TSAFTARIS, A. (2011): The study of a SPATULA-like bHLH transcription factor expressed during peach (*Prunus persica*) fruit development. *Plant Physiology and Biochemistry*, 49, 654-663. <u>https://doi.org/10.1016/j.plaphy.2011.01.020</u>
- THOMASHOW, M. F., KARLINSEY, J. E., MARKS, J. R., HURLBERT, R. E. (1987): Identification of a new virulence locus in *Agrobacterium tumefaciens* that affects polysaccharide composition and plant cell attachment. *Journal of Bacteriology*, 169, 3209-3216. <u>https://doi.org/10.1128/jb.169.7.3209-3216.1987</u>
- TIEMAN, D. M., KLEE, H. J. (1999): Differential expression of two novel members of the tomato ethylene-receptor family. *Plant Physiology*, 120, 165-172. https://doi.org/10.1104/pp.120.1.165
- TINLAND, B., SCHOUMACHER, F., GLOECKLER, V., BRAVOANGEL, A. M., HOHN, B. (1995): The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. Embo Journal, 14, 3585-3595. <u>https://doi.org/10.1002/j.1460-2075.1995.tb07364.x</u>
- TISZA, V., KOVÁCS, L., BALOGH, A., HESZKY, L., KISS, E. (2010): Characterization of *FaSPT*, a SPATULA gene encoding a bHLH transcriptional factor from the nonclimacteric strawberry fruit. *Plant Physiology and Biochemistry*, 48, 822-826. <u>https://doi.org/10.1016/j.plaphy.2010.08.001</u>
- TIWARI, S. B., SHEN, Y., CHANG, H. C., HOU, Y., HARRIS, A., MA, S. F., MCPARTLAND, M., HYMUS, G. J., ADAM, L., MARION, C. (2010): The flowering time regulator CONSTANS is recruited to the *FLOWERING LOCUS T* promoter via a unique cis-element. *New Phytologist*, 187, 57-66. <u>https://doi.org/10.1111/j.1469-8137.2010.03251.x</u>
- TJOKROKUSUMO, D., HEINRICH, T., WYLIE, S., POTTER, R., MCCOMB, J. (2000): Vacuum infiltration of Petunia hybrida pollen with *Agrobacterium tumefaciens* to achieve plant transformation. *Plant Cell Reports*, 19, 792-797. <u>https://doi.org/10.1007/s002990050009</u>
- TOLEDO-ORTIZ, G., HUQ, E., QUAIL, P. H. (2003): The *Arabidopsis* basic/helix-loop-helix transcription factor family. *The Plant Cell*, 15, 1749-1770. https://doi.org/10.1105/tpc.013839
- TORO, N., DATTA, A., CARMI, O., YOUNG, C., PRUSTI, R., NESTER, E. (1989): The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. Journal of Bacteriology, 171, 6845-6849. <u>https://doi.org/10.1128/jb.171.12.6845-6849.1989</u>
- TRAINOTTI, L., PAVANELLO, A., CASADORO, G. (2005): Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? *Journal of Experimental Botany*, 56, 2037-2046. <u>https://doi.org/10.1093/jxb/eri202</u>

- TSAI, Y. C., WEIR, N. R., HILL, K., ZHANG, W., KIM, H. J., SHIU, S. H., SCHALLER, G. E., KIEBER, J. J. (2012): Characterization of genes involved in cytokinin signaling and metabolism from rice. *Plant Physiology*, 158, 1666-84. <u>https://doi.org/10.1104/pp.111.192765</u>
- TSUCHIYA, Y., NAMBARA, E., NAITO, S., MCCOURT, P. (2004): The FUS3 transcription factor functions through the epidermal regulator *TTG1* during embryogenesis in *Arabidopsis. The Plant Journal*, 37, 73-81. <u>https://doi.org/10.1046/j.1365-313X.2003.01939.x</u>
- TYURIN, A. A., SUHORUKOVA, A. V., KABARDAEVA, K. V., GOLDENKOVA-PAVLOVA, I. V. (2020): Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: advantages, limitations, and solutions. *Plants*, 9, 1187. <u>https://doi.org/10.3390/plants9091187</u>
- UMEZAWA, T., NAKASHIMA, K., MIYAKAWA, T., KUROMORI, T., TANOKURA, M., SHINOZAKI, K., YAMAGUCHI-SHINOZAKI, K. (2010): Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. *Plant and Cell Physiology*, 51, 1821-1839. <u>https://doi.org/10.1093/pcp/pcq156</u>
- VAN DE POEL, B., BULENS, I., MARKOULA, A., HERTOG, M. L., DREESEN, R., WIRTZ, M., VANDONINCK, S., OPPERMANN, Y., KEULEMANS, J., HELL, R. (2012): Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. *Plant Physiology*, 160, 1498-1514. <u>https://doi.org/10.1104/pp.112.206086</u>
- VANSLOGTEREN, G. M. S., HOOYKAAS, P. J. J., SCHILPEROORT, R. A. (1984): Silent T-DNA genes in plant lines transformed by *Agrobacterium tumefaciens* are activated by grafting and by 5-azacytidine treatment. *Plant Molecular Biology*, 3, 333-336. <u>https://doi.org/10.1007/Bf00033379</u>
- VERGUNST, A. C., SCHRAMMEIJER, B., DEN DULK-RAS, A., DE VLAAM, C. M., REGENSBURG-TU1NK, T. J., HOOYKAAS, P. J. (2000): VirB/D4-dependent protein translocation from *Agrobacterium* into plant cells. *Science*, 290, 979-982. <u>https://doi.org/10.1126/science.290.5493.979</u>
- VIDAURRE, D. P., PLOENSE, S., KROGAN, N. T., BERLETH, T. (2007): AMP1 and MP antagonistically regulate embryo and meristem development in *Arabidopsis*. *Development* 134, 2561–2567. <u>https://doi.org/10.1242/dev.006759</u>
- VOGEL, A., DAS, A. (1992): Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity. Journal of Bacteriology, 174, 303-308. <u>https://doi.org/10.1128/jb.174.1.303-308.1992</u>
- WALHOUT, A. J., TEMPLE, G. F., BRASCH, M. A., HARTLEY, J. L., LORSON, M. A., VAN DEN HEUVEL, S., VIDAL, M. (2000): GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. *Methods in Enzymology*. Elsevier.
- WANG, G. J., GENTRY, T. J., GRASS, G., JOSEPHSON, K., RENSING, C., PEPPER, I. L. (2004): Real-time PCR quantification of a green fluorescent protein-labeled, genetically engineered *Pseudomonas putida* strain during 2-chlorobenzoate degradation in soil. *Fems Microbiology Letters*, 233, 307-314. <u>https://doi.org/10.1111/j.1574-6968.2004.tb09497.x</u>
- WANG, T., TOHGE, T., IVAKOV, A., MUELLER-ROEBER, B., FERNIE, A. R., MUTWIL, M., SCHIPPERS, J. H., PERSSON, S. (2015): Salt-related MYB1 coordinates abscisic acid biosynthesis and signaling during salt stress in *Arabidopsis*. *Plant Physiology*, 169, 1027-1041. <u>https://doi.org/10.1104/pp.15.00962</u>
- WANG, W., WANG, P., LI, X., WANG, Y., TIAN, S., QIN, G. (2021): The transcription factor SIHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. *Horticulture Research*, 8. <u>https://doi.org/10.1038/s41438-021-00523-0</u>
- WEIRAUCH, M. T., YANG, A., ALBU, M., COTE, A. G., MONTENEGRO-MONTERO, A., DREWE, P., NAJAFABADI, H. S., LAMBERT, S. A., MANN, I., COOK, K. (2014):

Determination and inference of eukaryotic transcription factor sequence specificity. *Cell*, 158, 1431-1443. <u>https://doi.org/10.1016/j.cell.2014.08.009</u>

- WINANS, S. (1991): An *Agrobacterium* two-component regulatory system for the detection of chemicals released from plant wounds. *Molecular Microbiology*, 5, 2345-2350. https://doi.org/10.1111/j.1365-2958.1991.tb02080.x
- WINGENDER, E., DIETZE, P., KARAS, H., KNÜPPEL, R. (1996): TRANSFAC: a database on transcription factors and their DNA binding sites. *Nucleic Acids Research*, 24, 238-241. <u>https://doi.org/10.1093/nar/24.1.238</u>
- WROBLEWSKI, T., TOMCZAK, A., MICHELMORE, R. (2005): Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3, 259-273. <u>https://doi.org/10.1111/j.1467-7652.2005.00123.x</u>
- WU, Q., BAI, J., TAO, X., MOU, W., LUO, Z., MAO, L., BAN, Z., YING, T., LI, L. (2018a): Synergistic effect of abscisic acid and ethylene on color development in tomato (*Solanum lycopersicum* L.) fruit. *Scientia Horticulturae*, 235, 169-180. <u>https://doi.org/10.1016/j.scienta.2018.02.078</u>
- WU, Q., TAO, X., AI, X., LUO, Z., MAO, L., YING, T., LI, L. (2018b): Effect of exogenous auxin on aroma volatiles of cherry tomato (*Solanum lycopersicum* L.) fruit during postharvest ripening. *Postharvest Biology and Technology*, 146, 108-116. <u>https://doi.org/10.1016/j.postharvbio.2018.08.010</u>
- YANG, S., ZHOU, J., WATKINS, C. B., WU, C., FENG, Y., ZHAO, X., XUE, Z., KOU, X. (2021): NAC transcription factors SNAC4 and SNAC9 synergistically regulate tomato fruit ripening by affecting expression of genes involved in ethylene and abscisic acid metabolism and signal transduction. Postharvest Biology and Technology, 178, 111555. <u>https://doi.org/10.1016/j.postharvbio.2021.111555</u>
- YANG, S. F. (1985): Biosynthesis and action of ethylene. *HortScience*, 20, 41-45. https://doi.org/10.21273/HORTSCI.20.1.41
- YANOFSKY, M., LOWE, B., MONTOYA, A., RUBIN, R., KRUL, W., GORDON, M., NESTER, E. (1985): Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Molecular and General Genetics MGG, 201, 237-246. <u>https://doi.org/10.1007/BF00425665</u>
- YANOFSKY, M. F., PORTER, S. G., YOUNG, C., ALBRIGHT, L. M., GORDON, M. P., NESTER, E. W. (1986): The *virD* operon of *Agrobacterium tumefaciens* encodes a sitespecific endonuclease. *Cell*, 47, 471-477.
- YASMEEN, A., MIRZA, B., INAYATULLAH, S., SAFDAR, N., JAMIL, M., ALI, S., CHOUDHRY, M. F. (2009): In planta transformation of tomato. *Plant Molecular Biology Reporter*, 27, 20-28. <u>https://doi.org/10.1007/s11105-008-0044-5</u>
- YE, R. J., ZHOU, F., LIN, Y. J. (2012): Two novel positive *cis*-regulatory elements involved in green tissue-specific promoter activity in rice (*Oryza sativa* L ssp.). *Plant Cell Reports*, 31, 1159-1172. <u>https://doi.org/10.1007/s00299-012-1238-8</u>
- YILMAZ, A., MEJIA-GUERRA, M. K., KURZ, K., LIANG, X. Y., WELCH, L., GROTEWOLD, E. (2011): AGRIS: the *Arabidopsis* gene regulatory information server, an update. *Nucleic Acids Research*, 39, D1118-D1122. <u>https://doi.org/10.1093/nar/gkq1120</u>
- YOKOTANI, N., NAKANO, R., IMANISHI, S., NAGATA, M., INABA, A., KUBO, Y. (2009): Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. *Journal of Experimental Botany*, 60, 3433-3442. <u>https://doi.org/10.1093/jxb/erp185</u>
- YOUNG, J. M., KUYKENDALL, L. D., MARTÍNEZ-ROMERO, E., KERR, A., SAWADA, H. (2001): A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of *Agrobacterium* Conn 1942 and *Allorhizobium* undicola de Lajudie et al. 1998 as new combinations: *Rhizobium radiobacter*, *R. rhizogenes*, *R*.

rubi, *R. undicola* and *R. vitis*. *International Journal of Systematic and Evolutionary Microbiology*, 51, 89-103. <u>https://doi.org/10.1099/00207713-51-1-89</u>

- YU, B., ZHU, B., LUO, Y. (2004): Gene cloning and sequence analysis of *LeERF1* and *LeERF2* in tomato fruit. *Journal of Agricultural Biotechnology*, 12, 132-137.
- ZALE, J. M., AGARWAL, S., LOAR, S., STEBER, C. (2009): Evidence for stable transformation of wheat by floral dip in *Agrobacterium tumefaciens*. *Plant Cell Reports*, 28, 903-913. <u>https://doi.org/10.1007/s00299-009-0696-0</u>
- ZEGZOUTI, H., JONES, B., FRASSE, P., MARTY, C., MAITRE, B., LATCHÉ, A., PECH, J. C., BOUZAYEN, M. (1999): Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. *The Plant Journal*, 18, 589-600. <u>https://doi.org/10.1046/j.1365-313x.1999.00483.x</u>
- ZHANG, D. B., WANG, Y., LIU, A. K., WANG, X. H., DANG, C. W., YAO, Q., CHEN, K. P. (2013): Phylogenetic analyses of vector mosquito basic helix-loop-helix transcription factors. *Insect Molecular Biology*, 22, 608-621. https://doi.org/10.1111/imb.12049
- ZHANG, G., LI, T., WANG, A. (2018): Expression analysis of *NAC* genes during the growth and ripening of apples. *Horticultural Science*, 45, 1-10. https://doi.org/10.17221/153/2016-HORTSCI
- ZHANG, J.-Y., HE, S.-B., LI, L., YANG, H.-Q. (2014a): Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. *Proceedings of the National Academy of Sciences*, 111, E3015-E3023. <u>https://doi.org/10.1073/pnas.1400542111</u>
- ZHANG, Y.-J., WANG, X.-J., WU, J.-X., CHEN, S.-Y., CHEN, H., CHAI, L.-J., YI, H.-L. (2014b): Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. *PLoS One*, 9, e116056.

https://doi.org/10.1371/journal.pone.0116056

- ZHAO, C., HANADA, A., YAMAGUCHI, S., KAMIYA, Y., BEERS, E. P. (2011): The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity. The Plant Journal, 66, 502-515. https://doi.org/10.1111/j.1365-313X.2011.04508.x
- ZHENG, T., DONG, T., HAIDER, M. S., JIN, H., JIA, H., FANG, J. (2020): Brassinosteroid regulates 3-hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development. *Journal of Agricultural and Food Chemistry*, 68, 11987-11996. <u>https://doi.org/10.1021/acs.jafc.0c04466</u>
- ZHOU, X. R., CHRISTIE, P. J. (1999): Mutagenesis of the Agrobacterium VirE2 singlestranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construction. Journal of Bacteriology, 181, 4342-4352. <u>https://doi.org/10.1128/Jb.181.14.4342-4352.1999</u>
- ZHU, F., LUO, T., LIU, C., WANG, Y., ZHENG, L., XIAO, X., ZHANG, M., YANG, H., YANG, W., XU, R. (2020): A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulata. Journal of Experimental Botany, 71, 3613-3625. <u>https://doi.org/10.1093/jxb/eraa118</u>
- ZÚÑIGA-MAYO, V. M., GÓMEZ-FELIPE, A., HERRERA-UBALDO, H., DE FOLTER, S. (2019): Gynoecium development: networks in *Arabidopsis* and beyond. *Journal of Experimental Botany*, 70, 1447-1460. <u>https://doi.org/10.1093/jxb/erz026</u>

FvSPT							
		Start	End				
				EDT1	-25	-16	
				PBF	-76	-72	
				Dof3	-77	-72	
				MYB55	-114	-107	
				myb.Ph3	-128	-120	
				MYB70	-129	-119	
				MYB81	-129	-119	
				MYB52	-130	-120	
				MYB65	-132	-120	
				NAC043	-134	-125	
				NAC078	-152	-141	
				SMZ	-195	-188	
				ATHB-12	-229	-222	
				ATHB-16	-229	-222	
				ATHB-6	-229	-221	
				HAT22	-229	-220	
				ATHB-16	-230	-223	
				ATHB4	-230	-221	
				HAT1	-230	-221	
				HAT2	-230	-220	
	-	-	00	ATHB13	-231	-221	
00	00	00		ATHB18	-231	-221	
30	720	JIC	Γ5(ATHB4	-231	-222	
Γſ	ΡŢ	PT	P_{J}	MA0110.3ATHB-5	-231	-220	
Sv	NS	Sv	J.V.	SPL4	-248	-240	
F	F	F	H H	SPL12	-248	-241	
				SPL9	-251	-241	
				PBF	-378	-374	
				Dof3	-379	-374	
				PIF4	-398	-391	
				BHLH34	-399	-392	
				BIM1	-399	-390	
					-399	-392	
				MYC3	-399	-392	
				MYC4	-399	-392	
				PHYPADRAFT 48267	-399	-392	
				PIF3	-399	-390	
				PIF5	-399	-392	
				SPT	-399	-391	
				UNE10	-399	-392	
					-400	-391	
				BEE2	-400	-391	
					-400	-391	
				BIM2	-400	-391	
					-400	_391	
				BIM3	_400	_301	
1	1	1			- + 00	-571	

M2.1. FvSPT gén promóterén elhelyezkező TFBS

FvSPT							
	Név			Start	End		
				HBI1	-400	-389	
					-400	-391	
				PHYPADRAF1_1438/5	-400	-391	
					-400	-391	
			0	PHYPADRAFT_72483	-400	-391	
			50(SPT	-400	-392	
			T^{o}	BEH3	-401	-391	
			NSI	BIM1	-401	-392	
			Ŀ	BZR2	-401	-391	
				DOF2.4	-427	-421	
				DOF5 3	-428	-422	
				DOF5.6	-428	-421	
				I HV1	-====20		
				NAC078	516	505	
				DOE5 3	-536	-505	
				DOF5.6	-530	-530	
				MNB1A	-537	-533	
				PRF	-537	-533	
				Dof2	-538	-533	
		00	FvSPT1000	PHYPADRAFT 140773	-539	-530	
		10		AHL12	-564	-557	
00	00	Γſ			-564	-557	
30	20	Sv.		KAN1	-600	-593	
Γſ	Γſ	F		AHL12	-601	-594	
Sv ⁷	Sv ⁷				-601	-594	
F	F			NAC058	-637	-630	
				NAC080	-637	-630	
				T11I18.17	-637	-630	
				NAC028	-638	-630	
				NAC92	-639	-628	
				GATA15	-680	-672	
				SPL4	-700	-692	
				SPL12	-700	-693	
				AGL42	-710	-704	
				DOF5.7	-717	-710	
				DOF5.3	-774	-768	
				DOF2.4	-775	-769	
				DOF5.6	-775	-768	
				MNBIA	-775	-//1	
				PBF	-775	-//1	
					-//0	-//1	
				ГПТРАЛКАРТ_153524	-//0	-/08	
					-///	-/08 769	
				PDE	-///	-/0ð 701	
				ГDГ Dof2	-/88	-/84 701	
					-/09	-/04	
				GATAIS	-800	-792	

FvSPT							
		Start	End				
			MYB24	-855	-847		
			MYB111	-856	-849		
			MYB4	-856	-849		
			MYB46	-856	-849		
			MYB59	-856	-849		
			FaEOBII	-857	-848		
			MYB3	-858	-848		
			MYB57	-858	-845		
			MNB1A	-882	-878		
			PBF	-882	-878		
			Dof2	-883	-878		
			Dof3	-945	-940		
			PBF	-945	-941		
			DOF2.4	-947	-941		
			DOF2.5	-947	-940		
			DOF1.8	-948	-939		
0	0	0	DOF5.3	-948	-942		
00	00	00	DOF5.6	-948	-941		
Γ3(12(ΓI	PHYPADRAFT_140773	-948	-939		
SP'	SP'	SP	PHYPADRAFT_153324	-948	-940		
^T V	TV	$F_{\mathcal{V}_i}$	PHYPADRAFT_38837	-948	-939		
Ι	Ι		AT1G47655	-949	-939		
			KAN1	-968	-961		
			AT3G24120	-969	-962		
			ННО3	-969	-959		
			MYR2	-972	-959		
			NAC025	-983	-976		
			NAC028	-984	-976		
			NAC058	-984	-977		
			NAC083	-984	-975		
			T11I18.17	-984	-977		
			DOF5.3	-992	-986		
			MNB1A	-993	-989		
			PBF	-993	-989		
			Dof2	-994	-989		
			DOF1.8	-995	-986		
			PHYPADRAFT_140773	-995	-986		
	ļ		P0510F09.23	-1004	-995		
			Dof2	-1006	-1001		
			MNB1A	-1006	-1002		
			PBF	-1006	-1002		
			DOF2.4	-1008	-1002		
			DOF1.8	-1009	-1000		
			DOF5.3	-1009	-1003		
			DOF5.6	-1009	-1002		
			PHYPADRAFT_140773	-1009	-1000		
			PHYPADRAFT_153324	-1009	-1001		
			PHYPADRAFT_38837	-1009	-1000		

FvSPT						
	Név			End		
		DOF5.3	-1020	-1014		
		MYB24	-1055	-1047		
		G 4 T 4 1 5	-1075	-1067		
		GATA15	-1076	-1068		
		Dof3	-1082	-1077		
		PBF	-1082	-1078		
		DOF2.4	-1084	-1078		
		DOF5.3	-1085	-1079		
		DOF5.6	-1085	-1078		
		PHYPADRAFT_140773	-1085	-1076		
		WRKY2	-1088	-1081		
		WRKY63	-1088	-1081		
		WRKY75	-1088	-1081		
		WRKY8	-1088	-1080		
		WRKY48	-1089	-1080		
		ZHD5	-1099	-1089		
		Dof3	-1100	-1095		
		PBF	-1100	-1096		
		DOF2.4	-1102	-1096		
		DOF2.5	-1102	-1095		
		DOF1.8	-1103	-1094		
0	0	DOF5.3	-1103	-1097		
00	00	DOF5.6	-1103	-1096		
T3(72(PHYPADRAFT_140773	-1103	-1094		
SP	SP	PHYPADRAFT_153324	-1103	-1095		
FV	E V.	PHYPADRAFT_38837	-1103	-1094		
		AT1G47655	-1104	-1094		
		LHY1	-1125	-1116		
		STZ	-1141	-1131		
		Dof3	-1142	-1137		
		PBF	-1142	-1138		
		DOF2.4	-1144	-1138		
		DOF1.8	-1145	-1136		
		DOF5.3	-1145	-1139		
		DOF5.6	-1145	-1138		
		PHYPADRAFT_140773	-1145	-1136		
		PHYPADRAFT_153324	-1145	-1137		
		PHYPADRAFT_38837	-1145	-1136		
		AT1G47655	-1146	-1136		
		GATA12	-1181	-1174		
			-1181	-1174		
		mvb.Ph3	-1197	-1189		
			-1197	-1189		
		MYB52	-1197	-1187		
		MYB70	-1198	-1188		
		MYB81	-1198	-1188		
		PBF	-1245	-1241		
		DOF2.4	-1247	-1241		

FvSPT						
	Név	Start	End			
		DOF2.5	-1247	-1240		
		AT3G52440	-1248	-1238		
		CDF2	-1248	-1239		
		DAG2	-1248	-1238		
		DOF1.8	-1248	-1239		
		DOF5.3	-1248	-1242		
		DOF5.6	-1248	-1241		
		DOF5.7	-1248	-1241		
		OBP4	-1248	-1235		
		PHYPADRAFT_140773	-1248	-1239		
		PHYPADRAFT_153324	-1248	-1240		
		PHYPADRAFT_38837	-1248	-1239		
		AHL20	-1256	-1249		
		<u>л Ш 25</u>	-1256	-1249		
		AIIL23	-1256	-1249		
		DOF5.3	-1263	-1257		
		DOF5.6	-1264	-1257		
		PBF	-1264	-1260		
		DOF1.8	-1266	-1257		
		PHYPADRAFT_140773	-1266	-1257		
		ATHB-16	-1276	-1269		
0	0	DOF1.8	-1286	-1277		
00	00	DOF5.3	-1286	-1280		
T3	72	PHYPADRAFT_140773	-1286	-1277		
SP	SP	PHYPADRAFT_153324	-1286	-1278		
F_{V_i}	FVL	DOF5.7	-1292	-1285		
		DOF5.3	-1300	-1294		
		DOF2.4	-1301	-1295		
		DOF5.6	-1301	-1294		
		DOF5.7	-1301	-1294		
		PBF	-1301	-1297		
		DOF2.5	-1302	-1295		
		Dof3	-1302	-1297		
		DOF5.7	-1302	-1295		
		PHYPADRAFT_153324	-1302	-1294		
		AT1G47655	-1303	-1293		
		CDF2	-1303	-1294		
		DOF1.8	-1303	-1294		
		PHYPADRAFT_140773	-1303	-1294		
		PHYPADRAFT_38837	-1303	-1294		
		AT3G52440	-1304	-1294		
		CDF3	-1304	-1293		
		DAG2	-1304	-1294		
		Dot3	-1307	-1302		
		dot4.5	-1307	-1294		
		PBF	-1307	-1303		
		DOF2.4	-1309	-1303		
		DOF1.8	-1310	-1301		

FvSPT						
	Név	I	Strat	End		
		DOF5.3	-1310	-1304		
		DOF5.6	-1310	-1303		
		PHYPADRAFT_140773	-1310	-1301		
			-1325	-1318		
		AUU 10	-1325	-1318		
		AHL12	-1326	-1319		
			-1326	-1319		
			-1326	-1319		
		AHL25	-1326	-1319		
		ATHB-16	-1326	-1319		
		ATHB-51	-1326	-1319		
			-1338	-1331		
		A 111 25	-1338	-1331		
		AHL25	-1342	-1335		
			-1342	-1335		
			-1343	-1336		
		AHL12	-1343	-1336		
		AHL20	-1343	-1336		
		AHL25	-1343	-1336		
			-1343	-1336		
		AHL20	-1347	-1340		
90	~		-1347	-1340		
30(000	AHL25	-1347	-1340		
L_{c}	120		-1347	-1340		
۶I	P_{2}	ATHB23	-1347	-1338		
F_1	1. 1.	ATHB-16	-1376	-1369		
	Η	ATHB-6	-1377	-1369		
		PBF	-1409	-1405		
		AHL20	-1418	-1411		
		АНІ 25	-1418	-1411		
			-1418	-1411		
		AUI 12	-1421	-1414		
			-1421	-1414		
			-1422	-1415		
			-1422	-1415		
		AHL25	-1422	-1415		
			-1422	-1415		
		ATHB-16	-1422	-1415		
		ATHB-51	-1422	-1415		
		ATHB13	-1423	-1413		
		PBF	-1430	-1426		
		DOF2.4	-1432	-1426		
1		DOF1.8	-1433	-1424		
		DOF5.3	-1433	-1427		
		DOF5.6	-1433	-1426		
1		PHYPADRAFT_140773	-1433	-1424		
Į		PHYPADRAFT_153324	-1433	-1425		
		RVE5	-1449	-1439		

FvSPT						
	Név			End		
		Dof3	-1456	-1451		
		PBF	-1456	-1452		
		AT3G24120	-1501	-1494		
		DOF2.4	-1549	-1543		
		AT3G52440	-1550	-1540		
		CDF2	-1550	-1541		
		DAG2	-1550	-1540		
		DOF1.8	-1550	-1541		
		DOF5.3	-1550	-1544		
		DOF5.6	-1550	-1543		
		PHYPADRAFT_140773	-1550	-1541		
		PHYPADRAFT_153324	-1550	-1542		
		PHYPADRAFT_38837	-1550	-1541		
		MYB24	-1598	-1590		
		MYB55	-1598	-1591		
		MYB4	-1599	-1592		
		AT3G24120	-1633	-1626		
		DOF5.3	-1636	-1630		
		DOF2.4	-1637	-1631		
		DOF5.6	-1637	-1630		
		PBF	-1637	-1633		
0	0	Dof3	-1638	-1633		
00	FvSPT200	PHYPADRAFT_153324	-1638	-1630		
T3		AT1G47655	-1639	-1629		
SP		DOF1.8	-1639	-1630		
$F_{V_{i}}$		PHYPADRAFT_140773	-1639	-1630		
		PHYPADRAFT_38837	-1639	-1630		
		STZ	-1644	-1634		
		LHY1	-1659	-1650		
		At3g09600	-1661	-1650		
		DOF5.3	-1678	-1672		
		DOF2.4	-1679	-1673		
		DOF5.6	-1679	-1672		
		PBF	-1679	-1675		
		DOF2.5	-1680	-1673		
		Dof3	-1680	-1675		
		PHYPADRAFT_153324	-1680	-1672		
		AT1G47655	-1681	-1671		
		DOF1.8	-1681	-1672		
		PHYPADRAFT_140773	-1681	-1672		
		PHYPADRAFT_38837	-1681	-1672		
		ZHD5	-1686	-1676		
		ZHD6	-1688	-16/4		
		WKKY2	-1694	-1687		
		WRKY75	-1694	-1687		
		WKKY40	-1695	-1686		
		WKKY48	-1695	-1686		
		WKKY8	-1695	-1687		

FvSPT						
	Név	Start	End			
		DOF5.3	-1696	-1690		
		DOF2.4	-1697	-1691		
		DOF5.6	-1697	-1690		
		PBF	-1697	-1693		
		Dof3	-1698	-1693		
		PHYPADRAFT_140773	-1699	-1690		
		LHY1	-1720	-1711		
		RVE6	-1721	-1711		
		SPL9	-1739	-1729		
		ATHB-51	-1743	-1736		
		ATHB-6	-1743	-1735		
		ATHB23	-1763	-1754		
		DOF5.3	-1769	-1763		
		DOF2.4	-1770	-1764		
		DOF5.6	-1770	-1763		
		DOF5.7	-1803	-1796		
		DOF2.4	-1808	-1802		
		DOF5.3	-1809	-1803		
		PHYPADRAFT_140773	-1809	-1800		
		AHL12	-1823	-1816		
			-1823	-1816		
	•	GATA15	-1850	-1842		
200	000		-1851	-1843		
13(120	Dof3	-1874	-1869		
Ld	[] Ldi	PBF	-1874	-1870		
Svr	Su	DOF2.4	-1876	-1870		
H	Η	DOF2.5	-1876	-1869		
		AT3G52440	-1877	-1867		
		DOF1.8	-1877	-1868		
		DOF5.3	-1877	-1871		
		DOF5.6	-1877	-1870		
		PHYPADRAFT_140773	-1877	-1868		
		PHYPADRAFT_153324	-1877	-1869		
		PHYPADRAFT_38837	-1877	-1868		
		AT1G47655	-1878	-1868		
		DOF5.7	-1884	-1877		
		DOE5 2	-1886	-1880		
		DOF5.5	-1898	-1892		
		DOF5.6	-1898	-1891		
		STZ	-1928	-1918		
		Dof3	-1929	-1924		
		PBF	-1929	-1925		
		DOF2.4	-1931	-1925		
		DOF2.5	-1931	-1924		
		AT3G52440	-1932	-1922		
		DOF1.8	-1932	-1923		
		DOF5.3	-1932	-1926		
		DOF5.6	-1932	-1925		

FvSPT						
	Név			End		
		PHYPADRAFT_140773	-1932	-1923		
		PHYPADRAFT_153324	-1932	-1924		
		PHYPADRAFT_38837	-1932	-1923		
	00	AT1G47655	-1933	-1923		
	500	DOES 7	-1951	-1944		
	T_{C}	DOF5.7	-1952	-1945		
	`SF	DOF1.8	-1953	-1944		
	F_1	DOF5.3	-1953	-1947		
		DOF5.6	-1953	-1946		
		PHYPADRAFT_140773	-1953	-1944		
		PHYPADRAFT_153324	-1953	-1945		
		STZ	-2142	-2132		
		PHYPADRAFT_28324	-2184	-2177		
		PHYPADRAFT_182268	-2185	-2176		
		AT1G22810	-2186	-2172		
		ERF015	-2186	-2175		
		ERF019	-2187	-2173		
		TINY	-2187	-2173		
		AT2G44940	-2188	-2174		
		AT3G57600	-2188	-2178		
	0	RAP21	-2188	-2176		
	00	AT4G16750	-2190	-2176		
	T3	AT1G44830	-2191	-2177		
	SP	AT1G75490	-2191	-2177		
	F_{V}	CEJ1	-2191	-2177		
	`	DREB26	-2197	-2178		
		AT3G24120	-2209	-2202		
		Dof3	-2223	-2218		
		PBF	-2223	-2219		
		DOF2.4	-2225	-2219		
		DOF1.8	-2226	-2217		
		DOF5.3	-2226	-2220		
		DOF5.6	-2226	-2219		
		PHYPADRAFT_140773	-2226	-2217		
		GATA8	-2242	-2234		
		AGL42	-2278	-2272		
		AT3G57600	-2330	-2320		
		FRF098	-2411	-2404		
			-2412	-2405		
		AGL55	-2441	-2436		
		Foxn1	-2469	-2464		
		ARR10	-2494	-2487		
		Dof3	-2522	-2517		
		PBF	-2522	-2518		
		PHYPADRAFT_140773	-2525	-2516		
		ERF069	-2545	-2537		
		ERF13	-2545	-2538		
		ERF7	-2547	-2538		

FvSPT						
Név	Start	End				
	STZ	-2584	-2574			
	DOF5.3	-2709	-2703			
	DOF2.4	-2710	-2704			
	DOF5.6	-2710	-2703			
	PHYPADRAFT_153324	-2711	-2703			
	DOF1.8	-2712	-2703			
	DOF5.7	-2712	-2705			
	PHYPADRAFT_140773	-2712	-2703			
	DOE5 7	-2767	-2760			
	DOF5.7	-2768	-2761			
	DOF5.3	-2769	-2763			
	DOF5.6	-2769	-2762			
	PHYPADRAFT_140773	-2769	-2760			
	PHYPADRAFT_153324	-2769	-2761			
	ATHB-6	-2775	-2767			
	HAT2	-2776	-2766			
	HAT22	-2776	-2767			
	DOF5.7	-2789	-2782			
	DOF5.3	-2791	-2785			
0	NAC055	-2795	-2788			
000	NAC080	-2795	-2788			
13(AGL55	-2820	-2815			
"P"	AGL42	-2825	-2819			
SAL	Dof3	-2880	-2875			
Π	PBF	-2880	-2876			
	DOF2.4	-2882	-2876			
	DOF1.8	-2883	-2874			
	DOF5.3	-2883	-2877			
	DOF5.6	-2883	-2876			
	PHYPADRAFT_140773	-2883	-2874			
	PHYPADRAFT_153324	-2883	-2875			
	AT1G47655	-2884	-2874			
	GT-1	-2885	-2878			
	AHL20	-2904	-2897			
	A 111 25	-2904	-2897			
	AHL25	-2904	-2897			
	GT-1	-2911	-2904			
	AT-GTL1	-2912	-2901			
	DOF5.3	-2921	-2915			
	PHYPADRAFT_140773	-2924	-2915			
	DOF5.3	-2927	-2921			
	DOF5.6	-2928	-2921			
	DOF5.3	-2933	-2927			
	DOF5.7	-2936	-2929			

FvSPR1-like2						
Név				Start	End	
			DOF5.3	-6	-1	
		DOF2.4	-7	-1		
		DOF5.6	-7	-1		
			PBF	-7	-3	
			Dof3	-8	-3	
			PHYPADRAFT_153324	-8	-1	
			DOF1.8	-9	-1	
			PHYPADRAFT 140773	-9	-1	
			GATA15	-126	-118	
			NAC078	-145	-134	
			DOF5.3	-179	-173	
			MYB4	-240	-233	
			DOF5.3	-253	-247	
			DOF2.4	-254	-248	
			DOF5.6	-254	-247	
			PBF	-254	-250	
			DOF2.5	-255	-248	
			PHYPADRAFT 153324	-255	-247	
			CDF2	-256	-247	
			DOF1.8	-256	-247	
0	0	0	PHYPADRAFT 140773	-256	-247	
00	00	50	PHYPADRAFT 38837	-256	-247	
R2	RI	PR.	AT3G52440	-257	-247	
SP	SP	۶I	DAG2	-257	-247	
$F_{\mathcal{V}}$	$F\nu_{l}$	F_{1}	DOF5.3	-267	-261	
	,		DOF2.4	-268	-262	
			DOF5.6	-268	-261	
			DOF5.3	-285	-279	
			DOF2.4	-286	-280	
			DOF5.6	-286	-279	
			MNB1A	-286	-282	
			PBF	-286	-282	
			Dof2	-287	-282	
			Dof3	-287	-282	
			PHYPADRAFT 153324	-287	-279	
			DOF1.8	-288	-279	
			PHYPADRAFT 140773	-288	-279	
			PHYPADRAFT 38837	-288	-279	
			DOF5.3	-291	-285	
			DOF5.7	-294	-287	
			PHYPADRAFT 140773	-294	-285	
			GATA10	-298	-291	
			GATA11	-298	-291	
			GATA12	-298	-291	
			GATA12	-298	-291	

M2.2. FvSPR1-like2 gén promóterén elhelyezkező TFBS

FvSPR1-like2						
Név				Start	End	
			GATA8	-299	-291	
			BHLH112	-310	-302	
			GATA10	-373	-366	
			GATA11	-373	-366	
			GATA12	-373	-366	
			GATA12	-373	-366	
			GATA8	-373	-365	
			DOF5.3	-400	-394	
			DOF2.4	-401	-395	
			DOF5.6	-401	-394	
			MNB1A	-401	-397	
		0	PBF	-401	-397	
		50	Dof2	-402	-397	
		PR	Dof3	-402	-397	
		vS	PHYPADRAFT_153324	-402	-394	
		F_{-}	DOF1.8	-403	-394	
			PHYPADRAFT_140773	-403	-394	
			ZHD5	-421	-411	
			DOF5.3	-465	-459	
			MNB1A	-466	-462	
			PBF	-466	-462	
00	0001		Dof2	-467	-462	
500			Dof3	-467	-462	
R_{i}	PR		PHYPADRAFT_153324	-467	-459	
SF	Sv		DOF1.8	-468	-459	
$F_{\mathcal{V}}$	F_{-}		PHYPADRAFT_140773	-468	-459	
			DOF5.3	-503	-497	
			MNB1A	-504	-500	
			PBF	-504	-500	
			Dof2	-505	-500	
			Dof3	-505	-500	
			PHYPADRAFT_153324	-505	-497	
			PHYPADRAFT_140773	-506	-497	
			MYB81	-598	-588	
			Dof2	-604	-599	
			MNB1A	-604	-600	
			PBF	-604	-600	
			DOF2.4	-606	-600	
			DOF1.8	-607	-598	
			DOF5.3	-607	-601	
			DOF5.6	-607	-600	
			PHYPADRAFT_140773	-607	-598	
			PHYPADRAFT_153324	-607	-599	
			DOF5.3	-610	-604	
			MYB113	-659	-649	
			WRKY2	-739	-732	
			AIL7	-754	-744	

FvSPR1-like2				
Név			Start	End
		AIL7	-756	-746
		ARR10	-774	-767
		GATA10	-775	-768
		GATA11	-775	-768
		GATA12	-775	-768
		GATA12	-775	-768
		GATA8	-775	-767
		GATA8	-776	-768
		GATA9	-777	-767
		AT3G24120	-785	-778
		P0510F09.23	-790	-781
		Foxn1	-800	-795
		P0510F09.23	-807	-798
		MNB1A	-828	-824
		PBF	-828	-824
		Dof2	-829	-824
		Dof3	-829	-824
		RAMOSA1	-858	-845
-		RAMOSA1	-860	-847
000	0С	RAMOSA1	-862	-849
20	100	RAMOSA1	-864	-851
PK	P.R.	BPC6	-865	-845
SA	FvSF	RAMOSA1	-866	-853
F		MYB81	-873	-863
		Gam1	-874	-865
		DOF5.3	-881	-875
		DOF2.4	-882	-876
		DOF5.6	-882	-875
		PBF	-882	-878
		Dof3	-883	-878
		PHYPADRAFT_153324	-883	-875
		DOF1.8	-884	-875
		PHYPADRAFT_140773	-884	-875
		PHYPADRAFT_38837	-884	-875
		ARR10	-913	-906
		GATA10	-914	-907
		GATA10	-914	-907
		GATA12	-914	-907
		GATA12	-914	-907
		GATA8	-914	-906
		ARR10	-915	-908
		GATA8	-915	-907
		GATA9	-915	-905
		GATA9	-916	-906
		DOF5.6	-958	-951
		ARALYDRAFT 484486	-1000	-993
		ARALYDRAFT 495258	-1000	-993

FvSPR1-like2			
Név		Start	End
	HMG-1	-1009	-1001
	GATA15	-1011	-1003
	DOF5.7	-1013	-1006
	DOF2.4	-1014	-1008
	DOF5.3	-1015	-1009
	DOF5.6	-1015	-1008
	PHYPADRAFT_140773	-1015	-1006
	PHYPADRAFT_153324	-1015	-1007
	CCA1	-1024	-1017
	EPR1	-1026	-1015
	LCL1	-1026	-1017
	LHY1	-1026	-1017
	RVE5	-1027	-1017
	RVE6	-1027	-1017
	RVE7	-1027	-1014
	At3g09600	-1028	-1017
	RVE1	-1028	-1015
	AT3G10113	-1029	-1015
	Dof2	-1037	-1032
	Dof3	-1037	-1032
	MNB1A	-1037	-1033
00	PBF	-1037	-1033
500	DOF5.3	-1040	-1034
, K	PHYPADRAFT_140773	-1040	-1031
<i>St</i>	PHYPADRAFT_153324	-1040	-1032
F_{λ}	Foxn1	-1051	-1046
	PHYPADRAFT_173530	-1061	-1054
	PHYPADRAFT_28324	-1061	-1054
	Gam1	-1064	-1055
	ARF1	-1067	-1060
	ARF5	-1067	-1060
	ARF8	-1067	-1059
	ARF2	-1068	-1059
	DREB2C	-1068	-1061
	ERF043	-1068	-1061
	PHYPADRAFT_173530	-1068	-1061
	PHYPADRAFT_28324	-1068	-1061
	ERF039	-1069	-1059
	PHYPADRAFT_182268	-1069	-1060
	PHYPADRAFT_38837	-1072	-1060
	DOF5.7	-1105	-1098
	DOF2.4	-1106	-1100
	DOF5.3	-1107	-1101
	DOF5.6	-1107	-1100
	PHYPADRAFT_140773	-1107	-1098
	PHYPADRAFT_153324	-1107	-1099
	MYB81	-1186	-1176

FvSPR1-like2			
Név		Start	End
	AHL12	-1188	-1181
	AHL12	-1188	-1181
	AHL12	-1189	-1182
	AHL12	-1189	-1182
	ATHB-12	-1206	-1199
	ATHB-16	-1206	-1199
	ATHB-6	-1207	-1199
	HAT1	-1207	-1198
	HAT2	-1208	-1198
	HAT22	-1208	-1199
	DOF5.7	-1220	-1213
	DOF2.4	-1221	-1215
	DOF5.3	-1222	-1216
	DOF5.6	-1222	-1215
	PHYPADRAFT_140773	-1222	-1213
	MYB81	-1246	-1236
	MYB24	-1256	-1248
	MYB59	-1257	-1250
	P0510F09.23	-1258	-1249
	AHL20	-1323	-1316
	AHL25	-1323	-1316
00	AHL25	-1323	-1316
20	DOF5.3	-1333	-1327
$_{PR}$	DOF5.6	-1334	-1327
vSI	DOF5.3	-1357	-1351
F_{-}	DOF2.4	-1358	-1352
	DOF5.6	-1358	-1351
	PBF	-1358	-1354
	Dof3	-1359	-1354
	PHYPADRAFT_153324	-1359	-1351
	AT1G47655	-1360	-1350
	DOF1.8	-1360	-1351
	PHYPADRAFT_140773	-1360	-1351
	AT5G47660	-1364	-1354
	DOF5.7	-1366	-1359
	ATHB-6	-1381	-1373
	AT3G24120	-1402	-1395
	KAN1	-1403	-1396
	DOF5.3	-1422	-1416
	PHYPADRAFT_140773	-1422	-1413
	GATA15	-1591	-1583
	WRKY2	-1609	-1602
	WRKY25	-1609	-1602
	WRKY75	-1609	-1602
	WRKY21	-1610	-1601
	WRKY29	-1610	-1600
	WRKY40	-1610	-1601

FvSPR1-like2			
Név		Start	End
	WRKY48	-1610	-1601
	WRKY8	-1610	-1602
	WRKY28	-1611	-1601
	PBF	-1612	-1608
	WRKY30	-1612	-1603
	DOF2.4	-1614	-1608
	DOF1.8	-1615	-1606
	DOF5.3	-1615	-1609
	DOF5.6	-1615	-1608
	PHYPADRAFT_140773	-1615	-1606
	PHYPADRAFT_153324	-1615	-1607
	PHYPADRAFT_38837	-1615	-1606
	DOF5.3	-1621	-1615
	DOF2.4	-1622	-1616
	DOF5.6	-1622	-1615
	PBF	-1622	-1618
	PHYPADRAFT_153324	-1623	-1615
	DOF1.8	-1624	-1615
	PHYPADRAFT_140773	-1624	-1615
	PHYPADRAFT_38837	-1624	-1615
	DOF5.3	-1675	-1669
00	DOF2.4	-1676	-1670
20	DOF5.6	-1676	-1669
PR	DOF5.3	-1694	-1688
vSı	KAN1	-1701	-1694
\mathbf{F}	ATHB-16	-1736	-1729
	ATHB-51	-1736	-1729
	ATHB-6	-1736	-1728
	ATHB-51	-1737	-1730
	ATHB13	-1738	-1728
	ATHB18	-1738	-1728
	ATHB20	-1738	-1728
	ATHB53	-1738	-1728
	ATHB-6	-1738	-1730
	KAN1	-1744	-1737
	AHL12	-1757	-1750
	AHL12	-1757	-1750
	ATHB23	-1771	-1762
	ARR10	-1856	-1849
	GATA8	-1856	-1848
	Dof2	-1884	-1879
	MNB1A	-1884	-1880
	PBF	-1884	-1880
	DOF5.3	-1913	-1907
	DOF2.4	-1914	-1908
	DUF5.6	-1914	-1907
1	PBF	-1914	-1910

FvSPR1_2			
Név		Start	End
	DOF2.5	-1915	-1908
	Dof3	-1915	-1910
	PHYPADRAFT_153324	-1915	-1907
	AT1G47655	-1916	-1906
	DOF1.8	-1916	-1907
	PHYPADRAFT_140773	-1916	-1907
	PHYPADRAFT_38837	-1916	-1907
	AT3G52440	-1917	-1907
	DAG2	-1917	-1907
	DREB1E	-1938	-1931
	KAN1	-1974	-1967
	AHL12	-1975	-1968
	AHL12	-1975	-1968
	DOF5.3	-1988	-1982
	DOF2.4	-1989	-1983
	DOF5.6	-1989	-1982
	PHYPADRAFT_140773	-1991	-1982
	myb.Ph3	-2042	-2034
	MYB52	-2042	-2032
	GT-2	-2043	-2030
	MYB33	-2043	-2031
00	MYB70	-2043	-2033
200	MYB73	-2043	-2032
R	MYB81	-2043	-2033
ISA	DOF5.3	-2044	-2038
F_1	MYB77	-2048	-2034
	POPTR_0002s00440g	-2055	-2049
	SPL12	-2055	-2048
	SPL4	-2055	-2047
	Dof2	-2061	-2056
	Dof3	-2061	-2056
	MNB1A	-2061	-2057
	PBF	-2061	-2057
	DOF5.3	-2064	-2058
	DOF5.6	-2064	-2057
	PHYPADRAFT_140773	-2064	-2055
	DOF5.3	-2074	-2068
	DOF5.3	-2112	-2106
	DOF2.4	-2113	-2107
	DOF5.6	-2113	-2106
	PHYPADRAFT_153324	-2114	-2106
	DOF1.8	-2115	-2106
	PHYPADRAFT_140773	-2115	-2106
	OBP3	-2116	-2096
	DOF5.3	-2117	-2111
	DOF2.4	-2118	-2112
	DOF5.6	-2118	-2111
FvSPR1_2			
----------	-------------------	-------	-------
Név		Start	End
	MNB1A	-2118	-2114
	PBF	-2118	-2114
	Dof2	-2119	-2114
	Dof3	-2119	-2114
	PHYPADRAFT_153324	-2119	-2111
	PHYPADRAFT_140773	-2120	-2111
	PHYPADRAFT_38837	-2120	-2111
	Dof3	-2128	-2123
	PBF	-2128	-2124
	DOF2.4	-2130	-2124
	DOF1.8	-2131	-2122
	DOF5.3	-2131	-2125
	DOF5.6	-2131	-2124
	PHYPADRAFT_140773	-2131	-2122
	PHYPADRAFT_153324	-2131	-2123
	PHYPADRAFT_38837	-2131	-2122
00	HMG-1	-2193	-2185
200	STZ	-2231	-2221
R.	AT3G46070	-2234	-2220
,St	MYB81	-2259	-2249
F_1	CMTA2	-2308	-2300
	CMTA3	-2308	-2300
	CAMTA1	-2311	-2300
	CMTA2	-2311	-2303
	CMTA3	-2311	-2303
	DOF5.3	-2312	-2306
	P0510F09.23	-2317	-2308
	AT1G72740	-2320	-2306
	Dof2	-2396	-2391
	Dof3	-2396	-2391
	MNB1A	-2396	-2392
	PBF	-2396	-2392
	DOF5.3	-2416	-2410
	MYB4	-2447	-2440
	MYB81	-2519	-2509
	Foxn1	-2524	-2519
	MYB81	-2556	-2546

M2.3. MtSPR1	_2 gén	promóterén	elhelyezkező	TFBS
--------------	--------	------------	--------------	------

MtSPR1_2			
	Név	Start	End
	AT3G24120	-15	-8
	EFM	-15	-5
	ННО3	-15	-5
	ННО5	-15	-5
	ARR2	-16	-7
	UIF1	-16	-7
	MYR2	-18	-5
	PHL11	-18	-5
	DOF5.3	-50	-44
	PHYPADRAFT 140773	-50	-41
	Foxn1	-79	-74
	MYB124	-79	-70
	PBF	-102	-98
	Dof3	-103	-98
	ARF2	-130	-121
	Foxn1	-149	-144
	DOF5.3	-157	-151
	PHYPADRAFT 140773	-157	-148
	PBF	-201	-197
7	At5g08520	-217	-205
-I	DOF5.3	-217	-211
PR	NAC078	-255	-244
tS1	UIF1	-278	-269
W	DOF5.3	-281	-275
	PBF	-334	-330
	E2FA	-372	-363
	PBF	-406	-402
	Dof3	-407	-402
	Foxn1	-439	-434
	MNB1A	-443	-439
	PBF	-443	-439
	Dof2	-444	-439
	Dof3	-444	-439
	AT3G24120	-483	-476
	ННО3	-483	-473
	Foxn1	-508	-503
	NAC078	-516	-505
	WRKY2	-536	-529
	WRKY25	-536	-529
	WRKY62	-536	-529
	WRKY63	-536	-529
	WRKY75	-536	-529
	WRKY18	-537	-528

MtSPR1_2			
	Név	Start	End
	WRKY48	-537	-528
	WRKY8	-537	-529
	PBF	-550	-546
	DOF2.4	-552	-546
	DOF2.5	-552	-545
	AT3G52440	-553	-543
	DOF1.8	-553	-544
	DOF5.3	-553	-547
	DOF5.6	-553	-546
	PHYPADRAFT 140773	-553	-544
	PHYPADRAFT 153324	-553	-545
	PHYPADRAFT 38837	-553	-544
	ATHB23	-578	-569
	ZHD1	-581	-569
	AGL42	-585	-579
	DOF5.3	-593	-587
		-602	-594
	NAC028	-602	-595
	ERF008	-697	-690
	DOF5.3	-707	-701
	DOF2.4	-708	-702
	DOF5.6	-708	-701
\sim	PBF	-708	-704
R.I.	Dof3	-709	-704
PP	PHYPADRAFT 153324	-709	-701
At_{c}	AT1G47655	-710	-700
V	DOF1.8	-710	-701
	PHYPADRAFT 140773	-710	-701
	PHYPADRAFT 38837	-710	-701
	AT5G47660	-714	-704
	AT1G76880	-719	-704
	DOF5.3	-721	-715
	DOF2.4	-722	-716
	DOF5.6	-722	-715
	DOF5.7	-722	-715
	MNB1A	-722	-718
	PBF	-722	-718
	Dof2	-723	-718
	Dof3	-723	-718
	PHYPADRAFT 153324	-723	-715
	AT1G47655	-724	-714
	CDF2	-724	-715
	DOF1.8	-724	-715
	PHYPADRAFT 140773	-724	-715
	PHYPADRAFT 38837	-724	-715
	Foxn1	_746	_741
	PBF	_810	-806
	Foxn1	_836	_831
I		-050	-0.51

MtSPR1_2				
	Név	Start	End	
	GATA15	-849	-841	
	DOF5.3	-888	-882	
	MNB1A	-889	-885	
	PBF	-889	-885	
	Dof2	-890	-885	
	PHYPADRAFT 153324	-890	-882	
	PHYPADRAFT_140773	-891	-882	
	Foxn1	-912	-907	
	GATA15	-921	-913	
	Dof2	-946	-941	
	Dof3	-946	-941	
	MNB1A	-946	-942	
	PBF	-946	-942	
	DOF1.8	-949	-940	
	DOF5.3	-949	-943	
	DOF5.6	-949	-942	
	PHYPADRAFT_140773	-949	-940	
	PHYPADRAFT_153324	-949	-941	
	Dof2	-967	-962	
	Dof3	-967	-962	
	MNB1A	-967	-963	
	PBF	-967	-963	
	DOF5.3	-970	-964	
RI	DOF5.6	-970	-963	
SP	PHYPADRAFT_140773	-970	-961	
Mt	DOF5.7	-1002	-995	
	DOF5.3	-1004	-998	
	PHYPADRAFT_140773	-1004	-995	
	GT-1	-1010	-1003	
	ARF2	-1054	-1045	
	AT3G24120	-1093	-1086	
	ST7	-1171	-1161	
		-1243	-1233	
	AT3G46070	-1244	-1230	
	AT3G24120	-1245	-1238	
	АНІ 12	-1246	-1239	
		-1246	-1239	
	KAN1	-1246	-1239	
	АНІ 12	-1247	-1240	
		-1247	-1240	
	DOF5.3	-1263	-1257	
	DOF5.6	-1263	-1256	
	WRKY48	-1280	-1271	
	DREB1A	-1291	-1282	
	GATA15	-1322	-1314	
	NAC058	-1336	-1329	
	Dof2	-1367	-1362	
	Dof3	-1367	-1362	

MtSPR1_2				
Név		Start	End	
	MNB1A	-1367	-1363	
	PBF	-1367	-1363	
	DOF5.3	-1370	-1364	
	AGL42	-1416	-1410	
	PBF	-1542	-1538	
	Dof3	-1543	-1538	
	GATA8	-1568	-1560	
	ERF008	-1592	-1585	
	AT3G57600	-1596	-1586	
	DOF5.3	-1651	-1645	
	DOF2.5	-1655	-1648	
	DOF5.3	-1657	-1651	
	PHYPADRAFT_140773	-1657	-1648	
	HMG-1	-1679	-1671	
	MYB4	-1705	-1698	
	Dof2	-1730	-1725	
	Dof3	-1730	-1725	
	MNB1A	-1730	-1726	
	DDE	-1730	-1726	
	PBF	-1740	-1736	
	Dof3	-1741	-1736	
	DOF5.3	-1766	-1760	
	DOF5.6	-1767	-1760	
RI	PBF	-1767	-1763	
SP	PHYPADRAFT_153324	-1768	-1760	
Mt	DOF1.8	-1769	-1760	
	PHYPADRAFT_140773	-1769	-1760	
	Dof3	-1773	-1768	
	PBF	-1773	-1769	
	GATA15	-1807	-1799	
	GATAIS	-1808	-1800	
	Dof2	-1824	-1819	
	MNB1A	-1824	-1820	
	PBF	-1824	-1820	
	DOF2.4	-1826	-1820	
	DOF1.8	-1827	-1818	
	DOF5.3	-1827	-1821	
	DOF5.6	-1827	-1820	
	PHYPADRAFT 140773	-1827	-1818	
	PHYPADRAFT 153324	-1827	-1819	
	ATHB-6	-1853	-1845	
	HAT2	-1854	-1844	
	WRKY23	-1878	-1871	
	WRKY2	-1879	-1872	
	WRKY25	-1879	-1872	
	WRKY43	-1879	-1870	
	WRKY62	-1879	-1872	
	WRKY63	-1879	-1872	

MtSPR1_2			
Név		Start	End
	WRKY75	-1879	-1872
	WRKY8	-1879	-1871
	WRKY18	-1880	-1871
	WRKY21	-1880	-1871
	WRKY28	-1880	-1870
	WRKY48	-1880	-1871
	Dof3	-1911	-1906
	PBF	-1911	-1907
	WRKY23	-1991	-1984
	WRKY2	-1992	-1985
	WRKY63	-1992	-1985
	WRKY75	-1992	-1985
	WRKY8	-1992	-1984
	WRKY18	-1993	-1984
	WRKY21	-1993	-1984
\mathcal{O}_{i}	WRKY48	-1993	-1984
	TGA1A	-2018	-2012
ΡR	bZIP910	-2019	-2013
'tSı	NAC025	-2019	-2012
W	NAC92	-2020	-2009
	TGA2	-2020	-2013
	DOF5.3	-2033	-2027
	DOF5.6	-2033	-2026
	PHYPADRAFT 140773	-2033	-2024
	PIF5	-2047	-2040
	AHL12	-2082	-2075
	AHL12	-2082	-2075
	ATHB-16	-2083	-2076
	ATHB-51	-2083	-2076
	ATHB13	-2084	-2074
	ATHB53	-2084	-2074
	ATHB-6	-2084	-2076
	AGL42	-2094	-2088
	DOF5.3	-2110	-2104
	PHYPADRAFT_140773	-2113	-2104

FvSPR1_1				
	Név	Start	End	
	Foxn1	-23	-18	
	Foxn1	-53	-48	
	AHL12	-90	-83	
	AHL12	-90	-83	
	Dof3	-128	-123	
	PBF	-128	-124	
	DOF2.4	-130	-124	
	DOF1.8	-131	-122	
	DOF5.3	-131	-125	
	DOF5.6	-131	-124	
	PHYPADRAFT 140773	-131	-122	
	PHYPADRAFT 153324	-131	-123	
	PHYPADRAFT 38837	-131	-122	
	AT1G47655	-132	-122	
	myb.Ph3	-137	-129	
	MYB81	-138	-128	
	AGL55	-203	-198	
	AT3G24120	-213	-206	
	ARR10	-214	-207	
Ι	KAN1	-214	-207	
I^{-}	ARR10	-240	-233	
PR	Dof3	-312	-307	
νSI	PBF	-312	-308	
F_1	DOF2.4	-314	-308	
	DOF1.8	-315	-306	
	DOF5.3	-315	-309	
	DOF5.6	-315	-308	
	PHYPADRAFT 140773	-315	-306	
	PHYPADRAFT 153324	-315	-307	
	PHYPADRAFT 38837	-315	-306	
	AT3G24120	-353	-346	
	P0510F09.23	-384	-375	
	bZIP910	-408	-402	
	TGA1A	-409	-403	
	bZIP14	-410	-401	
	KAN1	-416	-409	
	RAV1(var.2)	-472	-461	
	GATA8	-479	-471	
	AT3G24120	-353	-346	
	P0510F09.23	-384	-375	
	bZIP910	-408	-402	
	TGA1A	-409	-403	
	bZIP14	-410	-401	

M2.4. FvSPR1_1 gén promóterén elhelyezkező TFBS

FvSPR1_1			
	Név	Start	End
	KAN1	-416	-409
	RAV1(var.2)	-472	-461
	GATA8	-479	-471
	DOF5.3	-585	-579
	PBF	-602	-598
	DOF2.4	-604	-598
	DOF2.5	-604	-597
	DOF1.8	-605	-596
	DOF5.3	-605	-599
	DOF5.6	-605	-598
	PHYPADRAFT 140773	-605	-596
	PHYPADRAFT 153324	-605	-597
	PHYPADRAFT 38837	-605	-596
	MNB1A	-714	-710
	PBF	-714	-710
	Dof2	-715	-710
	Dof3	-715	-710
	BHLH34	-734	-727
	FUS3	-734	-725
	MNB1A	-758	-754
	PBF	-758	-754
	Dof2	-759	-754
Γ_	Dof3	-759	-754
<i>S1_</i>	ARR11	-789	-782
<i>ILI</i>	DOF5.3	-793	-787
SU	PHYPADRAFT 140773	-793	-784
H	HMG-1	-811	-803
	Dof3	-812	-807
	PBF	-812	-808
	SPL9	-813	-803
	DOF2.4	-821	-815
	DOF5.3	-822	-816
	DOF5.6	-822	-815
	PHYPADRAFT 140773	-822	-813
	Foxn1	-828	-823
	ARF2	_837	_828
	Foxn1	_911	_906
	Dof2	_027	_922
	MNB1A	-927	_073
	DRF	_027	_073
	DOF5 3	-921	-923
	$\frac{DOF}{3.3}$	-730	-724
	$\frac{11111}{\text{DHVDADDAFT}} \frac{14073}{152224}$	-930	022
	MND14	-930	-922
		-940	-942
		-940	-942
		-94/	-942
		-949	-944
	MNBIA	-949	-945

FvSPR1_1			
Név		Start	End
	PBF	-949	-945
	NAC078	-955	-944
	GATA15	-982	-974
	GATA15	-983	-975
	Dof2	-996	-991
	Dof3	-996	-991
	MNB1A	-996	-992
	PBF	-996	-992
	DOF5.3	-999	-993
	PHYPADRAFT_140773	-999	-990
	PHYPADRAFT_153324	-999	-991
	GT-1	-1014	-1007
	GT-1	-1016	-1009
	WRKY75	-1099	-1092
	Dof3	-1100	-1095
	PBF	-1100	-1096
RI	WRKY40	-1100	-1091
SP	WRKY48	-1100	-1091
F_{V_i}	DOF2.4	-1102	-1096
	DOF1.8	-1103	-1094
	DOF5.3	-1103	-1097
	DOF5.6	-1103	-1096
	PHYPADRAFT_140773	-1103	-1094
	PHYPADRAFT_153324	-1103	-1095
	BHLH112	-1134	-1126
	DOF5.3	-1144	-1138
	PBF	-1152	-1148
	Dof3	-1153	-1148
	NAC025	-1183	-1176
	NAC083	-1184	-1175
	NAC025	-1185	-1178
	NAC043	-1185	-1176
	NAC043	-1185	-1176
	NAC083	-1186	-1177

M2.5. AtSPR1_2 gén promóterén elhelyezkező TFBS

Név Start End Foxn1 -8 -3 DOF5.7 -56 -49 DOF2.4 -57 -51 DOF1.8 -58 -49 DOF5.3 -58 -52 DOF5.6 -58 -51 DOF5.7 -58 -51 DOF5.6 -58 -51 DOF5.7 -58 -51 DOF5.7 -58 -51 DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -79 PHYPADRAFT_153324
Foxn1 -8 -3 DOF5.7 -56 -49 DOF2.4 -57 -51 DOF1.8 -58 -49 DOF5.3 -58 -52 DOF5.6 -58 -51 DOF5.7 -58 -51 DOF5.7 -58 -51 DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
DOF5.7 -56 -49 DOF2.4 -57 -51 DOF1.8 -58 -49 DOF5.3 -58 -52 DOF5.6 -58 -51 DOF5.7 -58 -51 DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -81 PBF -85 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PDF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111 ATUP 16 -120 -111
DOF2.4 -57 -51 DOF1.8 -58 -49 DOF5.3 -58 -52 DOF5.6 -58 -51 DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -81 PBF -85 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 dof4.5 -88 -79 PHYPADRAFT_140773 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
DOF1.8 -58 -49 DOF5.3 -58 -52 DOF5.6 -58 -51 DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -81 PBF -85 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 dof4.5 -88 -79 dof4.5 -88 -81 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
DOF5.3 -58 -52 DOF5.6 -58 -51 DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
DOF5.6 -58 -51 DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 dof4.5 -120 -111 ATUP 16 122 -111
DOF5.7 -58 -51 PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -80 Dof3 -85 -81 PBF -85 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
PHYPADRAFT_140773 -58 -49 PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
PHYPADRAFT_153324 -58 -50 GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
GATA8 -81 -73 Dof2 -85 -80 Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
Dof2 -85 -80 Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
Dof3 -85 -80 MNB1A -85 -81 PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
MNB1A -85 -81 PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
PBF -85 -81 DOF2.4 -87 -81 DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
DOF2.4 87 -81 DOF1.8 88 -79 dof4.5 88 -75 DOF5.3 88 -82 DOF5.6 88 -81 PHYPADRAFT_140773 88 -79 PHYPADRAFT_153324 88 -80 MA1327.2ATHB23 120 -111
DOF1.8 -88 -79 dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
dof4.5 -88 -75 DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
DOF5.3 -88 -82 DOF5.6 -88 -81 PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
DOF5.6 88 81 PHYPADRAFT_140773 88 -79 PHYPADRAFT_153324 88 80 MA1327.2ATHB23 120 -111 ATHP 16 122 116
PHYPADRAFT_140773 -88 -79 PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111
PHYPADRAFT_153324 -88 -80 MA1327.2ATHB23 -120 -111 ATUD 16 122 116
MA1327.2ATHB23 -120 -111
AIHB-16 -123 -116
✓ ATHB-6 -123 -115
ATHB13 -125 -115
DOF5.3 -126 -120
DOF2.4 -127 -121
DOF5.6 -127 -120
PBF -127 -123
DOF2.5 -128 -121
PHYPADRAFT 153324 -128 -120
DOF1.8 -129 -120
PHYPADRAFT 140773 -129 -120
PHYPADRAFT 38837 -129 -120
AT3G52440 -130 -120
Dof3 -181 -176
PBF -181 -177
-247 -240
-247 -240
AHL12 -248 -241
-248 -241
AT2G20110 -250 -236
PBF -268 -264

AtSPR1_2			
	Név	Start	End
	DOF2.4	-270	-264
	DOF2.5	-270	-263
	CDF2	-271	-262
	DOF1.8	-271	-262
	DOF5.3	-271	-265
	DOF5.6	-271	-264
	DOF5.7	-271	-264
	PHYPADRAFT 140773	-271	-262
	PHYPADRAFT 153324	-271	-263
	PHYPADRAFT_38837	-271	-262
	Dof3	-366	-361
	PBF	-366	-362
	DOF2.4	-368	-362
	DOF2.5	-368	-361
	DOF5.7	-368	-361
	AT3G52440	-369	-359
	CDF2	-369	-360
	DAG2	-369	-359
	DOF1.8	-369	-360
	DOF5.3	-369	-363
	DOF5.6	-369	-362
	DOF5.7	-369	-362
	PHYPADRAFT 140773	-369	-360
RI	PHYPADRAFT_153324	-369	-361
SP	PHYPADRAFT_38837	-369	-360
At_{t}	AT1G47655	-370	-360
	MA0974.2CDF3	-370	-359
	GATA10	-499	-492
	GATA11	-499	-492
	CATA12	-499	-492
	GATAIZ	-499	-492
	GATA8	-499	-491
	GATA9	-500	-490
	NAC078	-525	-514
	DOF5.3	-558	-552
	MA1327.2ATHB23	-562	-553
	DOF5.3	-569	-563
	DOF2.4	-570	-564
	DOF5.6	-570	-563
	PBF	-570	-566
	Dof3	-571	-566
	PHYPADRAFT_153324	-571	-563
	DOF1.8	-572	-563
	PHYPADRAFT_140773	-572	-563
	DOF5.3	-587	-581
	AT3G24120	-592	-585
	Foxn1	-600	-595
	DOF5.3	-626	-620

AtSPR1_2			
	Név	Start	End
	A HI 12	-633	-626
	AHL12	-633	-626
	ATHB-16	-634	-627
	ATHB-51	-634	-627
	ATHB13	-635	-625
	ATHB-6	-635	-627
	DOF5.3	-641	-635
	Earen 1	-645	-640
	FOXIII	-649	-644
	KAN1	-661	-654
	AT3G24120	-662	-655
	EFM	-662	-652
	KAN2	-664	-650
	MYR2	-665	-652
	PHL11	-665	-652
	PHL7	-665	-653
	DOF2.4	-666	-660
	DOF5.3	-667	-661
	DOF5.6	-667	-660
	DOF5.7	-667	-660
	PHYPADRAFT 140773	-667	-658
	PHYPADRAFT 153324	-667	-659
\sim	Dof2	-693	-688
RI	Dof3	-693	-688
	MNB1A	-693	-689
41.	PBF	-693	-689
,	DOF2.4	-695	-689
	DOF1.8	-696	-687
	DOF5.3	-696	-690
	DOF5.6	-696	-689
	PHYPADRAFT 140773	-696	-687
	PHYPADRAFT 153324	-696	-688
	PHYPADRAFT 38837	-696	-687
	AP1	-705	-693
	SOC1	-705	-691
	squamosa	-705	-692
	LEC2	-714	-704
	HAT2	-723	-713
	MYB81	-775	-765
	AGL42	-843	-837
	Dof2	-850	-845
	Dof3	-850	-845
	MNB1A	-850	-846
	PBF	-850	-846
	DOF2.4	-852	-846
	DOF1 8	_853	_844
	DOF5 3	_853	-847
	DOF5.6	-853	-8/6
	D015.0	-055	-0-10

AtSPR1_2			
	Név	Start	End
	PHYPADRAFT_140773	-853	-844
	PHYPADRAFT_153324	-853	-845
	PHYPADRAFT_38837	-853	-844
	bZIP910	-882	-876
	TGA2	-882	-875
	TGA1A	-883	-877
	Dof3	-891	-886
	PBF	-891	-887
	DOF2.4	-893	-887
	DOF1.8	-894	-885
	DOF5.3	-894	-888
	DOF5.6	-894	-887
	PHYPADRAFT_140773	-894	-885
	PHYPADRAFT_153324	-894	-886
	ANAC050	-1011	-996
	KAN1	-1057	-1050
	AT3G24120	-1058	-1051
	DOF2.4	-1065	-1059
	DOF1.8	-1066	-1057
	DOF5.3	-1066	-1060
	DOF5.6	-1066	-1059
\sim	PHYPADRAFT_140773	-1066	-1057
	PHYPADRAFT_153324	-1066	-1058
PR	Dof2	-1087	-1082
tS	MNB1A	-1087	-1083
\boldsymbol{A}	PBF	-1087	-1083
	DOF5.7	-1094	-1087
	DOF5.3	-1096	-1090
	PHYPADRAFT_140773	-1096	-1087
	Foxn1	-1110	-1105
	MYB4	-1124	-1117
	DOF5.3	-1132	-1126
	PHYPADRAFT_140773	-1135	-1126
	DOF5.3	-1141	-1135
	DOF2.4	-1142	-1136
	DOF5.6	-1142	-1135
	DOF5.7	-1142	-1135
	MNB1A	-1142	-1138
	PBF	-1142	-1138
	Dof2	-1143	-1138
	PHYPADRAFT_153324	-1143	-1135
	CDF2	-1144	-1135
	DOF1.8	-1144	-1135
	PHYPADRAFT_140773	-1144	-1135
	PHYPADRAFT_38837	-1144	-1135
	Foxn1	-1146	-1141
	DOF5.3	-1156	-1150

MtSPT			
	Név	Start	End
	DOF5.3	-8	-2
	DOF2.4	-9	-3
	DOF5.6	-9	-2
	PBF	-9	-5
	PHYPADRAFT 153324	-10	-2
	DOF1.8	-11	-2
	PHYPADRAFT 140773	-11	-2
	Dof3	-31	-26
	PBF	-31	-27
	DOF2.4	-33	-27
	DOF2.5	-33	-26
	CDF2	-34	-25
	DOF1.8	-34	-25
	DOF5.3	-34	-28
	DOF5.6	-34	-27
	PHYPADRAFT 140773	-34	-25
	PHYPADRAFT 153324	-34	-26
	PHYPADRAFT 38837	-34	-25
	AT1G47655	-35	-25
	ZHD5	-52	-42
L_{0}	NAC025	-78	-71
SF	NAC028	-79	-71
Mt	NAC058	-79	-72
,	NAC080	-79	-72
	NAC083	-79	-70
		-86	-79
	AHL25	-86	-79
	ТСХ3	-116	-103
	DOF5.3	-132	-126
	DOF2.4	-133	-127
	DOF5.6	-133	-126
	PHYPADRAFT 140773	-135	-126
	DOF5.6	-146	-139
	Foxn1	-151	-146
	MYB59	-215	-208
	P0510F09.23	-216	-207
	MYB24	-217	-209
		-220	-213
	AHL12	-220	-213
	GATA15	-283	-275
	AT3G24120	-290	-283
	KAN1	-291	-284
	AGL42	-293	-287

M2.6. MtSPT gén promóterén elhelyezkező TFBS

MtSPT			
	Név	Start	End
	HMG-1	-312	-304
	AT3G24120	-318	-311
	DOF5.3	-319	-313
	DOF2.4	-320	-314
	DOF5.6	-320	-313
	DOF5.7	-322	-315
	A 111 12	-343	-336
	AHL12	-343	-336
	ATHB-16	-344	-337
	ATHB-51	-344	-337
	ATHB13	-345	-335
	ATHB20	-345	-335
	ATHB-6	-345	-337
	WRKY12	-375	-368
	WRKY23	-375	-368
	WRKY30	-375	-366
	WRKY38	-375	-368
	WRKY45	-375	-368
	WRKY2	-376	-369
	WRKY25	-376	-369
	WRKY63	-376	-369
	WRKY75	-376	-369
T	WRKY8	-376	-368
ŧSŦ	WRKY18	-377	-368
W	WRKY21	-377	-368
	WRKY28	-377	-367
	WRKY48	-377	-368
	WRKY57	-377	-368
	WRKY60	-377	-367
	WRKY20	-378	-366
	DOF5.7	-380	-373
	WRKY15	-380	-365
	DOF2.4	-381	-375
	DOF5.7	-381	-374
	DOF1.8	-382	-373
	DOF5.3	-382	-376
	DOF5.6	-382	-375
	DOF5.7	-382	-375
	PHYPADRAFT 140773	-382	-373
	PHYPADRAFT 153324	-382	-374
	PHYPADRAFT_38837	-382	-373
	KAN1	-390	-383
	AT2G20110	-394	-380
	TCX3	-396	-383
		-418	-409
	ATHB23	-420	-411
	ANL2	-421	-411
	1	-	-

MtSPT			
	Név	Start	End
	EDT1	-421	-412
	HDG1	-421	-411
	WRKY75	-436	-429
	WRKY8	-436	-428
	WRKY40	-437	-428
	WRKY48	-437	-428
	DOF5.3	-452	-446
	ARR11	-529	-522
	AT3G24120	-529	-522
	ARR10	-530	-523
	ARR14	-530	-523
	MYB113	-552	-542
	MYB81	-552	-542
	TCX3	-560	-547
	A HI 12	-624	-617
	AHL12	-624	-617
		-624	-617
	AHL20	-624	-617
	A 111 25	-624	-617
	AHL23	-624	-617
		-624	-615
	ATHB23	-626	-617
$L_{\rm c}$		-628	-621
tSI	AHL20	-628	-621
W	A 111 25	-628	-621
	AHL25	-628	-621
	ATHB23	-628	-619
	ZHD1	-628	-616
	ZHD5	-628	-618
	AHL20	-629	-622
	A LH 25	-629	-622
	AHL23	-629	-622
	ZHD6	-630	-616
	ATHB23	-633	-624
	EDT1	-634	-625
	DOF5.7	-660	-653
	WRKY18	-678	-669
	WRKY40	-678	-669
	P0510F09.23	-714	-705
	MYB113	-732	-722
	Dof3	-743	-738
	PBF	-743	-739
	DOF2.4	-745	-739
	DOF1.8	-746	-737
	DOF5.3	-746	-740
	DOF5.6	-746	-739
	PHYPADRAFT_140773	-746	-737

MtSPT			
	Név	Start	End
	DOF5.3	-746	-740
	DOF5.6	-746	-739
	PHYPADRAFT_140773	-746	-737
	PHYPADRAFT_153324	-746	-738
	PHYPADRAFT_38837	-746	-737
	AT3G24120	-769	-762
	KAN1	-770	-763
	EFM	-772	-762
	At3g09600	-858	-847
	LHY1	-858	-849
	ARR10	-913	-906
	ARR1	-914	-905
	AGL42	-926	-920
	GATA15	-931	-923
	KAN1	-972	-965
	At1g49010	-1020	-1006
	KUA1	-1020	-1010
	At1g74840	-1021	-1011
	At5g58900	-1021	-1007
	SRM1	-1021	-1008
	At1g19000	-1022	-1009
	At3g11280	-1022	-1009
T^{c}	AT3G10580	-1023	-1009
ŧSŦ	At5g08520	-1023	-1011
W	AT5G56840	-1023	-1009
	AT5G61620	-1023	-1009
		-1048	-1041
	AHL12	-1048	-1041
		-1051	-1044
		-1051	-1044
		-1052	-1045
		-1052	-1045
	АНІ 25	-1052	-1045
		-1052	-1045
	ATHB-16	-1052	-1045
	ATHB-51	-1052	-1045
	ATHB13	-1053	-1043
	ATHB-6	-1053	-1045
	АНІ 25	-1056	-1049
	AIIL23	-1056	-1049
	ERF018	-1087	-1080
	ERF008	-1088	-1081
	PHYPADRAFT_173530	-1088	-1081
	PHYPADRAFT_28324	-1088	-1081
	DREB1A	-1089	-1080
	PHYPADRAFT_182268	-1089	-1080
	AHL20	-1105	-1098

MtSPT			
	Név	Start	End
	AHL25	-1105	-1098
	ATUD 16	-1109	-1102
	ATHB-10	-1112	-1105
	ATHB-6	-1113	-1105
	ATHB-16	-1118	-1111
	ATHB-51	-1118	-1111
	ATHB-6	-1118	-1110
	ATHB13	-1120	-1110
	DOF5.3	-1158	-1152
	PHYPADRAFT_140773	-1158	-1149
	DOF1.8	-1167	-1158
	DOF5.3	-1167	-1161
	DOF5.6	-1167	-1160
	PHYPADRAFT_140773	-1167	-1158
	PHYPADRAFT_153324	-1167	-1159
	ARF2	-1183	-1174
	MYB113	-1227	-1217
	POPTR_0002s00440g	-1264	-1258
	SPL3	-1265	-1258
	SPL12	-1265	-1258
	SPL4	-1266	-1258
	SPL9	-1266	-1256
$L_{\rm G}$	SPL13	-1266	-1256
tSI	DOF5.3	-1338	-1332
W	DOF2.4	-1339	-1333
	DOF5.6	-1339	-1332
	DOF5.7	-1339	-1332
	PHYPADRAFT_153324	-1340	-1332
	DOF1.8	-1341	-1332
	DOF5.7	-1341	-1334
	PHYPADRAFT_140773	-1341	-1332
	PHYPADRAFT_38837	-1341	-1332
	AGL55	-1369	-1364
	AHL12	-1376	-1369
		-1376	-1369
	BHLH112	-1414	-1406
	bHLH130	-1415	-1405
	LHY1	-1484	-1475
	AT3G10113	-1486	-1472
	ARR2	-1529	-1520
	DOF5.3	-1532	-1526
	AHL12	-1537	-1530
		-1537	-1530
	AHL20	-1537	-1530
	AHL25	-1537	-1530
		-1537	-1530
	ATHB-51	-1553	-1546

MtSPT			
	Név	Start	End
	ATHB-6	-1553	-1545
	AT3G24120	-1568	-1561
	DOF5.3	-1570	-1564
	MYB119	-1581	-1571
	DOF2.4	-1597	-1591
	At5g08520	-1598	-1586
	DOF1.8	-1598	-1589
	DOF5.3	-1598	-1592
	DOF5.6	-1598	-1591
	DOF5.7	-1598	-1591
	PHYPADRAFT_140773	-1598	-1589
	PHYPADRAFT_153324	-1598	-1590
	DOF5.7	-1664	-1657
	DOF5 3	-1666	-1660
	DO15.5	-1667	-1661
	DOF2.4	-1668	-1662
	DOF5.6	-1668	-1661
	PBF	-1668	-1664
	Dof3	-1669	-1664
	PHYPADRAFT_153324	-1669	-1661
	DOF1.8	-1670	-1661
	PHYPADRAFT_140773	-1670	-1661
Γd	PHYPADRAFT_38837	-1670	-1661
ItS.	Dof3	-1681	-1676
W	PBF	-1681	-1677
	DOF5.3	-1684	-1678
	DOF5.6	-1684	-1677
	PHYPADRAFT_140773	-1684	-1675
	Dof2	-1709	-1704
	Dof3	-1709	-1704
	MNB1A	-1709	-1705
	PBF	-1709	-1705
	ATHB-12	-1747	-1740
	ATHB-16	-1747	-1740
	ATHB-6	-1747	-1739
	HAT22	-1747	-1738
	HATI	-1748	-1739
	HAT2	-1748	-1738
	MA0110.3ATHB-5	-1749	-1738
	GATA15	-1784	-1776
		-1785	-1777
	PIF5	-1788	-17/81
	P0510F09.23	-1817	-1808
	DOF5.3	-1825	-1819
	DOF2.4	-1826	-1820
	DOF5.6	-1826	-1819
	PBF	-1826	-1822

MtSPT			
	Név	Start	End
	DOF2.5	-1827	-1820
	Dof3	-1827	-1822
	PHYPADRAFT_153324	-1827	-1819
	AT1G47655	-1828	-1818
	DOF1.8	-1828	-1819
	PHYPADRAFT 140773	-1828	-1819
	PHYPADRAFT 38837	-1828	-1819
	AT3G52440	-1829	-1819
	ATHB-12	-1836	-1829
	STZ	-1848	-1838
	WRKY2	-1851	-1844
	WRKY25	-1851	-1844
	WRKY75	-1851	-1844
	WRKY18	-1852	-1843
	WRKY40	-1852	-1843
	WRKY48	-1852	-1843
	KUA1	-1860	-1850
	At5g58900	-1861	-1847
	DOF5.3	-1871	-1865
	DOF2.4	-1872	-1866
	DOF5.6	-1872	-1865
	PHYPADRAFT_153324	-1873	-1865
La	DOF5.7	-1874	-1867
tSI	PHYPADRAFT_140773	-1874	-1865
W	GATA15	-1912	-1904
	ATHB-16	-1918	-1911
	ATHB-51	-1918	-1911
	ATHB-6	-1918	-1910
	ATHB4	-1919	-1910
	ATHB13	-1920	-1910
	ATHB18	-1920	-1910
		-1920	-1910
	ATHB53	-1920	-1910
	AHL20	-1922	-1915
	АНІ 25	-1922	-1915
		-1922	-1915
	AT3G24120	-1928	-1921
	GATA12	-1990	-1983
	0/11/12	-1990	-1983
	GATA8	-1990	-1982
	FUS3	-2011	-2002
	ARR11	-2065	-2058
	ARR10	-2066	-2059
	ARR14	-2066	-2059
	ARR1	-2067	-2058
	ARR18	-2067	-2055
	OsRR22	-2067	-2058

FvSPT				
Név Start End				
	EDT1	-25	-16	
	PBF	-76	-72	
	Dof3	-77	-72	
	MYB55	-114	-107	
	myb.Ph3	-128	-120	
	MYB70	-129	-119	
	MYB81	-129	-119	
	MYB52	-130	-120	
	MYB65	-132	-120	
	NAC043	-134	-125	
	NAC078	-152	-141	
	SMZ	-195	-188	
	ATHB-12	-229	-222	
	ATHB-16	-229	-222	
	ATHB-6	-229	-221	
	HAT22	-229	-220	
	ATHB-16	-230	-223	
	ATHB4	-230	-221	
	HAT1	-230	-221	
	HAT2	-230	-220	
T	ATHB13	-231	-221	
SP	ATHB18	-231	-221	
$F_{\mathcal{V}}$	ATHB4	-231	-222	
	MA0110.3ATHB-5	-231	-220	
	SPL4	-248	-240	
	SPL12	-248	-241	
	SPL9	-251	-241	
	PBF	-378	-374	
	Dof3	-379	-374	
	PIF4	-398	-391	
	BHLH34	-399	-392	
	BIM1	-399	-390	
		-399	-392	
	MYC3	-399	-392	
	MYC4	-399	-392	
	PHYPADRAFT 48267	-399	-392	
	PIF3	-399	-390	
	PIF5	-399	-392	
	SPT	_399	-391	
	UNE10	_399	_392	
			_391	
	BEE2		_301	
	BIM2		_301	
	D111112		-371	

M2.7. FvSPT gén promóterén elhelyezkező TFBS

FvSPT			
	Név	Start	End
	BIM2	-400	-391
		-400	-391
	BIM3	-400	-391
	HBI1	-400	-389
		-400	-391
	PHYPADRAF1_1438/5	-400	-391
		-400	-391
	PHYPADRAF1_/2483	-400	-391
	SPT	-400	-392
	BEH3	-401	-391
	BIM1	-401	-392
	BZR2	-401	-391
	DOF2.4	-427	-421
	DOF5.3	-428	-422
	DOF5.6	-428	-421
	LHY1	-506	-497
	NAC078	-516	-505
	DOF5.3	-536	-530
	DOF5.6	-537	-530
	MNB1A	-537	-533
	PBF	-537	-533
	Dof2	-538	-533
$L_{\rm c}$	PHYPADRAFT 140773	-539	-530
SF	A 111 12	-564	-557
F_V	AHL12	-564	-557
	KAN1	-600	-593
	A 111 10	-601	-594
	AHL12	-601	-594
	NAC058	-637	-630
	NAC080	-637	-630
	T11I18.17	-637	-630
	NAC028	-638	-630
	NAC92	-639	-628
	GATA15	-680	-672
	SPL4	-700	-692
	SPL12	-700	-693
	AGL42	-710	-704
	DOF5.7	-717	-710
	DOF5.3	-774	-768
	DOF2.4	-775	-769
	DOF5.6	-775	-768
	MNB1A	-775	-771
	PBF	-775	-771
	Dof2	-776	-771
	PHYPADRAFT 153324	-776	-768
	DOF1.8	-777	-768
	PHYPADRAFT 140773	-777	-768

FvSPT			
	Név	Start	End
	PBF	-788	-784
	Dof3	-789	-784
	GATA15	-800	-792
	MYB24	-855	-847
	MYB111	-856	-849
	MYB4	-856	-849
	MYB46	-856	-849
	MYB59	-856	-849
	FaEOBII	-857	-848
	MYB3	-858	-848
	MYB57	-858	-845
	MNB1A	-882	-878
	PBF	-882	-878
	Dof2	-883	-878
	Dof3	-945	-940
	PBF	-945	-941
	DOF2.4	-947	-941
	DOF2.5	-947	-940
	DOF1.8	-948	-939
	DOF5.3	-948	-942
	DOF5.6	-948	-941
	PHYPADRAFT 140773	-948	-939
L_{1}	PHYPADRAFT 153324	-948	-940
SP	PHYPADRAFT 38837	-948	-939
$F \nu$	AT1G47655	-949	-939
	KAN1	-968	-961
	AT3G24120	-969	-962
	ННОЗ	-969	-959
	MYR2	-972	-959
	NAC025	-983	-976
	NAC028	-984	-976
	NAC058	-984	-977
	NAC083	-984	-975
	T11I18.17	-984	-977
	DOF5.3	-992	-986
	MNB1A	-993	-989
	PBF	-993	-989
	Dof2	-994	-989
	DOF1.8	-995	-986
	PHYPADRAFT 140773	-995	-986
	P0510F09.23	-1004	-995
	Dof2	-1006	-1001
	MNB1A	-1006	-1002
	PBF	-1006	-1002
	DOF2.4	-1008	-1002
	DOF1.8	-1009	-1000
	DOF5.3	-1009	-1003

	FvSPT		
	Név	Start	End
	DOF5.6	-1009	-1002
	PHYPADRAFT_140773	-1009	-1000
	PHYPADRAFT_153324	-1009	-1001
	PHYPADRAFT 38837	-1009	-1000
	DOF5.3	-1020	-1014
	MYB24	-1055	-1047
	САТА 15	-1075	-1067
	GATAIS	-1076	-1068
	Dof3	-1082	-1077
	PBF	-1082	-1078
	DOF2.4	-1084	-1078
	DOF5.3	-1085	-1079
	DOF5.6	-1085	-1078
	PHYPADRAFT_140773	-1085	-1076
	WRKY2	-1088	-1081
	WRKY63	-1088	-1081
	WRKY75	-1088	-1081
	WRKY8	-1088	-1080
	WRKY48	-1089	-1080
	ZHD5	-1099	-1089
	Dof3	-1100	-1095
	PBF	-1100	-1096
Ld	DOF2.4	-1102	-1096
vSI	DOF2.5	-1102	-1095
F	DOF1.8	-1103	-1094
	DOF5.3	-1103	-1097
	DOF5.6	-1103	-1096
	PHYPADRAFT_140773	-1103	-1094
	PHYPADRAFT_153324	-1103	-1095
	PHYPADRAFT_38837	-1103	-1094
	AT1G47655	-1104	-1094
	LHY1	-1125	-1116
	STZ	-1141	-1131
	Dof3	-1142	-1137
	PBF	-1142	-1138
	DOF2.4	-1144	-1138
	DOF1.8	-1145	-1136
	DOF5.3	-1145	-1139
	DOF5.6	-1145	-1138
	PHYPADRAFT_140773	-1145	-1136
	PHYPADRAFT_153324	-1145	-1137
	PHYPADRAFT_38837	-1145	-1136
	AT1G47655	-1146	-1136
	GATA12	-1181	-1174
		-1181	-11//4
	myb.Ph3	-1197	-1189
	<i>y</i>	-1197	-1189

FvSPT				
	Név	Start	End	
	MYB52	-1197	-1187	
	MYB70	-1198	-1188	
	MYB81	-1198	-1188	
	PBF	-1245	-1241	
	DOF2.4	-1247	-1241	
	DOF2.5	-1247	-1240	
	AT3G52440	-1248	-1238	
	CDF2	-1248	-1239	
	DAG2	-1248	-1238	
	DOF1.8	-1248	-1239	
	DOF5.3	-1248	-1242	
	DOF5.6	-1248	-1241	
	DOF5.7	-1248	-1241	
	OBP4	-1248	-1235	
	PHYPADRAFT 140773	-1248	-1239	
	PHYPADRAFT 153324	-1248	-1240	
	PHYPADRAFT 38837	-1248	-1239	
	AHL20	-1256	-1249	
		-1256	-1249	
	AHL25	-1256	-1249	
	DOF5.3	-1263	-1257	
	DOF5.6	-1264	-1257	
$L_{\rm c}$	PBF	-1264	-1260	
SF	DOF1.8	-1266	-1257	
F_V	PHYPADRAFT 140773	-1266	-1257	
	ATHB-16	-1276	-1269	
	DOF1.8	-1286	-1277	
	DOF5.3	-1286	-1280	
	PHYPADRAFT 140773	-1286	-1277	
	PHYPADRAFT 153324	-1286	-1278	
	DOF5.7	-1292	-1285	
	DOF5.3	-1300	-1294	
	DOF2.4	-1301	-1295	
	DOF5.6	-1301	-1294	
	DOF5.7	-1301	-1294	
	PBF	-1301	-1297	
	DOF2.5	-1302	-1295	
	Dof3	-1302	-1297	
	DOF5.7	-1302	-1295	
	PHYPADRAFT 153324	-1302	-1294	
	AT1G47655	-1303	-1293	
	CDF2	-1303	-1294	
	DOF1.8	-1303	-1294	
	PHYPADRAFT 140773	-1303	-1294	
	PHYPADRAFT 38837	-1303	-1294	
	AT3G52440	-1304	-1294	
	CDF3	-1304	-1293	

	FvSPT		
	Név	Start	End
	DAG2	-1304	-1294
	Dof3	-1307	-1302
	dof4.5	-1307	-1294
	PBF	-1307	-1303
	DOF2.4	-1309	-1303
	DOF1.8	-1310	-1301
	DOF5.3	-1310	-1304
	DOF5.6	-1310	-1303
	PHYPADRAFT 140773	-1310	-1301
		-1325	-1318
		-1325	-1318
	AHL12	-1326	-1319
		-1326	-1319
		-1326	-1319
	AHL25	-1326	-1319
	ATHB-16	-1326	-1319
	ATHB-51	-1326	-1319
		-1338	-1331
		-1338	-1331
	AHL25	-1342	-1335
		-1342	-1335
		-1342	-1336
Г	AHL12	-1343	-1336
SP	A HI 20	-1343	-1336
H V.	111120	-1343	-1336
	AHL25	-1343	-1336
		-1343	-1340
	AHL20	-1347	-1340
		-1347	-1340
	AHL25	-1347	-1340
	ATHR23	1347	1338
	ATHD 16	-1347	-1356
		-1370	-1309
	DDE	-13/7	-1309
		-1409	-1403
	AIIL20	-1410	-1411 1/11
	AHL25	-1410	-1411 1/11
		-1418	-1411 1/1/
		-1421	-1414
	AHL12	-1421	-1414
		-1422	-1415
		-1422	-1415
	AHL25	-1422	-1415
		-1422	-1415
	AIHB-16	-1422	-1415
	ATHB-51	-1422	-1415
	ATHB13	-1423	-1413
	PBF	-1430	-1426

	FvSPT		
	Név	Start	End
	DOF2.4	-1432	-1426
	DOF1.8	-1433	-1424
	DOF5.3	-1433	-1427
	DOF5.6	-1433	-1426
	PHYPADRAFT_140773	-1433	-1424
	PHYPADRAFT_153324	-1433	-1425
	RVE5	-1449	-1439
	Dof3	-1456	-1451
	PBF	-1456	-1452
	AT3G24120	-1501	-1494
	DOF2.4	-1549	-1543
	AT3G52440	-1550	-1540
	CDF2	-1550	-1541
	DAG2	-1550	-1540
	DOF1.8	-1550	-1541
	DOF5.3	-1550	-1544
	DOF5.6	-1550	-1543
	PHYPADRAFT 140773	-1550	-1541
	PHYPADRAFT 153324	-1550	-1542
	PHYPADRAFT 38837	-1550	-1541
	MYB24	-1598	-1590
	MYB55	-1598	-1591
T	MYB4	-1599	-1592
SF	AT3G24120	-1633	-1626
$F_{\mathcal{V}}$	DOF5.3	-1636	-1630
	DOF2.4	-1637	-1631
	DOF5.6	-1637	-1630
	PBF	-1637	-1633
	Dof3	-1638	-1633
	PHYPADRAFT_153324	-1638	-1630
	AT1G47655	-1639	-1629
	DOF1.8	-1639	-1630
	PHYPADRAFT_140773	-1639	-1630
	PHYPADRAFT_38837	-1639	-1630
	STZ	-1644	-1634
	LHY1	-1659	-1650
	At3g09600	-1661	-1650
	DOF5.3	-1678	-1672
	DOF2.4	-1679	-1673
	DOF5.6	-1679	-1672
	PBF	-1679	-1675
	DOF2.5	-1680	-1673
	Dof3	-1680	-1675
	PHYPADRAFT_153324	-1680	-1672
	AT1G47655	-1681	-1671
	DOF1.8	-1681	-1672
	PHYPADRAFT_140773	-1681	-1672

	FvSPT		
	Név	Start	End
	PHYPADRAFT_38837	-1681	-1672
	ZHD5	-1686	-1676
	ZHD6	-1688	-1674
	WRKY2	-1694	-1687
	WRKY75	-1694	-1687
	WRKY40	-1695	-1686
	WRKY48	-1695	-1686
	WRKY8	-1695	-1687
	DOF5.3	-1696	-1690
	DOF2.4	-1697	-1691
	DOF5.6	-1697	-1690
	PBF	-1697	-1693
	Dof3	-1698	-1693
	PHYPADRAFT_140773	-1699	-1690
	LHY1	-1720	-1711
	RVE6	-1721	-1711
	SPL9	-1739	-1729
	ATHB-51	-1743	-1736
	ATHB-6	-1743	-1735
	ATHB23	-1763	-1754
	DOF5.3	-1769	-1763
	DOF2.4	-1770	-1764
L_{1}	DOF5.6	-1770	-1763
SF	DOF5.7	-1803	-1796
F_V	DOF2.4	-1808	-1802
	DOF5.3	-1809	-1803
	PHYPADRAFT_140773	-1809	-1800
		-1823	-1816
	AHL12	-1823	-1816
	CATA 15	-1850	-1842
	GATAIS	-1851	-1843
	Dof3	-1874	-1869
	PBF	-1874	-1870
	DOF2.4	-1876	-1870
	DOF2.5	-1876	-1869
	AT3G52440	-1877	-1867
	DOF1.8	-1877	-1868
	DOF5.3	-1877	-1871
	DOF5.6	-1877	-1870
	PHYPADRAFT_140773	-1877	-1868
	PHYPADRAFT_153324	-1877	-1869
	PHYPADRAFT_38837	-1877	-1868
	AT1G47655	-1878	-1868
	DOF5.7	-1884	-1877
	DOE5 2	-1886	-1880
	DOF5.3	-1898	-1892
	DOF5.6	-1898	-1891

	FvSPT		
	Név	Start	End
	STZ	-1928	-1918
	Dof3	-1929	-1924
	PBF	-1929	-1925
	DOF2.4	-1931	-1925
	DOF2.5	-1931	-1924
	AT3G52440	-1932	-1922
	DOF1.8	-1932	-1923
	DOF5.3	-1932	-1926
	DOF5.6	-1932	-1925
	PHYPADRAFT_140773	-1932	-1923
	PHYPADRAFT_153324	-1932	-1924
	PHYPADRAFT_38837	-1932	-1923
	AT1G47655	-1933	-1923
	DODE 7	-1951	-1944
	DOF5./	-1952	-1945
	DOF1.8	-1953	-1944
	DOF5.3	-1953	-1947
	DOF5.6	-1953	-1946
	PHYPADRAFT 140773	-1953	-1944
	PHYPADRAFT 153324	-1953	-1945
	STZ	-2142	-2132
	PHYPADRAFT 28324	-2184	-2177
T	PHYPADRAFT 182268	-2185	-2176
SF	AT1G22810	-2186	-2172
Fv	ERF015	-2186	-2175
	ERF019	-2187	-2173
	TINY	-2187	-2173
	AT2G44940	-2188	-2174
	AT3G57600	-2188	-2178
	RAP21	-2188	-2176
	AT4G16750	-2190	-2176
	AT1G44830	-2191	-2177
	AT1G75490	-2191	-2177
	CEJ1	-2191	-2177
	DREB26	-2197	-2178
	AT3G24120	-2209	-2202
	Dof3	-2223	-2218
	PBF	-2223	-2219
	DOF2.4	-2225	-2219
	DOF1.8	-2226	-2217
	DOF5.3	-2226	-2220
	DOF5.6	-2226	-2219
	PHYPADRAFT_140773	-2226	-2217
	GATA8	-2242	-2234
	AGL42	-2278	-2272
	AT3G57600	-2330	-2320
	ERF098	-2411	-2404

	FvSPT		
	Név	Start	End
	ERF008	-2412	-2405
	AGL55	-2441	-2436
	Foxn1	-2469	-2464
	ARR10	-2494	-2487
	Dof3	-2522	-2517
	PBF	-2522	-2518
	PHYPADRAFT_140773	-2525	-2516
	ERF069	-2545	-2537
	ERF13	-2545	-2538
	ERF7	-2547	-2538
	STZ	-2584	-2574
	DOF5.3	-2709	-2703
	DOF2.4	-2710	-2704
	DOF5.6	-2710	-2703
	PHYPADRAFT 153324	-2711	-2703
	DOF1.8	-2712	-2703
	DOF5.7	-2712	-2705
	PHYPADRAFT 140773	-2712	-2703
		-2767	-2760
	DOF5.7	-2768	-2761
	DOF5.3	-2769	-2763
	DOF5.6	-2769	-2762
T	PHYPADRAFT 140773	-2769	-2760
SP	PHYPADRAFT 153324	-2769	-2761
F_{V}	ATHB-6	-2775	-2767
	HAT2	-2776	-2766
	HAT22	-2776	-2767
	DOF5 7	-2789	-2782
	DOF5.3	-2791	-2785
	NAC055	-2795	-2788
	NAC080	-2795	-2788
	AGL55	-2820	-2815
	AGI 42	_2825	_2819
	Dof3	_2880	_2875
	PBF	_2880	-2876
	DOF2 4	_2882	_2876
	DOF1 8	_2883	_2874
	DOF5 3	_2883	_2877
	DOF5.6	_2005	-2077
	$\frac{1}{100772}$	-2003	-2070
	$\frac{11111}{\text{PHYPADPAFT}} \frac{140773}{153224}$	-2003	-2074
	AT1G/7655	-2003	-2013
	GT_1	-2004	-2014
		-2003	-20/0
	AIIL20	-2904	-2071
	AHL25	-2904	-2071
	CT 1	-2904	-2897
	01-1	-2911	-2904

FvSPT			
	Név	Start	End
	AT-GTL1	-2912	-2901
	DOF5.3	-2921	-2915
	PHYPADRAFT_140773	-2924	-2915
	DOF5.3	-2927	-2921
	DOF5.6	-2928	-2921
L	DOF5.3	-2933	-2927
D_{2}	DOF5.7	-2936	-2929
SAF	AT-GTL1	-2912	-2901
Η	DOF5.3	-2921	-2915
	PHYPADRAFT_140773	-2924	-2915
	DOF5.3	-2927	-2921
	DOF5.6	-2928	-2921
	DOF5.3	-2933	-2927
	DOF5.7	-2936	-2929

Név Start End LEC2 -40 -30 BIM1 -65 -56 CMTA3 -65 -57 MYB124 -67 -58 CMTA2 -68 -60 REF6 -84 -74 AT-GTL1 -91 -80 ATHB-12 -95 -88 ATHB18 -96 -86 ATHB-6 -96 -88
LEC2 -40 -30 BIM1 -65 -56 CMTA3 -65 -57 MYB124 -67 -58 CMTA2 -68 -60 REF6 -84 -74 AT-GTL1 -91 -80 ATHB-12 -95 -88 ATHB18 -96 -86
BIM1 -65 -56 CMTA3 -65 -57 MYB124 -67 -58 CMTA2 -68 -60 REF6 -84 -74 AT-GTL1 -91 -80 ATHB-12 -95 -88 ATHB18 -96 -86 ATHB-6 -96 -88
CMTA3 -65 -57 MYB124 -67 -58 CMTA2 -68 -60 REF6 -84 -74 AT-GTL1 -91 -80 ATHB-12 -95 -88 ATHB-16 -95 -88 ATHB18 -96 -86
MYB124-67-58CMTA2-68-60REF6-84-74AT-GTL1-91-80ATHB-12-95-88ATHB-16-95-88ATHB18-96-86ATHB-6-96-88
CMTA2 -68 -60 REF6 -84 -74 AT-GTL1 -91 -80 ATHB-12 -95 -88 ATHB-16 -95 -88 ATHB18 -96 -86 ATHB-6 -96 -88
REF6 -84 -74 AT-GTL1 -91 -80 ATHB-12 -95 -88 ATHB-16 -95 -88 ATHB18 -96 -86 ATHB-6 -96 -88
AT-GTL1-91-80ATHB-12-95-88ATHB-16-95-88ATHB18-96-86ATHB-6-96-88
ATHB-12-95-88ATHB-16-95-88ATHB18-96-86ATHB-6-96-88
ATHB-16 -95 -88 ATHB18 -96 -86 ATHB-6 -96 -88
ATHB18 -96 -86 ATHB-6 -96 -88
ATHB-6 -96 -88
HAT1 -96 -87
HAT2 -97 -87
HAT22 -97 -88
MA0110.3ATHB-5 -97 -86
DOF5.3 -115 -109
DOF2.4 -116 -110
DOF5.6 -116 -109
PBF -116 -112
Dof3 -117 -112
PHYPADRAFT 153324 -117 -109
-118 - 109
PHYPADRAFT 140773 -118 -109
PHYPADRAFT 38837 -118 -109
STZ -123 -113
PBF -216 -212
DOF2.4 -218 -212
DOF1.8 -219 -210
DOF5.3 -219 -213
DOF5.6 -219 -212
PHYPADRAFT 140773 -219 -210
PHYPADRAFT 153324 -219 -211
PHYPADRAFT 38837 -219 -210
PIF4 -231 -224
BHLH34 -232 -225
BIM1 -232 -223
-232 -225
MYC3 -232 -225
MYC4 -232 -225
PHYPADRAFT 48267 -232 -225
PIF3 -232 -223
PIF5 -232 -225
SPT -232 -224

M2.8. AtSPT gén promóterén elhelyezkező TFBS

	AtSPT		
	Név	Start	End
	UNE10	-232	-225
	DEE2	-233	-224
	BEE2	-233	-224
	DBAG	-233	-224
	BIM2	-233	-224
	DB (2	-233	-224
	BIM3	-233	-224
	HBI1	-233	-222
		-233	-224
	PHYPADKAF1_1438/5	-233	-224
		-233	-224
	PHYPADRAF1_72483	-233	-224
	SPT	-233	-225
	BEH3	-234	-224
	BIM1	-234	-225
	BZR2	-234	-224
	DOF2.4	-302	-296
	DOF1.8	-303	-294
	DOF5.3	-303	-297
	DOF5.6	-303	-296
	PHYPADRAFT 140773	-303	-294
	DOF5.3	-361	-355
T	DOF2.4	-362	-356
SP	DOF5.6	-362	-355
At_{t}	PBF	-362	-358
	DOF2.5	-363	-356
	PHYPADRAFT 153324	-363	-355
	 DOF1.8	-364	-355
	PHYPADRAFT 140773	-364	-355
	PHYPADRAFT 38837	-364	-355
	 AT3G52440	-365	-355
	DAG2	-365	-355
	OBP4	-368	-355
	KAN1	-370	-363
	PBF	-416	-412
	DOF5.3	-465	-459
	PBF	-470	-466
	DOF5.3	-496	-490
	DOF2.4	-497	-491
	DOF5.6	-497	-490
	PBF	-497	-493
	Dof3	-498	-493
	PHYPADRAFT 153324	-498	-490
	DOF1.8	-499	-490
	PHYPADRAFT 140773	-499	-490
	ATHB23	-544	-535
	ZHD1	-547	-535
L		577	555

AtSPT			
	Név	Start	End
	ATHB34	-552	-538
	NAC028	-608	-600
	NAC058	-608	-601
	NAC92	-610	-599
	ARF2	-613	-604
	AT3G24120	-623	-616
	WRKY75	-631	-624
	WRKY40	-632	-623
	WRKY48	-632	-623
	Foxn1	-644	-639
	Dof3	-681	-676
	PBF	-681	-677
	A 111 10	-709	-702
	AHL12	-709	-702
	ATHB-16	-710	-703
	ATHB-51	-710	-703
	ATHB13	-711	-701
	ATHB-6	-711	-703
	PBF	-715	-711
	DOF2.4	-717	-711
	AT3G52440	-718	-708
	DOF1.8	-718	-709
T	DOF5.3	-718	-712
SP	DOF5.6	-718	-711
At	PHYPADRAFT_140773	-718	-709
	PHYPADRAFT_153324	-718	-710
	PHYPADRAFT_38837	-718	-709
	Dof2	-756	-751
	Dof3	-756	-751
	MNB1A	-756	-752
	PBF	-756	-752
	ZHD5	-788	-778
	ATHB23	-789	-780
	GATA15	-824	-816
	Dof2	-829	-824
	MNB1A	-829	-825
	PBF	-829	-825
	DOF2.4	-831	-825
	DOF1.8	-832	-823
	DOF5.3	-832	-826
	DOF5.6	-832	-825
	PHYPADRAFT 140773	-832	-823
	PHYPADRAFT 153324	-832	-824
	AT3G24120	-865	-858
		-866	-859
	AHL12	-866	-859
	KAN1	-866	-859
			,

	AtSPT		
	Név	Start	End
	AGL42	-881	-875
	ATHB15	-883	-869
	ERF7	-909	-900
	ERF069	-910	-902
	PBF	-917	-913
	Dof3	-918	-913
	PBF	-931	-927
	ARF34	-965	-953
	DOF5.3	-979	-973
		-998	-991
	A LII 12	-998	-991
	AHL12	-1021	-1014
		-1021	-1014
	GATA15	-1029	-1021
	UATAI3	-1030	-1022
	DOF5.3	-1058	-1052
	DOF2.4	-1059	-1053
	DOF5.6	-1059	-1052
	DOF5.7	-1059	-1052
	PHYPADRAFT_153324	-1060	-1052
	DOF1.8	-1061	-1052
	PHYPADRAFT_140773	-1061	-1052
Lc	DOF5.3	-1067	-1061
tS1	DOF2.4	-1068	-1062
A	DOF5.6	-1068	-1061
	PBF	-1068	-1064
	PHYPADRAFT_153324	-1069	-1061
	DOF1.8	-1070	-1061
	PHYPADRAFT_140773	-1070	-1061
	AHL20	-1109	-1102
	AHL25	-1109	-1102
		-1109	-1102
	SPL4	-1141	-1133
	SPL12	-1141	-1134
	AGL42	-1174	-1168
	AHL25	-1179	-1172
		-1179	-1172
	DOF5.3	-1232	-1226
	DOF2.4	-1233	-1227
	DOF5.6	-1233	-1226
	MNB1A	-1233	-1229
	PBF	-1233	-1229
	Dot2	-1234	-1229
	Dot3	-1234	-1229
	PHYPADRAFT_153324	-1234	-1226
	DOF1.8	-1235	-1226
	PHYPADRAFT_140773	-1235	-1226

AtSPT			
	Név	Start	End
AtSPT	DOF5.3	-1256	-1250
	DOF5.6	-1257	-1250
	MNB1A	-1257	-1253
	PBF	-1257	-1253
	Dof2	-1258	-1253
	PHYPADRAFT_153324	-1258	-1250
	DOF1.8	-1259	-1250
	PHYPADRAFT_140773	-1259	-1250
	Dof2	-1284	-1279
	Dof3	-1284	-1279
	MNB1A	-1284	-1280
	PBF	-1284	-1280
	DOF5.3	-1287	-1281
	PHYPADRAFT_140773	-1287	-1278
	PHYPADRAFT_153324	-1287	-1279
	ATHB-51	-1297	-1290
	ATHB-6	-1297	-1289
	AHL12	-1298	-1291
		-1298	-1291
	AHL25	-1298	-1291
		-1298	-1291
	ATHB-16	-1298	-1291
	ATHB-51	-1298	-1291
	ATHB13	-1299	-1289
	ATHB18	-1299	-1289
	ATHB20	-1299	-1289
	ATHB53	-1299	-1289
	AHL20	-1302	-1295
	AHL25	-1302	-1295
		-1302	-1295
	DOF5.3	-1314	-1308
	AHL12	-1345	-1338
		-1345	-1338
	AHL25	-1345	-1338
		-1345	-1338
	ATHB-16	-1345	-1338
	ATHB-51	-1345	-1338
		-1346	-1339
	ATHB13	-1347	-1337
	ATHB18	-1347	-1337
	ATHB53	-1347	-1337
	ATHB-6	-1347	-1339
	ZHD3	-1350	-1337
	PBF	-1373	-1369
	Dof3	-1374	-1369
	PHYPADRAFT 140773	-1375	-1366
	DOF5.3	-1457	-1451
		1	
AtSPT			
----------	-------------------	-------	-------
	Név	Start	End
	DOF2.4	-1458	-1452
	DOF5.6	-1458	-1451
	DOF5.7	-1458	-1451
	MNB1A	-1458	-1454
	PBF	-1458	-1454
	Dof2	-1459	-1454
	DOF2.5	-1459	-1452
	Dof3	-1459	-1454
	PHYPADRAFT_153324	-1459	-1451
	CDF2	-1460	-1451
	DOF1.8	-1460	-1451
	PHYPADRAFT_140773	-1460	-1451
	PHYPADRAFT_38837	-1460	-1451
	GATA20	-1490	-1483
	GATA19	-1491	-1481
	KAN1	-1535	-1528
	At1g49010	-1543	-1529
	At3g11280	-1545	-1532
	At5g05790	-1546	-1532
	DOF5.3	-1568	-1562
	DOF2.4	-1569	-1563
	DOF5.6	-1569	-1562
T	Foxn1	-1589	-1584
†SF	GATA8	-1630	-1622
A_{II}	DOF5.3	-1636	-1630
	ATHB-16	-1640	-1633
	ATHB-51	-1640	-1633
	ATHB-6	-1640	-1632
		-1641	-1634
	AHL12	-1641	-1634
	ATHB13	-1642	-1632
	Dof3	-1666	-1661
	PBF	-1666	-1662
	DOF2.4	-1668	-1662
	DOF2.5	-1668	-1661
	DOF5.7	-1668	-1661
	AT3G52440	-1669	-1659
	CDF2	-1669	-1660
	DOF1.8	-1669	-1660
	DOF5.3	-1669	-1663
	DOF5.6	-1669	-1662
	PHYPADRAFT_140773	-1669	-1660
	PHYPADRAFT_153324	-1669	-1661
	PHYPADRAFT_38837	-1669	-1660
	AT1G47655	-1670	-1660
	CDF3	-1670	-1659
	AT3G24120	-1684	-1677

AtSPT			
	Név	Start	End
	BHLH112	-1748	-1740
	DOF5.3	-1766	-1760
	ARF2	-1792	-1783
	PBF	-1800	-1796
	Dof3	-1801	-1796
	GATA15	-1832	-1824
	DOF2.4	-1844	-1838
	DOF1.8	-1845	-1836
	DOF5.3	-1845	-1839
	DOF5.6	-1845	-1838
	PHYPADRAFT_140773	-1845	-1836
	PHYPADRAFT_153324	-1845	-1837
	DOF2.5	-1852	-1845
	DOF5.7	-1852	-1845
	DOF1.8	-1854	-1845
	DOF5.3	-1854	-1848
	DOF5.6	-1854	-1847
	PHYPADRAFT 140773	-1854	-1845
	 DOF5.7	-1869	-1862
	DOF2.4	-1870	-1864
	DOF5.7	-1870	-1863
	AT3G52440	-1871	-1861
T	CDF2	-1871	-1862
SP	DAG2	-1871	-1861
At	DOF1.8	-1871	-1862
	DOF5.3	-1871	-1865
	DOF5.6	-1871	-1864
	DOF5.7	-1871	-1864
	PHYPADRAFT 140773	-1871	-1862
	PHYPADRAFT_153324	-1871	-1863
	PHYPADRAFT_38837	-1871	-1862
	DOF2.4	-1876	-1870
	DOF5.3	-1877	-1871
	PHYPADRAFT_140773	-1877	-1868
	PBF	-1942	-1938
	DOF5.3	-2003	-1997
	DOF2.4	-2004	-1998
	DOF5.6	-2004	-1997
	DOF5.7	-2006	-1999
	PHYPADRAFT 140773	-2006	-1997
	LEC2	-2111	-2101
	BHLH34	-2112	-2105
	FUS3	-2112	-2103
	DOF5.3	-2144	-2138
	DOF5.7	-2147	-2140
	REF6	-2203	-2193
	NOUD1A	2015	0011

AtSPT			
	Név	Start	End
	PBF	-2215	-2211
	Def2	-2216	-2211
	D012	-2218	-2213
	MNB1A	-2218	-2214
	PBF	-2218	-2214
	DOF2.4	-2220	-2214
	CDF2	-2221	-2212
	DOF1.8	-2221	-2212
	DOF5.3	-2221	-2215
	DOF5.6	-2221	-2214
	DOF5.7	-2221	-2214
	PHYPADRAFT_140773	-2221	-2212
	PHYPADRAFT_153324	-2221	-2213
	PHYPADRAFT_38837	-2221	-2212
	DOF5.3	-2228	-2222
	id1	-2228	-2217
	PHYPADRAFT_140773	-2228	-2219
	DOF2.4	-2260	-2254
	DOF1.8	-2261	-2252
	DOF5.3	-2261	-2255
	DOF5.6	-2261	-2254
	DOF5.7	-2261	-2254
T	PHYPADRAFT_140773	-2261	-2252
tSF	PHYPADRAFT_153324	-2261	-2253
A_{I}	DOF2.4	-2293	-2287
	DOF1.8	-2294	-2285
	DOF5.3	-2294	-2288
	DOF5.6	-2294	-2287
	PHYPADRAFT_140773	-2294	-2285
	Dof2	-2373	-2368
	Dof3	-2373	-2368
	MNB1A	-2373	-2369
	PBF	-2373	-2369
	DOF2.4	-2375	-2369
	DOF1.8	-2376	-2367
	DOF5.3	-2376	-2370
	DOF5.6	-2376	-2369
	PHYPADRAFT_140773	-2376	-2367
	PHYPADRAFT_153324	-2376	-2368
	PHYPADRAFT_38837	-2376	-2367
	AT1G47655	-2377	-2367
	Foxn1	-2394	-2389
	ARALYDRAFT_493022	-2517	-2510
	ARALYDRAFT_496250	-2517	-2510
	TCP4	-2517	-2510
	TCP5	-2517	-2510
	GATA15	-2526	-2518

AtSPT			
	Név	Start	End
	ARR10	-2533	-2526
	САТА 15	-2554	-2546
	GATAIS	-2555	-2547
	TGA1A	-2560	-2554
	NAC92	-2562	-2551
	BHLH112	-2591	-2583
	MYB59	-2599	-2592
	MYB24	-2601	-2593
	ATHB-16	-2611	-2604
	HAT22	-2611	-2602
	HAT1	-2612	-2603
	HAT2	-2612	-2602
	DOF5.3	-2623	-2617
	DOF2.4	-2624	-2618
	DOF5.6	-2624	-2617
	DOE5 7	-2624	-2617
	DOF5./	-2625	-2618
	PHYPADRAFT_140773	-2626	-2617
	DOF5.3	-2638	-2632
	DOF2.4	-2639	-2633
	DOF5.6	-2639	-2632
	PBF	-2639	-2635
$L_{\rm c}$	Dof3	-2640	-2635
SF	PHYPADRAFT_153324	-2640	-2632
At	AT1G47655	-2641	-2631
	DOF1.8	-2641	-2632
	PHYPADRAFT_140773	-2641	-2632
	PHYPADRAFT_38837	-2641	-2632
	Dof2	-2664	-2659
	Dof3	-2664	-2659
	MNB1A	-2664	-2660
	PBF	-2664	-2660
	DOF5.3	-2667	-2661
	DOF5.6	-2667	-2660
	DOF5.3	-2700	-2694
	DOF2.4	-2701	-2695
	DOF5.6	-2701	-2694
	DOF1.8	-2703	-2694
	PHYPADRAFT_140773	-2703	-2694
	MYB113	-2715	-2705
	PBF	-2753	-2749
	Dof3	-2754	-2749
	DOF5.3	-2768	-2762
	DOF2.4	-2769	-2763
	DOF5.6	-2769	-2762
	PBF	-2769	-2765
	Dof3	-2770	-2765

AtSPT			
	Név	Start	End
	DOF1.8	-2771	-2762
	PHYPADRAFT_140773	-2771	-2762
	NAC080	-2787	-2780
	NAC025	-2788	-2781
	NAC028	-2788	-2780
	NAC083	-2789	-2780
	ATHB-12	-2792	-2785
	ATHB-6	-2792	-2784
	HAT1	-2793	-2784
	ATHB-16	-2812	-2805
	ATUD 6	-2813	-2805
	ATHD-0	-2820	-2812
	WRKY2	-2831	-2824
	WRKY25	-2831	-2824
	WRKY62	-2831	-2824
	WRKY63	-2831	-2824
	WRKY75	-2831	-2824
	WRKY18	-2832	-2823
	WRKY21	-2832	-2823
	WRKY23	-2832	-2825
	WRKY48	-2832	-2823
	WRKY8	-2832	-2824
T	WRKY28	-2833	-2823
SF	WRKY43	-2833	-2824
A_{I}	DOF5.3	-2856	-2850
	DOF2.4	-2857	-2851
	DOF5.6	-2857	-2850
	PBF	-2857	-2853
	Dof3	-2858	-2853
	PHYPADRAFT_153324	-2858	-2850
	CDF2	-2859	-2850
	DOF1.8	-2859	-2850
	PHYPADRAFT_140773	-2859	-2850
	PHYPADRAFT_38837	-2859	-2850
	WRKY2	-2873	-2866
	WRKY25	-2873	-2866
	WRKY63	-2873	-2866
	WRKY75	-2873	-2866
	WRKY18	-2874	-2865
	WRKY48	-2874	-2865
	WRKY8	-2874	-2866
	WRKY60	-2875	-2865
	UIF1	-2920	-2911
	Dof2	-2925	-2920
	Dof3	-2925	-2920
	MNB1A	-2925	-2921
	PBF	-2925	-2921
			-

AtSPT			
	Név	Start	End
	DOF5.3	-2928	-2922
	DOF5.6	-2928	-2921
	PHYPADRAFT_140773	-2928	-2919
	PHYPADRAFT_153324	-2928	-2920
	GT-1	-2930	-2923
	SGR5	-2961	-2947
	DOF5.3	-2964	-2958
Ε.	DOF2.4	-2965	-2959
Ld:	DOF5.6	-2965	-2958
A <i>tS</i>	DOE5 7	-2965	-2958
	DOF3.7	-2966	-2959
	PHYPADRAFT_153324	-2966	-2958
	DOF1.8	-2967	-2958
	PHYPADRAFT_140773	-2967	-2958
	WRKY2	-2980	-2973
	WRKY75	-2980	-2973
	WRKY40	-2981	-2972
	WRKY48	-2981	-2972

Köszönetnyilvánítás

Köszönetemet fejezem ki PhD témavezetőmnek, Dr. Kiss Erzsébetnek, hogy iránymutatásával és tanácsaival segítette a kutatásaimat, valamint a dolgozat elkészülését.

Köszönöm Dr. Heszky Lászlónak és Dr. Kiss Erzsébetnek a Genetika és Biotechnológiai Intézet korábbi igazgatóinak, hogy a munkámat a Genetika és Biotechnológiai Intézetben végezhettem.

Külön köszönöm Dr. Gulyás Andreának, hogy a kutatásaim tervezése során hasznos tanácsokkal látott el, valamint a kutatás gyakorlati megvalósításában fáradhatatlan és lelkes segítséget nyújtott.

Köszönöm Magyarné dr. Tábori Katalinnak, hogy a disszertációm készülése során hasznos tanácsaival látott el, ezzel segítve a munkámat.

Köszönöm továbbá a Genetika és Biotechnológiai Intézet, a Debreceni Egyetem Agrár Kutatóintézetek és Tangazdaság, valamint a Debreceni Egyetem Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar Agrár Genomikai és Biotechnológiai Központ összes volt és jelenlegi munkatársának a munkám támogatását.

Köszönöm a családomnak és barátaimnak, hogy türelmükkel, szeretetükkel és folyamatos biztatásukkal támogatták a munkám elkészültét.

A kutatást az OTKA K101195 "A szamóca gyümölcsfejlődése során azonosított gének és promotereik funkcionális jellemzése" című pályázat támogatta.