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1. INTRODUCTION 

Food quality defines the characteristics of food that are acceptable to the consumer, for 

that quality assurance is a fundamental topic of study. Quality encompasses many intrinsic 

and extrinsic features or attributes. These attributes are given in accordance with consumer 

expectations, including color, shape, size, freedom from defects as well as texture, 

sweetness, acidity, aroma, flavor, shelf life and nutritional value (Margeta et al., 2019; 

Petrescu, Vermeir and Petrescu-Mag, 2020).  

Quality assurance plays a critical role throughout various stages of the agriculture and 

food chain, from producing crops of high value until their transformation into final food 

products. Effective quality control at the raw material stage is essential, as it directly 

influences subsequent transformation processes within the agroindustry sector 

(Zugarramurdi et al., 2004; Pokharel, 2023). The perishable nature of many agricultural 

products and their variable quality introduce uncertainty, necessitating careful planning of 

transformation processes, as well as active involvement in primary production to ensure food 

security (Tadesse, 2024). Once raw materials are transformed into food products, their 

quality can undergo further changes. Such variations are commonly attributed to factors such 

as storage conditions, transportation, shelf life, or food treatments prior to consumption 

(Sousa Gallagher, Mahajan and Yan, 2011; Dunno et al., 2016). This highlights the need for 

quality assessments at different stages, capturing the food journey from field to table. 

Different methods are used to determine the quality of food. The most traditional methods 

comprise sensory evaluation, chemical and microbiological analyses (Ramos, 2012; Mian 

K. et al., 2017; Chauhan and Jindal, 2020). However, more advanced and less conventional 

techniques, such as spectroscopic methods, electronic nose and tongue systems, among 

others, have gained attention in recent years due to their speed, non-destructive nature, and 

potential for automation (Aouadi et al., 2020). 

This research focuses on the study of three important food matrices (eggs from hens, 

probiotic food supplements and pea microgreens), in which factors such as the diet of laying 

hens in the case of egg production can affect their organoleptic profile; temperature of water 

and concentration of probiotic powder during drink preparation may influence the viability 

of the probiotics; or environmental factors in the case of microgreens can affect their 

development and biochemical properties.  

In the field of egg analysis, sensory evaluation has traditionally been carried out by 

human panels assessing gustatory and olfactory characteristics. While valuable, this 

approach has limitations due to the inherent subjectivity and variability of human perception. 
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Given the growing interest in egg enrichment through feed modification, in the first part of 

this research, advanced sensory technologies including electronic tongue (e-tongue) and 

electronic nose (e-nose) were used to evaluate the effects of an industrial by-product in the 

diet of hens. The e-tongue, which detects soluble compounds in liquids, and the e-nose, 

which identifies volatile compounds in gases and aromas, offer an objective and reproducible 

alternative to traditional sensory analysis (Aouadi et al., 2020; Cho and Moazzem, 2022). 

These technologies have the potential to reveal subtle sensory differences in eggs resulting 

from specific feed fortification and storage conditions. By reducing the variability associated 

with human judgement, these tools could provide a more reliable and comprehensive 

understanding of egg quality. 

Moreover, new methods, based on optical techniques, have been developed to overcome 

the limitations of previous traditional methods. As a result, NIRS (near infrared 

spectroscopy) with a non-destructive, economic, environmentally friendly, fast, real time, 

and online monitoring approach has gained more popularity in recent years.  

NIRS enables the determination of quality features by optical spectral measurements, 

allowing for non-contact, real time monitoring of food samples. The prominence of this 

method in quality and features determination lies in the nature of NIR spectrum that is closely 

linked to overtones and combinations of chemical bonds between carbon, hydrogen, and 

nitrogen (C-H, O-H, N-H). All of which have an impact on several food properties (Burns 

and Ciurczak, 2008; Workman and Weyer, 2012; Ozaki, Genkawa and Futami, 2017).  

In this context, the second part of this research will explore the applicability of NIRS for 

characterizing and predicting the viability of commercial probiotic powders when exposed 

to different concentration and temperature conditions of water for beverage preparation prior 

to ingestion. These stressors, such as temperature and concentration, mimic real-life 

conditions that probiotics may encounter during preparation and storage. The primary target 

is to assess how these stressors affect the stability, viability and efficacy of the probiotics, 

ensuring that NIRS can provide a rapid, reliable and non-destructive method for monitoring 

product quality. 

The third part of this research will explore the potential of NIRS to characterize pea 

microgreens exposed to different temperature and photoperiod conditions and evaluate the 

ability of NIRS to predict important agronomic and physicochemical properties. These 

environmental stressors, such as extreme temperatures or altered light cycles, are known to 

affect plant growth and the accumulation of key compounds such as pigments and 

antioxidants, etc. The study aims to demonstrate the ability of NIRS to provide a real-time, 

non-invasive approach to monitoring plant responses to stressors and to develop more 
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efficient and accurate models for predicting the nutritional and physical quality of 

microgreens under different growing conditions, thus supporting more sustainable and 

optimized agricultural practices. 

 Although the multiple advantages of these technologies (e-nose, e-tongue and NIRS) are 

well established, they require certain level of expertise to properly analyze their 

measurements and to adjust mathematical and statistical developed models to new conditions 

and products (Siesler et al., 2002; Baldwin et al., 2011). In this dissertation, these techniques, 

combined with chemometric methods, are employed to create robust models for the 

characterization of food matrices (eggs, probiotics and microgreens) and the prediction of 

parameters. Exploratory methods like principal component analysis (PCA) are used to 

identify patterns and relationships in the data, while supervised techniques, such as 

discriminant analysis and partial least squares regression (PLSR), are applied to classify and 

predict the properties of the samples. These advanced approaches ensure that the developed 

models are both accurate and adaptable to different food products and conditions, 

highlighting the potential of these technologies for comprehensive food quality analysis. 
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2. OBJECTIVES 

The primary objective of this thesis is to determine the applicability and effectiveness of 

rapid correlative methods: near infrared spectroscopy (NIRS), electronic tongue (e-tongue), 

and electronic nose (e-nose), for assessing changes or alterations in food quality caused by 

significant stress factors, offering potential advantages over conventional quality evaluation 

techniques. 

 

The first research aim was to evaluate the applicability of e-tongue and e-nose to detect 

the possible alteration of the organoleptic properties of eggs produced by hens, with diets 

containing different levels of an organic zinc-enriched by-product. 

1. Develop models for e-tongue to discriminate, classify, and predict eggs based on the 

level of zinc-enriched by-product in the diet. 

2. Develop models for e-nose to discriminate, classify, and predict eggs based on the 

level of zinc-enriched by-product in the diet and storage time. 

 

The second aim of our study was to determine the applicability of NIRS to detect changes 

in probiotic drinks prepared with varying concentrations of probiotic powder and different 

water temperatures prior to consumption. 

1. Develop models for characterization of three commercial probiotic food 

supplement powders containing lactic acid bacteria (LAB) subjected to probiotic 

concentration and water temperature conditioning factors. 

2. Develop models for viability prediction of lactic acid bacteria (LAB) from three 

commercial probiotic food supplement powders subjected to probiotic 

concentration and water temperature conditioning factors. 

 

The third research aim was to determine the applicability of NIRS for detecting changes 

induced by different environmental conditions during the growth of pea microgreens. 

1. Develop models to characterize pea microgreens and predict key agronomical and 

physicochemical properties under varying temperature and photoperiod conditions. 

2. Develop and assess models for two different sample types: microgreens fresh-cut 

samples and aqueous microgreens extracts samples. 

 

 

 



5  

3. LITERATURE REVIEW 

In this section, a comprehensive exploration of quality assessment methods for food materials 

(eggs, probiotics and pea microgreens) is conducted. The first section examines the quality 

assessment of eggs from hens, addressing their nutritional composition, the influence of various 

factors on their sensory and nutritional profiles, and sensory evaluation methods, including both 

conventional and emerging techniques which emphasis in e-tongue and e-nose. The review then 

shifts to quality evaluation of probiotics, highlighting their significance for human health, the 

factors impacting probiotic viability, and microbiological assessment methods. The quality 

assessment of pea microgreens follows, covering their importance and factors influencing plant 

quality. The review also insights on near infrared spectroscopy as a novel innovative tool for food 

quality analysis with emphasis in its application for microbiological assessment and for evaluating 

plant parameters. Finally, the role of chemometrics in preprocessing, analyzing and interpreting 

complex data from these advanced techniques is addressed, underscoring its importance in modern 

food quality assessment. 

 

3.1. Quality evaluation of eggs from hens 

3.1.1. Importance of eggs in human nutrition  

Hen eggs are recognized as important for their contribution to human nutrition. The 

nutritional profile of eggs is notably rich in a diversity of elements, encompassing in first place 

essential macronutrients such as proteins of high quality and bioavailability, a balanced fatty acid 

composition, and a relatively low content of carbohydrates (IEH, 2009; Chasapis et al., 2020; 

Hailemariam et al., 2022). The  richness of eggs in high quality protein content makes them 

particularly important as they contain essential amino acids vital for human health (Réhault-

Godbert, Guyot and Nys, 2019).  

Eggs are appreciated for possessing a large number of essential micronutrients, including 

vitamins (such as A, B2, B12 and D, E, etc) and minerals (such as phosphorus, selenium, iron, 

choline, and zinc, etc) (IEH, 2009). In particular, the inclusion of zinc is relevant for the diets of 

both animals and humans which influences a greater variety of essential life functions than any 

other individual micronutrient  (Lowe et al., 2024). Turan (2019) and Chasapis et al. (2020) 

mentioned the essential role of zinc in various physiological processes. This element compromise 

immune system function, wound healing, DNA synthesis, cells differentiation, normal growth and 

development, and enzyme activation or inhibition, marking vital to include it in the diet for the 

human body. When the diet is unbalanced, it can lead to a rapid zinc deficiency, given the body's 
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inability to store zinc reserves. While severe zinc deficiency is uncommon, mild deficiencies are 

frequently reported globally. Zinc is primarily linked to antioxidant properties, and numerous 

studies also have explored its association with the risk of cancer (Skrajnowska and Bobrowska-

Korczak, 2019; Mukherjee, Chakraborty and Chakraborty, 2020). According to the 2001 dietary 

reference intake (DRI) guidelines, released by the National Academies of Sciences, the 

recommended daily dietary intake of zinc is 8 mg for children aged 9–12 years and females 

(excluding those aged 14–18 years, who require 9 mg/day); meanwhile, for males, a daily intake 

of 11 mg is advised (Trumbo et al., 2001). Zinc from the diet is absorbed in the small intestine and 

distributed throughout the body. The major zinc reservoirs are bones and skeletal muscles, storing 

30% and 60%, respectively.  Other organs like the brain, liver, kidney, pancreas, spleen, etc., 

collectively account for only 10% (Hara et al., 2017). Adding zinc, an essential trace element, 

contributes to the rich nutritional profile of eggs (Miranda et al., 2015; Réhault-Godbert, Guyot 

and Nys, 2019). 

Most researchers suggest that moderate egg consumption improves health nutrition and 

does not pose a significant risk of cardiovascular diseases attributed to dietary cholesterol. 

However, the debate persists regarding whether high egg intake could elevate the risk, particularly 

in individuals with preexisting risk factors such as type 2 diabetes (Blesso and Fernandez, 2018; 

Réhault-Godbert, Guyot and Nys, 2019; Drouin-Chartier et al., 2020).  

3.1.2. Factors affecting the quality of eggs  

Various factors, genetic and non-genetic, determine the characteristics of eggs, which are 

related not only to their physical attributes but also the nutritional and sensory characteristics of 

eggs (Berkhoff et al., 2020; Hailemariam et al., 2022). The inherent traits of a hen, which are 

largely determined by its genetics, play a role in influencing the composition of its eggs. The 

genetic factors are the ones that set the productive potential of animals and have influence on the 

levels of essential nutrients, such as proteins, vitamins, and minerals, as well as impact the overall 

sensory perception of the end product (Goto et al., 2019; Hejdysz et al., 2024). On the other hand, 

non-genetic factors encompass different elements, from the hen's diet and living conditions to 

environmental stressors. The diet, for instance, is one of the most important factors that directly 

affects the nutritional richness of the egg and also is related to variations in the sensory attributes 

(Leeson, Caston and Maclaurin, 1998; Hammershøj and Johansen, 2016; Kaewsutas, 

Nararatwanchai and Sittiprapaporn, 2016; Fatogoma et al., 2023).  

The careful selection and breeding of hens with desirable genetic characteristics, coupled 

with an effective nutrition, are fundamental and determine the nutritional composition of eggs. 

Different dietary strategies for egg enrichment have proven effective in elevating the levels of 
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omega-3 fatty acids (Betancourt and Díaz, 2009), essential vitamins such as B12 and D 

(Betancourt and Díaz, 2009; Kaewsutas, Nararatwanchai and Sittiprapaporn, 2016; Lima and 

Souza, 2018) and essential microelements, including iron (fe), zinc (zn), copper (cu), between 

others (Inal et al., 2001; Ramadan et al., 2010; Yu et al., 2020). 

 

A proper selection and formulation of diets for laying hens is also relevant because it can 

affect the sensory properties of the eggs they produce. Various ingredients incorporated into the 

diet, such as herbs, specific grains, and particular sources of fatty acids, have the potential to 

directly influence the organoleptic characteristics of the eggs (Leeson, Caston and Maclaurin, 

1998; Hammershøj and Johansen, 2016; Brelaz et al., 2019). Moreover, the use of by-products 

that incorporate different nutrients and that are used as feed for animals have become of interest, 

as they typically exhibit characteristics that are beneficial in comparison to conventional synthetic 

chemical products (Świa̧tkiewicz and Koreleski, 2008; Moon and Jung, 2010; Fontinele et al., 

2017). They are considered more sustainable, often possessing a reduced environmental footprint 

that are in alignment with eco-friendly agricultural practices (Nunes et al., 2024). By-products 

originating from industrial processes can retain essential nutrients such as protein, fats, between 

other macro and microelements; as well as bioactive compounds such us: polyphenols, 

carotenoids, vitamins, organic acids, nucleotides, and phytosterols. Consequently, these by-

products are frequently utilized for animal feed or as fertilizer, or they are discarded in landfills or 

incinerated (de Castro et al., 2020). As mentioned through this section, despite the benefits that 

different formulas can exhibit, it is relevant to recognize that, while modifying the diet can enhance 

the nutritional properties of eggs, there exists a potential to alter their sensory characteristics.  

 

3.1.3. Eggs sensory evaluation methods 

Traditional sensory evaluation methods, encompassing visual inspection, taste testing, and 

aroma assessment, have long been employed to gauge the organoleptic qualities of eggs. Several 

studies have evaluated changes in the sensory characteristics of eggs induced by storage time 

(Adamiec et al., 2002; Sati et al., 2020; Nwamo et al., 2021). Furthermore, these analyses also 

evaluate the influence of different housing or production systems, such as conventional and 

organic methods. Not to mention, assessing overall egg quality and characteristics, especially after 

enriching them with various bioactive components. Enriching eggs with bioactive compounds that 

positively affect consumer health can enhance the properties of egg products. However, it is crucial 

for the eggs to maintain compositional stability and meet sensory expectations for consumer 

satisfaction (Margeta et al., 2019).   
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The methods for sensory evaluation of eggs involve a systematic process carried out by a 

trained or an untrained sensory panel. A trained panel typically comprises individuals with 

expertise in food science and sensory analysis. The selection of sensory methods for evaluating 

egg sensory attributes is contingent upon the test objective and test type, where the selection of 

right assessors, proper area for testing, and appropriate preparation of samples must be achieved 

(Margeta et al., 2019). The sensory panel, often consisting of 8 to 12 trained individuals, 

participates in blind taste testing, where they evaluate characteristics such as flavor, texture, and 

overall palatability. A carefully selected number of egg samples are presented to the panel 

members, who systematically assess various sensory attributes. The presentation of samples 

follows a randomized order to prevent bias, and panelists may cleanse their palates between 

samples using water or unsalted crackers. Attributes such as egg color, yolk consistency, and 

overall appearance are also scrutinized visually (Hayat et al., 2010; Kalus et al., 2020). A 

controlled environment (illumination and air conditioning, noise level, available space) is 

maintained to eliminate external influences that may affect the evaluators' perceptions. Each 

panelist is provided with multiple samples of eggs, to ensure a comprehensive assessment 

(Margeta et al., 2019).  

Complementary, novel methods have emerged to enhance the precision and 

comprehensiveness of sensory evaluations. Advanced techniques, developed in the late 20th 

century, include electronic nose (e-nose) and electronic tongue (e-tongue), that utilize 

sophisticated sensors to detect and analyze specific odor and taste profiles that may be suitable for 

evaluating the quality of eggs. 

   

3.2. Electronic tongue and electronic nose 

The food industry has recently implemented high-performing systems across the production 

chain, particularly with the arrival of electronic tongue and electronic nose technologies, also 

known as e-senses (Modesti et al., 2022). These innovative methods have gathered significant 

attention from researchers and industries as viable alternatives to human sensory testing (Aouadi 

et al., 2020; Cho and Moazzem, 2022). When combined with advanced chemometric tools, e-

senses provide a high-throughput and cost-effective approach that reduces reliance on traditional, 

labor-intensive methods (Aouadi et al., 2020). They address common challenges associated with 

sensory evaluations conducted by human panels, such as subjectivity, sensory fatigue among 

panelists, high costs, and time-consuming procedures (Cho and Moazzem, 2022).  

The electronic nose (e-nose) try to mimic human and animal olfaction by using sensors that 

interact with odor molecules to produce electronic signals analyzed by a computer employing 
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multivariate statistics to extract the corresponding pattern (Baldwin et al., 2011; Aouadi et al., 

2020). E-noses can utilize various sensors, including organic polymers, metal oxides, quartz 

crystal microbalances, and can also incorporate gas chromatography (GC) with mass spectrometry 

(MS) to enhance their non-selective detection capabilities (Baldwin et al., 2011). 

For instance, an advanced type of e-nose, like The Heracles II electronic nose (Alpha MOS), 

features a rapid gas chromatograph designed for odor separation, an ion flame detector for 

identifying volatile compounds, and robust data processing software that correlates with sensory 

panel results. Once calibrated, the device can substitute sensory panels for routine quality control 

(AlphaM.O.S., 2018; Cho and Moazzem, 2022).  

This device employs a dual-column gas chromatograph with two detectors to achieve enhanced 

compound separation and detection. The system uses Kovats retention index (RI) to standardize 

the retention times of volatile compounds, enabling more accurate identification and comparison 

across different chromatographic instruments and conditions (AlphaM.O.S., 2018). 

The index is calculated by interpolating the retention times of a target compound between two n-

alkanes with known carbon chain lengths. Each n-alkane is assigned an index based on its carbon 

number multiplied by 100, meaning that hexane (C6) has an index of 600, heptane (C7) is 700, 

and so on. (Babushok, 2015; AlphaM.O.S., 2018) 

This approach is particularly useful in aroma profiling because it allows the comparison of 

chromatograms across different instruments and experimental setups. The Kovats index improves 

compound identification accuracy when coupled with mass spectrometry or other databases 

(Babushok, 2015). In the context of food analysis, Kovats index values are frequently employed 

to identify relevant volatile compounds responsible for sensory attributes, such as flavor and aroma 

(Umano et al., 1990; Bianchi et al., 2007). 

The use of Kovats retention indices in electronic nose systems, such as the Heracles NEO, is 

central to the identification of volatile compounds. The system relies on this index to map volatile 

fingerprints against the AroChemBase library, allowing for rapid identification of unknown 

substances in food products (AlphaM.O.S., 2018). 

Electronic tongue (e-tongue) devices function by employing artificial sensors that try to mimic 

the human tongues, with cross-sensitivity and partial selectivity to analyze substances in liquids. 

Cross-sensitivity allows the sensors to respond to multiple compounds rather than being specific 

to a single analyte, improving their ability to detect complex mixtures. Partial selectivity ensures 

that while the sensors are not entirely specific, they exhibit a degree of preference for certain 

compounds or classes of substances. This combination allows e-tongues to capture subtle 

differences in chemical compositions, producing a unique chemical pattern, commonly known as 

a "fingerprint" which characterizes each sample. This fingerprinting technology serves as the core 
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principle for artificial taste sensing instruments (Kovacs et al., 2020). The non-selective sensors 

of the e-tongue generate unique signal combinations or fingerprints. E-tongues use various sensors 

responsive to salts and sugars, transmitting signals to a computer for analysis, this in certain sense 

is compatible with human tongue, although the later has around 10,000 taste buds with 50 to 100 

taste cells each that detect five primary flavors: sweet, sour, bitter, salty, and umami. The common 

e-tongue sensor types include potentiometry, voltammetry, and impedance spectroscopy (Baldwin 

et al., 2011). For instance, Alpha MOS manufacturer, specializes in producing potentiometric 

electronic tongues with array of electrodes, a reference sensor and autosampler system (Cho and 

Moazzem, 2022). 

The e-tongue, e-nose, or a combination of both can serve as an efficient and robust tool for 

evaluating sensory profiles and detecting quality, showing substantial correlations with human 

sensory evaluations. These instruments are frequently acknowledged for their heightened 

sensitivity in detecting subtle changes or differences that may go unnoticed by a human panel (Cho 

and Moazzem, 2022). Regarding studies involving egg quality assessment, electronic sensory 

evaluations have been most commonly applied to estimate the freshness status of eggs throughout 

storage (Yimenu, Kim and Kim, 2017), and to evaluate differences of sensory qualities of eggs 

from different laying breeder strains (Dong et al., 2021; Gao et al., 2022).   

The combination of traditional and novel sensory evaluation methods allows for a 

comprehensive understanding of the egg's sensory profile. This combined approach allows for the 

evaluation of traditional sensory characteristics while also incorporating modern technologies to 

detect subtle differences that might be missed in traditional assessments. 

3.3. Quality evaluation of probiotics 

3.3.1. Importance of probiotics for human health 

The conventional description of probiotics involves live microorganisms that, when 

supplied in sufficient amounts, offer health advantages to the host by promoting a positive balance 

of microbiota and their functions in the gastrointestinal (GI) tract (FAO/WHO, 2002; Parker et al., 

2018). Probiotics have emerged as necessary elements in the domain of food supplements. These 

microbial organisms, predominantly sourced from bacterial groups such as Lactobacillus, 

Bifidobacterium, and Enterococcus, as well as yeast strains like Saccharomyces boulardii, play a 

vital role in shaping the delicate balance of the human microbiota  (Menezes et al., 2018; Sanders 

et al., 2018).    Their significance extends beyond the realms of traditional fermented foods, such 

as yogurt and sauerkraut, into the front line of dietary supplements, where they're principally 

employed in a freeze-dried powder format and generally encapsulated, formed into tablets, or 
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presented as powder in stick packaging or sachet formats to preserve the unique microbial 

properties for convenient and targeted consumption (Nagashima et al., 2013; Hill et al., 2014; 

Fenster et al., 2019; Gómez-Gaete et al., 2024). Probiotics act as helpers of digestive health, 

harmonizing multiple benefits that encompass optimal nutrient absorption, safeguarding of 

harmful microbial overgrowth, and the conservation of a harmonious microbial community. A 

disturbance in the balance of the microbiota has been linked to over 25 diseases affecting the 

gastrointestinal system, autoimmune responses, and emotional well- being, among others (De Vos 

and De Vos, 2012). Probiotics are commonly employed for the prevention and regulation of 

conditions such as inflammatory bowel diseases, diarrhea, and liver disorders; and reducing the 

risk of cardiovascular conditions, hypertension, obesity, arteriosclerosis, cancer, and slowing 

down the aging process (Sanders et al., 2018; Eslami et al., 2019; Oniszczuk et al., 2021; 

Choudhary et al., 2023). 

When presented in the form of powder, granules, or capsules, probiotics offer a unique 

versatility in their composition (Li et al., 2017; Baral et al., 2021; G. Wang et al., 2022). These 

supplements may host a single strain of beneficial microorganisms, ideal for addressing specific 

health concerns or leveraging the benefits associated with a particular strain. Alternatively, some 

products are strategically formulated with multiple strains, creating a diverse cast of beneficial 

microorganisms that can collaboratively provide a broader range of health benefits (Kwoji et al., 

2021). It is crucial to thoroughly review the label of each product to understand the specific strains 

present and ensure they align with desired health goals. Additionally, some formulations may 

integrate prebiotics, substances that nourish and promote the growth of probiotics in the digestive 

system, adding an additional level of complexity and holistic benefits to these probiotic 

supplements (Peng et al., 2020; Kwoji et al., 2021). This combination highlights the multifaceted 

nature of probiotics, emphasizing their adaptability and broad spectrum of potential advantages 

for overall health. 

3.3.2. Factors affecting the viability of probiotics 

The effectiveness of probiotics for human health can be influenced not only by the 

composition of these probiotic supplements but also by external factors that may affect their 

characteristics or properties. Biopolymers with specific biocompatible and biodegradable 

properties such as chitosan, pectin, starch, alginate, maltodextrin, cellulose and other polymeric 

compounds, play a pivotal role as carriers frequently used to encapsulate and  ensure the viability 

of live probiotic microorganisms (Asgari et al., 2020; G. Wang et al., 2022; Xie et al., 2023). 

Maltodextrin, derived from starch through partial hydrolysis, serves as a soluble and easily 

digestible carrier. Its high solubility makes it suitable for various probiotic formulations, including 
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powders and capsules. Additionally, maltodextrin can act as a source of energy for 

microorganisms. On the other hand, cellulose, a complex carbohydrate found in plant cell walls, 

serves as an inert carrier due to its resistance to digestion by human enzymes. This property allows 

cellulose to protect probiotics from environmental factors and stomach acids until they reach the 

intestines. 

Several critical factors during the manufacturing, packaging, and storage processes need 

to be considered to ensure the viability and potency of probiotics (Baral et al., 2021; G. Wang et 

al., 2022). Temperature control is vital, as probiotics are sensitive to high temperatures that can 

compromise their viability. Moisture levels must be carefully managed, as excessive humidity can 

activate probiotic microorganisms prematurely, reducing their shelf life. Acidity, particularly in 

the stomach environment, poses a challenge to probiotic survival, necessitating the use of enteric 

coatings or acid-resistant capsules. Oxygen exposure during manufacturing and packaging can 

lead to oxidation, potentially impacting probiotic viability. The temperature and pH conditions 

required for certain probiotics can exhibit variability. For instance, the optimal temperature for 

many probiotics is typically between 35-39°C, which is near to the 37 °C of the human body 

temperature. Regarding pH, most probiotics thrive within a pH range of 2.5 to 8.0, allowing them 

to withstand stomach acidity and colonize the intestine (Asgari et al., 2020; Xie et al., 2023).  

Temperature is one of the most important factors and a vast amount of research was carried 

out employing various methods to assess the thermal resistance of probiotics, such as simulating 

probiotic growth under diverse fermentation temperatures and evaluating the thermal stability of 

probiotics during manufacturing, storage, and transportation. For example, in probiotic 

manufacturing, examining spray-dried lactic acid bacteria (LAB) exposed to elevated growth 

temperatures demonstrated that following heat treatment at 60°C, the survival of heat-adapted 

Lactobacillus cremoris and Lactobacillus rhamnosus GG increased by 0.7-1.5 and 0.3 log, 

respectively (Hao et al., 2021). In an assessment of the preservation of LAB probiotics through 

three double-microencapsulation techniques, microencapsulated LAB exposed to the three 

methods exhibited enhanced tolerance to elevated temperatures in comparison to free cells, they 

were exposed for 60 min at 60 °C, for 30 min at 70 °C, and for 30 s at 80 and 100 °C (Pupa et al., 

2021). Concerning fermentation and storage conditions, an assessment of lactic acid beverages 

containing probiotics (stored for 21 days at 7 °C) indicated a preference for fermentation 

temperatures of 37°C over 45 °C, attributing this choice to improved storage stability (Fiorentini 

et al., 2011). 

While most probiotics are designed to withstand a range of temperatures, however, extreme 

heat may negatively affect the live microorganisms. Exposing probiotics to elevated temperatures, 

as encountered in processes like blanching, canning, or high-temperature cooking methods, is not 
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feasible as it exceeds 80°C, leading to cell death (Liu et al., 2014). Hot water may lead to a 

reduction in viability, as heat can compromise the structural integrity and metabolic activity of the 

beneficial bacteria and yeast strains. Manufacturers play a vital role in ensuring probiotics' 

viability by addressing factors like temperature, moisture, and packaging. However, consumers 

also contribute by storing supplements properly and when preparing probiotic drinks following 

dosage and water temperature instructions. Proper adherence to these guidelines maximizes the 

potential health benefits of probiotics, promoting digestive health and overall well-being. Several 

products available in the market incorporate probiotic bacteria; nevertheless, the quantity of 

bacteria present in the product might not consistently align with the manufacturer's stated 

declaration (Zawistowska-Rojek, Zaręba and Tyski, 2022).  

 

3.3.3. Microbiological assessment methods  

Traditional microbiological techniques have long been employed to assess the quality and 

viability of probiotics. These methods typically involve cultivating microorganisms under specific 

conditions and observing their growth and characteristics. The most common technique for 

assessment is plate counting. This classic method involves spreading a known volume of a 

probiotic sample on a solid growth medium, allowing viable microorganisms to form visible 

colonies. The plate count method, while straightforward, necessitates extended incubation periods 

and the careful choice of suitable culture media. The assessment of probiotic microbe counts in 

medicinal products, dietary supplements, or specialized medical foods is primarily contingent on 

the product's composition (featuring one, two, or multiple microorganism types) and its format 

(capsules, powder, drops, tablets) (Zawistowska-Rojek, Zaręba and Tyski, 2022). Microscopic 

examination is another technique where direct observation under a microscope allows for the 

assessment of microbial morphology, motility, and cellular structure (Schmolze et al., 2011; 

Pasulka et al., 2021). Most probable number (MPN) method is also currently employed. This 

statistical method estimates the number of viable microorganisms based on the presence or absence 

of growth in a series of liquid media tubes (Weenk, 2003). While these methods are well-

established, they often require time, skilled personnel, and may not capture the full complexity of 

the probiotic community.  

In recent years, new methods like flow cytometry, PCR (Polymerase chain reaction), and 

near infrared spectroscopy (NIRS) have emerged to overcome some of the challenges posed by 

traditional microbiological techniques in assessing probiotics. Of these, NIRS is particularly 

notable for its speed and non-destructive nature, requiring minimal sample preparation while 

handling large numbers of samples efficiently. By capturing detailed spectral data that reflect the 
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chemical and physical traits of probiotic samples, NIRS enables a more thorough evaluation of 

microbial viability and quality. 

 

3.4. Quality evaluation of pea microgreens 

3.4.1. Importance of microgreens in human nutrition 

The cultivation of microgreens has attracted increasing attention in the fields of functional 

foods and modern gastronomy (Paraschivu et al., 2022; Singh et al., 2024). Microgreens represent 

an early stage of growth for edible plants. They are cultivated in different substrates and are 

characterized by their small leaves and intense flavors. The harvesting of microgreens is done 

when they have reached only a few inches in height and have developed their first true leaves  

(Lone, Pandey and Gayacharan, 2024). This occurs typically within one to two weeks after 

seedling. They are particularly suitable for vertical farming for short cultivation cycle, high 

seeding density, compact height, and high market value (Balázs et al., 2023). The cultivation and 

consumption of microgreens is attributed to the their freshness and the high concentration of 

nutrients and bioactive compounds (Gunjal et al., 2024).  

Plants that have been traditionally cultivated for their seeds, such as peas, beans, cereals, 

and sunflowers, are now harvested as microgreens (Balázs et al., 2023). A wide range of species 

can be consumed as microgreens, with Brassicaceae varieties, particularly broccoli, dominating 

the global market at 15%, followed closely by arugula at 9%. Paraschivu et al. (2022) has also 

mentioned a variety of plants that can be cultivated as microgreens, including amaranth, mustard, 

parsley, celery, cilantro, kale, beets, and basil; various cereals, such as rice, oats, wheat, corn, and 

barley; as well as legumes such as chickpeas, beans, and lentils. 

Microgreens are rich in phytonutrients such as vitamins, minerals, carotenoids, 

polyphenols, and organic acids. In fact, their concentration can be up to forty times higher than 

those found in mature leaves. It has been mentioned that a regular consumption of fruits and 

vegetables with high levels of these compounds can reduce the risk of chronic conditions such as 

cardiovascular conditions, diabetes, cancer, and degenerative disorders (Xiao et al., 2016; Zhang 

et al., 2021; Gunjal et al., 2024). 

A number of phenolic compounds have antioxidant capacity such as phenolic acids, 

flavonoids and tannins. They are common secondary metabolites that can repair the damage 

caused by free radicals (Dai and Mumper, 2010). Antioxidants are a type of phytonutrient that 

helps to mitigate the damage caused by oxidative stress. This category includes vitamin C, 

carotenoids, phenolics, and minerals such as copper, zinc, and selenium, among others. Several 

studies have reported higher levels of antioxidants in microgreens compared to their mature 
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counterparts, meanwhile others, have indicated the opposite by showing  higher levels of 

antioxidants in mature plants (Pinto et al., 2015; Choe, Yu and Wang, 2018; Yadav et al., 2019; 

Di Bella et al., 2020). Evaluating microgreens from five Brassica species researchers identified 

164 polyphenols; showing that microgreens possess a richer polyphenol composition and higher 

concentrations than mature Brassica plants, making them valuable sources of antioxidants (Cartea 

et al., 2011; Sun et al., 2013). 

In another comparative study, the ascorbic acid, total phenolics (expressed in gallic acid 

equivalent - GAE), and total flavonoids (expressed in Catechin equivalents – CE) in microgreens 

ranged from 6.00 to 46.50 mg/100 g, 25.00 to 152.10 mg GAE/100 g, and 9.58 to 142.39 mg 

CE/100 g, respectively. In contrast, these same compounds in mature leafy greens presented ranges 

of 10.00 to 199.99 mg/100 g, 69.01 to 313.92 mg GAE/100 g, and 43.00 to 292.53 mg CE/100 g.  

Carotenoids and phenolics are present in significant amounts in microgreens. Carotenoids, 

which include pigments such as β-carotene and lutein, possess antioxidant properties (Rodriguez-

Amaya, 2015). In a study analyzing microgreens of wheat and barley, it was observed that 

carotenoid content increased significantly during the microgreen phase, surpassing that of the seed 

phase (Niroula et al., 2019). 

Several researchers have compared concentrations of microelements, which have shown 

that antioxidant levels in microgreens vary among species. For instance, Lenzi et al. (2019) found 

that small burnet presents higher concentrations of zinc and selenium compared to dandelion. Xiao 

et al. (2016), showed that rapini microgreens had the highest zinc content among 30 varieties of 

Brassicaceae. Kyriacou et al. (2019), evaluating 13 microgreen species, noted that pak choi and 

tatsoi had higher total chlorophyll content, while mustard had the highest concentration of 

anthocyanins. Marchioni et al. (2021), evaluating five microgreens of Brassicaceae family, 

indicated that anthocyanins were more abundant in mustard, while broccoli had the highest total 

polyphenol content compared to other microgreens. According to Xiao et al. (2012) red sorrel, 

cilantro, and red cabbage stand out for their high β-carotene content, with cilantro and red sorrel 

also showing elevated concentrations of lutein and zeaxanthin. Such compositional differences 

among microgreens are often related to the specific genetic characteristics of each specie and 

differences in their photosynthetic efficiency and metabolic regulation (Niroula et al., 2019). 

A study evaluated ten species for seed germination, growth, and consumer acceptance. 

Among these, lettuce, carrot, and green peas were the most favored. For antioxidant activity, green 

pea microgreens showed a higher total phenolic content (1871 mg/100 g dry weight) compared to 

their seeds and sprouts, indicating enhanced nutritional value at this stage (Senevirathne, Gama-

Arachchige and Karunaratne, 2019). 
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3.4.2. Factors affecting the quality of microgreens 

The cultivation of microgreens involves the management of biotic and abiotic conditions 

to ensure their proper development and an optimal yield. Some of the most important factors 

include the selection of suitable species, proper growing techniques, substrate selection, using seed 

of quality, implementing proper irrigation and fertilization, maintaining phytosanitary standards, 

and employing effective postharvest storage practices (Di Gioia, Renna and Santamaria, 2017; 

Ebert, 2022). Environmental factors, such as temperature, humidity, and photoperiod, are also 

determinant for proper microgreen growth. 

Temperature is a factor that significantly impacts the growth and development of plants, 

with various species having specific temperature requirements (Wheeler et al., 2000).  The ideal 

conditions for producing microgreens may vary depending on the plant species or variety. 

However, it is considered as a mild temperature for growth between 18 to 25 °C. When the 

temperatures is above this range, it can increase the microbial growth (Li, Lalk and Bi, 2021). In 

case of extreme temperatures the germination can be delayed and the plant can suffer from heat 

stress which negatively affects its development (Wheeler et al., 2000). Additionally, high ambient 

temperatures can disrupt stomatal production which in consequence increase the risk of thermal 

damage and dehydration (Driesen et al., 2020). Another important consideration regarding 

temperature is its influence in the nutrient content and absorption of sprouts, as well as the 

accumulation of phytochemicals. Studies involving sprouts show that when they are germinated 

at lower temperatures, they tend to exhibit improved phytochemical properties and higher levels 

of antioxidant activity (Calderon Flores et al., 2021; Kim et al., 2022). For instance, by 

maintaining temperatures below 4 °C for approximately four days, it is enhanced antioxidant 

content accumulation (Kim et al., 2022). Thus, it is necessary to maintain optimal temperature 

ranges during cultivation to promote metabolic processes and facilitate the conversion of stored 

nutrients into energy. 

Regarding to relative humidity (RH), microgreens generally grow adequately in 

environments with RH levels between 30% and 70%, although research on the precise humidity 

requirements is still limited (Li, Lalk and Bi, 2021). An effective air circulation is very important 

for promoting healthy growth and reducing the risk of diseases, as it helps regulate both 

temperature and humidity within the growing area (Chakraborty et al., 2014; Sharma et al., 2016). 

This can be achieved by using horizontal airflow fans or natural air vents to facilitate air exchange. 

Adequate air movement is also important for preventing mold, particularly in species prone to 

mildew. For optimal growth, microgreens should be grown at a pH of 6.56 to 7.54, with an 

electrical conductivity of 0.41 mS cm−1 of nutrient solution in fertigation (Kyriacou et al., 2020). 
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However, the electrical conductivity in agricultural irrigation water commonly ranges from 0 to 3 

mS cm−1, depending on the source and water quality standards (Moliner and Masaguer, 1996). 

Light is fundamental for the cultivation of microgreens, as it directly influences their 

growth and development. To achieve optimal growth, the use of light emitting diodes (LED) lights 

is recommended, as they are efficient and capable of emitting specific spectrums, primarily red 

and blue light, that plants absorb, which favor photosynthesis. The ideal light intensity ranges from 

120 to 220 µmol m−2 s−1, and a photoperiod of 12 to 16 hours is common. It is essential to allow 

adequate periods of darkness for processes like respiration. Moreover, photoperiod influence the 

antioxidant content of microgreens. In red beet microgreens a 16-hour light cycle increased 

phenolic compounds, total betalains, and antioxidant capacity compared to the 12-hour light cycle 

by 32%, 49%, and 25%, respectively, but decreased overall yield by 23%. In contrast, a 12-hour 

photoperiod yielded more microgreens and improved resource efficiency. Thus, while the longer 

photoperiod enhanced antioxidant properties, the shorter cycle was more beneficial for growth and 

resource management (Hernández-Adasme, Palma-Dias and Escalona, 2023). Historically, 

growers enhanced natural lighting with gas-discharge lamps (GDL), but now LEDs are becoming 

increasingly important in the horticultural sector as advancements in artificial lighting 

technologies continue (Ajdanian, Babaei and Aroiee, 2019). The light quality significantly 

influences various facets of plant growth and their phytochemical properties (Brazaitytė et al., 

2018; Ajdanian, Babaei and Aroiee, 2019). Researches indicate that red and blue light can 

positively impact certain crops; for instance, (Ajdanian, Babaei and Aroiee, 2019) observed that 

cress plants exposed to red and blue light produced greater yields than those grown under natural 

light. Additionally, it has been noted that red and blue light can promote elongation in crops like 

cabbage, kale, arugula, and mustard without compromising their yield or quality (Kong and Zheng, 

2019). Furthermore, other studies investigated how different light intensity levels affect the growth 

of pea microgreens in hydroponic setups. After a 12-day growth period under both consistent and 

inconsistent lighting conditions, measurements were taken for the plants' fresh weight and shoot 

height. Although the overall yield was comparable for trays with the same average photosynthetic 

photon flux density (PPFD), variations in local light intensity accounted for 31% of the differences 

in fresh weight. These findings highlight the importance of light distribution in enhancing 

microgreen cultivation within vertical farming systems (Balázs et al., 2023). 

3.4.3. Microgreens status assessment methods 

Understanding how environmental and agronomic factors influence microgreens requires 

accurate methods to assess their growth, composition, and quality. By evaluating both individual 
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traits and their combined effects, we can gain comprehension on how these plants respond to 

varying conditions. 

Key growth parameters, such as height and weight (both fresh and dry), are crucial indicators 

of the agronomic performance of microgreens. Tools such as rulers or digital calipers, precision 

scales and drying ovens are used to measure these parameters (Lenzi et al., 2019; Balázs et al., 

2023). 

Chemical and optical measurements play a crucial role in understanding the quality and 

composition of microgreens. For visual appearance, the Lab color system is often employed, where 

lightness L*, redness a*, and yellowness b* are measured using tools like colorimeters or 

spectrophotometers. On the chemical level, parameters such as pH, conductivity, and °Brix are 

assessed with portable instruments, providing insight into acidity, mineral content, and sugar 

content (Araméndiz, Cardona-Ayala and Alzate, 2017; Li et al., 2017). 

The nutritional properties of microgreens are linked to their pigment and bioactive compound 

content. Pigments such as chlorophyll A, chlorophyll B, and carotenoids, are evaluated for their 

impact in photosynthesis and visual appearance. Total polyphenols and antioxidant capacity are 

analyzed to gauge the health benefits these plants offer. These assessments are commonly 

performed using spectrophotometric methods with advanced techniques such as high- 

performance liquid chromatography (HPLC) (Kyriacou et al., 2019; Niroula et al., 2019; Di Bella 

et al., 2020). 

Given the influence of environmental factors on microgreen quality, near infrared spectroscopy 

could offer a promising approach to assessing how these conditions affect microgreen 

characteristics. NIRS has the potential for rapid, non-destructive analysis of the chemical and 

physical properties of plant materials, which may provide insights into changes in nutritional 

content, phytochemical composition, and overall quality under various environmental influences. 

 

3.5. Near infrared spectroscopy  

Near infrared spectroscopy (NIRS) is a non-destructive analytical technique that utilizes the 

near infrared region of the electromagnetic spectrum (wavelengths between 800 and 2500 nm) 

(Burns and Ciurczak, 2008; Workman and Weyer, 2012; Ozaki, Genkawa and Futami, 2017). It is 

widely employed for qualitative and quantitative analysis in various fields, including chemistry, 

agriculture, pharmaceuticals, and food science. Significant recognition is due to researchers in the 

field of agricultural science, particularly K. H. Norris (Burns and Ciurczak, 2008). 

NIRS detects molecular vibration responses within the near infrared region of the 

electromagnetic spectrum. This analytical technique relies on the interaction of near infrared light 
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with the overtones and combinations of fundamental vibrations of molecular bonds, such as C-H, 

N-H, and O-H bonds. As near infrared light is absorbed by these molecular vibrations, 

characteristic absorption bands are generated, providing valuable information about the chemical 

composition of the sample (Siesler et al., 2002; Burns and Ciurczak, 2008; Ozaki, Genkawa and 

Futami, 2017). NIRS excels in quantitative analysis, enabling the simultaneous measurement of 

multiple components within a sample. The technique is non-destructive, allowing for real-time 

analysis without the need for complex sample preparation (Siesler et al., 2002; Ozaki, Genkawa 

and Futami, 2017). Calibration models, established with reference values, permit NIRS to predict 

concentrations of specific constituents in unknown samples, while also facilitating the 

characterization of complex matrices by identifying important spectral features and chemical 

properties (Siesler et al., 2002).  

In its basic configuration, NIRS equipment typically consists of a light source, a sample 

interface, a spectrometer and a detector. After passing through the sample, light is broken down 

into different wavelengths by a prism or a grating (although other mechanisms may also be used) 

and is sensed by the detector. The collected data is used to construct the absorption spectrum of 

the sample (Siesler et al., 2002; Aouadi et al., 2020). Numerous studies that aimed at improving 

the reliability of NIR techniques have led to the creation of diverse instruments, such as 

interference filter spectrometers, scanning grating spectrometers, LED-based spectrometers, 

Acousto-Optic Tunable Filters (AOTF) devices, diode array grating polychromators, and portable 

or miniaturized spectrometers to keep up with the expectations of the evolving industry (Aouadi 

et al., 2020). There are three major arrangement types in NIR spectroscopy, depending on the 

manner with which the light from the spectrometer interacts with the sample. In transmission, light 

passes through the sample; in reflectance, the light reflected from the sample's surface is measured; 

and in transflectance, both reflected and transmitted light are evaluated (Burns and Ciurczak, 

2008). 

3.5.1. NIRS for plants parameters assessment 

Initially, NIRS served as a rapid, non-destructive method for real-time monitoring of crop 

nutrients, aiding in the optimization of nutrient application timing. In research on plant leaves, 

NIRS is capable of accurately predicting levels of macronutrients (N, P, K, S, Ca, Mg) and 

micronutrients (Fe, Zn, Mn, Cu), with macronutrient predictions generally being more precise. It 

directly detects significant macronutrients like N, P, and S due to their presence in organic 

compounds that respond to NIR, while some inorganic micronutrients and macronutrients (e.g., 

Ca, Mg, K) are identified through their association with these organic compounds. Total nitrogen 

content in leaf tissues is the most reliably predicted nutrient, with median R² values of 0.98 for 
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NIR and 0.90 for Vis-NIR. Other macronutrients, including P, K, Ca, and Mg, also exhibit 

accuracy (median R² > 0.64 for Vis-NIR and > 0.62 for NIR). Among micronutrients, Fe shows 

acceptable median R² values of 0.72 for NIR and 0.74 for Vis-NIR, while Zn meets acceptable 

standards with NIRS. In contrast, predictive accuracy for other micronutrients is comparatively 

low for both methods, likely due to their lower concentrations in plant tissues and the fact that they 

are not directly involved in NIR-active organic bonds. Their weak or indirect spectral features may 

be masked by stronger signals from water, carbohydrates, or structural proteins, making accurate 

prediction more challenging (Prananto, Minasny and Weaver, 2020). 

Moreover, in other studies NIRS have been used to evaluate the status of plants. 

Chemometrics was applied to evaluate Brassica carinata under different abiotic growing 

conditions. The analysis showed a moderate correlation between NIR spectra and aboveground 

biomass, indicating that NIRS can be a useful tool for predicting biomass yield. This suggests 

potential for using NIRS in monitoring the growth and health of B. carinata in both indoor and 

outdoor environments (Huynh, 2023). 

Researchers also have investigated non-destructive methods for detecting cold stress in soybean 

plants using near infrared spectroscopy and aquaphotomics. Spectra from five genetically 

engineered cultivars were collected at optimal (27 °C) and reduced (22 °C) temperatures. Analysis 

revealed significant differences in spectral profiles, with soft independent modeling of class 

analogy (SIMCA) achieving 100% accuracy in distinguishing between stressed and unstressed 

plants. The results indicated changes in water molecular structure and metabolism, highlighting 

cultivar variations in cold stress responses (Muncan et al., 2022).  

Vis-NIR spectroscopy (380–1000 nm) was explored by Marín-Ortiz et al. (2020) to detect 

biochemical changes in asymptomatic tomato plants infected with vascular wilt disease. The 

standard normal variate (SNV) pretreatment method proved most effective for high accuracy 

classification. Early infection signs included discoloration from green to yellow, while leaf 

turgidity remained stable, complicating visual detection. Significant reflectance differences 

between healthy and infected plants were observed mainly in the 380 to 750 nm range. Five key 

spectral bands related to the disease were identified: two in the visible range (448–523 nm and 

624–696 nm) and three in the near infrared range (740–960 nm, 973–976 nm, and 992–995 nm), 

enabling successful classification of infected plants with 100% accuracy, 12 days prior to visible 

symptoms. Moreover, Vis-NIR spectroscopy is effective in classifying disease severity in plants. 

Liaghat et al. (2014) demonstrated this belief by using a k-nearest neighbors (kNN) model to 

differentiate mildly infected oil palm plants from healthy ones, achieving 97% accuracy before 

symptoms appeared. The visible and near infrared regions are equally crucial for assessing stress 

responses. Key absorbance bands at 550 nm and 720 nm indicate chlorophyll content, while bands 
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at 740 nm, 840 nm, 970 nm, 1200 nm, 1460 nm, and 1850 nm relate to water content. Each pigment 

absorbs light at specific wavelengths, chlorophyll in the red and blue regions, carotenoids in the 

violet and blue-green regions; enabling early detection of stress and infection through changes in 

spectral reflectance (Zahir et al., 2022). 

Furthermore, NIRS have been used to evaluate physiological and biochemical characteristics 

of plants. A study compared short-wavelength (SW) and long-wavelength (LW) near infrared 

spectroscopy with color compensation to predict soluble solids content in apples. The independent 

component analysis-support vector machine models (ICA-SVM) showed the best performance. 

SWNIR achieved an R2p of 0.9398 and an RMSEP of 0.3870%, while LWNIR reached an R2p of 

0.9455 and an RMSEP of 0.3691%. The results showed that color compensation significantly 

improved showing its potential for real-time apple quality monitoring (Guo et al., 2016). 

Furthermore, Hărmănescu et al. (2008), determined the total polyphenols content in seventeen 

Romanian medicinal plants using NIR spectroscopy. Correlations were established between 

polyphenols content (mM/g) measured by the Folin-Ciocalteu method and NIR reflectance values. 

The PLS-Leverage method yielded a strong correlation coefficient (R² = 0.994752) and low 

deviation values (6% to 8%), indicating high predictive quality for the regression model. By using 

a Micro-NIRS device connected to a smartphone, Y. J. Wang et al. (2020), analyzed pigments in 

tea plants. The variable combination population analysis (VCPA) and genetic algorithm (GA) 

denoted as VCPA-GA-PLSR models demonstrated strong performance in predicting chlorophyll 

a, chlorophyll b, and carotenoids, with correlation coefficients of 0.9226, 0.9006, and 0.8313, 

respectively, and low prediction errors. 

3.6. Chemometric analysis 

Chemometrics, also denoted as multivariate data analysis, utilizes mathematical and statistical 

techniques to analyze complex datasets produced by analytical instruments. This field 

encompasses both experimental design and data evaluation to obtain meaningful insights. While a 

comprehensive grasp of mathematics and statistics is recommended, having a solid understanding 

of the specific application and exercising good judgment are crucial for accurately interpreting the 

results (Gemperline, 2006; Roussel et al., 2014). 

3.6.1. NIRS preprocessing techniques 

Preprocessing NIR spectral data is essential in chemometrics modeling to eliminate 

physical interferences in the spectra, thereby enhancing the performance of multivariate 

regression, classification, or exploratory analysis. The most common preprocessing methods 
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encompass techniques for scatter correction and spectral derivatives (Rinnan, Berg and Engelsen, 

2009). 

The Savitzky-Golay (SG) method is a numerical approach used for smoothing and 

differentiating data (Savitzky and Golay, 1964), and is widely applied in spectral analysis. It works 

by fitting a low-degree polynomial to a symmetric set of data points around a central point, mainly 

to reduce noise while retaining important spectral characteristics. Besides smoothing, it can also 

be adapted to calculate derivatives of different orders, which helps in improving spectral 

resolution. 

Derivatives are used to address peak overlap and remove constant and linear baseline shifts 

among samples. In practice, first and second derivatives are more commonly utilized than higher-

order derivatives, as they effectively enhance spectral features and correct baseline variations 

without excessively amplifying noise, which is a common drawback of higher-order derivatives 

(H. P. Wang et al., 2022). Key factors in applying the SG method include selecting the appropriate 

window size and polynomial degree, which affect the method's sensitivity and effectiveness in 

capturing data characteristics (Rinnan, Berg and Engelsen, 2009).  

Multiplicative scatter correction (MSC) first introduced by Martens et al. in 1983 and standard 

normal variate (SNV) introduced by Barnes et al. 1989 are the most frequently employed 

preprocessing methods for near infrared spectroscopy. Additionally, detrending applies linear or 

polynomial regression to adjust for baseline shifts and curvilinearity in reflectance spectra (Barnes, 

Dhanoa and Lister, 1989). These techniques help by dealing with challenges in diffuse reflectance 

spectrometry arising from particle size, scattering, and multicollinearity. The interaction of these 

factors significantly complicates the interpretation of near infrared diffuse reflectance spectra, with 

most variance attributed to sample particle size and minimal variance linked to chemical 

composition (Rinnan, Berg and Engelsen, 2009). To address these issues, these scatter correction 

techniques effectively eliminate interferences from scattering and particle size. As a result, this 

processing produces NIR diffuse reflectance spectra that are free from multicollinearity and the 

intricacies associated with the use of derivatives in spectroscopy (Barnes, Dhanoa and Lister, 

1989; Liu et al., 2019). MSC involves selecting a reference spectrum, typically the average from 

a calibration dataset, and aligning individual sample spectra with this reference. This technique 

aims to correct for variations in baseline and scaling among different spectra. On the other hand, 

SNV standardizes each spectrum by calculating its mean and standard deviation, transforming the 

data to have a mean of zero and a standard deviation of one. Both MSC and SNV enhance the 

reliability of spectral data, making subsequent interpretation and analysis more effective (Ozaki, 

Genkawa and Futami, 2017; Liu et al., 2019). 
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3.6.2. Multivariate data analysis methods 

Principal component analysis (PCA) is a widely used exploratory technique in spectroscopy 

for building linear multivariate models from complex datasets. It utilizes principal components 

(orthogonal basis vectors) to capture significant variations and reduce measurement errors, thereby 

minimizing noise and simplifying analysis. PCA aims to identify relationships among samples by 

creating new variables, with results visualized in scores plots that display spectra as scores in a 

transformed space and loadings plots that illustrate the contributions of original variables, such as 

wavelengths (Gemperline, 2006; Tsenkova et al., 2018).  

As mentioned by Qu and Pei, (2024), linear discriminant analysis (LDA) was first proposed 

by R.A. Fisher in 1936. LDA is a classification technique that utilizes orthogonal transformations 

to streamline and improve the efficiency of data processing and analysis. It is often used for 

multiclass classification of different samples. It is a supervised method so the class membership 

has to be known for the analysis (Granato et al., 2018). 

Moreover, discriminant analysis based on principal component analysis (PCA-LDA) is a 

method that combines aspects from both PCA and LDA. In PCA-LDA, the principal components 

obtained from PCA are then used as input features for the subsequent LDA. This integrated 

approach combines the dimensionality reduction capability of PCA with the discriminatory power 

of LDA. PCA-LDA is often used for spectroscopic data, where there are multiple correlated 

dependent variables and where LDA alone is not effective, and the goal is to classify or 

discriminate between different groups or classes based on the underlying structure of the data. This 

integrating technique offers a powerful tool for pattern recognition, classification, and 

discrimination tasks in various fields, including food quality assessment and chemometrics. 

Partial least square (PLS) regression, introduced by H. Wold in the 1960s, is widely used in 

industrial applications for multivariate calibration due to its speed and accuracy advantages over 

other methods (Gemperline, 2006). In PLS, determining the number of basis vectors, also known 

latent variables (LV), is crucial for building the model. This parameter serves to reduce the 

dimensionality of the regression space and refine the regression vector (Gemperline, 2006). PLS 

regression aims to enhance the relationship between the X and Y datasets by creating latent 

variables that capture the variance in X and maintain a strong correlation with Y (Granato et al., 

2018). PLS consists of two key steps: reducing dimensionality via score projections and 

integrating a weight vector (w) that optimizes the covariance between X and Y scores (Roussel et 

al., 2014). The performance of the PLSR model is assessed through the coefficient of 

determination (R²) and the root mean square error (RMSE) typically obtained from calibration and 

cross-validation (Tsenkova et al., 2018). 
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Figure 1, outlines the systematic approach to achieving reliable results through the integration 

of sample preparation, NIRS data collection, chemometric analysis, quantitative analysis, and 

informed decision making. The process begins with the careful selection of representative samples, 

followed by their homogenization to ensure consistency. NIRS is employed for spectral data 

acquisition, with rigorous preprocessing techniques applied to enhance data quality. Chemometric 

methods, including multivariate data analysis (MVDA), PCA, LDA and PLS regression, are 

utilized for data exploration and model building. Calibration models are validated and optimized 

to ensure accuracy in qualitative and quantitative analysis. Finally, the interpretation of results 

leads to effective reporting and decision making based on quality parameters and established 

acceptance criteria. This comprehensive workflow emphasizes the importance of each step in 

producing reliable findings from spectral data. 

 

 

Figure 1. Integrated workflow: NIRS-based chemometric analysis for quality food assessment 

  

Sample 
Preparation

• Selection of 
representative 
samples

• Homogenization 
of samples

NIR Data 
Collection

• Spectral data 
acquisition 
using NIRS

• Pre-processing 
sing of spectral 
data

Chemometric 
Analysis

• Data exploration 
(PCA)

• Qualitative 
analysis 
(Discriminant 
analysis)

• Quantitative 
analysis (PLSR)

Reporting and 
Decision Making

• Interpretation of 
results

• Decision based 
on quality 
parameters and 
acceptance 
criteria



25  

4. MATERIALS AND METHODS 

This section outlines the materials and methods adopted for the execution of various 

experiments. Studies have been conducted to assess the sensory profile of hen eggs using human 

sensory analysis, electronic tongue, and electronic nose; evaluation of probiotic characteristics and 

viability using NIRS; and the evaluation of microgreens growing under stress conditions using 

NIRS.  

4.1. Materials and methods for egg sensory evaluation 

4.1.1. Hens’ dietary intervention and initial quality evaluation 

The feeding trial with laying hens adhered to the European Commission Council Directives 

(86/609/EEC) (COUNCIL OF THE EUROPEAN COMMUNITIES, 1986) and the Hungarian Act 

for the Protection of Animals in Research (The Parliament, 2021). A total of 900 Lohmann Brown 

Classic hens, aged 56 weeks and weighing an average of 1.88 kg (± 0.12), were housed in 

environmentally controlled cages (EV 2240-EU, Big-Dutchman, HAT-AGRO 

Baromfitechnológia Kft., Győr, Hungary). The hens were divided into three groups (300 hens 

each): Control (0% Zincoppyeast), ZP 2.5% (2.5% Zincoppyeast), and ZP 5.0% (5.0% 

Zincoppyeast). Zincoppyeast, a yeast biomass in dried form, was produced by SC AGSIRA SRL, 

Romania, using spent brewing yeast mixed with organic zinc-enriched yeast from S.C. 

PHARMACORP INNOVATION SRL, Romania. The birds were fed isonitrogenous and 

isoenergetic corn-extracted soybean meal– distiller’s dried grains with solubles (DDGS)–wheat-

based diets, formulated according to National Research Council (NRC) guidelines (National 

Research Council, 1994) and the Lohmann Brown Classic Management Guide. Proximate analysis 

was conducted to determine the chemical composition of the feeds, ensuring they met the same 

category requirements (Aurand, Woods and Wells, 1987). The calculated diet values are presented 

in Appendix-A2_Table 1, additionally, the quantified chemical composition and energy content is 

shown in Appendix-A2_Table 2, confirming the diets’ uniform energy content for evaluating the 

effects of varying Zincoppyeast levels. Feeds were assessed for moisture, crude protein, fat, fiber, 

calcium, phosphorus, and sodium content according to AOAC standards (AOAC, 2006). Fresh 

water was provided ad libitum daily. In the ZP 2.5% and ZP 5.0% groups, part of the extracted 

soybean meal was replaced with Zincoppyeast. After a two-week adaptation period to the diets, 

the three-month experimental period commenced. Eggs were collected daily (during which 

average daily egg production exceeded 91% in all groups); however, only eggs collected on day-

30 and day-60 were considered for sensory analysis. The remaining time until day-90 was a safety 
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period in case we needed to repeat the sampling due to any failures of any analysis done on day-

30 or day-60 samples. 

Eggs from the three groups collected for evaluation on day 30 (batch 1) and day 60 (batch 

2) of the experimental period, totaling 90 samples per batch for human sensory analysis, 18 for e-

tongue analysis, and 90 for e-nose analysis. The number of eggs used for human sensory analysis 

was higher because multiple samples were needed per the number of testers within the panel. For 

the e-nose, the large number of available slots on the tray permitted to analyze more samples, 

improving the reliability of statistical tests, and repeatability and stability of the system. For the e-

tongue, only a limited number of samples could be analyzed due to the small capacity of the 

autosampler and the long duration of each measurement, so additional samples were not required. 

Evaluating both batches aims to finding a more comprehensive understanding of potential 

temporal variations in the quality of eggs, which may influence both nutritional and sensory 

qualities of eggs.  Differences may arise, due to egg laying time, in different egg parameters  

regarding egg weight, shell, albumin, and yolk characteristics (Şekeroğlu et al., 2024). Samples of 

batch1 were disinfected with ozone and stored (in cold, 4–8 °C) until the analysis, the same 

procedure was done for samples belonging to the 2nd batch. Batch 1 and batch 2 samples were not 

analyzed at the same time, but with 30 days difference. Laboratories performing the sensory 

analysis were not informed that batch 2 was a repetition of batch 1. Those were considered to be 

a separate test with three feeding groups on both occasions. Fresh samples were used for human 

sensory and e-tongue analyses; while for e-nose analysis, samples were stored for 0 (corresponding 

to fresh samples), 30, and 60 days in the fridge (10–14 °C). Chemical assays were performed on 

12 eggs per batch, and microbiological assays on 30 eggs per batch.  

The data presented in Appendix-A2_Tables 1 to 4 were obtained from experimental 

measurements and analyses conducted in collaboration with accredited laboratory (MTKI 

Mosomagyarovar, Hungary) as part of this study, following AOAC standards (AOAC, 2006). 

4.1.2. Sample preparation and analysis of eggs 

Human sensory evaluation 

To assess sensory attributes, the human organoleptic evaluation of the egg samples followed 

the guidelines outlined in MSZ ISO 6658: 2018, serving as a reference test method (MSZT, 2003). 

Five trained reviewers participated in the evaluation process, employing an experimental design 

known as Williams Latin Squares, with each sample from the three feeding groups (Control, ZP 

2.5%, and ZP 5.0%) evaluated in two replicates. The eggs underwent assessment in three different 

presentations: raw, boiled, and fried.  
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Sample Preparation Details: 

• Boiled eggs were kept in boiling water for 10 min.  

• For fried eggs, oil was poured into a pan and heated, then the previously beaten eggs 

were poured in and agitated during the cooking time. 

The evaluation was conducted using an intensity scale ranging from 0 to 9 points. A 

comprehensive evaluation encompassed a total of 21 sensory characteristics (Table 1). 

Table 1. Sensory characteristics evaluated in raw, boiled, and fried eggs 

Egg Type Evaluated Attributes 

Raw eggs Albumin color, Yolk color, Yolk shape, Albumin density 

Boiled eggs 
Albumin color, Yolk color, Egg odor, Unusual odor, Albumin 

flavor, Unusual taste, Albumin flexibility, Yolk creaminess 

Fried eggs 
Yolk color, Egg odor, Sweet aroma, Unusual odor, Egg taste, 

Sweet taste, Unusual taste, Texture 

 

Electronic tongue analysis 

The taste profile of the egg samples was assessed using an Alpha Astree electronic tongue 

from AlphaMOS, located in Toulouse, France. Equipped with a 16-position auto-sampler, the 

measurements were conducted at the Department of Measurements and Process Control within the 

Institute of Food Science and Technology at the Hungarian University of Agriculture and Life 

Sciences. This sophisticated device features seven food-grade sensors, according to the 

manufacturers naming ZZ, JE, BB, CA, GA, HA, JB, designed to detect and identify complex 

organic and inorganic compounds in liquid samples. Utilizing a methodology based on measuring 

differences in potential changes against the Ag/AgCl 3M KCl reference electrode, the sensors 

display cross-sensitivity and partial selectivity, allowing them to detect multiple compounds in 

complex liquid mixtures while still showing a preferential response to certain substances. 

Researchers can employ this technology as a state-of-the-art fingerprint-like analysis to discern 

general patterns among the samples measured on the seven sensors (AlphaM.O.S., 2021). 

 

Sample preparation details: 

The eggs underwent initial processing by crushing, followed by transfer of the contents 

into a porcelain dish, where they were beaten for a duration of 1 minute. Subsequently, 2 grams of 

the homogenized egg mixture were carefully transferred into individual 100 mL volumetric flasks 

and then filled up to the mark with distilled water. From each of the three experimental groups, 

six parallel samples were prepared, totaling N = 18 eggs for both tested batches. These samples 
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were then subjected to analysis using e-tongue. Due to constraints posed by the limited positions 

of the auto-sampler, the samples were organized into three separate sequences. Each sequence 

included one technical replicate from each of the three groups and underwent analysis four times, 

resulting in a total of 24 measurement points per sample group. The acquisition time for each 

sample was standardized at 120 seconds with a steering velocity of 3, while the sensors were 

cleansed with distilled water for 20 seconds at a steering velocity of 6. 

 

Electronic nose analysis 

The assessment of aroma profiles in the samples was carried out utilizing the Alpha MOS 

Heracles NEO electronic nose (Alpha MOS, Toulouse, France) within the facilities of ADEXGO 

Ltd. Correltech® laboratory (Balatonfüred, Hungary). This advanced e-nose, specialized in 

volatile compound analysis, functions as a high-speed chromatograph analyzer featuring dual 

columns. The analysis process initiates with the concentration of odors within a cold trap, followed 

by trap flushing, heating, and subsequent injection of the concentrated odor into the columns. 

Within these columns, volatile compounds undergo separation and detection via two flame 

ionization detectors (FID). Evaluation of the acquired chromatograms was facilitated by AlphaSoft 

v17 software (Alpha MOS, Toulouse, France), which systematically records retention time and 

delineates peak positions. This software automatically calculates the Kovats-index for each 

detected peak. These indexes can be matched against the AroChemBase database for identification 

of volatile substances associated with the odor (AlphaM.O.S., 2018).   

 

Sample preparation and Analysis Procedure: 

In alignment with the methodologies employed for human sensory evaluation and e-tongue 

analysis, e-nose assessments were conducted on freshly collected egg samples (0 days of storage). 

However, to comprehensively assess potential variations, additional examinations were performed 

on egg samples subjected to refrigeration for 30 and 60 days, respectively. This approach aimed 

to elucidate any differential outcomes influenced by storage duration and feeding-mode group. 

In the e-nose, the egg samples are injected in a trap or odor concentrator which is heated to allow 

volatilization of liquids. The selected preheating, before the subsequent phases of the gas 

chromatography analysis, consisted in employing temperatures of 50 °C and 80 °C. Two 

preheating temperatures (50°C and 80°C) were selected to improve volatile compound recovery. 

50°C is often optimal for capturing a broad range of volatile organic compounds. Raising the 

temperature to 80°C enables the detection of those requiring more thermal energy to volatilize. 

80°C can increase the extraction of certain compounds but with the risk of degradation. 

Measurements were carried out across two columns of the e-nose equipment, namely column 



29  

MXT-5 and MXT-1701. Each column separates volatile compounds, which are then detected by 

two Flame Ionization Detectors (FIDs) and recorded using AlphaSoft. The data reported in this 

study correspond to the MXT-5 column. 

 

Compounds identification: 

The analysis facilitated the identification of characteristic compounds through reference to 

the AroChemBase v8 database integrated into AlphaSoft (AlphaM.O.S., 2018). This database 

encompasses domains such as "Food, Flavors, and Fragrances". Furthermore, compound 

determination was associated with the most relevant sensors from the egg discriminant analysis. 

These sensors were linked to the closest Kovats indexes, with very close magnitudes, listed in the 

AroChemBase v8 database. In the database, Kovacs index are associated with specific volatile 

compounds and sensory characteristics. This meticulous approach significantly enhanced the 

accuracy of volatile compound association, contributing to a more robust interpretation of the 

results. 

4.1.3. Statistical methods for eggs samples evaluation 

Human sensory evaluation results underwent statistical evaluation using one-way analysis 

of variance (ANOVA), with each parameter assessed individually. Upon detecting significant 

differences (p < 0.05) among the three groups, Tukey's Honestly Significant Difference (HSD) 

post hoc tests (p < 0.05) were executed for comprehensive inter-group comparisons (Madsen, 

2011). 

For e-tongue assessments, statistical analysis involved computing Euclidean distances within a 

space of seven dimensions (that are corresponding to seven sensors) across the feeding groups on 

a scale from 0 to 30. As the differences between groups become more pronounced, the Euclidean 

distance increases. The Euclidean distances were calculated for the samples of the two batches 

(separately).  

Furthermore, principal component analysis was used as exploratory data analysis to uncover 

nuanced multidimensional patterns. Linear discriminant analysis facilitated group classification, 

with model robustness assessed through three-fold cross-validation to ensure reliable performance. 

This process divided the data, ensuring that repeated measurements of the same sample were not 

included at the same time in both training and validation sets. Two-thirds of the data were used for 

model training, while the remaining one third served as the validation set. The data was iteratively 

split into training and validation sets three times to ensure each sample's participation in both 

calibration and validation sets. 
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Data from the e-nose were subjected to PCA-LDA to discern significant sensors 

contributing to group differentiation based on the Kovats index. Model evaluation embraced 

thorough three-fold cross-validation to ascertain the optimal number of principal components (PC) 

for discriminant analysis models, where the chosen number of PCs was the one that achieved the 

highest correct classification accuracies while maintaining the smallest decrease from training to 

validation, therefore mitigating the risk of overfitting while looking for robust performance.  

To further assess the discriminant models for the e-tongue and e-nose using real data, 

additional models were developed with simulated data (Defernez and Kemsley, 1997). Given the 

large gap between calibration and cross-validation results, this approach helped determine whether 

the real models retained some predictive power despite overfitting. If the simulated models 

performed worse, it suggested that the real models still captured relevant patterns in the data 

(A2_Table 5, A2_Table 6). 

The "aquap2" package (Kovacs and Pollner, 2016) was employed for multivariate analysis 

in the R-project environment. 

The comprehensive evaluation integrated diverse factors, including batch variations and 

feeding group compositions across varying storage times, enhancing the interpretability of the 

findings. Figure 2, summarizes the methodological approach employed in the enriched eggs 

experiment, detailing the pre-establishment of the trial and the subsequent sensory and 

instrumental analyses.  

 

Figure 2. Methodological scheme for sensory and analytical assessment of enriched eggs 
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4.2. Materials and methods for probiotics evaluation 

4.2.1. Sample preparation and analysis of probiotics 

This study utilized three commercial probiotic food supplements in powder form, which 

their specific names are not included to maintain confidentiality and avoid potential commercial 

bias. Instead, they are identified as probiotic N (Istanbul, Turkey) and probiotics P and A 

(Budapest, Hungary). Probiotics P and A are from the same commercial brand, while probiotic N 

is from a different brand. As shown in Appendix- A2_Table 7, the probiotic P, A and N show a 

CFU content per dose in the same range and different composition of bacterial strains according 

to the labels.  

To prepare the drinks for each probiotic product, three concentration levels were 

considered: C1 (3 g/125 mL), C2 (2.5 g/125 mL), and C3 (2 g/125 mL). These concentrations 

reflect the daily doses stated on the product labels: 2 g for probiotic P and 3 g for probiotics A and 

N. Additionally, three temperature levels were tested to simulate typical consumer practices: T1 

(25 °C), T2 (60 °C), and T3 (90 °C). The preparation involved accurately weighing the probiotic 

powder and mixing it with distilled water at the specified temperatures. Samples were allowed to 

cool to near room temperature before analysis, with cooling times of 35 minutes for 60 °C and 44 

minutes for 90 °C. Each preparation was repeated three times, yielding 81 samples (3 probiotics × 

3 concentrations × 3 temperatures × 3 repetitions). 

 

Microbiological analysis 

The cultivation of Lactobacillus spp. was conducted using Man, Rogosa, and Sharp (MRS) agar 

(Biolab, Hungary), a low-selectivity medium, employing the pour plating method. To facilitate 

dilutions, maximum recovery diluent (MRD) consisting of 1 g bacteriological peptone and 8.5 g 

NaCl per liter of distilled water was prepared and subsequently autoclaved at 121 °C for 15 

minutes. Each sample, prepared according to the probiotic-concentration-temperature 

combinations, was subjected to serial dilution in MRD, followed by plating on MRS agar. Plates 

were then incubated at 37 °C for 72 hours to facilitate bacterial growth, after which colony-forming 

units (CFU/g) were enumerated to quantify bacterial concentrations. 

 

Near infrared spectroscopic analysis 

The near-infrared spectral data were gathered using a benchtop MetriNIR 

spectrophotometer (MetriNIR Research, Development and Service Co., Budapest, Hungary). It 

was used a custom-designed circular cuvette, thermally regulated at 25 °C, that is made up of: a 

metallic wall (inner diameter: 5 cm; outer diameter: 8.5 cm) and a crystal layer (thickness: 0.4 
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mm). After the sample is placed in the cuvette, it is covered with a lid equipped with a white 

reflector. The acquisition of transflectance spectra is across the 900-1700 nm wavelength range 

with 0.5 nm resolution. A comprehensive analysis encompassed 81 prepared samples, three 

replicates for each sample was scanned and three consecutive scans, thereby yielding 27 spectra 

for every probiotic product and treatment. This protocol resulted in a dataset comprising 729 scans, 

with an even distribution across the three probiotic products. Prior to NIR scanning, sample 

sequences were randomized to mitigate any potential bias. 

 

4.2.2. Statistical methods for probiotic samples evaluation 

Statistical analysis of viable counts (Log CFU/g) was conducted using ANOVA and 

Tukey’s test (p < 0.05) to evaluate group differences, considering the different combinations of 

probiotics and temperatures (with concentrations treated as replicates). 

The NIRS spectra were analyzed in the 950–1630 nm wavelength range. PCA was used for patter 

recognition in the spectra. The classification of samples was performed according to probiotic 

type, concentration and temperature by using PCA-LDA analysis and using three-fold cross-

validation to obtain the different models. Additionally, to obtain the most possible accurate PCA-

LDA models, a total of 41 spectral pretreatments (single and combined) were evaluated: The 

individual spectrum pretreatments encompassed a Savitzky–Golay smoothing filter (SG) using a 

2nd-order polynomial (13, 17, or 21 points), first and second derivatives, multiplicative scatter 

correction (MSC), standard normal variate (SNV), and detrending (DeTr). Meanwhile the 

combined pretreatment is comprised for 2 or more single pretreatments simultaneously (Appendix-

A2_Table 8). Prediction models for the viability of probiotic drinks according to log CFU/g were 

built by using PLSR by correlating the NIR spectra with the counting colony forming units from 

microbiological analysis results. The repetitions R2 and R3 were utilized for constructing the 

PLSR models, which correspond the two-thirds of the data. Cross-validation was conducted by 

excluding the spectra of one treatment (probiotic-concentration-temperature) in each step. 

Subsequently, the remaining one-third of the data (R1) was employed for prediction to assess the 

robustness of the final model. 

The "aquap2" package (Kovacs and Pollner, 2016) was employed for multivariate analysis in the 

R-project environment. 

Figure 3, summarizes the experimental approach used to evaluate the viability of probiotic drinks 

under varying conditions of concentration and temperature. The integration of microbiological 

reference analyses and NIRS-based chemometric methods provided a comprehensive framework 
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for assessing the impact of these factors, enabling the prediction of probiotic viability and the 

characterization of relevant spectral data. 

 

 

Figure 3. Methodological scheme for probiotic drinks assessment 

 

4.3. Materials and methods for microgreens evaluation 

4.3.1. Development of climate chambers and cultivation of pea microgreens  

A critical phase of the project involved the development of custom-designed climate chambers, 

achieved through a stepwise approach. Initially, individual control components were developed 

separately and subsequently integrated into a unified system. 
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Figure 4. Set up for pea microgreens growth under different temperature and photoperiod 

Figure 4, shows an overlook of the developed set up for pea microgreens growth under different 

temperatures and photoperiods. The first step implemented an ON-OFF temperature control 

system (Figure 4a) using three STC controllers (equipped with temperature sensors) connected to 

commercial refrigerators. These refrigerators facilitated temperature reduction, while heating 

plates installed inside enabled temperature elevation (Figure 4c). For photoperiod control, smaller 

individual chambers were constructed from plastic boxes featuring a white interior, black exterior, 

and lids fitted with white LED strips that covered the full visible spectrum (Figure 4b). 

A light distribution test was conducted in these chambers by measuring photosynthetic photon flux 

density (PPFD) at five points at the base level using the Mavospec Base spectrometer (Gossen, 

Germany). The measurements yielded a mean of 75.7 µmol/m²/s and a low standard deviation of 

4.96, confirming uniform illumination and ensuring homogeneous conditions for plant and 

microgreen experiments. These photoperiod-controlled chambers were subsequently placed inside 

the temperature-controlled refrigerators (Figure 4c and d). 

Photoperiod control (Figure 4a) relied on Siemens S7 1200 AC/DC/RLY PLC controllers 

(Siemens AG, Munich, Germany) programmed via TIA Portal software (Totally Integrated 

Automation Portal, Siemens AG, Munich, Germany), implementing an ON-OFF system to 

regulate light and dark hours per day for each treatment (Appendix-A2_Figure 1). A total of 12 

chambers were created: 9 equipped with lighting systems and 3 without, the latter reserved for 

control treatments (Figure 4d). Additionally, HDC1080 temperature and humidity sensors were 

installed in each chamber for real-time humidity monitoring. A ventilation system was installed in 

(a) Control systems (b) Single chamber 
set up

(c) Single refrigerator 
set up

(d) Complete setup
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each chamber to manage air flow (Figure 4b), programmed using an Arduino MEGA controller 

(Figure 4a) with Arduino IDE software (Arduino S.r.l., Monza, Italy).  

 

Cultivation of plants 

In this study, pea microgreens were grown under different environment stress conditions, 

which included both mild (normal) conditions and others that, while allowing growth, were less 

than optimal, thus classifying them as stress conditions. These were maintained in self-developed 

climate chambers, using soil as the growth medium (Figure 5).  

 

Figure 5. Growth and cultivation process of pea microgreens under controlled conditions. 1) 

Microgreens sowing, 2) Preparation of growth trays in individual climate chambers, 3) 

Environmental control setup, 4) Growth and monitoring in controlled conditions, 5) Harvesting at 

different photoperiods/temperature  

First, pee seeds (Debrecen sötétzöld, from Hermes brand and comercialized by hermes 

kertészbolt) were soaked for 8 hours. Subsequently, seeds were planted in containers with wet soil. 

The soil was an organic horticultural substrate from the Florimo brand, commercially available 

from Hermes Kertészbolt. It contained a minimum of 40% organic matter, with nutrient contents 

of 0.3% nitrogen (N), 0.1% phosphorus pentoxide (P₂O₅), and 0.1% potassium oxide (K₂O), and a 

pH of 6.53 ± 0.5. Containers were placed in climate chambers with controlled environmental 

conditions (Table 2): temperature (15, 20, 25 ºC), photoperiod (0 hours of light, 6 hours of light, 

12 hours of light, 18 hours of light), relative humidity around 70-80%. Three repeats were 

considered for each treatment consisting of a temperature-photoperiod condition. The microgreens 

were harvested on three different days (for each temperature). For temperatures of 20 and 25 ºC, 

higher temperatures promoted faster emergency and growth, plants were harvested at 7, 11 and 14 

days after sowing. For the temperature of 15 ºC, the emergency and growth were slower, therefore 
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plants were harvested on 11th, 14th and 18th day. Under this consideration the three temperatures 

had 2 days of harvesting in common (11 and 14 days after sowing).  

 

Table 2. Pea microgreen set up according to different treatments (temperature-photoperiod) 

 Temperature of 15 ºC Temperature of 20 ºC Temperature of 25 ºC 

0 hours of light 

(00L) 
15ºC_00L (R1, R2, R3) 20ºC_00L (R1, R2, R3) 25ºC_00L (R1, R2, R3) 

6 hours of light 

(06L) 
15ºC_06L (R1, R2, R3) 20ºC_06L (R1, R2, R3) 25ºC_06L (R1, R2, R3) 

12 hours of light 

(12L) 
15ºC_12L (R1, R2, R3) 20ºC_12L (R1, R2, R3) 25ºC_12L (R1, R2, R3) 

18 hours of light 

(18L) 
15ºC_18L (R1, R2, R3) 20ºC_18L (R1, R2, R3) 25ºC_18L (R1, R2, R3) 

 

4.3.2. Sample preparation and analysis of pea microgreens 

Measurement of variables  

Several agronomical and physicochemical variables were measured during the experiment, 

including height and weight (physical parameters); Lab color components (optical parameters), 

pH, conductivity and °Brix (chemical properties) and pigments and bioactive compounds 

(chlorophyll A, B, total carotene, total water-soluble phenolic compounds (TPC) and antioxidant 

capacity (TAC).  

 

Weight and height of plants 

On each harvesting day, plants were cut from the base (without roots). For each treatment, 

a number of plants was counted in 6 grams, which was dependent on the rate of growth of the 

plants of each treatment. The weight results are presented in g/plant. Height of plants were 

measured by taking ten plants per treatment.   

Color measurement 

For color measurement plants were cut in homogeneous pieces (around 2.5 cm) and placed 

in a circular holder. The samples were photographed, and the images were then analyzed to extract 

the color components in the CIELab space using Image Color Summarizer 0.82 software 

(Krzywinski, 2025). L* is a definitive measure of lightness, ranging from black (0) to white (100). 

a* describes the red–green colour range (a* > 0 indicates redness, a* < 0 indicates greenness), 
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while b* describes the yellow–blue colour range (b* > 0 indicates yellowness, b* < 0 indicates 

blueness). It is important to note that, due to technical limitations, it was not possible to establish 

a fully controlled camera setup with strict calibration of imaging parameters and illumination 

conditions. As such, the extracted color data is considered for informational purposes only, 

acknowledging that the methodology does not meet the standards required for reproducible and 

accurate color measurements. Following the image analysis, the sample was transferred to NIRS 

benchtop device for scanning.  

After scanning, the plants (already cut into homogeneous pieces) were divided into two 

portions to prepare liquid extracts with different solvents. A portion of 5 g was used for the 

preparation of pea microgreens-distilled water extracts, while a portion of 1 g was destined for the 

preparation of pea microgreens-acetone extracts. The distilled water extracts were analyzed for 

pH, conductivity, °Brix, total water-soluble phenolic compounds (TPC), and total antioxidant 

capacity (TAC). Meanwhile, the acetone extracts were utilized for determining the levels of 

chlorophyll A, chlorophyll B, and total carotenoids. 

 

pH, conductivity, °Brix, TPC and TAC determination. 

For aqueous microgreens extracts samples preparation, a proportion of 1:5 plant-distilled 

water (5g plant- homogeneous cut pieces per 25 ml DW) was blended for 30 seconds and filtered. 

The aliquots of the aqueous microgreens extracts samples were used for measuring pH, 

conductivity, °Brix, TPC, TAC (and additionally for NIRs scanning). °Brix was determined using 

a MA871 digital sucrose refractometer (Milwaukee Instruments, Inc., Rocky Mount, NC, USA), 

which was calibrated with a standard liquid solution provided by the manufacturer prior to sample 

measurements. For TPC and TAC measurement, color development-absorbance measurement was 

determined spectrophotometrically using a Helios Alpha spectrophotometer (Thermo Spectronic, 

Cambridge, England). It should be noted that, since distilled water was used as the extraction 

solvent, the results for both TPC and TAC reflect only the water-soluble antioxidant compounds, 

rather than the total content typically obtained using hydroalcoholic mixtures. 

The total water-soluble phenolic content (TPC) was assessed using the Folin-Ciocalteu reagent 

(Singleton and Rossi, 1965), with gallic acid serving as the reference standard. TPC values were 

reported as milligrams of gallic acid equivalents (GAE) per gram of plant material (mg GAE/g of 

plant). To evaluate antioxidant capacity, the cupric ion reducing antioxidant capacity (CUPRAC) 

method was applied (Apak et al., 2004), with trolox used as the reference standard. The results 

were expressed in micromoles of trolox equivalents (TE) per gram of plant (µmol TE/g). The 

reagents used for TPC and TAC analysis came from different suppliers: Neocuproine (Sigma-

Aldrich, product no. N1501), gallic acid (Sigma-Aldrich, product no. G7384), and (+)-catechin 



38  

hydrate (Sigma-Aldrich, product no. 22110) were purchased from Merck Life Science Kft. 

(Budapest, Hungary). Ethanol, methanol, glacial acetic acid, Folin–Ciocalteu’s reagent, anhydrous 

sodium carbonate, boric acid, and methyl red were purchased from VWR International Kft. 

(Debrecen, Hungary). Copper (II) chloride dihydrate, trolox (Acros Organics, product no. 

218940050). 

 

Chlorophyll A, B and total carotene determination 

For pigments determination, a proportion 1:20 plant-acetone (1g plant-homogeneous cut 

pieces per 20 ml of acetone) was blended for 30 seconds and filtered with cellulose filter paper 

MN 612 (Macherey-Nagel, Germany; 4-12 µm pore size, Ø125 mm). Absorbance was measured 

in XDS RLA spectrometer device (Metrohm, Herisau, Switzerland) at 470 nm, 645 nm and 662 

nm, for chlorophyll A, chlorophyll B and total carotene, respectively. Pigments content expressed 

in µg/g of plant were calculated according the equations proposed by Lichtentaler and Wellburn 

(1985), as cited by Dere et al. (1998) as shown in Equations (1)–(3): 

 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝐴 =  11.75 ×  𝐴₆₆₂ –  2.350 ×  𝐴₆₄₅  

                              (1) 

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝐵 =  18.61 ×  𝐴₆₄₅ –  3.960 ×  𝐴₆₆₂ 

                  (2) 

𝑇. 𝑐𝑎𝑟𝑜𝑡𝑒𝑛𝑒  =  1000 ×  𝐴₄₇₀–  2.270 ×  𝐶ℎ𝑙. 𝐴 –  81.4 ×  𝐶ℎ𝑙. 𝐵/227 

                  (3) 

 

Near infrared spectroscopic analysis of Microgreens fresh-cut samples and aqueous 

microgreens extracts samples 

Samples were scanned using a benchtop NIR XDS spectrometer (Metrohm, Herisau, 

Switzerland), with two modules: Rapid Solid Analyzer (RCA) and Rapid Liquid Analyzer (RLA). 

Microgreens fresh-cut samples were placed in a circular crystal cuvette (inner diameter of 43.20 

mm), covered with the 0.50 MM lid (0.50 mm thickness) and scanned with an XDS-RCA operating 

in reflectance mode. Microgreens aqueous microgreens extracts samples were placed in a cuvette 

(1 mm pathlength) in XDS-RLA operating in transmission. 

NIR XDS operates over the 400 to 2500 nm range, with a spectral data interval of 0.5 nm 

and a wavelength accuracy of 0.05 nm. A total of 32 successive scans for each recorded spectrum 

were collected then averaged for each sample. This was performed three times to obtain three 

consecutive scans per sample.  
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4.3.3. Statistical methods for pea microgreen samples evaluation 

It is necessary to denote that although the same kind of spectral pretreatments, PCA, PCA-

LDA and PLSR regression modeling were applied to microgreen fresh-cut samples and aqueous 

microgreens extracts samples, the analyses were conducted independently for each sample type. 

However, once the models were established, further discussion can be considered for their 

comparative insights.   

NIRS analysis of pea microgreens was performed in the 1150 to 1850 nm spectral range. 

The spectral range for NIRS analysis was limited to 1150-1850 nm due to two primary reasons. 

Firstly, a sensor transition occurs around 1150 nm, which is visually identifiable as a discontinuity 

in the spectra. This transition can introduce noise and distortions, potentially leading to errors and 

inaccurate classification and prediction models if the entire range is used without careful 

preprocessing. Secondly, different spectral intervals were tested during preliminary analyses, 

including 1150-1850 nm, 1150-2200 nm, and 1300-1600 nm (the latter two are not included in the 

thesis). It was determined that the 1150-1850 nm range provided the most accurate and reliable 

results, with higher predictive performance in the evaluated models. Therefore, this range was 

selected to ensure the robustness and reliability of the developed models. 

SG (p=2, n=45, m=0) and SNV spectral pretreatments were applied after outlier detection 

and elimination. Outlier detection was carried out through visual inspection of raw and 

preprocessed spectral data, as well as through the evaluation of sample distribution in PCA score 

plots. Spectra exhibiting atypical patterns or extreme positioning in the multivariate space were 

excluded prior to further analysis. PCA data exploration according to harvesting day, temperature 

and photoperiod coloring was performed on the full data for pattern recognition.   

PCA-LDA analysis was performed according to harvesting day, temperature, photoperiod 

and treatment (temperature-photoperiod) for the full data. Moreover, sub datasets comprising of a 

specific harvesting day were clustered according to treatment, temperature and photoperiod. 

Furthermore, sub-selecting a single treatment discrimination was realized according to harvesting 

day. A supervised three-fold cross-validation according to repeat (in each iteration one repeat is 

left out) was performed. The term supervised refers to the manual definition of the cross-validation 

units (biological replicates or hereafter referred to as repetitions) rather than allowing the 

algorithm to randomly select individual scans, which could result in overfitting since multiple 

scans from the same replicate share spectral similarity. 

To select the optimal number of latent variables (LVs) in the PCA-DA models, the highest 

%CV value was considered. The maximum number of LVs, while avoiding overfitting, was 

determined as described by  Defernez and Kemsley (1997), as shown in Equation (4): 



40  

 

                                                        LV=n−g/3                                                               (4) 

where: 

n = total number of samples, 

g = number of groups or classes in the dataset, and 

3 = serves as a regularization factor to prevent overfitting by limiting the number 

of LVs. 

 

Some PCA-DA models used a relatively high number of LVs compared to the number of 

PCs. To assess their predictive performance, models were built using randomly generated 

(simulated) data (Defernez and Kemsley, 1997). This approach helped determine whether the real 

data models had better predictive power than the simulated ones, ensuring that the observed 

classification patterns were not merely a result of overfitting (Appendix-A2_Table 12). 

PLSR was performed for the variables: height, weight, Lab color components, pH, 

conductivity, °Brix, chlorophyll A, B, total carotene. Repetitions R1 and R2, comprising two-

thirds of the dataset, were used to build the PLSR models. Cross-validation involved leaving out 

the spectra from one sample at each iteration. The remaining one-third of the data (R3) was then 

utilized for predictions to assess the model's robustness.  

Additional PLSR models were conducted for total water-soluble polyphenolic compounds 

(TPC) and antioxidant capacity (TAC). Due to constraints where repeats 1, 2, and 3 were mixed 

before TPC and TAC determination, it was also necessary to average the spectra of the three 

repeats for correct variable measurement and NIRS spectral matching.  In this case, leave-one-out 

cross-validation was applied for the PLSR models. 

The PLSR models assessment was determined according to the highest R2 and lowest 

RMSE. Additionally, the optimal number of latent variables (LVs) in the PLSR model was 

determined based on the following criteria: 

• The difference between calibration (R2C) and cross-validation (R2CV) should be ≤ 0.15 

(in most cases) to ensure good predictive performance and reduce the risk of overfitting.  

• The calibration (RMSEC), cross-validation (RMSECV), and adjusted cross-validation 

(RMSECV_adj) errors were analyzed. The optimal LV number was chosen where 

RMSECV stopped decreasing or started increasing. 

• RMSECV and RMSECV_adj reach their lowest values around a certain number of LVs. 

Beyond this point, additional LVs do not significantly improve prediction and may lead to 

overfitting (Appendix A2_Figure 2). 
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The "aquap2" package (Kovacs and Pollner, 2016) was employed for multivariate analysis 

in the R-project environment. 

Figure 6, encompasses the experimental approach used to evaluate pea microgreens growth 

under different controlled cultivation conditions, showing reference analyses of agronomic and 

physicochemical parameters, and NIRS evaluation using advanced chemometric methods. 

  

 

Figure 6. Methodological scheme for pea microgreens assessment 
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5. RESULTS AND DISCUSSION 

5.1. Results of eggs sensory evaluation  

The figures and tables presented in this section are based on previously published results 

(Aguinaga Bósquez et al., 2021). 

As a food safety precondition, no significant differences were found in the microbiological 

statuses of the groups, indicating their suitability for consumption (Appendix-A2_Table 3). 

However, significant differences in fat and protein content were observed, where control group 

showed lower protein content and higher fat content compared to ZP 2.5% and ZP 5% groups 

(Appendix-A2_Table 4) 

5.1.1. Eggs sensory evaluation by human panel 

The results of the human sensory analysis, presented in Figure 7, Figure 8 and Figure 9, 

were obtained through the application of ANOVA and Tukey tests, according to the feeding 

groups: Control, ZP 2.5%, ZP 5.0%; batches: 1 and 2; egg presentation: raw, boiled, and fried. 

Overall, the majority of sensory attributes did not show significant differences between the various 

egg groups, especially in case of the boiled and fried eggs. The panellists characterized the twenty-

three analysed parameters as representative of fresh eggs. 

 

Figure 7. ANOVA and Tukey HSD post-hoc test of human sensory analysis of eggs. Feeding 

groups: Control, ZP 2.5%, ZP 5.0%. (a) boiled eggs from Batch 1 (b) boiled eggs from Batch 2. 

Significant difference: p > 0.05 (ns), p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Reproduced 

with permission from Aguinaga Bósquez et al. (2021) 

A comparison of sensory characteristics between batches suggests a decrease in sensory 

intensity for some attributes in batch 2. It is possible that, by the time eggs from batch 2 were 

collected, the hens had already adapted more fully to the supplemented diet, reaching a more 
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balanced physiological state. The effect is more evident in raw eggs, particularly in terms of visual 

and textural traits (Figure 7). However, for boiled and fried eggs, differences in gustatory and 

olfactory parameters were not consistent between batches (Figure 8 and Figure 9). T. Xie et al. 

(2019) found that dietary supplementation with Lonicera confusa and Astragali Radix extracts 

caused changes in sensory characteristics and other quality parameters throughout the laying 

period. Changes in egg traits across different laying stages were also noted by Şekeroğlu et al 

(2024), suggesting that the physiological condition in hens can influence how dietary components 

affect the egg quality. 

 

 

Figure 8. ANOVA and Tukey HSD post-hoc test of human sensory analysis of eggs. Feeding 

groups: Control, ZP 2.5%, ZP 5.0%. (a) boiled eggs from Batch 1 (b) boiled eggs from Batch 2. 

Reproduced with permission from Aguinaga Bósquez et al. (2021) 

 

Figure 9. ANOVA and Tukey HSD post-hoc test of human sensory analysis of eggs. Feeding 

groups: Control, ZP 2.5%, ZP 5.0%. (a) fried eggs from Batch 1 (b) fried eggs from Batch 2. 

Reproduced with permission from Aguinaga Bósquez et al. (2021) 

Figure 7a illustrates the significant inter-group differences observed in the first 
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white colouration, greater intensity of yolk colouration, greater convexity of yolks shape, and 

higher protein density observed in both ZP groups. Similarly, Figure 9a, analysis of the fried eggs, 

reveals statistically significant differences for yolk colour intensity, egg odour intensity and sweet 

flavour intensity. These attributes were observed to be less intense in the control group, with values 

on the scale being lower in comparison to the ZP 2.5% and ZP 5.0% groups. However, in Figure 

8a, significant difference was observed in the colour and flavour of the boiled egg between the 

three experimental groups. The ZP 2.5% group exhibited a slightly more intense yolk colour and 

white flavour compared to the Control and ZP 5.0% groups. 

The disparate outcomes observed for the two experimental batches (especially for boiled 

and fried eggs) suggest a low degree of inter-sample variability (indiscernible to the trained panel) 

or a lack of clear differentiation among samples based on the selected sensory characteristics. 

5.1.2. Eggs sensory evaluation by electronic tongue 

Computed Euclidean distances on the e-tongue data from egg samples belonging to the two 

experimental batches are presented in Figure 10, the greatest distance between the groups was 

found between the Control and ZP 5.0% groups for both series of experiments. The distances 

between the control group and ZP 5.0% group for batch 1 and batch 2 respectively were 22 and 

26. The Euclidean distance is greater when there are more significant differences between groups. 

Consequently, there was a greater disparity between the control group and the ZP 5.0% treatment 

group than between either of the Control-ZP 2.5% or ZP 2.5%- ZP 5.0% groups. 

 

 

Figure 10. Euclidean distances for the e-tongue analysis of egg samples belonging to the feeding 

groups: Control, ZP 2.5%, ZP 5.0%. Results presented according to batch 1 (a) and batch 2 (b). 

Reproduced with permission from Aguinaga Bósquez et al. (2021) 

The results of the PCA, as depicted in Figure 11, revealed that the three groups of egg 

samples exhibited major overlapping. Nevertheless, the analysis of the first three principal 
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components, in Figure 11a and c between PC1-PC2 and in Figure 11b and d PC1-PC3, reveals a 

slight differentiation between the data points of the control group and the data points of the other 

two groups, which is particularly apparent in both batches. As seen in Figure 11b, this 

differentiation is particularly evident in PC1 and PC3 for batch 1, where a significant proportion 

of the control group data points do not overlap with those of the ZP 5.0% group. The PCA score 

plots of batch 2, related to Figure 11c and d, also present a degree of separation of some of the 

data points from the control group. This is particularly evident in relation to the ZP 5.0% group 

and is primarily visualized on the PC1 axis. For batch one, the total explained variance between 

the groups was found to be 66.09% in PC1, 13.22% in PC2 and 9.92% in PC3. In comparison, for 

batch two, the total variance was found to be 41.65%, 29.35%, and 14.47%, respectively, for PC1, 

PC2, and PC3. 

 

Figure 11. Principal component analysis of the e-tongue data for egg samples belonging to the 

feeding groups: Control, ZP 2.5%, ZP 5.0%. PCA results are presented according to PC1-PC2 and 

PC1-PC3, for batch 1 (a, b) and for batch 2 (c, d). 95% confidence intervals of the respective 

groups are represented by Ellipses, and x-axis represents the group centroids. Reproduced with 

permission from Aguinaga Bósquez et al. (2021) 
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The slight group differentiation observed in the PCA score plots can be attributed to the 

contribution of specific sensors. In batch 1, PC1 was mainly influenced by ZZ, BB and HA, while 

PC2 and PC3 showed stronger loadings from ZZ, BB, and GA. In batch 2, PC1 was again driven 

by ZZ and HA. PC2 was shaped by ZZ, GA and HA, and PC3 by ZZ, CA and HA. These sensors 

are generally associated with sensitivity to metallic, bitter, umami, and acidic compounds, 

suggesting that differences in formulation may have altered the taste profile. Notably, sensor ZZ 

consistently contributed across all components, indicating its important role in the overall taste 

discrimination (Figure 12). 

Although the sensors in the ASTREE system show differential sensitivity to certain 

compound classes, their responses are not specific. 

 

 
Figure 12. Loadings plots of principal component analysis of the e-tongue data for egg samples 

belonging to the feeding groups: Control, ZP 2.5%, ZP 5.0%. For batch 1 (a) and for batch 2 (b) 

Some degree of separation can be seen within each group of eggs in the discriminant 

analysis score plots (Figure 13). As the method employed is supervised, the separation of the three 

treatment groups (Control, ZP 2.5% and ZP 5.0%) is more pronounced in both batches. As 

illustrated in Figure 13a-batch1, the centroids of each group, marked with a cross, indicate that the 

Control and ZP 2.5% groups are more closely related, while the ZP 5.0% group is more distinctly 

separated. The data points from the Control and ZP 5.0% groups exhibit a more pronounced 

separation. In batch 2 (Figure 13b), the ZP 2.5% and ZP 5.0% groups are more overlapped, and 

the control group is more separated. 

Although in this study the feeding groups are not completely separated in the discriminant 

analysis (Figure 13), this partial overlap may be attributed to the fact that dietary supplementation 

with Zincoppyeast does not strongly affect the sensory characteristics of eggs when compared to 

the control group. Nevertheless, linear discriminant analysis (LDA) was still able to distinguish 

the groups to a certain extent, highlighting its usefulness in identifying subtle differences between 

Batch 1 Batch 2a, b,
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treatments. In line with this, other studies have reported the effectiveness of LDA in differentiating 

egg samples subjected to various conditions. For instance, Dong et al. (2021) used LDA to 

successfully classify eggs from different native hen breeds based on taste profile analyzed with 

electronic tongue, supporting the method's capacity to reveal underlying patterns even when group 

separation is not visually striking as they revealed no successful grouping identification by PCA. 

 

Figure 13. Discriminant analysis of the e-tongue data for egg samples belonging to the feeding 

groups: Control, ZP 2.5%, ZP 5.0%. Results presented according to batch 1 (a) and batch 2 (b). 

95% confidence intervals of the respective groups are represented by Ellipses and x-axis represents 

the group centroids. Filled dots for calibration, hollow dots for cross-validation. Reproduced with 

permission from Aguinaga Bósquez et al. (2021) 

Table 3 illustrates the confusion table of LDA models with the average percentages of each 

technical replicate for calibration and cross-validation of egg samples classification (feeding group 

related) across batch 1 and batch 2, respectively. The outcomes of the three-fold cross-validation 

demonstrate that the distinction between the three egg groups was not accurate, exhibiting 

misclassification between neighboring groups. Nevertheless, the differentiation of the Control and 

ZP 5.0% groups was found to be higher for both experimental batches. 

The average calibration accuracy for batch 1 was 95.92%, with a cross-validation accuracy 

of 64.81%. Additionally, batch 2 exhibited an average calibration accuracy of 100% and a cross-

validation accuracy of 56.23%. This suggests that the models capture some useful information 

from the real data, but there is evidence of overfitting (the large gap between calibration and cross-

validation). By analyzing a matrix consisting of random numbers (LDA results presented in 

Appendix-A2_Table 5) the calibration accuracy was 80.07% and cross-validation accuracy was 

29.95%. The difference between 64.81% (real data) and 29.95% (random data) demonstrates that 

the real data contains relevant information for classification.  
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Table 3. Confusion table of egg samples classification from e-tongue data. Groups according to 

feeding regime: Control, ZP 2.5%, ZP 5.0%. Results presented for batch 1 and batch 2. Reproduced 

with permission from Aguinaga Bósquez et al. (2021) 

 Batch 1  Batch 2 

Average 

Accuracies 
% Control ZP 2.5% ZP 5.0% 

Average 

Accuracies 
% Control ZP 2.5% ZP 5.0% 

Calibration 

95.92% 

Control 97.64 0.00 0.00 
Calibration 

100.0% 

Control 100.00 0.00 0.00 

ZP 2.5% 0.00 97.25 7.14 ZP 2.5% 0.00 100.00 0.00 

ZP 5.0% 2.36 2.75 92.86 ZP 5.0% 0.00 0.00 100.00 
 % Control ZP 2.5% ZP 5.0%  % Control ZP 2.5% ZP 5.0% 

Cross-

validation 

64.81% 

Control 46.02 15.89 4.72 Cross-

validation 

56.23% 

Control 88.94 0.00 33.33 

ZP 2.5% 39.74 72.95 19.81 ZP 2.5% 5.53 61.95 48.87 

ZP 5.0% 14.25 11.17 75.47 ZP 5.0% 5.53 38.05 17.79 

 

 

5.1.3. Eggs sensory evaluation by electronic nose 

 

Figure 14. Discriminant analysis on the e-nose data for fresh egg samples belonging to the batches: 

batch 1, batch 2; and to the feeding groups: Control, ZP 2.5%, ZP 5.0%.  PCA–LDA (a,c) and 

sensor contribution (b,d). E-nose analysis preheating-temperature: (a) 50 °C, LV:23(30), n = 85 

and (c) 80 °C, LV:4(30), n = 87. Reproduced with permission from Aguinaga Bósquez et al. (2021) 
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Upon initial examination of the results for eggs stored for 0, 30, and 60 days, it was 

observed that the models corresponding to fresh eggs (0 days of storage) demonstrated slightly 

improved discrimination between the different feeding treatment groups compared to models from 

longer storage periods. This improved discrimination for fresh eggs (0 days of storage) is 

illustrated in (Figure 14). 

In Figure 14 a and c, it is shown the PCA–LDA score plot results corresponding to the e-

nose analysis setting the preheating temperatures for the samples at 50 and 80 degrees Celsius. A 

clear differentiation in the samples between batches 1 and 2, in both preheating temperatures, is 

evident. Based on root 1, the explained variance between the two batches accounted for 97.46% 

for preheating at 50 °C and 87.80% for 80 °C. Moreover, the explained variance in root 2 was 

1.14% and 11.68% for the two preheating temperatures, respectively, and indicating a distinct 

separation tendency of the three feeding groups.   

Figure 14 b and d illustrate the sensors that were most effective in differentiating the 

samples stored at 50 °C and 80 °C for 0 days, respectively. Complementary, the main contributors 

to the separation between batches, between feeding groups, and between both (batches and feeding 

groups)  are presented in Table 4, Table 5 and  

Table 6, respectively. 

 

Table 4. Main contributing sensors for separation between batches from the discriminant analysis 

on the e-nose data for fresh egg samples 

At 50 °C At 80 °C 

Sensor Compounds 
Odor 

Descriptors 
Sensor Compounds 

Odor 

Descriptors 

1807.03 
Nootkatone, 2-

Hexadecanone 

Banana, citrus, 

grape, sour fruit, 

spicy, woody 

429.9 Acetaldehyde 

Ethereal, 

fresh, fruity, 

pungent 

1532.4 
Cadina-1,4-diene, 

Methyldodecanoate 

Fruity, mango, 

spicy, wood, 

coconut, creamy, 

fatty, sweet, waxy 

528.17 

Methyl acetate, 

2-

Methylpropanal 

Blackcurrant, 

ethereal, 

fruity, solvent 

1286.33 
Isoborneol acetate, 

Pentyl hexanoate 
Balsamic, fruity 1414.3 

Linalyl 

butanoate, (E)-

β-Damascone 

Floral, pear, 

sweet, apple 

986.5 

3-Octanone, 6-

Methyl-5-hepten-2-

one 

Butter, 

herbaceous, 

resinous, 

blackcurrant, 

boiled fruit, 

citrus, earthy, 

mushroom, 

rubber 

1807.3 
Nootkatone, 2-

Hexadecanone 

Banana, 

citrus, grape, 

sour fruit, 

spicy, woody, 

fruity 
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Table 5. Main contributing sensors for separation between feeding groups from the discriminant 

analysis on the e-nose data for fresh egg samples 

At 50 °C At 80 °C 

Sensor Compounds 
Odor 

Descriptors 
Sensor Compounds 

Odor 

Descriptors 

602.94 
2-Butanol, n-

Butanol 

Fusel-alcoholic, 

oily, winey, 

cheese, 

fermented, fruity, 

medicinal 

602.58 
2-Butanol, n-

Butanol 

Fusel-alcoholic, 

oily, winey, 

cheese, 

fermented, 

fruity, medicinal 

1140.88 

Homofuraneol, 

Methyl 3-

pyridinecarboxylate 

Caramelized, 

herbaceous, 

sweet, tobacco 

493.72 2-Propanone 
Fruity, glue, 

solvent 

528.86 
Methyl acetate, 2-

Methylpropanal 

Blackcurrant, 

ethereal, fruity, 

solvent, burnt, 

green, malty, 

pungent, spicy, 

toasted 
      

494.47 
2-Propanone, 

Propanal 

Fruity, glue, 

solvent, ethereal, 

plastic, pungent       

 

Table 6. Main contributing sensors for batch-feeding group separation from the discriminant 

analysis on the e-nose data for fresh egg samples 

At 50 °C 

Sensor Compounds Odor Descriptors 

818.98 
2,4,5-Trimethyl-3-oxazoline, 2-

Butanone-3-mercapto 
Musty 

430.57 Acetaldehyde 
Ethereal, fresh, fruity, 

pungent 

1312.65 
1-Methylnaphthalene, Cinamyl 

alcohol 

Earthy, green, musty, 

naphthyl, oily 

1400.26 Tetradecane, Diphenyl ether 
Alkane, fusel, mild 

herbaceous, sweet, green 

665.16 n-Butanol Cheese, fermented, fruity 

 

 Some common sensors were found for the two preheating temperatures which are close to 

the 1807, 602, 528, 494 Kovats index. Meanwhile, the sensors that are different were: 1532.40, 

1286.33, 986.5, 1140.88, 469.52, 818.98, 430.57, 1312.65, 1400.26, 665.16 Kovats index (50 °C); 

and 1414.33 Kovats index for 80 °C. 
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The confusion table of the PCA–LDA models is presented in Table 7, which displays the 

average values of each of the three technical replicates for both experimental batches at 50 °C and 

80 °C preheating temperatures. The average calibration accuracy for fresh eggs belonging to the 

feeding groups in batches 1 and 2 at 50 °C was 98.00%, while the cross-validation accuracy was 

68.49%. At 80 °C, the calibration accuracy was 82.65%, while the cross-validation accuracy was 

62.22%. Nevertheless, the outcomes of the three-fold cross-validation indicate that the 

differentiation between the three groups of eggs was not entirely accurate, presenting 

misclassification between adjacent groups. Nonetheless, the Control and ZP 5.0% groups 

displayed an enhanced tendency towards separation. 

Similar to the results from e-tongue, the PCA-LDA models developed from e-nose data 

show a large gap between calibration and cross-validation. By analyzing a matrix consisting of 

random numbers, LDA results presented in Appendix-A2_Table 6, the calibration accuracy was 

98.77% and cross-validation accuracy was 39.64%. The difference between the CV accuracy, 

68.49% (real data in Table 7) and 39.64% (random data in Appendix-A2_Table 6), demonstrates 

that the real data contains relevant information for classification. 

 

Table 7. Confusion table of fresh egg samples from data obtained from e-nose analysis. Groups 

according to feeding regime: Control, ZP 2.5%, ZP 5.0%. Results presented for batch 1 and batch 

2; and e-nose analysis preheating-temperature: 50 °C and 80 °C. Reproduced with permission from 

Aguinaga Bósquez et al. (2021) 

Batch 1, 50 °C Batch 2, 50 °C 

  % Control ZP 2.5% ZP 5.0% % Control ZP 2.5% ZP 5.0% 

Calibration 

98.00% 

Control 100.00 0.00 0.00 Control 96.04 0.00 8.03 

ZP 2.5% 0.00 100.00 0.00 ZP 2.5% 0.00 100.00 0.00 

ZP 5.0% 0.00 0.00 100.00 ZP 5.0% 3.96 0.00 91.97 

  % Control ZP 2.5% ZP 5.0% % Control ZP 2.5% ZP 5.0% 

Cross-

validation 

68.49% 

Control 38.83 5.50 0.00 Control 58.73 0.00 23.50 

ZP 2.5% 27.83 83.33 6.60 ZP 2.5% 11.82 77.83 17.67 

ZP 5.0% 33.33 11.17 93.40 ZP 5.0% 29.45 22.17 58.83 

 

Batch 1, 80 °C 

 

Batch 2, 80 °C 

  % Control ZP 2.5% ZP 5.0% % Control ZP 2.5% ZP 5.0% 

Calibration 

82.65% 

Control 100.00 14.78 0.00 Control 100.00 0.00 14.78 

ZP 2.5% 0.00 74.11 14.78 ZP 2.5% 0.00 81.00 29.67 

ZP 5.0% 0.00 11.11 85.22 ZP 5.0% 0.00 19.00 55.56 

  % Control ZP 2.5% ZP 5.0% % Control ZP 2.5% ZP 5.0% 

Cross-

validation 

62.22% 

Control 77.83 5.50 0.00 Control 100.00 13.40 33.33 

ZP 2.5% 16.67 77.83 44.50 ZP 2.5% 0.00 40.00 44.50 

ZP 5.0% 5.50 16.67 55.50 ZP 5.0% 0.00 46.60 22.17 
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Figure 15 a and c illustrate the results of the PCA-LDA analysis of the e-nose tests 

conducted at a preheating temperature of 50 °C, wherein the findings of the 0 days and 30, 60 days 

stored egg samples were evaluated collectively. The data demonstrates a clear distinction between 

the 0 days-fresh samples, the 30 days, and 60 days samples. However, there was a degree of 

overlap between the Control, ZP 2.5%, ZP 5.0% treatment groups, in each case. 

 

 

Figure 15. Discriminant analysis on the e-nose data for egg samples belonging to the batches: 

(a,b) batch 1 (LV: 20 (30), n = 132) , (c,d) batch 2 (LV: 4 (30), n = 133). Grouping according to 

feeding groups: Control, ZP 2.5%, ZP 5.0%; and storage time: 0, 30, 60 days. PCA–LDA (a,c) and 

sensor contribution (b,d). E-nose analysis preheating-temperature: 50 °C. Reproduced with 

permission from Aguinaga Bósquez et al. (2021) 

Additionally, in Figure 15 b and d, the main contribution sensors are presented, they are linked 

to characteristic compounds and related fragrance profile. Complementary, the main contributors 

to the separation of eggs especially by storage time are presented in Table 8. 

 

 

 

 

c,

a, b,

d,

Batch 1–50°C 

Batch 2–50°C 

Batch 1–50°C 

Batch 2–50°C 

Day 0 

Day 30 

Day 60 

Day 0 

Day 30 
Day 60 
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Table 8. Main contributing sensors for group separation according to storage time from the 

discriminant analysis on the e-nose data for fresh egg samples 

Batch 1 at 50 °C Batch 2 at 50 °C 

Sensor Compounds 
Odor 

Descriptors 
Sensor Compounds Odor Descriptors 

528.86 

Methyl acetate, 

2-

Methylpropanal 

Blackcurrant, 

ethereal, fruity, 

solvent 

430.57 Acetaldehyde 
Ethereal, fresh, fruity, 

pungent 

430.57 Acetaldehyde 
Ethereal, fresh, 

fruity, pungent 
602.94 2-Butanol 

Fusel-alcoholic, oily, 

winey (also reported 

with alkane, ethereal, 

kerosene) 

818.98 

2,4,5-

Trimethyl-3-

oxazoline, 2-

Butanone, 3-

mercapto 

Musty, onion, 

sulfurous 
803.41 

2-Hexanol, 

Hexanal 

Fatty, fruity, winey, 

acorn, fishy, grassy, 

green, herbaceous, 

leafy, tallowy 

Other major contributors with lower 

loadings: 441.88, 494.47, 803.41, 469.52, 

602.94, 665.16, 1400.26, 614.28, 986.50, 

1807.03 and 1286.33. 

528.86 

Methyl 

acetate, 2-

Methylpropa

nal 

Burnt, fruity, green, 

malty, pungent, spicy, 

toasted 

 

The principal contributing sensors (with varying loading capacities) appear to be linked to the 

differentiation between fresh and stored egg samples, with a storage period of either 30 or 60 days. 

Nevertheless, a minor contribution to the differentiation between feeding groups is also evident. 

A comparative analysis of batches 1 and 2 reveals that all the principal contributing sensors 

identified in batch 2, namely 469.52, 430.57, 602.94, 803.41, 528.86 and 602.94, are shared with 

batch 1. Conversely, the other significant sensors, namely 818.98, 441.88, 494.47, 665.16, 

1400.26, 614.28, 986.50, 1807.03 and 1286.33, are present in batch 1 but absent in batch 2.  

The difference in sensor responses between batches may be attributed to the laying day, aging 

of the hens, feed intake evolution, or other physiological factors, as batch 1 and batch 2 correspond 

to eggs collected on day 30 and day 60 of the experimental period, respectively. Changes in diet 

have been shown to affect the gut microbiota, as well as the amino acid, fatty acid, and volatile 

compound composition of eggs (Yang et al., 2024). These variations are, in turn, influenced by 

the physiological status of the hens and the stage of the laying period, among other factors 

(Şekeroğlu et al., 2024). Moreover, volatile compounds in fresh eggs undergo progressive changes 

and accumulation during storage (Adamiec et al., 2002). Consequently, differences between 

batches collected at different time points may have influenced the initial volatile composition and 

its evolution during storage, ultimately resulting in slightly different sensor responses and volatile 

profiles. 
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The significance of acetaldehyde, methyl acetate, and 2-methylpropanal as volatile compounds 

in eggs is evident, in a manner comparable to that depicted in Figure 14. Volatile compounds, 

including hexanal, 2,4,5-trimethyl-3-oxazoline and 2-butanone, 3-mercapto, were found with 

greater likelihood to be associated with storage conditions. The concentration of volatile 

compounds in fresh eggs undergoes a process of change and increase during the storage period 

(Adamiec et al., 2002). The egg yolks volatile components are particularly prone to alteration, 

with esters, alkenes, alcohols, and nitrogenous compounds being the most susceptible (Wang et 

al., 2014).  Yanagisawa et al. (2010), as cited in Yimenu et al., (2017) reported an increase of 

hexanal in yolk during storage via the identification of volatile compounds. In addition, the 

concentration of other compounds, such as dimethyl sulfide, dimethyl disulfide, dimethyl 

trisulfide, methyl thioacetate, methanol, ethanol, 1-propanol, acetone, 2-butanone, and ethyl 

acetate, also undergoes changes during storage. 

A similar outcome is observed in the PCA–LDA analysis conducted on samples heated to 

80 °C (Figure 16 a and c), where complete separation between days of storage is evident. However, 

overlap between feeding groups is observed. 
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Figure 16. Discriminant analysis on the e-nose data for egg samples belonging to the batches: 

(a,b) batch 1 (LV: 18 (30), n = 134), (c,d) batch 2 (LV: 11 (30), n = 130). Grouping according to 

feeding groups: Control, ZP 2.5%, ZP 5.0%; and storage time: 0, 30, 60 days. PCAL–DA (a,c) and 

sensor contribution (b,d). E-nose analysis preheating-temperature: 80 °C. Reproduced with 

permission from Aguinaga Bósquez et al. (2021) 

Additionally, in Figure 16 b, the main contribution sensors are presented (which are linked 

to fragrance profile-characteristic compounds). Complementary, the main contributors to the 

separation of eggs, especially by storage time, are presented in Table 9. 

  

 

 

 

 

 

 

a, b,Batch 1–80°C Batch 1–80°C 

c, d,Batch 2–80°C Batch 2–80°C 

Day 0 

Day 30 

Day 60 

Day 0 

Day 30 
Day 60 
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Table 9. Main contributing sensors for group separation according to storage time from the 

discriminant analysis on the e-nose data for fresh egg samples 

Batch 1 at 80 °C Batch 2 at 80 °C 

Sensor Compounds Odor Descriptors Sensor  Compounds 
Odor 

Descriptors 

1414.3 

Linalyl 

butanoate, (E)-

β-damascone 

Floral, pear, 

sweet, apple 
803.46 

2-Hexanol, 

Hexanal 

Fatty, fruity, 

winey, solvent, 

acorn, fishy, 

grassy, green, 

herbaceous, 

leafy, tallowy 

429.9 Acetaldehyde 
Ethereal, fresh, 

fruity, pungent 
429.9 Acetaldehyde 

Ethereal, fresh, 

fruity, pungent 

602.58 2-Butanol 
Fusel-alcoholic, 

oily, winey 

468.39 / 

660.89 
2-Methylbutanal 

Almond, cocoa, 

green, malty, 

strong burnt 

528.17 

Methyl acetate, 

2-

Methylpropanal 

Blackcurrant, 

ethereal, fruity, 

solvent, burnt, 

green, malty, 

pungent, spicy, 

toasted 

1533.21 
Cadina-1,4-diene, 

Methyldodecanoate 

Fruity, mango, 

spicy, wood, 

coconut, creamy, 

fatty, sweet, 

waxy 

Other major contributors with lower 

loadings: 493.72, 803.46, 660.89, 468.39, 

818.81, 1807.3, 680.81, 1533.21, 1000.93, 

613.86, and 1691.6. 

528.17 
Methyl acetate, 2-

Methylpropanal 

Blackcurrant, 

ethereal, fruity, 

solvent, burnt, 

green, malty, 

pungent, spicy, 

toasted 

Other major contributors with lower loadings: 

602.58, 493.72, 1286.41, 1807.3 

 

Common sensors for both batch 1 and batch 2 include 429.9, 602.58, 803.46, 468.39, 660.89, 

1807.3, 1533.21, and 493.72. In contrast, sensors 818.81, 680.81, 1000.93, 613.86, and 1691.6 

were observed exclusively in the first batch, while sensors 528.17 and 1286.41 were only detected 

in the second batch.  

The sensors contribution is primarily associated with the differentiation between fresh and stored 

egg samples. Nevertheless, a minor contribution to the differentiation between feeding groups was 

also observed. This is analogous to the analysis of samples conducted at a preheating temperature 

of 50 °C, as observed in Figure 15. 

 

A summary list of the principal sensors that contribute to the detection of egg volatile 

compounds, as evidenced by the e-nose data analysis is presented in Appendix-A2_Table 9. In 
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Table 10, important egg volatile compounds are presented, which have been identified in this study 

and previously reported by several researchers (Umano et al., 1990; Matiella and Hsieh, 1991; 

Cherian, Goeger and Ahn, 2002; Yimenu, Kim and Kim, 2017; Xiang et al., 2019): 

Table 10. Relevant sensors related to volatile compounds identified in eggs analysis studies 

Sensor Compounds Odor Descriptors 

429.9 / 430.57 Acetaldehyde Ethereal, fresh, fruity, pungent 

528.17 / 528.86 
Methyl acetate, 2-

Methylpropanal 
Blackcurrant, ethereal, fruity, solvent 

602.58 2-Butanol Fusel-alcoholic, oily, winey 

818.98 
2,4,5-Trimethyl-3-oxazoline, 

2-Butanone, 3-mercapto 
Musty, onion, sulfurous 

1807.03 Nootkatone, 2-Hexadecanone 
Banana, citrus, grape, sour fruit, spicy, 

woody 

803.41 / 803.46 2-Hexanol, Hexanal Fatty, fruity, winey 

1414.33 
Linalyl butanoate, (E)-β-

damascone 
Floral, pear, sweet 

660.89 2-Methylbutanal 
Almond, cocoa, green, malty, strong 

burnt 

 

A number of studies have identified aldehydes as a significant volatile compound present in 

eggs. The presence of these compounds has been documented in a number of foodstuffs, including 

scrambled eggs (Matiella & Hsieh 1991) and cooked eggs (Umano et al., 1990). In addition, 

volatile aldehydes are present in the greatest quantity in cooked egg yolks, with a significantly 

lower concentration observed in the case of egg whites (Umano et al., 1990). In their investigation, 

the authors identified the principal aldehyde present in egg yolk and whole egg volatiles as 2-

methylpropanal. The results of this research also demonstrated a significant prevalence of 

acetaldehyde, methyl acetate, and 2-methylpropanal, which is consistent with the findings of other 

researchers who have identified aldehydes as volatile flavor components of eggs (Macleod and 

Cavea, 1975; Cherian, Goeger and Ahn, 2002). In addition, other compounds, such as ketones and 

2-propanone (acetone), have been identified in whole eggs and egg whites. Furthermore, this 

indicates a greater concentration of amino acids in egg white than in egg yolk. Certain amino acids 

play a pivotal role in the biosynthesis of 2-methylbutanal. Conversely, the whole egg contains 

alcohol in lower quantities. The majority of alcohols are found in the egg yolk and are associated 

with lipid oxidation, as evidenced by several studies (Umano et al., 1990; Cherian, Goeger and 

Ahn, 2002). In the course of our research, we observed that the alcohols present as volatile 

compounds in eggs exhibited the greatest prevalence in the form of 2-butanol (fusel alcoholic, 

oily, winey) and 2-hexanol (fatty, fruity, winey). 
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5.2. Results of probiotics samples evaluation 

The figures and tables presented in this section are based on previously published results 

(Aguinaga Bósquez et al., 2022). The microbiological results, presented in Figure 17, demonstrate 

the log colony forming unit (CFU) per gram values for each probiotic type according to the water 

temperature level. This study aimed to investigate the effect of the water temperature applied by 

consumers prior to consumption of probiotic beverages. 

      

Figure 17. ANOVA and the Tukey HSD post-hoc test of microbiological analysis of probiotics (N, 

A and P) samples prepared under three different water temperatures (T1: 25°C, T2: 60°C and T3: 

90°C). Differences among the groups represented by letters (a–e) at a significance level of α = 

0.05. Reproduced with permission from Aguinaga Bósquez et al. (2022). 

At 25°C (water at room temperature), the microbial prevalence is higher compared to the log 

CFU/g values at 60 and 90°C. This trend was observed for all the probiotic types (N, A, and P). 

Therefore, it is established that probiotic viability is dependent on temperature. Most Lactobacillus 

strains, which are mesophilic, are able to survive at temperatures below 50 °C. In case of 

thermophilic strains, can grow at temperatures above 50°C (Prasad, Mcjarrow and Gopal, 2003; 

Desmond et al., 2004; Suokko et al., 2005; Corcoran et al., 2008; Bove et al., 2013). 

 

Probiotic N showed the greatest discrepancy in the microbiological count, exhibiting 

initially 9.1 log CFU/g at 25 °C. Concomitantly, the value was reduced to 6.0 log CFU/g and 4.5 

log CFU/g at higher temperatures of 60 °C and 90 °C, respectively. Probiotics A and P counts 

exhibited differential responses to temperature, though the observed differences were less 

pronounced than those observed for probiotic N. The log CFU/g for probiotic A was 8.7 at 25 °C, 

8.1 at 60 °C and 7.5 at 90 °C. Meanwhile, the values were 8.6 at 25 °C, 7.7 at 60 °C and 5.9 at 90 
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°C, for probiotic P. In general, probiotic A exhibited the greatest thermal stability, followed by 

probiotic P and lastly by probiotic N.  

By applying heated water to the probiotics, at 60 and 90°C, and leaving to cool to a 

temperature of approximately 25°C (room temperature); the results indicated a 3-log reduction in 

probiotic N, and a 1-log reduction in probiotic A and probiotic P at 60°C. In a comparative study, 

Franz and Holy (1996) evaluated the heat resistance of three meat spoilage lactic acid bacteria in 

vitro. Their findings demonstrated that at 60°C, the D-values (time for 90% microbial reduction) 

ranged from 15 to 40 seconds, indicating a 1-log CFU/g reduction. Conversely, as previously 

observed by Teoh et al. (2011), a study on probiotics containing L. acidophilus and L. acidophilus 

and B. pseudocatenulatum, subjected to a 60°C constant temperature for 30 minutes, demonstrated 

a reduction in probiotic viability from 9 to 4 log CFU/g. The outcome suggests that the 

methodology employed in this study results in a reduction in viability to a lesser degree than the 

conventional method. However, this approach offers a more realistic representation from the 

consumer perspective, particularly when higher temperatures than the recommended are applied. 

 

5.2.1. Near infrared spectra of probiotic samples  

Figure 18 illustrates the NIR spectra of probiotic samples, presented in different colours 

corresponding to the temperature levels (in the 950–1630 nm). A discernible trend emerges within 

the spectral profiles, distinguished according to temperature especially from 950 to 1400 nm and 

1500 to1630 nm. However, overlapping is noted between consecutive temperatures, it was found 

to be entirely distinction between T1 (25°C) and T3 (90°C). In addition, the NIR spectra were 

coloured from one side according to the probiotic types N, A, P and from other side according to 

the concentration of the probiotics for drinks preparation (not shown), demonstrating that there 

were higher levels of spectra overlapping, which necessitated the application of further statistical 

analysis and data treatment to reveal clear trends. 
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Figure 18. Near infrared raw spectra of probiotic samples analyzed according to varying 

temperatures (T1: 25 °C; T2: 60 °C; T3: 90 °C). Wavelength range 950-1630 nm. Reproduced with 

permission from Aguinaga Bósquez et al. (2022). 

5.2.2. Classification of probiotic samples  

Figure 19 presents the results of the PCA-LDA analysis for the differentiation of the three 

probiotics (N, A, and P) at 25°C. For this analysis, the entire sample set from the three 

concentrations was considered as a unified group.  

 

Figure 19. Discriminant analysis on the 25°C prepared-probiotic samples, N scans= 237. Arrows 

indicate the most important wavelengths for probiotic groups separation. Wavelength range 950-

1630 nm. Reproduced with permission from Aguinaga Bósquez et al.( 2022). 

The probiotics exhibited discrimination on roots 1 (94.90%) and 2 (5.10%), resulting in a 

clear separation of the sample groups. Probiotics A and P exhibited a closer proximity to each 

other in comparison to probiotic N, the latter of which exhibited a clear separation from the other 

groups. It was observed that the liquid matrix from the N samples exhibited distinct visual 
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characteristics when compared to the liquid matrices of the other probiotics. Moreover, probiotics 

A and P contain a greater number of strains and complementary compounds in common with one 

another than probiotic N. The optimal classification model was generated through the application 

of the SG 2-17-0 pretreatment. This approach achieved a 100% and 99.18% correct classification 

and cross-validation, respectively. Furthermore, at 1376, 1388-1396, and 1576–1590 nm were 

found important wavelengths that were most influential in the clustering between groups which 

can be associated with the first overtone region 1300 to 1600 nm of NIRS. This region is 

characterized by C-H, O-H and N-H intermolecular hydrogen bounds linked to biological aqueous 

systems and related to primary constituents of the probiotics: water, protein, lipid, sugar, and 

supplementary organic composites (Ozaki, Genkawa and Futami, 2017; Tsenkova et al., 2018; 

Muncan and Tsenkova, 2019). 

Figure 20 shows the discriminant analysis conducted on a probiotic basis, with each 

probiotic subjected to a separate concentration-dependent assessment and selecting the dataset 

from the 90 ºC (T3) -prepared probiotic beverages which exhibited higher accuracy for 

discrimination according to concentration compared to 25 ºC (T1) and 60 ºC (T2).  
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Figure 20. Discriminant analysis on the 90°C prepared-probiotic samples according to 

varying concentration. Models for the three probiotic types: (a) probiotic N (n=78), (b) probiotic 

A (n=72) and (c) probiotic P (n=75). Wavelength range 950-1630 nm. Reproduced with permission 

from Aguinaga Bósquez et al. (2022). 

 

A trend of separation, in all the probiotic-PCA-LDA models, was observed occurring in a 

specific order according to the according to the following hierarchy: C1, C2, and C3 (from high 

to low concentration). However, misclassification was exhibited between the different 

concentrations, with minor overlapping, particularly between consecutive concentrations:C1-C2 

and C2-C3. 

Complementary, a confusion table of the PCA-LDA models is illustrated in Table 11. For 

comparison purposes, the table includes the models belonging to the higher and lower water 

temperature. 
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Table 11. Discriminant analysis - confusion table of the 25°C and 90°C prepared-probiotic 

samples. Groups according to the concentration level. Results presented for probiotic N, A and P. 

Reproduced with permission from Aguinaga Bósquez et al. (2022).  

T3 (90°C) Probiotic N Probiotic A Probiotic P 

  Average Calibration (100%) Average Calibration (100%) Average Calibration (100%) 

% C1 C2 C3 C1 C2 C3 C1 C2 C3 

C1 100 0 0 100 0 0 100 0 0 

C2 0 100 0 0 100 0 0 100 0 

C3 0 0 100 0 0 100 0 0 100 

  

Average Cross-validation 

(93.52%) 

Average Cross-validation 

(95.06%) 

Average Cross-validation 

(90.12%) 

% C1 C2 C3 C1 C2 C3 C1 C2 C3 

C1 91.67 11.11 0 96.30 7.41 0 100 11.11 11.11 

C2 8.33 88.89 0 3.70 88.89 0 0 81.48 0 

C3 0 0 100 0 3.70 100 0 7.41 88.89 

T1 (25°C) Probiotic N Probiotic A Probiotic P 

 Average Calibration (100%) Average Calibration (95.68%) Average Calibration (94.45%) 

% C1 C2 C3 C1 C2 C3 C1 C2 C3 

C1 100 0 0 100 5.56 0 96.30 3.70 0 

C2 0 100 0 0 88.89 1.85 3.70 92.59 5.56 

C3 0 0 100 0 5.56 98.15 0 3.70 94.44 

 Average Cross-validation (93.83%) 

Average Cross-validation 

(60.65%) 

Average Cross-validation 

(60.50%) 

% C1 C2 C3 C1 C2 C3 C1 C2 C3 

C1 88.89 7.41 0 70.83 37.04 0 62.96 14.81 22.22 

C2 11.11 92.59 0 16.67 29.63 18.52 11.11 51.85 11.11 

C3 0 0 100 12.50 33.33 81.48 25.93 33.33 66.67 

 

 The classification of the 90°C (T3)-probiotic samples according to concentration levels is 

displayed in the upper section of the table. The models for each probiotic showed high correct 

classification values, with all probiotics approaching 100% correct classification in calibration. 

Meanwhile, for cross-validation the accuracy was higher than 90% in all cases, exhibiting in 

decrement order: 95.06%, 93.52% and 90.12% for probiotic A, probiotic P and probiotic N, 

respectively. C1-C2 and C2-C3 (consecutive concentrations) presented some degree of 

misclassification. The most optimal models corresponded to the following spectral pre-treatments: 

DeTr and MSC (for probiotic N), SG 2-21-0 and DeTr (for probiotic A), and SG 2-17-0 and SG 

2-17-2 (for probiotic P).  

Furthermore, the PCA-LDA results for the probiotic samples subjected to 25°C (T1) are 

presented in Table 11. However, the models corresponding to probiotic A and probiotic P 

demonstrated a higher misclassification rate of the concentration levels at this temperature, 

especially for prediction capacity. Probiotic A exhibited a 96.68% and 60.65% calibration and 
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cross-validation accuracy, respectively, while probiotic P exhibited a 94.45% and 60.50% 

calibration and cross-validation accuracy, respectively. 

 

Figure 21 illustrates the PCA-LDA models corresponding to the probiotic strain, with 

discrimination according to the temperature level. Only samples from concentration 1 (C1) were 

considered; however, similar results are obtained with other concentrations.  

 

Figure 21. Discriminant analysis on the concentration C1 prepared-probiotic samples according 

to varying temperature. Models for the three probiotic types: (a) probiotic N (n=75), (b) probiotic 

A (n=78) and (c) probiotic P (n=72). Wavelength range 1950-1630 nm. Reproduced with 

permission from Aguinaga Bósquez et al. (2022). 

The classification model that exhibited the highest accuracy of 100% in both calibration 

and cross-validation was the one developed for Probiotic A, which employed the SG 2-17-0 and 

MSC spectral pretreatment. Similarly, probiotics P and N demonstrated a high degree of accurate 

differentiation between groups. Probiotic P exhibited 100% and 92.59% accuracy for classification 

and cross-validation, respectively, upon the application of DeTr spectral pretreatment. Meanwhile, 
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probiotic N demonstrated 100% and 94.60% accuracy for calibration and cross-validation, 

respectively, following the application of SG 2-13-0 and SG 2-21-1. Consequently, although 

greater differentiation of samples based on the temperature of the prepared solutions was observed 

for all probiotics, the one that stood out was probiotic A (Figure 21b). 

Table 12 presents a confusion table, summarizing the PCA-LDA models for the 

classification of probiotic solutions according to the temperature preparation level. It demonstrates 

high correct classification for each probiotic, with only minor misclassification (between T1-T2 

and T1-T3) observed in the case of probiotic N and (between T1-T2) for probiotic P. 

 

Table 12. Discriminant analysis-confusion table on the concentration C1 prepared-probiotic 

samples. Groups according to the temperature level. Results presented for probiotic N, A and P. 

Reproduced with permission from Aguinaga Bósquez et al. (2022). 

  Probiotic N Probiotic A Probiotic P 

  

Average Calibration 

(100%) 

Average Calibration 

(100%) 

Average Calibration 

(100%) 

% T1 T2 T3 T1 T2 T3 T1 T2 T3 

T1 100 0 0 100 0 0 100 0 0 

T2 0 100 0 0 100 0 0 100 0 

T3 0 0 100 0 0 100 0 0 100 

  

Average Cross-validation 

(94.60%) 

Average Cross-validation 

(100%) 

Average Cross-validation 

(92.59%) 

% T1 T2 T3 T1 T2 T3 T1 T2 T3 

T1 96.30 12.50 0 100 0 0 77.78 0 0 

T2 0 87.50 0 0 100 0 22.22 100 0 

T3 3.70 0 100 0 0 100 0 0 100 

 

 

5.2.3. PLSR prediction of probiotic samples viability  

A model for predicting CFU counts for all the probiotics (tested in combination according 

to the concentration and temperature) is presented in Figure 22a and b. Samples from repetitions 

R2 and R3 were selected for model calibration and cross-validation, while repetition R1 was used 

for prediction. Additionally, the best model was achieved by applying SG 2-21-0 and SG 2-13-2 

pretreatments. The optimal number of components for the model was determined to be seven. The 

R2C was 0.87 and RMSEC was 0.54. Meanwhile, the R2CV was 0.68 and RMSECV was 0.84 

(Figure 22a). Furthermore, for the prediction of the samples, the R2Pr was 0.82 and RMSEP was 

0.64 (Figure 22b). Furthermore, the primary wavelengths contributing to the PLSR model are 

illustrated in Figure 6c. In the 1300–1600 nm wavelength range, a considerable number of 

contributing wavelengths and the most significant peaks contributing to the prediction of probiotic 

viability are observed. The prepared probiotic solutions are primarily composed of water and a 

smaller quantity of organic composites, exhibiting high absorbance in the first overtone region of 
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water comprised between 1300 and 1600 nm (Siesler et al., 2002; Ozaki, Genkawa and Futami, 

2017; Tsenkova et al., 2018; Muncan and Tsenkova, 2019). In this regard, molecular interactions 

such as OH stretching (Maeda and Ozaki, 1995; Workman, 2000; Izutsu et al., 2006; Slavchev et 

al., 2015), OH/NH stretching (Wei and Salahub, 1997; Fischer and Tran, 1999; Mizuse and Fujii, 

2012; Slavchev et al., 2015) can be associated with specific wavelengths of importance, namely 

1458 nm and 1484 nm, respectively. Moreover, In the region of 950-1300 nm, the more prominent 

wavelength, related to the free water (S0) combination overtone, is assigned to 1140 nm. In a study 

from Slavchev et al. (2015), this characteristic is described as pertaining to the nearest band at 

1155 nm.  

 

Figure 22. Partial least square regression for viability prediction of probiotic samples. (a) 

Calibration and cross-validation by selection R2 and R3. (b) Prediction of samples by selecting 

R1. (c) Calibration coefficients showing important wavelengths for the PLSR model. Wavelength 

range 1950-1630 nm. Reproduced with permission from Aguinaga Bósquez et al. (2022).   
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5.3. Results of pea microgreens samples evaluation 

To study the growth of pea microgreens under different environmental conditions using NIR 

spectroscopy, data was first collected on 13 key agronomical and biochemical variables. This 

approach allowed for a more comprehensive understanding of how these conditions affect the 

plants, both in terms of individual traits and their overall characteristics. 

 

5.3.1. Results of the agronomic-phytochemical evaluation of pea microgreens  

Physical characteristics (weight and height) 

In Figure 23, a correspondence between plant height and weight can be observed. As the 

height of the microgreens increases, their weight also increases, as greater plant development 

implies more accumulated biomass.  

 

 
Figure 23. Height and Weight of pea microgreens harvested after 7, 11, 14 and 18 days under 

different temperatures (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions, 

Standard deviation is represented by whiskers (± SD)  

In general, greater plant growth and weight are evident at higher temperatures. Plants grow 

faster and gain weight as temperature increases because the biochemical reactions that regulate 

growth, such as photosynthesis and respiration, accelerate with higher temperatures. The enzymes 

involved in these processes function more efficiently within an optimal temperature range, 

promoting greater cell development, biomass accumulation, and elongation. The height and weight 
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of microgreens are important for commercialization. Height influences visual appearance and 

attractiveness, while weight is related to yield and biomass quantity. Commercially, a height 

between 5 and 10 cm is preferred (Ajdanian, Babaei and Aroiee, 2019; Niroula et al., 2019; 

Hernández-Adasme, Palma-Dias and Escalona, 2023). Plants growth at temperatures of 25 °C, 

20 °C, and 15 °C reach over 5 cm in height at days 7, 11, and 18, respectively. 

The treatment (25C_00L) reached the highest values of height and weight, measuring 

18.55 cm and 0.72 g at day 11, and 20.37 cm and 0.79 g at day 14. In contrast, the treatment 

15C_06L recorded the lowest values of height and weight, measuring 2.25 cm and 0.07 g at day 

11, and 3.21 cm and 0.09 g at day 14. Light and temperature are essential environmental factors 

that shape how plants grow and develop. Interestingly, they often produce similar effects, both 

shaded environments and high temperatures can lead to morphological changes such as elongation 

of the hypocotyl, petioles, and stems (Perrella et al., 2020). 

Notably, plants grown in complete darkness (00L) reached greater heights. This can be 

explained by the phenomenon of etiolation, a process in which plants grow rapidly in the absence 

of light, characterized by long and thin stems, small leaves, and a lack of chlorophyll, giving them 

a pale yellow color (Młodzińska, 2009; Seluzicki, Burko and Chory, 2017) . This exaggerated 

growth is due to the action of hormones such as auxin, which promotes stem elongation as an 

adaptive response to reach a light source as quickly as possible, allowing the plant to start 

photosynthesis and survive (Burko et al., 2022). In the presence of light, different behaviors were 

observed depending on the temperature. For 15 °C and 20 °C, plants with an 18-hour photoperiod 

(18L) showed greater height compared to 06L and 12L, as the extended light hours allow for more 

photosynthesis, resulting in faster growth and higher biomass production (Kay and Phinney, 1956; 

Kong and Zheng, 2019). Conversely, at 25 °C, plants with a 6-hour photoperiod (6L) reached 

greater heights compared to 12L and 18L. Under high-temperature conditions, a long photoperiod 

of 18 hours may subject plants to more thermal stress, increase photorespiration, light damage, 

and water loss, all of which can reduce photosynthetic and energetic efficiency. As a result, plants 

under a long photoperiod may grow less than those under a short photoperiod of 6 hours, which 

are less exposed to these stress factors.  
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Chemical characteristics (°Brix, pH, and conductivity)  

In Figure 24, °Brix, pH, and conductivity obtained in this study correspond to a 

concentration of 0.2 g of plant material per 1 ml of distilled water. The reported results are based 

on this ratio, allowing for a consistent comparison of the quality parameters of pea microgreens 

juice under the applied growing conditions. 

 
Figure 24. °Brix, pH, and conductivity of pea microgreens harvested after 7, 11, 14 and 18 days 

under different temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L). Standard 

deviation is represented by whiskers (± SD) 

°Brix: In the figure, microgreens at 15 °C, the °Brix degrees increase between days 11 and 

14, indicating an accumulation of sugars (sucrose) during this growth stage, followed by a decrease 

on day 18, probably due to the mobilization of these sugars to form new structures. Sucrose, in 

particular, not only provides energy but also regulates processes related to cell expansion and 

organ differentiation, this shows the importance of sucrose in the development of plants (Rolland, 

Baena-Gonzalez and Sheen, 2006). In the treatments at 20 °C and 25 °C, the °Brix degrees 
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decrease between days 7, 11, and 14, suggesting that at these higher temperatures, sugars are being 

used more quickly for growth, possibly due to a faster metabolism and higher energy demand. The 

variability in the °Brix degrees also suggests that temperatures affect the rate of photosynthesis 

and carbohydrate distribution. Lower temperatures seem to favor sugar accumulation, while higher 

temperatures promote a rapid use of these resource (Di Bella et al., 2020; Furuyama, Okamoto 

and Jishi, 2023). 

On the 7th day, at 20 and 25 °C, the highest value (2 °Brix) was observed in plants at 25 °C 

with 18 hours of light (25C_18L); while the lowest value (1.27 °Brix) was at 20 °C with 0 hours 

of light (20C_00L). At 11 days, at 15, 20, and 25 °C, the highest value (1.67 °Brix) occurred at 25 

°C with 18 hours of light (25C_18L), and the lowest value (0.90 °Brix) at 25 °C with 0 hours of 

light (25C_00L). At 14 days, at 15, 20, and 25 °C, the highest value (1.90 °Brix) was at 15 °C with 

18 hours of light (15C_18L), while the lowest (0.73 °Brix) remained at 25 °C with 0 hours of light 

(25C_00L). At 18 days, at 15 °C, the highest value (1.70 °Brix) was observed with 18 hours of 

light (15C_18L), and the lowest value (1.33 °Brix) with 0 hours of light (15C_00L). This shows 

how temperature and photoperiod influence sugar accumulation, with generally higher values in 

plants with 18 hours of light per day and lower values with 0 hours of light. Exposure to 18 hours 

of light promotes greater photosynthesis, resulting in increased sugar production. Microgreens that 

receive light for more hours have more time to convert solar energy into carbohydrates. In contrast, 

fewer hours of light decrease their photosynthetic rate, which lower sugar levels (Seluzicki, Burko 

and Chory, 2017). Temperature also affects plant metabolism. At higher temperatures (such as 25 

°C), metabolic activity is more intense, enhancing sugar utilization for growth and respiration, the 

elevated energy demands often lead to reduced sugar accumulation compared to cooler conditions. 

Thus, microgreens with more light and optimal temperatures have better conditions for 

photosynthesis, storing sugars, and maintaining vigorous growth. Lack of light drastically reduces 

sugar production, and temperature also modulates how these sugars are produced and used 

(Thakulla, Dunn and Hu, 2021; Furuyama, Okamoto and Jishi, 2023). 

pH: At 15 °C, treatments without light (15C_00L) or with just 6 hours of light (15C_06L) 

maintained a relatively stable pH between days 11 and 14, followed by an increase by day 18. In 

contrast, the 12 and 18 hours light treatments (15C_12L and 15C_18L) showed a steady pH until 

day 14. Overall, values ranged from 5.5 to 6.5, tending to be slightly higher when more light was 

available. 

At 20 °C, a different trend appeared. In the no-light and 6 hour light treatments (20C_00L 

and 20C_06L), the pH gradually dropped from day 7 to 14, with values between 5 and 6.5. For the 

12 hour light condition (20C_12L), pH increases from day 7 to 11, then stabilizes. The 18 hours 

light treatment (20C_18L) maintained a steady pH near 5.8. 
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At 25 °C, all treatments (25C_00L to 25C_18L) followed a similar pattern: pH rose 

between days 7 and 11, then dipped slightly by day 14. pH values here ranged from 4.5 to 6. 

The behavior of pH in general is more stable and some trends that may appear related to 

photoperiod and temperature are not as clear as those visualized in other studied variables. This 

might be due to the homeostasis mechanisms in plants that enables the regulation of their internal 

pH to ensure the optimal functioning of essential metabolic processes (Zhou, Hao and Yang, 2021; 

Li and Yang, 2023). 

 Conductivity: At 15 °C, the treatment without light (15C_00L) increased in electrical 

conductivity (EC) from day 11 to 14, followed by a drop on day 18. Values range between 1.5 and 

2.75 mS/cm. For the 6 hours (15C_06L) and 12 hours (15C_12L) light treatments, EC remains 

fairly stable through days 11 to 14 and increases by day 18. The 18 hours light treatment 

(15C_18L) behaves similarly through days 11 to 14, but decreases by day 18, the values range 

between 2.25 and 2.75 mS/cm. 

At 20 °C, EC increases from day 7 to day 11 in all treatments, then drops slightly on day 

14. The values fall in the 1 to 3 mS/cm range.  

At 25 °C, treatments without light (25C_00L) and with 6 hours of light (25C_06L) also 

show a rise in EC between days 7 and 11, followed by a decrease. EC values range from 1.5 to 

2.75 mS/cm. The 12 hours light treatment (25C_12L) shows a slight decline in EC across the same 

period, staying around 2.25 mS/cm. The 18 hours treatment (25C_18L) also shows a decrease, a 

bit more pronounced, although values still range between 2.25 and 2.75 mS/cm. 

The data overall shows that there is no clear pattern that can be directly linked to harvest 

day, light exposure, or temperature. The results are quite variable, and it is hard to tell if any of 

these factors are influencing the changes in conductivity. Moreover, to our knowledge, there are 

currently no relevant studies addressing this specific aspect in microgreens. 

 

Optical properties (Color Lab components)  

In Figure 25, the Lab color coordinates reveal the color's position on the blue-yellow scale 

through the b* value, while the L* component indicates luminosity. Negative b* values indicate a 

tendency toward blue, while positive values indicate a lean towards yellow. In the L* component, 

lighter colors reflect more light (having a higher L* value), while darker colors absorb more light 

(having a lower L* value). The graph shows that both the b* and the L* values are lower when the 

plant is subjected to a longer photoperiod. The plant grown in light exhibits a lower b* value, 

indicating less yellow and more green. This is common in healthy plants, which have high levels 

of chlorophyll. Chlorophyll primarily absorbs blue and red light, reflecting green, and thus tends 
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to reduce the b* value toward less positive values (Ajdanian, Babaei and Aroiee, 2019; Kyriacou 

et al., 2020; Hernández-Adasme, Palma-Dias and Escalona, 2023). 

 

 
Figure 25. Lab color components of pea microgreens harvested after 7, 11, 14 and 18 days under 

different temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. 

Standard deviation is represented by whiskers (± SD) 

Temperature affects the growth and development of microgreens, as well as the color 

components L* (luminosity) and b* (blue-yellow). Optimal temperatures favor chlorophyll 

production. However, at extreme temperatures, whether high or low, the plants can get stressed, 

leading to less chlorophyll production and more carotenoids synthesis, which raises L* and b* 

values, indicating a higher presence of yellow color. As microgreens grow, chlorophyll levels 

often increase, especially when light is available (Kay and Phinney, 1956; Młodzińska, 2009; 

Ajdanian, Babaei and Aroiee, 2019), resulting in a decrease in L* and b* values. 
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The results regarding the 14 days of growth show that the highest L* values were obtained 

by plants growing at (25C_00L), with the highest values being 54.67 units; for the b* component, 

the highest values were 15_00L with 44 units. Meanwhile, the lowest L* values were recorded for 

20C_18L and 25C_18L with 23 units; the b* component was 25C_18L with 19.33 units. 

The a* (green-red) component differs from the L* and b* components. Treatments without 

light (00L) showed much higher values than those with 6, 12, or 18 hours of light. In the absence 

of light, less chlorophyll is produced, which reduces the green tone and allows other pigments, 

such as reddish or yellowish ones, to become more visible (Kay and Phinney, 1956; Młodzińska, 

2009; Kong and Zheng, 2019), which is typical in etiolated plants. 

 

Pigments (chlorophyll A, B and total carotene) 

 

 
Figure 26. Chlorophyll A, B and total carotene content of pea microgreens harvested after 7, 11, 

14 and 18 days under different temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 

18L) conditions. Standard deviation is represented by whiskers (± SD) 
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In the analysis of pigments in pea microgreens (Figure 26), the levels of chlorophyll A, B, 

and total carotene consistently increase as the photoperiod lengthens. This is due to the relationship 

between light and photosynthesis.  As light exposure increases, plants have more time to perform 

photosynthesis, encouraging the production of photosynthetic pigments (Młodzińska, 2009; 

Ajdanian, Babaei and Aroiee, 2019).  

In the present study, the PPFD was 75.7 ± 5 µmol/m²/s, and light treatments ranged from 

0 to 18 h·d⁻¹. At 25 °C, the highest values of chlorophyll A, chlorophyll B, and total carotenoids 

were obtained under the 18 h·d⁻¹ photoperiod (18L), reaching approximately 110, 45, and 30 µg/g, 

respectively. While 0 h·d⁻¹ photoperiod (00L) shows significantly lower levels close to zero. 

Comparatively, Liu et al. (2022) evaluated the effect of photoperiod duration (12 to 20 h·d⁻¹) on 

Brassica microgreens and reported that a 16 h·d⁻¹ photoperiod, combined with PPFD levels of 90 

µmol·m⁻²·s⁻¹ for cabbage and 70 µmol·m⁻²·s⁻¹ for Chinese kale, was optimal for growth. Under 

these conditions, cabbage microgreens reached chlorophyll A levels of 77 µg/g, chlorophyll B of 

31 µg/g, and carotenoids of 17 µg/g, while Chinese kale microgreens showed chlorophyll A of 

68 µg/g, chlorophyll B of 26 µg/g, and carotenoids of 26 µg/g. 

Additionally, a progressive increase can be observed in the graph as the cultivation days 

increase, especially for the lower temperature treatments, however at higher temperature, the 

variability is higher. The rise in chlorophyll levels tends to correlate with the development of more 

photosynthetically active tissue, such as leaves. As the leaves expand and increase in area, the 

number of chloroplasts containing chlorophyll also increases. This increase allows microgreens to 

capture more light and, therefore, enhances their photosynthetic capacity, which is essential for 

their development and biomass production. Moreover, the vegetative growth of the plants is 

closely linked to greater synthesis of photosynthetic pigments to optimize light absorption 

efficiency (Brazaitytė et al., 2018; Ajdanian, Babaei and Aroiee, 2019). This results in a noticeable 

increase in pigment content from day 11 to 18 at 15 °C, and from day 7 to 11 at temperatures of 

20 °C and 25 °C. 

Temperature increase can accelerate the metabolism of microgreens, including the 

synthesis of pigments such as chlorophyll A, B, and carotene. At higher temperatures within the 

optimal range for the plant, the enzymatic activity responsible for producing these pigments 

increases, promoting greater photosynthetic efficiency and adaptation to higher energy demand 

conditions (Niroula et al., 2019). At 11 days of growth, the highest pigment values correspond to 

25C_18L with 118.61, 49.26, and 31.13 µg/g of chlorophyll A, B, and total carotene, respectively. 

However, it is important to note that if the temperature exceeds certain limits, it could have 

negative effects, such as enzyme denaturation or damage to plant tissues, reducing pigment levels 

(Niroula et al., 2019). For example, the results obtained after 14 days of growth show that the 
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highest pigment values correspond to 25C_18L with 102.80, 42.14, and 28.01 µg/g of chlorophyll 

A, B, and total carotene, respectively, although their levels are lower than on day 11. 

 

Bioactive compounds 

In this study, chlorophylls and carotene were analyzed separately under the classification 

of pigments due to their specific roles in photosynthesis and their distinct analytical methods. 

In the analysis of bioactive compounds (Figure 27), total water-soluble phenolic 

compounds (TPC) consistently increase as the photoperiod lengthens, showing a clear difference 

between 00L and the light treatments (06L, 12L, and 18L), although the difference among the 

latter is less pronounced or variable. A longer photoperiod may stimulate the accumulation of these 

phenolics compounds due to increased photosynthetic activity and the need to protect the plant 

from oxidative stress caused by light (Faraloni, Di Lorenzo and Bonetti, 2021; Kim et al., 2022).  

 

 
Figure 27. Total water-soluble phenolic compounds (TPC) and Total antioxidant capacity (TAC) 

of pea microgreens harvested after 7, 11, 14 and 18 days under different temperatures (15, 20 and 

25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions  

Regarding temperature, a higher concentration of total water-soluble phenolic compounds 

was observed at the lower temperature of 15 °C compared to 20 °C and 25 °C. The increased 

accumulation of phenolic compounds at lower temperatures may be related to the stress imposed 

on the plant. Low temperatures often induce moderate stress that activates defense mechanisms in 

the plant, including the production of phenolic compounds. These compounds, which have 
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antioxidant properties, help protect the plant from oxidative damage that can occur under thermal 

stress conditions. At higher temperatures, the plant's metabolism may focus more on growth and 

respiration, potentially decreasing the accumulation of phenolics (Kim et al., 2022). 

There is a difference in phenolic accumulation linked to temperature and days of growth. 

At 15 °C, an increase in total water-soluble phenolic compounds is observed between days 11 and 

14, followed by a decrease on day 18. This behavior may relate to a shift in the balance between 

synthesis and degradation of phenolics as the plant matures. At 20 °C, the treatment without light 

(20C_00L) shows a slight increase in phenolics between days 7 and 14. In the light treatments 

(20C_06L, 20C_12L, and 20C_18L), phenolics increase from day 7 to 11 but then decrease by 

day 14. This suggests that light initially induces the production of phenolics, but the effect 

moderates or even reverses in later stages. At 25 °C, a noticeable decrease in total water-soluble 

phenolic compounds is observed between days 7 and 11, with a more pronounced decline by day 

14. This pattern may be associated with the plant's growth, where, in the initial days, size and 

weight (including total water-soluble phenolic compounds) increase, while by day 14, respiratory 

metabolism becomes more pronounced, possibly coupled with sensitivity to high temperatures that 

promote increased respiratory metabolism and degradation of phenolics (Di Bella et al., 2020; 

Kim et al., 2022). Although the Folin–Ciocalteu method is commonly used to estimate phenolic 

content, it should be noted that it can also react with other reducing compounds, which could 

slightly influence the accuracy of the measured phenolic levels (Singleton, Orthofer and Lamuela-

Raventós, 1999).  

The total antioxidant capacity (TAC) shows similarities to the behavior of total water-

soluble phenolic compounds (TPC). At a temperature of 15 °C, TAC increases as the photoperiod 

extends, suggesting that light stimulates the synthesis of compounds with antioxidant activity 

(Hernández-Adasme, Palma-Dias and Escalona, 2023). Furthermore, TAC increases between days 

11 and 14 and then decreases by day 18, similar to TPC. This pattern could be related to the plant's 

metabolic activity, where the accumulation of antioxidants peaks during an active growth phase 

but later decreases due to degradation or consumption of these compounds (Niroula et al., 2019; 

Senevirathne, Gama-Arachchige and Karunaratne, 2019). At temperatures of 20 °C and 25 °C, 

although TAC behavior is more erratic, some correspondence with TPC is noted, as both exhibit 

a decrease between days 11 and 14. This suggests that higher temperatures, along with prolonged 

exposure, may affect the stability or synthesis of these antioxidant compounds in later growth 

stages (Niroula et al., 2019). TAC accumulation appears to follow patterns similar to those of TPC, 

indicating that both indicators are related and their behavior depends on temperature, photoperiod, 

and growth stage.  

 



77  

In Table 13, a correlation matrix is presented, considering all the variables in the study, 

The interpretation of correlation strength was based on the classification of correlation coefficient 

values proposed by (Evans, 1995). There is a very strong correlation between photoperiod and 

color components L* and b*, pigments; and a strong correlation with °Brix, conductivity, and 

TPC. This indicates that longer light exposure may enhance pigment synthesis and sugar 

accumulation (Młodzińska, 2009; Liu et al., 2022; Johnson, Kumar and Thakur, 2024). 

Meanwhile, a strong correlation exists between temperature with height, weight, and pH, 

highlighting its role in growth and metabolic processes (Kim et al., 2022; Johnson, Kumar and 

Thakur, 2024). 

In general, pigments show a negative correlation with the L* (lightness) and b* (yellow-

blue axis), which causes microgreens to appear darker and less yellowish as the concentration of 

pigments such as chlorophyll A, B, and total carotene increases, resulting in a more intense green 

color. This is linked to the fact that chlorophylls strongly absorb blue light (photosynthetic peak 

at 440 nm) and red light (photosynthetic peak at 640–670 nm), while reflecting green wavelengths 

(500–550 nm), which is why plants appear green to the human eye (Ajdanian, Babaei and Aroiee, 

2019). 

On the other hand, pigments correlate positively with °Brix, conductivity, and TAC, which 

shows that microgreens rich in these pigments also tend to accumulate more sugars and antioxidant 

compounds. Additionally, °Brix, pH, conductivity, TPC, and TAC tend to have a negative 

correlation with height, weight, and Lab color components, while showing a positive correlation 

with pigments. 

There is a very strong correlation between height and weight (|R|= 0.9), as well as a strong 

correlation with °Brix and conductivity. On the other hand, there is a significant correlation 

between the color components L*and b*, and the pigments (|R|= between 0.8 and 0.9). °Brix and 

conductivity also show a strong correlation with these variables. 

There is a strong correlation between conductivity, TPC, and TAC (|R| between 0.5 and 

0.7). Additionally, there is a strong negative correlation of both conductivity and TAC with color 

components L* and b*, and TAC with height and weight (|R|= 0.5). 

°Brix has a very strong correlation (|R|= 0.7) with various variables: height, color L* and b*; and 

a strong correlation with chlorophyll A, B, carotene, conductivity, TPC, and TAC. Meanwhile, pH 

and color component a* show the lowest correlation with other variables, suggesting they are less 

influenced by the studied conditions.  
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Table 13. Correlation matrix for measured variables of pea microgreens harvested after 7, 11, 14 

and 18 days under different temperatures (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) 

conditions  

 
Correlation according to the ranges 0-0.1 (no correlation), 0.1-0.3 (low correlation), 0.3-0.5 

(moderate correlation), 0.5-0.7 (strong correlation), 0.7-1 (very strong correlation). 
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Day 1.0 0.0 -0.5 0.2 0.4 -0.1 -0.1 -0.1 0.2 0.2 0.2 0.0 0.4 0.0 -0.3 0.0

Photoperiod 0.0 1.0 0.0 -0.4 -0.2 -0.8 -0.3 -0.9 0.9 0.8 0.9 0.7 0.2 0.5 0.5 0.4

Temperature -0.5 0.0 1.0 0.6 0.5 0.0 0.1 0.0 0.2 0.2 0.1 -0.2 -0.5 -0.1 -0.2 -0.3

Plant_height 0.2 -0.4 0.6 1.0 0.9 0.4 0.2 0.4 -0.2 -0.1 -0.2 -0.7 -0.2 -0.3 -0.5 -0.4

Plant_weight 0.4 -0.2 0.5 0.9 1.0 0.1 0.1 0.1 0.1 0.1 0.1 -0.5 -0.1 -0.1 -0.5 -0.3

L* -0.1 -0.8 0.0 0.4 0.1 1.0 0.5 0.9 -0.8 -0.8 -0.8 -0.7 -0.2 -0.5 -0.4 -0.5

a* -0.1 -0.3 0.1 0.2 0.1 0.5 1.0 0.5 -0.2 -0.2 -0.3 -0.4 0.0 -0.3 -0.3 -0.3

b* -0.1 -0.9 0.0 0.4 0.1 0.9 0.5 1.0 -0.8 -0.8 -0.8 -0.7 -0.2 -0.6 -0.4 -0.5

Chlorophyll_A 0.2 0.9 0.2 -0.2 0.1 -0.8 -0.2 -0.8 1.0 1.0 1.0 0.6 0.1 0.5 0.2 0.3

Chlorophyll_B 0.2 0.8 0.2 -0.1 0.1 -0.8 -0.2 -0.8 1.0 1.0 1.0 0.5 0.1 0.4 0.2 0.3

Total_carotene 0.2 0.9 0.1 -0.2 0.1 -0.8 -0.3 -0.8 1.0 1.0 1.0 0.6 0.1 0.5 0.3 0.4

Brix 0.0 0.7 -0.2 -0.7 -0.5 -0.7 -0.4 -0.7 0.6 0.5 0.6 1.0 0.0 0.5 0.6 0.6

pH 0.4 0.2 -0.5 -0.2 -0.1 -0.2 0.0 -0.2 0.1 0.1 0.1 0.0 1.0 0.3 0.0 0.3

Conductivity 0.0 0.5 -0.1 -0.3 -0.1 -0.5 -0.3 -0.6 0.5 0.4 0.5 0.5 0.3 1.0 0.5 0.7

TPC_Avg -0.3 0.5 -0.2 -0.5 -0.5 -0.4 -0.3 -0.4 0.2 0.2 0.3 0.6 0.0 0.5 1.0 0.6

TAC_Avg 0.0 0.4 -0.3 -0.4 -0.3 -0.5 -0.3 -0.5 0.3 0.3 0.4 0.6 0.3 0.7 0.6 1.0
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5.3.2. Near infrared spectra and PCA analysis of pea microgreen samples 

The spectral analysis was performed in harvested pea plants, samples prepared under two 

different methods specified in the materials and methods section, named as microgreens fresh-cut 

samples scanned in reflectance mode (Figure 28a) and in aqueous microgreens extracts samples 

scanned in transmittance mode (Figure 28b). It shows the NIR spectra of pea microgreens 

belonging to 7, 11, 14 and 18 days of growing. In both cases the spectra were pretreated with SG 

2-45-0 and SNV in the wavelength rage 1150 to 1850 nm. The spectra are colored by treatment 

(temperature-photoperiod conditions). At this point, there is no observable trend as most of the 

spectra is overlapped for the 25 ºC treatments. However, spectra from aqueous microgreens 

extracts samples look much more compact compared to spectra from microgreens fresh-cut 

samples. In both cases, it is a clear distinction of the first overtone of water with peak around 1450 

nm, which is of great importance in biological systems (Tsenkova, 2009; Tsenkova, Kovacs and 

Kubota, 2015), aqueous microgreens extracts samples registered higher absorbance values.  

 

Figure 28. NIRS spectra of pea microgreens (a) fresh-cut samples (n=294) (b) aqueous 

microgreens extracts samples (n=288), harvested after 7, 11, 14 and 18 days under different 

temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Pretreatments 

SG 2-45-0 and SNV. Wavelength 1150 to 1850nm  

PCA results for microgreens fresh-cut samples are presented in Figure 29a. In the PCA 

plot colored by day, PC1 shows a trend where samples from day 7 and 11 are closer to the axis 

compared to those from day 14 and 18. Meanwhile, in PC2 there is more distinction between day 

11 which is closer to the axis, compared to days 14 and 18. Next, in the PCA plot colored by 

temperature, there is no clear tendency between the three temperatures, showing major 

overlapping between them. Moreover, coloring by photoperiod, the most separated group is 00L 
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which is closer to the PC2 axis, meanwhile, there is major overlapping between the other three 

photoperiod groups, but some trends are observable where 06L, is closer to PC2 axis and 18L is 

the farthest. PC1 and PC2 account for 97.17% and 1.11% of the explained variance.  

Similarly, PCA results are observable for aqueous microgreens extracts samples in the 

Figure 29b. The PCA plot colored by temperature shows major overlapping, however, some trends 

for separation between groups are detected. Furthermore, PCA coloring by photoperiod, the major 

distinction between groups for aqueous microgreens extracts samples is in PC2 were higher 

photoperiod levels 18L, 12L, 06L are closer to PC1 axis. PC1 and PC2 account for 97.97% and 

1.61% of the explained variance, respectively. Important loadings (Figure 30b) are registered in 

PC1 at 1412 and 1495 nm.  

 

Figure 29. PCA analysis of pea microgreens (a) fresh-cut samples (n=294), (b) aqueous 

microgreens extracts samples (n=288) harvested after 7, 11, 14 and 18 days under different 

temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Coloring by 

day, temperature and photoperiod. Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 

1850nm. 95% confidence intervals of the respective groups are represented by Ellipses and x-axis 

represents the group centroids 

The wavelengths observed in the NIRS analysis of microgreens reflect the chemical 

composition of the samples and the impact of their state (fresh-cut samples or aqueous microgreens 
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extracts samples) on the absorption of infrared radiation. Büning-Pfaue (2003) mentioned how 

absorption bands and peaks are dependent on the food water content.  

In the microgreens fresh-cut samples (Figure 30a), the important loadings in PC1, at 

1264nm linked to the 1st overtone of O-H bend deformation vibration, at 1448 and 1380 nm, are 

associated with O-H bond vibrations in water (Curran, 1989; Slavchev et al., 2015)  and C-H bonds 

in organic compounds (da Costa Filho, 2009; Workman and Weyer, 2012) like carbohydrates and 

proteins, which are common in plant tissues. Moreover, the range between 1450 to 1850 nm which 

is highly important in PC1 is also linked to O-H, N-H and C-H valence vibrations (Curran, 1989; 

Workman and Weyer, 2012).  

In the aqueous microgreens extracts samples (Figure 30b), the wavelengths 1412 nm can 

be associated to O-H bend and C-H stretch which relates with water and carbohydrates (Curran, 

1989), and 1495 nm are linked to O-H and N-H stretching bonds associate to carbohydrates, lipids 

and proteins (Curran, 1989; Slavchev et al., 2015).  

 

Figure 30. PCA loadings of pea microgreens (a) fresh-cut samples (n=294) (b) aqueous 

microgreens extracts samples (n=288) harvested after 7, 11, 14 and 18 days under different 

temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Pretreatments 

SG 2-45-0 and SNV. Wavelength 1150 to 1850nm  

5.3.3. Classification of pea microgreen samples 

The PCA-LDA analysis for the discrimination of microgreens fresh-cut samples from day 

11 is shown in Figure 31. Day 11 was selected for this analysis because it is a common time point 

across all samples grown under different light and temperature conditions. Additionally, it 

provides a clearer and more reliable assessment of the microgreens' characteristics, allowing for 

better comparison and interpretation of the data.  

(a) (b)
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Figure 31. Discriminant analysis (PCA-LDA) of NIRS pea microgreens spectra (fresh-cut 

samples) harvested after 11 days under different temperature (15, 20 and 25 °C) and photoperiod 

(00L, 06L, 12L, 18L) conditions. Clustering by (a) temperature, (b) photoperiod and (c) treatment 

(temperature-photoperiod). Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm. In 

(a) and (b), 95% confidence intervals of the respective groups are represented by Ellipses, and x-

axis represents the group centroids. In (c) dots indicate calibration data, and x marks indicate cross-

validation data 

When grouped by temperature, a slight overlap of samples corresponding to 15 °C, 20 °C, 

and 25 °C is observed (Figure 31a). The average correct recognition rate is 100%, while the 

prediction rate is 81.8% (Appendix-A2_Table 10a). Most misclassifications occurred among 

samples from the consecutive groups 15 °C-20 °C and 20 °C-25 °C. In the case of grouping by 

photoperiod (Figure 31b), a greater overlap is seen among samples belonging to the 06L, 12L, and 

18L groups. The average correct recognition rate is 86.66%, while the prediction rate is 52.4% 

(Appendix-A2_Table 10b). Most misclassifications occurred between samples from the 

consecutive groups 00L-06L, 06L-12L, and 12L-18L. On the other hand, grouping by treatment 

15 °C

20 °C

25 °C

18L

12L

06L

00L

(a) (b)

(c)

Te
m

pe
ra

tu
re

Photoperiod

-

+
+-



83  

(Figure 31c) shows varying degrees of overlap among the groups, with 25 °C_00L and 15 °C_00L 

having the least overlap. Additionally, there is a trend where treatments with a lower photoperiod 

tend to be closer to the root 2 axis, and treatments with lower temperatures are closer to the root 1 

axis. The average correct recognition rate in this case is 100%, and the prediction rate is 48.39% 

(Appendix-A2_Table 10c). 

Figure 32 shows the PCA-LDA analysis results for the discrimination of pea aqueous 

microgreens extracts samples from day 11. 

 
Figure 32. Discriminant analysis (PCA-LDA) of NIRS pea spectra (aqueous microgreens extracts 

samples) harvested after 11 days under different temperature (15, 20 and 25 °C) and photoperiod 

(00L, 06L, 12L, 18L) conditions. Clustering by (a) temperature, (b) photoperiod and (c) treatment 

(temperature-photoperiod). Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm. In 

(a) and (b), 95% confidence intervals of the respective groups are represented by Ellipses, and x-

axis represents the group centroids. In (c) dots indicate calibration data, and x marks indicate cross-

validation data 
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When grouped by temperature, a slight overlap is seen among samples from 15 °C, 20 °C, 

and 25 °C (Figure 32a). The average correct recognition rate reaches 98.98%, and the prediction 

rate is 85.6% (Appendix-A2_Table 11a), with misclassifications mainly concentrated in the 

consecutive groups 15 °C-20 °C and 20 °C-25 °C. In the case of photoperiod (Figure 32b), there 

is greater overlap among the 06L, 12L, and 18L groups, with a correct recognition rate of 94.17% 

and a prediction rate of 75.83% (Appendix-A2_Table 11b). Misclassifications mainly occurred 

between the consecutive groups 06L-12L and 12L-18L. For grouping by treatment (Figure 32c), 

a variable level of overlap is observed among the different groups, with treatments corresponding 

to lower photoperiod tending to be located near the root 2 axis, while treatments with higher 

temperatures are closer to the root 1 axis. The correct recognition rate is 100%, and the prediction 

rate is 75.01% (Appendix-A2_Table 11c). 

The PCA-LDA analysis reveals that the discrimination of aqueous microgreens extracts 

samples from day 11 generally yields higher recognition and prediction accuracies compared to 

microgreens fresh-cut samples. Similar results were found when analysis was performed in other 

days. Grouping by temperature demonstrates relatively good separation with some overlap, while 

grouping by photoperiod shows more considerable overlap, particularly in consecutive groups. 

The treatment groupings highlight a consistent pattern where the photoperiod and temperature 

significantly influence the positioning of the samples along the root axes. Overall, aqueous 

microgreens extracts samples exhibit better discrimination performance, suggesting they provide 

more informative spectral features for distinguishing between groups. 

Table 14. presents a summary of the discriminant analysis for pea microgreens, comparing 

fresh-cut samples and aqueous extracts samples preparations.  
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Table 14. Discriminant analysis-summary table for pea microgreens (fresh-cut and aqueous 

microgreens extracts samples) harvested after 7, 11, 14, 18 days under different temperature (15, 

20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Analysis according to various 

datasets and clustering type selection. Clustering by day, temperature, photoperiod or treatment 

(temperature-photoperiod). NIRS pretreatments SG 2-45-0 and SNV. Wavelength 1150-1850nm 

    Microgreens fresh-cut samples Aqueous microgreens extracts samples 

Data 
Clustering 

by 
n g %C %CV LV 

LV  

max. 
n g %C %CV LV 

LV  

max. 

 

15C_00L 
Day 24 3 100 95.86 4 7 27 3 88.89 88.89 2 8 

 

15C_06L 
Day - - - - - - 18 3 100 100 5 5 

 

15C_12L 
Day - - - - - - 24 3 98.17 88.89 3 7 

 

15C_18L 
Day 24 3 100 75.03 7 7 24 3 100 100 3 7 

 

20C_00L 
Day 24 3 97.25 80.07 3 7 27 3 96.33 66.67 4 8 

 

20C_06L 
Day 24 3 100 65.29 7 7 21 3 74.32 70.39 2 6 

 

20C_12L 
Day 27 3 98.17 63 4 8 24 3 97.46 82.26 3 7 

 

20C_18L 
Day 27 3 79.61 55.56 2 8 27 3 78.22 68.96 2 8 

 

25C_00L 
Day 21 3 100 94.5 6 6 21 3 100 88.89 4 6 

 

25C_06L 
Day 27 3 100 74.11 7 8 27 3 100 81.45 5 8 

 

25C_12L 
Day 27 3 88.89 69.97 2 8 24 3 100 100 5 7 

 

25C_18L 
Day 27 3 100 100 6 8 24 3 100 89.71 4 7 

 Day 7 Treatment 69 8 100 56.41 20 20 57 8 100 87.72 16 16 

 Day 11 Treatment 99 12 100 48.39 22 29 93 12 100 74.57 27 27 

 Day 14 Treatment 93 12 100 59.72 20 27 102 12 98.15 56.47 18 30 

 Day 18 Treatment 33 4 95.81 53.18 6 10 36 4 100 63.56 9 11 

 Day 11 Temperature 99 3 100 81.79 22 32 93 3 98.98 85.58 20 30 

 Day 14 Temperature 93 3 100 75.76 28 30 102 3 96.76 77.78 21 33 

 Day 7 Photoperiod 69 4 100 65.49 18 22 57 4 100 85.45 17 18 

 Day 11 Photoperiod 99 4 86.66 52.4 13 32 93 4 94.17 75.83 16 30 

 Day 14 Photoperiod 93 4 87.48 67.83 11 30 102 4 95.9 64.6 25 33 

Day 18 Photoperiod 33 4 95.81 53.18 6 10 36 4 100 63.56 9 11 

 All Day 294 4 75.85 66.95 38 97 288 4 96.58 95.59 20 95 

 All Treatment 294 12 90.41 58.54 27 94 288 12 90.2 68.34 27 92 

 All Temperature 294 3 93.68 75.74 43 97 288 3 93.08 88.87 24 95 

 All Photoperiod 294 4 89.5 71.05 35 97 288 4 81.28 66.89 26 95 

LV is the number of latent variables regarding each PCA-LDA model. Calculated LV max. = 

(n-g/3) which surpassing may cause overfitting (Defernez and Kemsley, 1997).   

 

Classification by day: In the first part of Table 14, samples from each treatment were 

classified based on the day of harvesting. The results indicate that aqueous microgreens extracts 

samples achieved higher classification accuracy, with cross-validation percentages ranging from 
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66.67% to 100%. In contrast, microgreens fresh-cut samples showed lower accuracies, ranging 

from 55.56% to 100%. Notably, the classification models for aqueous microgreens extracts 

samples consistently outperformed those for microgreens fresh-cut samples for almost all 

treatments, except for 15C_00L, 20C_00L, and 25C_00L. 

 Clustering by treatment, temperature, or photoperiod: In the second part of the Table 14, 

samples collected on a specific day were grouped by treatment, temperature, or photoperiod. For 

clustering by treatment, microgreens fresh-cut samples showed cross-validation (CV) 

classification accuracies between 48.39% and 59.72%, while aqueous microgreens extracts ranged 

from 56.47% to 87.72%. For temperature clustering at day 11 and day 14, microgreens fresh-cut 

samples achieved CV classification accuracies of 81.79% and 75.76%, respectively. For aqueous 

microgreens extracts samples, the accuracy was slightly higher, at 85.58% and 77.78%. 

Photoperiod clustering yielded CV classification accuracies between 52.4% and 67.83% for 

microgreens fresh-cut samples, and between 63.56% and 85.45% for aqueous microgreens extracts 

samples. 

 Global sample selection: In the final section of Table 14, the complete dataset, 

encompassing all pea microgreen samples, is presented. Under this "global" sample selection, for 

microgreens fresh-cut samples, CV classification accuracies were 66.95%, 58.54%, 75.74%, and 

71.05% for clustering based on day, treatment, temperature, and photoperiod, respectively. For 

aqueous microgreens extracts samples, the corresponding accuracies were 95.59%, 68.34%, 

88.87%, and 66.89%, respectively. 

Overall, these findings highlight that aqueous microgreens extracts samples generally 

achieve significantly higher classification accuracy compared to microgreens fresh-cut samples, 

especially when categorized by treatment or temperature. This suggests that the characteristics 

captured in the liquid phase, such as differences in absorbance patterns related to soluble 

compounds, water content, or overall matrix homogeneity, are more distinctive, making it easier 

to differentiate among treatments, temperatures, and other variables. The consistency in better 

performance of aqueous microgreens extracts samples, except in a few cases, demonstrates their 

robustness and potential suitability for discriminant analysis in assessing the impact of different 

growing conditions on pea microgreens. This superior performance might be due to better 

homogenization or greater sensitivity to compositional changes that occur under different 

treatments. 

Although some models appear promising, in certain cases there is a noticeable gap between 

calibration and cross-validation results, which may indicate overfitting. The various classification 

models presented in Table 14 show CV values ranging from 48.39% to 100% for microgreens 

fresh-cut samples, and from 56.47% to 100% for aqueous microgreens extracts samples. 
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In comparison, when performing the analysis using simulated data composed of random 

numbers (Appendix-A2_Table 12), the CV values range from 9.5% to 50%. This suggests that the 

models are capturing meaningful patterns from the real data, which contain relevant information 

for classification.   

5.3.4. PLSR prediction of agronomic and phytochemical parameters 

In Table 15, the PLSR summary table for microgreens fresh-cut samples and aqueous 

microgreens extracts samples includes the results of 13 analyzed variables, which relate to 

different characteristics: physical characteristics (height and weight), optical properties (Lab color 

components), pigments (chlorophyll A, B, and total carotene), chemical characteristics (°Brix, pH, 

and conductivity), and bioactive compounds (TAC and TPC). 

Table 15. Partial least square regression -summary table of NIRS pea microgreens spectra (fresh-

cut and aqueous microgreens extracts samples) harvested after 7, 11, 14, 18 days under different 

temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Pretreatments 

SG 2-45-0 and SNV. Wavelength 1150 to 1850nm. 

Regression 

variable 
Sample n LV RMSEC R2C RMSECV R2CV RMSEP R2pr 

Weight fresh-cut 291 8 0.076 0.84 0.10 0.74 0.08 0.78 

Weight extract 288 9 0.08 0.81 0.11 0.70 0.10 0.65 

Height fresh-cut 291 9 1.63 0.84 1.84 0.79 2.01 0.70 

Height extract 279 9 2.05 0.78 2.88 0.56 2.19 0.64 

L* fresh-cut 294 10 5.26 0.81 7.13 0.64 6.48 0.73 

L* extract 282 8 5.22 0.83 5.75 0.79 5.99 0.71 

a* fresh-cut 294 1 2.30 0.13 2.35 0.091 3.01 0.02 

a* extract 288 7 2.02 0.47 2.43 0.23 2.44 0.23 

b* fresh-cut 285 10 4.91 0.80 6.11 0.69 6.89 0.70 

b* extract 279 7 5.72 0.77 6.60 0.70 6.69 0.65 

Chlorophyll A fresh-cut 291 8 18.53 0.76 21.36 0.69 20.77 0.71 

Chlorophyll A extract 288 8 17.63 0.78 21.00 0.69 21.52 0.68 

Chlorophyll B fresh-cut 291 8 7.55 0.76 8.56 0.69 9.66 0.62 

Chlorophyll B extract 288 8 7.75 0.74 9.36 0.63 9.25 0.65 

Total 

Carotene 
fresh-cut 

294 8 4.62 0.76 5.65 0.64 4.83 0.73 

Total 

Carotene 
extract 288 8 4.21 0.80 5.61 0.65 5.12 0.69 

Brix fresh-cut 294 10 0.13 0.78 0.17 0.63 0.15 0.70 

Brix extract 288 4 0.15 0.72 0.17 0.63 0.17 0.68 

pH fresh-cut 294 2 0.49 0.12 0.51 0.03 0.55 −0.01 

pH extract 288 6 0.41 0.31 0.44 0.19 0.47 0.19 

Conductivity fresh-cut 294 2 0.45 0.29 0.48 0.19 0.53 −0.02 

Conductivity extract 282 5 0.34 0.58 0.38 0.48 0.40 0.39 

TAC  fresh-cut 105 5 0.08 0.44 0.09 0.35 - - 

TAC extract 99 10 0.04 0.85 0.05 0.73 - - 

TPC fresh-cut 105 5 0.15 0.62 0.16 0.56 - - 

TPC extract 108 10 0.10 0.82 0.13 0.71 - -  

*For all parameters was performed Three-fold cross-validation (by repeat), except for TAC (Total antioxidant 

capacity) and TPC (Total water-soluble phenolic compounds) by Leave-One-Out cross-validation.  
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Physical characteristics models corresponding to microgreens fresh-cut samples achieved 

a prediction coefficient of determination (R²pr) of 0.78 and 0.70 for height and weight, 

respectively. In comparison, aqueous microgreens extracts samples prediction values were a bit 

lower with (R²pr) of 0.64 and 0.65 for height and weight, respectively. 

Regarding color components, L* and b* models have higher prediction compared to a* 

which shows poor performance in both microgreens fresh-cut samples and aqueous microgreens 

extracts samples.  Fresh-cut samples showing a R²pr of 0.73 for L* and 0.70 for b* had a little 

better performance compared to aqueous microgreens extracts samples with 0.71 and 0.65, 

respectively. Proportional findings have been reported, where optical properties like L* and b* 

tend to be more predictable due to their stronger association with chlorophyll and carotenoid levels 

(Li et al., 2017, 2019). 

Pigments models were consistent with prediction values slightly higher for chlorophyl A 

and total carotene, compared to chlorophyl B. The R²pr values for chlorophyl A, B and total 

carotene were 0.71, 0.62, 0.73 for microgreens fresh-cut samples. Meanwhile, for aqueous 

microgreens extracts samples R²pr values corresponded to 0.68, 0.65, and 0.69, respectively. 

PLSR models for °Brix showed close predictive values for microgreens fresh-cut samples 

and aqueous microgreens extracts samples with R²pr of 0.70 and 0.68, respectively.  In the case of 

pH and conductivity, the models have poor performance for both fresh-cut and aqueous 

microgreens extracts samples. 

For TAC and TPC, the models were much more accurate for aqueous microgreens extracts 

samples than microgreens fresh-cut samples. For aqueous microgreens extracts samples, the R²CV 

for TAC was 0.73 and for TPC was 0.71, conversely, for microgreens fresh-cut samples it was 

0.35 and 0.56 for TAC and TPC, respectively.  

García-García et al. (2022) predicted different parameters in pea pods using NIRS 

reflectance (400 to 2500 nm) achieving coefficients of determination between 0.50 to 0.88, 

specifically reporting R2CV for °Brix (0.68), TPC (0.86), and color parameters (chroma = 0.81 

and hue angle=0.71), more over pH having the lowest prediction capacity compared with other 

parameters, these tendencies where also found in this study. 

The poor predictive performance for pH and conductivity may be explained by the absence 

of clear or consistent trends in these variables across the different light and temperature treatments. 

Unlike other parameters such as pigments or bioactive compounds, which exhibited structured 

variations in response to the experimental conditions and were more effectively captured by NIRS, 

pH and conductivity showed erratic or minimal variation. This limitation may also be due to the 

narrow range or lack of structured variation in pH and conductivity values. When the target 

variable does not exhibit sufficient variability or a defined trend, the PLSR model lacks the 
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necessary information to establish meaningful correlations with the spectral data, resulting in low 

predictive performance (Wold, Sjöström and Eriksson, 2001; Shi et al., 2008; de Araújo Gomes 

et al., 2023). 

Techniques like VIS-NIR reflectance spectroscopy, paired with chemometric analysis, are 

frequently employed for assessing the chemical composition of plant leaves (Li et al., 2017; 

Prananto, Minasny and Weaver, 2020; Zahir et al., 2022). However, there has been less research 

on utilizing NIR spectroscopy only. Moreover, information on the use of NIRS in microgreens is 

limited, partly because their research is more recent compared to other traditional crops. Most 

studies focus on mature plant leaves, leaving a gap in research on microgreens, which include both 

leaves and stems. This diversity in composition and size can complicate analyses. As microgreens 

gain popularity, it is likely that more research will emerge in the future.  

In addition to Table 15, Figure 33 shows some representative regressions where certain 

trends are noticeable. The figure displays the plots belonging to aqueous microgreens extracts 

samples: weight, L* color component and total carotene. However, the tendency is relatable with 

microgreens fresh-cut samples as well (not shown). The graphs on the left display calibration and 

cross-validation, while the graphs on the right show independent prediction. 
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Figure 33. PLSR for (a) weight, (b) L* color component, and (c) total carotene content of NIRS 

pea spectra (aqueous microgreens extracts samples) harvested after 7, 11, 14, 18 days under 

different temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions.  

Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm. (left) Calibration and cross-

validation. (right) Independent prediction 

For weight, the trends are more clearly visualized when color-coded by temperature level 

(Figure 33a). It can be observed that at lower temperatures, the samples are distributed closer to 
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the axis (with values near zero), whereas at higher temperatures, they are farther from the axis, 

with values reaching around 0.8 g/plant. Similar trends were found for height and pH. 

For the L* color component, trends are better visualized when color-coded by photoperiod 

level (Figure 33b). At higher photoperiods, the samples are distributed closer to the axis (with 

values near 20), while at lower photoperiods, they are farther from the axis, with values around 

60. Similar trends in distribution by photoperiod were found for a* and b* components. 

For variables such as chlorophyll A, chlorophyll B, °Brix, conductivity, TAC, and TPC, 

the trend visualized in Figure 33c is opposite than it was for color components (Figure 33b). At 

lower photoperiods, the samples are closer to the axis, whereas at higher photoperiods, they are 

farther from the axis. 

5.3.5. Most important wavelengths for PLSR 

The analyses of the height of pea plants for the microgreens fresh-cut samples revealed 

important wavelengths around 1196, 1286, 1392, 1417, 1446, 1480, 1508, 1543, 1600, 1704, 1838 

nm (Figure 34a1). For aqueous microgreens extracts samples, the most prominent wavelengths are 

1337, 1368, 1396, 1409, 1433, 1460, 1484, 1530, 1590, 1640, 1685, 1706, 1746, 1793 nm (Figure 

34a2). Some relevant wavelengths have been previously reported in foliar analysis (Appendix-

A2_Table 13). The peaks found are associated with O-H, C-H and N-H bounds which are present 

in common organic compounds like carbohydrates, lipids proteins, commonly found in plant 

tissues (Curran, 1989; Slavchev et al., 2015).         
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Figure 34. PLSR calibration coefficients highlighting the most important wavelengths for 

predicting physical parameters. Microgreens fresh-cut samples: (a1) height (b1) weight. Aqueous 

microgreens extracts samples: (a2) height (b2) weight. Pretreatments SG 2-45-0 and SNV. 

Wavelength 1150 to 1850nm. 

The most prominent wavelengths for weight of the microgreens fresh-cut samples are 

found around 1185, 1268, 1378, 1480, 1512, 1704 nm (Figure 34b1). For aqueous microgreens 

extracts samples, the most prominent wavelengths are 1342, 1368, 1396, 1408, 1432, 1466, 1484, 

1530, 1590, 1640, 1686, 1709, 1746, 1795 nm (Figure 34b2). The similar wavelength profile 

between height and weight of pea microgreens can be explained by the fact that both height and 

weight are closely related to the same physiological and biochemical characteristics of the plants. 

These characteristics, such as water content, carbohydrate composition, and protein levels, 

contribute to the growth and biomass accumulation of microgreens (Curran, 1989; Slavchev et al., 

2015; Liu et al., 2022).  

Important wavelengths related to pigments: chlorophyll A, B and total carotene are shown 

in Figure 35, where major similarities in their profile are found between the three pigments. For 

simplification, only the peaks related to chlorophyll A are mentioned (Figure 35a). However, they 

are easily reflected in chlorophyll B (Figure 35b) and total carotene (Figure 35c), although small 

variations may be found. 

(a2)

`

(b2)(b1)

(a1)
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Figure 35. PLSR calibration coefficients highlighting the most important wavelengths for 

predicting pigments. Microgreens fresh-cut samples(a1) chlorophyll A, (b1) chlorophyll B, (c1) 

total carotene. Aqueous microgreens extracts samples: (a2) chlorophyll A, (b2) chlorophyll B, (c2) 

total carotene. Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm 

For microgreens fresh-cut samples (Figure 35a1), the most prominent wavelengths were 

1214, 1312, 1366, 1416, 1448, 1496, 1538, 1728, 1840 nm. Regarding aqueous microgreens 

extracts samples (Figure 35a2), the most important wavelengths for pigments were around 1206, 

1412, 1438, 1460, 1549, 1668, 1694, 1722, 1758, 1801 nm. Some relevant wavelengths have been 

previously reported in foliar analysis (Appendix-A2_Table 14) The prominent wavelengths 

associated with chlorophyll A, B, and total carotene show a similar spectral profile due to the 

shared molecular features of these pigments. C-H and O-H bonds play a significant role in their 

absorption patterns, as these bonds are integral to the pigments' hydrocarbon chains and hydroxyl 

groups (Curran, 1989; Slavchev et al., 2015). Interestingly, some wavelengths were also shared 

(a2)

(b2)

(c2)(c1)

(b1)

(a1)
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between these pigments and the parameters of height and weight, though in fewer instances. This 

overlap could be attributed to the fact that pigments, like chlorophyll and carotene, are closely 

linked to plant growth and biomass accumulation. As these compounds are involved in 

photosynthesis and overall plant health, their molecular bonds may influence both the 

pigmentation and growth-related traits of microgreens. 

Important wavelengths related to color components are shown in Figure 36, where major 

similitudes in their profile are found between L* and b*. However, major difference is attributed 

to the a* component which showed a very low prediction capacity. For simplification, only the 

peaks related to L* are mentioned (Figure 36a). However, they are easily exhibited in b* as well 

(Figure 36c), although minor differences may be found.   

 
Figure 36. PLSR calibration coefficients highlighting the most important wavelengths for 

predicting color components. Microgreens fresh-cut samples: (a1) L*, (b1) a*, (c1) b*. Aqueous 

(a2)

(c2)

(b2)

(a1)

(c1)

(b1)
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microgreens extracts samples: (a2) L*, (b2) a*, (c2) b*. Pretreatments SG 2-45-0 and SNV. 

Wavelength 1150 to 1850nm 

For microgreens fresh-cut samples (Figure 36a1), the most prominent wavelengths related 

to L* color component were 1213, 1304, 1391, 1419, 1509, 1544, 1706, 1743, 1790, 1840 nm. For 

aqueous microgreens extracts samples (Figure 36a2), the most prominent wavelengths are 1208, 

1410, 1432, 1488, 1668, 1698, 1729, 1756, 1818 nm.  Some relevant wavelengths have been 

previously reported in foliar analysis (Appendix-A2_Table 15) 

The analyses of the PLSR most contributing wavelengths of chemical properties will be 

made by separate for each parameter since they have low similitudes between them, which can be 

seen in Figure 37.  

 
Figure 37. PLSR calibration coefficients highlighting the most important wavelengths for 

predicting chemical properties. Microgreens fresh-cut samples: (a1) °Brix, (b1) pH, (c1) 

Conductivity. Aqueous microgreens extracts samples: (a2) °Brix, (b2) pH, (c2) Conductivity. 

Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm. 

(a2)

(c2)

(a1)

(b1) (b2)

(c1)
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°Brix of the microgreens fresh-cut samples revealed important wavelengths around 1208, 

1292, 1368, 1390, 1417, 1447, 1495, 1541, 1707, 1744, 1840 nm (Figure 37a1). For aqueous 

microgreens extracts samples, the most prominent wavelengths are 1338, 1394, 1426, 1596, 1640, 

1687, 1712, 1746, 1832 nm (Figure 37b1). Some relevant wavelengths have been previously 

reported in foliar analysis (Appendix-A2_Table 16). The results of the °Brix analysis for 

microgreens show a notable similarity with the models for height, weight, and chlorophyll. The 

wavelengths associated with the vibrations of O-H, C-H, and N-H bonds, present in all the models, 

suggest that the compounds involved in sugar content (°Brix), such as carbohydrates and water, 

also influence plant growth and photosynthesis (Curran, 1989; Liu et al., 2022). This may explain 

the shared spectral profile between °Brix, height, weight, and chlorophyll, as these factors are 

interrelated in the development and metabolism of the plants. 

pH and conductivity which showed low prediction capacity present very different 

wavelength profile (Figure 37b Figure 37c). This suggests that the models do not effectively 

capture the variance in pH and conductivity, potentially due to insufficient data correlation. 

The analyses of TPC of the microgreens fresh-cut samples revealed important wavelengths 

around 1176, 1284, 1428, 1504, 1555, 1651, 1713 nm (Figure 38a1). For aqueous microgreens 

extracts samples, the most prominent wavelengths are 1328, 1406, 1418, 1436, 1451, 1510, 1528, 

1640, 1685, 1709, 1754, 1778, 1824 nm (Figure 38a2). Some relevant wavelengths have been 

previously reported in foliar analysis (Appendix-A2_Table 17) 
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Figure 38. PLSR calibration coefficients highlighting the most important wavelengths for 

predicting bioactive compounds. Microgreens fresh-cut samples: (a1) TPC, (b1) TAC. Aqueous 

microgreens extracts samples: (a2) TPC, (b2) TAC. Pretreatments SG 2-45-0 and SNV. 

Wavelength 1150 to 1850nm 

The most contributing wavelengths PLSR plot for TAC, although visually has certain 

similitude with TPC, however, it has a different wavelengths profile in some extent. The 

microgreens fresh-cut samples revealed important wavelengths around 1184, 1285, 1363, 1397, 

1450, 1542, 1712, 1786, 1842 nm (Figure 38b1). For aqueous microgreens extracts samples, the 

most prominent wavelengths are 1328, 1342, 1394, 1407, 1445, 1480, 1593, 1640, 1686, 1708, 

1748, 1795, 1831 nm (Figure 38b2). For TAC, some relevant wavelengths have been previously 

reported in foliar analysis (Appendix-A2_Table 18). 

As can be seen in Table 16, for microgreens fresh-cut samples, some wavelengths were found in 

common between parameters, meanwhile others were specific. Height shared several wavelengths 

with weight including (1480, 1704 nm) °Brix (1417, 1446 nm), and TAC (1397), but differed due 

to its unique presence at 1286, 1508, and 1600 nm, not found in other parameters. Weight showed 

key bands at 1480 and 1704 which were also present in height, while 1378 and 1512 nm were 

more exclusive to weight, differentiating it from pigment or bioactive predictions. Pigments 

(chlorophyll A, B and total carotene) showed specific wavelengths like 1496, 1538, and 1728 nm, 

especially distinct from height or weight. L* and b* color components shared prominent bands 

(1840 nm) with pigments, but differed through 1391, 1509, 1544 and 1743 nm, not present in other 

(b2)

(a2)(a1)

(b1)
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parameters, making it spectrally distinguishable. °Brix featured showed similar wavelengths with 

pigments (1447 ~1448 nm, 1495 ~1496 nm), and L* and b* (1840 nm), but stood out with 1292 

and 1541 nm, which were not shared with others. TPC showed the least overlap with others; 1428, 

1504, and especially 1555 and 1651 nm were unique, setting it apart. TAC showed unique 

wavelengths at 1842, 1450 and 1786, which could highlight TAC specific features. 

Table 16. Spectral relationships among microgreens fresh-cut samples parameters 

Parameter Key Wavelengths (nm) 
Notable Shared / Unique Features 

- Wavelengths (nm) 

Height 
1196, 1286, 1392, 1417, 1446, 1480, 

1508, 1543, 1600, 1704, 1838 

Shared: Weight (1480, 1704), Brix 

(1417, 1446), TAC (1397); Unique: 

1286, 1508, 1600 

Weight 1185, 1268, 1378, 1480, 1512, 1704 
Shared: Height (1480, 1704); 

Unique: 1378, 1512 

Chlorophyll A, 

Chlorophyll B, 

Total Carotene 

1214, 1312, 1366, 1416, 1448, 1496, 

1538, 1728, 1840 

Shared: L* (1840); Unique: 1496, 

1538, 1728 

L*, b* 
1213, 1304, 1391, 1419, 1509, 1544, 

1706, 1743, 1790, 1840 

Shared: Chlorophyll A (1840); 

Unique: 1391, 1509, 1544, 1743 

Brix 
1208, 1292, 1368, 1390, 1417, 1447, 

1495, 1541, 1707, 1744, 1840 

Shared: Chlorophyll A (~1447), L* 

(1840); Unique: 1292, 1541 

TPC 
1176, 1284, 1428, 1504, 1555, 1651, 

1713 

Minimal spectral overlap with other 

variables; Unique: 1428, 1504, 1555, 

1651 

TAC 
1184, 1285, 1363, 1397, 1450, 1542, 

1712, 1786, 1842 

Shared: Height (1397); Unique: 

1450, 1786, 1842 

 

Table 17, present common and specific peaks (wavelengths) between parameters in 

aqueous microgreens extracts samples. Height had several peaks in common with weight, 

including 1368, 1396, 1484, 1530, and 1746 nm. Unique wavelengths include 1337 and 1433 nm. 

Weight included exclusive peaks at 1342, 1466, and 1709 nm. Chlorophyll A, B and total carotene 

presented common wavelengths with height and weight, at 1460 and 1706–1709 nm. The presence 

of 1549, 1694, and 1758 were unique to pigment analysis. In the case of L* and b* color 

components peaks in common were found at 1432 nm (for weight), and 1668 nm (for pigments), 

meanwhile wavelengths like 1488, 1729, and 1818 nm were more specific to color than agronomic 

traits. °Brix shared common wavelengths at 1640 and 1746 nm with height and weight, but 

featured unique wavelengths like 1596 and 1832, absent in other traits. TPC and °Brix presented 

common wavelength at 1640 nm, but unique phenolic-sensitive bands (for TPC) were found at 

436, 1528, 1754, 1778, and 1824 nm. TAC shared peaks in common, at 1328 nm with TPC, 1342 

and 1748 nm with weight, but presented unique peaks at 1445, 1593, and 1831 nm. 
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Table 17. Spectral relationships among aqueous microgreens extracts samples parameters 

Parameter Key Wavelengths (nm) 
Notable Shared / Unique 

Features 

Height 

1337, 1368, 1396, 1409, 1433, 1460, 

1484, 1530, 1590, 1640, 1685, 1706, 

1746, 1793 

Shared: Weight (1368, 1396, 

1484, 1530, 1746); Unique: 1337, 

1433 

Weight 

1342, 1368, 1396, 1408, 1432, 1466, 

1484, 1530, 1590, 1640, 1686, 1709, 

1746, 1795 

Shared: Height; Unique: 1342, 

1466, 1709 

Chlorophyll A, 

Chlorophyll B, 

Total Carotene 

1206, 1412, 1438, 1460, 1549, 1668, 

1694, 1722, 1758, 1801 

Shared: Height, Weight (1460, 

1706–1709); Unique: 1549, 1694, 

1758 

L*, b* 
1208, 1410, 1432, 1488, 1668, 1698, 

1729, 1756, 1818 

Shared: Weight (1432), 

Chlorophyll A (1668); Unique: 

1488, 1729, 1818 

Brix 
1338, 1394, 1426, 1596, 1640, 1687, 

1712, 1746, 1832 

Shared: Height/Weight (1640, 

1746); Unique: 1596, 1832 

TPC 

1328, 1406, 1418, 1436, 1451, 1510, 

1528, 1640, 1685, 1709, 1754, 1778, 

1824 

Shared: Brix (1640); Unique: 

1436, 1528, 1754, 1778, 1824 

TAC 

1328, 1342, 1394, 1407, 1445, 1480, 

1593, 1640, 1686, 1708, 1748, 1795, 

1831 

Shared: TPC (1328), Weight 

(1342, 1748); Unique: 1445, 

1593, 1831 

 

 

1.5.6. Wavelength selection for number of latent variables reduction in PLSR 

Although some PLSR models exhibited some predictive capacity, as evidenced by R² values above 

0.6 in certain cases, a considerable number of latent variables (LVs) were required to achieve these 

results when the spectral range from 1150 to 1850 nm was used. This trend, described in the 

previous section, suggests a potential overfitting risk and reduced model interpretability due to 

high model complexity. Therefore, for model improvement and reduction of the number of LVs, 

a complementary analysis was conducted focusing on the variables with R² for prediction (R²pr) 

greater than 0.6. 

By selecting the most influential wavelengths based on the regression coefficients obtained from 

PLSR models of both liquid and solid samples, it was expected that the predictive ability would 

be maintained or even enhanced while reducing model complexity. However, this approach did 

not yield significant improvements in terms of increasing R²pr or reducing the number of LVs in 

most cases. Nevertheless, when specific wavelength ranges were selected for the PLSR models 

built with microgreens fresh-cut samples, a noticeable reduction in the number of LVs was 

achieved for several variables, including weight, height, L*, b* (color components), chlorophyll 

A, chlorophyll B, total carotene, and Brix, without substantially compromising the predictive 

accuracy. The comparison between models using the full 1150-1850 nm range and those using 
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selected wavelength intervals is summarized in Table 18. Meanwhile, a more detailed performance 

overview, including RMSE and R² values for calibration, cross-validation, and prediction, is 

provided in Appendix A2_Table 19. 

 

Table 18. Comparison of R2pr after LVs number reduction in PLSR models of fresh-cut samples 

of pea microgreens 

   Wavelength :1150-1850 nm Selected wavelengths for LV reduction 

Regression 

variable 
Sample n LV RMSEP R2pr 

Wavelengths 

(nm) 
LV RMSEP R2pr 

Weight fresh-cut 291 8 0.08 0.78 1185-1770 4 0.1 0.74 

Height fresh-cut 291 9 2.01 0.7 1196-1508 5 1.93 0.72 

L* fresh-cut 294 10 6.48 0.73 1185-1665 6 7.22 0.62 

b* fresh-cut 285 10 6.89 0.7 1185-1665 6 7.16 0.62 

Chlorophyll A fresh-cut 291 8 20.77 0.71 
1185-1572; 

1695-1850 
7 19.9 0.74 

Chlorophyll B fresh-cut 291 8 9.66 0.62 
1185-1572; 

1695-1850 
7 8.67 0.7 

Total Carotene fresh-cut 294 8 4.83 0.73 
1185-1572; 

1695-1850 
7 4.79 0.74 

Brix fresh-cut 294 10 0.15 0.7 1185-1570 6 0.16 0.68 
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6. CONCLUSIONS AND RECOMMENDATIONS 

This research focused on the study of changes induced by stress factors in food materials using 

near infrared spectroscopy (NIRS) and other correlative techniques (e-senses). Throughout this 

work, three distinct approaches were explored to assess how various factors, such as the use of by-

products in feed, environmental conditions, and the management of probiotics, influence the 

quality and characteristics of food. These approaches include evaluating the quality of enriched 

eggs through sensory analysis and electronic techniques; NIRS evaluation of probiotic 

supplements under different conditions; and assessing the applicability of NIRS in predicting 

agronomic and physicochemical properties in microgreens grown under varying photoperiods and 

temperatures. 

6.1. Evaluation of enriched eggs by human sensory analysis, e-tongue and e-nose 

In the sensory evaluation of enriched eggs by a human panel, using ANOVA and Tukey Test, 

compared Control, ZP 2.5%, and ZP 5.0% feeding groups across two batches and three egg 

presentations (raw, boiled, and fried), most sensory attributes showed no significant differences, 

and the panel generally characterized the eggs as fresh. The sensory evaluation of eggs using an 

electronic tongue revealed distinct differences between the feeding regimes. Euclidean distance 

analysis showed the greatest disparity between the Control and ZP 5.0% groups for both 

experimental batches indicating significant differences in organoleptic characteristics. Principal 

component analysis demonstrated minimal separation between the three egg groups, though some 

differentiation between the Control and ZP groups was observed, especially in PC1. The 

discriminant analysis for separation of treatment groups had calibration accuracy of 95.92% for 

batch 1 and 100% for batch 2. Cross-validation accuracy was 64.81% for batch 1 and 56% for 

batch 2, indicating that while classification was imperfect, differentiation between the Control and 

ZP 5.0% groups was more effective. In the e-nose sensory evaluation for eggs stored for 0, 30, and 

60 days, the models corresponding to fresh eggs (0 days of storage) showed slightly greater ability 

to discriminate between treatment groups compared to models for longer storage times. Upon 

preheating the samples to 50 °C and 80 °C, there is clear differentiation between batches 1 and 2. 

At 50 °C, accuracy in calibration of 98.00% and cross-validation of 68.49%. At 80 °C, the 

accuracy in calibration is 82.65%, and cross-validation 62.22%, with cross-validation results 

indicating a tendency towards some separation between feeding groups. The use of the electronic 

nose successfully identified key volatile compounds associated with both egg storage and different 

feeding treatments. However, the differentiation between feeding groups was less precise 

compared to the separation between storage days, which reached complete discrimination between 

fresh eggs, 30 days and 60 days storage eggs.  
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6.2. Evaluation of probiotic drinks by NIRS  

In the evaluation of probiotic supplements under different conditions, the microbiological 

analysis of probiotic supplements revealed that the viability of microorganisms is significantly 

affected by temperature which highlights the importance of controlling the temperature of water 

to which probiotics are exposed to ensure their effectiveness in probiotic drinks. The PCA-LDA 

analysis performed on the three probiotics (N, A, and P) at 25°C successfully differentiated the 

groups, with a 100% correct classification for calibration and 99.18% cross-validation accuracy. 

The optimal pretreatment was SG 2-17-0. Probiotics A and P were more closely related, while 

probiotic N showed distinct separation. Discrimination based on concentration showed a clear 

separation between concentration levels at 90°C, with slight misclassification between consecutive 

concentrations. The models achieved 100% calibration accuracy and over 90% cross-validation 

accuracy, with probiotic A (95.06%) having the highest cross-validation accuracy, followed by 

probiotic P (93.52%) and probiotic N (90.12%). The optimal pretreatments were DeTr + MSC (for 

probiotic N), SG 2-21-0 + DeTr (for probiotic A), and SG 2-17-0 + SG 2-17-2 (for probiotic P). 

At lower temperatures, discrimination is more probiotic dependent. NIR spectroscopy combined 

with PCA-LDA seems promising for classification of probiotic concentration in solutions. 

Temperature-based discrimination of probiotic samples also provided high classification accuracy. 

Probiotic A showed the most robust performance, achieving 100% classification and cross-

validation accuracy. Similarly, probiotics P and N demonstrated high classification over 90%, with 

slight misclassifications between consecutive temperatures. The optimal pretreatments were de 2-

13-0 + SG 2-21-1 (for probiotic N), SG 2-17-0 + MSC (for probiotic A), and de Tr (for probiotic 

P). NIR spectroscopy shows effective for temperature-based differentiation of probiotic solutions. 

The best predictive model for CFU counts was achieved using SG 2-21-0 and SG 2-13-2 

pretreatments, with a R²Pr of 0.82 and RMSEP of 0.64 Log CFU/g.  

6.3. Evaluation of pea microgreens by NIRS 

Pea microgreens were grown under specific conditions of temperature (15, 20 and 25 ºC) and 

photoperiod (0, 6, 12, 18 hours). Microgreens at 15 ºC were grown for 18 days, meanwhile, at 20 

and 25 ºC were cultivated for 14 days, establishing the time for harvesting at 7, 11, 14, and 18 

days. An agronomic overview of the relationship between plant height and weight in pea 

microgreens growth shows that in general when the microgreens increase their height also the 

weight increases, due to greater biomass accumulation from enhanced photosynthesis and cellular 

growth. Higher temperatures promote faster growth and weight gain, this is related to the fact that 

under these conditions, biochemical processes like photosynthesis and respiration are accelerated. 

Optimal temperature conditions (25 °C, 20 °C, 15 °C) result in significant growth, with the tallest 
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and heaviest plants observed at 25 °C. Photoperiod also affects growth, were plants in complete 

darkness exhibit etiolation, and directing to exaggerated height. In some cases, extended light 

photoperiods at lower temperatures enhance growth; however, at 25 °C, shorter photoperiods may 

reduce thermal stress, which as consequence can improve growth efficiency. 

The °Brix analysis revealed that at lower temperature (15 °C), sugar content, in specific 

sucrose, increased between days 11 and 14 but decreased by day 18, probably due to sucrose 

utilization for structural growth. At 20 °C and 25 °C, °Brix values generally declined over the 

cultivation period, which can be attributed to faster sucrose consumption due to higher metabolic 

demands at elevated temperatures. Microgreens exposed to 18 hours of light consistently had 

higher °Brix values, which reflects its importance for photosynthetic activity and sucrose 

production, while microgreens grown in darkness exhibited lower values. Temperature and light 

duration are important factors that determine sucrose levels in plants. Increased photoperiod and 

optimal temperature promote higher sucrose accumulation and microgreens growth. 

pH exhibited a more stable behavior, especially on days 11 and 14. The differences for most 

of treatments are minimal, with consistent values between 5 and 6. This stability may be attributed 

to the plant's homeostatic mechanisms, which tightly regulate internal pH to maintain the proper 

functioning of vital metabolic processes. Although there is some variation in the case of some 

specific conditions, there is no clear pattern with regard to influence of photoperiod and 

temperature.  

Electrical conductivity exhibited significant variability among treatments, that ranged between 

1.5 and 2.75 mS/cm. The data in general does not reveal a consistent pattern that can be directly 

attributed to harvest day, light exposure, or temperature. The results display considerable 

variability, making it difficult to determine whether any of these factors are significantly affecting 

conductivity changes. However, at temperatures of 20 °C and 25 °C, the treatments demonstrated 

certain similar behavior in some cases, with conductivity increasing between days 7 and 11 and 

then decreasing on day 14. Conversely, the treatments at 15 °C were the most variable, which may 

be attributed to delayed emergency and growth. In the case of pH and electrical conductivity, the 

potential trends associated with photoperiod and temperature were less evident compared to other 

analyzed variables. 

The study of pigments in pea microgreens demonstrates the significant influence of 

photoperiod and temperature on the production of chlorophyll A, B, and total carotene. Treatments 

with longer photoperiods, such as 18L, favor chlorophyll synthesis, resulting in a vibrant green 

color characteristic of healthy plants that maximize their photosynthetic capacity. Furthermore, 

increased temperatures within an optimal range stimulate pigment production, contributing to 
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greater photosynthetic efficiency. Moreover, the concentration of pigments increases during the 

growth phase. However, it is crucial to consider that extreme temperatures and photoperiods can 

adversely affect this production, highlighting the need for a balance in cultivation conditions. 

Microgreens respond notably to photoperiod in terms of color and development. Treatments 

with longer photoperiods, such as 20C_18L and 25C_18L, favor a greater accumulation of 

chlorophyll, resulting in darker green plants, indicators of better plant health. These microgreens 

absorb blue and red light more effectively and predominantly reflect green, leading to lower values 

in the color components L* (luminosity) and b* (blue-yellow). In contrast, treatments without 

light, such as 15C_00L and 25C_00L, exhibit lighter and yellower colors due to reduced 

photosynthetic activity. The lack of light limits chlorophyll production, allowing other pigments, 

such as carotene (yellow) and anthocyanins (red), to dominate the color profile, increasing the a* 

(green-red) values. In summary, microgreens exposed to more hours of light enhance their 

photosynthetic capacity and reduce the presence of reddish and yellow tones, reinforcing their 

green and healthy appearance. 

The analysis of bioactive compounds in pea microgreens reveals that both photoperiod and 

temperature significantly influence the accumulation of total water-soluble phenolic compounds 

(TPC) and total antioxidant capacity (TAC), with the effect of temperature being more 

pronounced. Lower temperatures, such as 15 °C, favor the accumulation of these compounds 

through stress-activated defense mechanisms. Additionally, treatments with longer photoperiods 

stimulate the production of phenolic compounds and increased antioxidant capacity, reflecting an 

adaptive response to light and oxidative stress. The treatment 15C_18L stands out among the 

others, especially on day 14, reaching 2.23 mg GAE/g for total water-soluble phenolic compounds 

and 5.73 µmol TE/g for antioxidant capacity. Moreover, there is a complex relationship between 

plant growth and the synthesis of these compounds, where environmental conditions impact the 

balance between the production and degradation of phenolics throughout the development stages. 

As can be noted, the analysis of microgreens' growth is dynamic and multifactorial, with 

marked effects arising from the interaction of temperature, photoperiod, and growth stage. Finding 

a balance between these factors is crucial to produce microgreens that meet production standards 

and quality requirements for consumers. This balance is essential not only for maximizing yield 

but also for ensuring that microgreens provide the desired nutritional and sensory qualities. 

The spectral analysis of pea microgreens was conducted using fresh-cut samples in reflectance 

mode and aqueous microgreens extracts samples in transmittance mode, covering growth periods 

of 7, 11, 14, and 18 days. The analysis utilized SG 2-45-0 pretreatment and SNV in the wavelength 
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range of 1150 to 1850 nm. A prominent feature in both types of samples was the first overtone of 

water, peaking around 1450 nm, which is critical in biological systems. 

PCA analysis revealed a certain tendency for differentiation between groups according to 

harvesting days, temperature and photoperiod. It was more evident according to photoperiod, 

although major overlapping existed.  

In general, PCA-DA classification models belonging to aqueous microgreens extracts samples 

showed better performance than from microgreens fresh-cut samples. 

In the classification by harvesting days, the PCA-LDA models for each individual treatment 

(consisting of a specific temperature-photoperiod, in total 12 models for microgreens fresh-cut 

samples and 12 models for aqueous microgreens extracts samples) revealed that aqueous 

microgreens extracts samples achieved higher accuracy, with cross-validation percentages 

between 66.67% and 100%, while microgreens fresh-cut samples ranged from 55.56% to 100%. 

More explicitly, aqueous microgreens extracts samples classification models outperformed 

microgreens fresh-cut samples in nearly all treatments, reporting CV between 81.45% to 100% for 

treatments from 15 ºC and 25 ºC, meanwhile for 20 ºC, it was between 66.67% and 82.26%. 

In the classification of microgreens on a specific day according to photoperiod-temperature 

treatment, microgreens fresh-cut samples showed CV classification accuracies between 48.39% 

and 59.72%, while aqueous microgreens extracts samples was between 56.47% to 87.72%. The 

classification according to temperature showed the higher accuracy at day 11 with CV of 81.79% 

and 85.58%, for microgreens fresh-cut samples and aqueous microgreens extracts samples 

respectively. Moreover, the best classification according to photoperiod was CV of 67.83% at day 

14 for microgreens fresh-cut samples, and CV of 85.45% at day 7 for aqueous microgreens extracts 

samples. 

In a global classification, comprising all pea microgreen samples, once again, models from 

aqueous microgreens extracts samples showed better performance compared to those from 

microgreens fresh-cut samples, showing CV classification for clustering according to harvesting 

day, treatment, temperature and photoperiod of 95.59, 68.34, 88.87 and 66.89%. 

The PLSR results for microgreens fresh-cut samples and aqueous microgreens extracts 

samples include 13 analyzed variables related to physical characteristics, optical properties, 

pigments, chemical characteristics, and bioactive compounds. 

Optical and pigment variables in microgreens fresh-cut samples showed slightly better 

results, followed by physical and bioactive characteristics, while pH and conductivity were the 

least precise. Moreover, microgreens fresh-cut samples performed slightly better in physical, 

optical, and pigment-related variables, while aqueous microgreens extracts samples had superior 

performance in TAC and TPC parameters. 
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Physical characteristics in microgreens fresh-cut samples had R²pr values of 0.78 for height 

and 0.70 for weight, while aqueous microgreens extracts samples showed 0.64 and 0.65, 

respectively. 

Regarding color components, microgreens fresh-cut samples showed R²pr values of 0.73 

for L* and 0.70 for b*, comparable to 0.71 and 0.65 in aqueous microgreens extracts samples. 

Pigment models showed consistent values, with R²pr of 0.71, 0.62, and 0.73 for chlorophyll 

A, B, and carotene in microgreens fresh-cut samples, and 0.68, 0.65, and 0.69 in aqueous 

microgreens extracts samples. 

°Brix had similar values in microgreens fresh-cut samples with R²pr of 0.70 and aqueous 

microgreens extracts samples R²pr of 0.68, but pH and conductivity showed low predictive values. 

The models for TAC and TPC were more accurate in aqueous microgreens extracts 

samples, with R²pr values of 0.73 and 0.71, compared to microgreens fresh-cut samples which 

showed low predictive capacity. 

Although PLSR models using the full spectral range (1150–1850 nm) showed acceptable 

predictive performance (R² > 0.6), they required in some cases many latent variables, which may 

cause risk of overfitting. Selecting significant wavelengths ranges reduced model complexity by 

decreasing the number of latent variables, especially for fresh-cut microgreens, without notably 

affecting predictive accuracy. 

Several PLSR models-most important wavelengths presented similar profiles, especially 

observed between height, weight, pigments (chlorophyll A, B, and total carotene) and °Brix in pea 

microgreens. The close association can be derived by their close association with the same 

physiological and biochemical characteristics, such as water content, carbohydrates, and proteins. 

These factors contribute to plant growth and biomass accumulation, which are essential for both 

height and weight. Pigments like chlorophyll and carotene, involved in photosynthesis, share 

absorption patterns due to common C-H and O-H bonds. The overlap of wavelengths between 

pigments and growth parameters suggests that the same molecular bonds influencing pigmentation 

also affect growth. Additionally, the °Brix analysis showed similarities with height, weight, and 

chlorophyll models, as the shared vibrations of O-H, C-H, and N-H bonds indicate that sucrose 

content (°Brix), carbohydrates, and water are interconnected with plant growth and 

photosynthesis, leading to a unified spectral profile. Weight and height of pea microgreens which 

had the most compatible profile revealed important wavelengths around 1196, 1286, 1392, 1417, 

1446, 1480, 1508, 1543, 1600, 1704, 1838 nm. Meanwhile, for aqueous microgreens extracts 

samples, the most prominent wavelengths were found at 1337, 1368, 1396, 1409, 1433, 1460, 

1484, 1530, 1590, 1640, 1685, 1706, 1746, 1793 nm.  
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In this research, valuable results were found; however, some limitations were encountered. 

In some cases, there was a large gap between calibration and cross-validation accuracies during 

the classification of samples, which may indicate a risk of overfitting. Additionally, in the 

microgreens experiment, a high number of latent variables (LV) was observed in some cases. To 

determine whether, despite these limitations, the models had any classification capacity and were 

not merely the result of overfitting, additional models were performed using simulated data. These 

models performed poorly compared to those using real data, thus suggesting that the models based 

on real data contained important information for classification. 

 

Similarly, some models from the PLSR analysis showed a high number of LV. In these cases, the 

number was reduced by selecting specific wavelength ranges, especially in the fresh-cut 

microgreens models, thereby reducing the LV without significantly affecting accuracy. Although 

different approaches were applied to find the best possible models for classification and prediction, 

several models presented modest results. Therefore, for future investigations, it would be 

interesting to consider the use of other chemometric approaches such as PLS-DA, ANN, k-NN, 

SVM, among others, which might be able to achieve higher classification and parameter prediction 

performance in eggs and pea microgreen samples. 

 

Additionally, exploring the applicability of these correlative methods on a larger scale or refining 

the models with a larger number of samples would be valuable, considering that in this research 

the models were established by analyzing a limited number of samples. Moreover, it would be 

interesting to test these correlative techniques by including, in the case of the egg-related 

experiments, other types of microelements for egg enrichment that could affect their sensory 

characteristics; for probiotics-related experiments to evaluate how temperature and concentration 

conditioning factors can affect the viability of other probiotic strains besides LAB; and in the case 

of microgreens, by including other species or considering additional environmental stressing 

factors. 
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7. NEW SCIENTIFIC RESULTS 

For the purpose of these new scientific findings, the term benchtop MetriNIR 

spectrophotometer refers to the MetriNIR (MetriNIR, Research Development and Service Co., 

Budapest, Hungary), whereas the term benchtop NIR XDS spectrophotometer refers to the NIR 

XDS spectrometer (Metrohm, Herisau, Switzerland), with two separate attachable modules: Rapid 

Solid Analyzer (RCA) and Rapid Liquid Analyzer (RLA). The term e-tongue refers to the Alpha 

Astree potentiometric electronic tongue (Alpha MOS, Toulouse, France) equipped with seven 

sensors specifically developed for food application (called by the manufacturer: BB, HA, ZZ, GA 

CA, JE, JB), an Ag/AgCl in 3M KCl reference electrode and a 16-position autosampler. E-nose 

refers to the Alpha MOS Heracles NEO electronic nose (e-nose), which functions as an ultrafast 

gas chromatograph analyzer featuring dual columns (MXT-5 and MXT-1701) and performs 

evaluation of odor intensity associated with volatile substances through the Kovats index. 

❖ New scientific findings focusing on eggs evaluation 

 

Sensory attributes of enriched eggs produced by hens fed with feed with added brewer's 

yeast and wet yeast biomass enriched with organic zinc, polyphenols, and vitamins (ZP) 

at concentrations of ZP 0% (Control), ZP 2.5%, and ZP 5.0% as feeding regimes were 

analyzed. Batch 1 and batch 2 correspond to the eggs collected for evaluation on day 30 

and day 60 of the experimental period, respectively. 

 

Human sensory analysis  

1) This study shows that eggs enriched with Zincopyeast (ZP) at 2.5% and 5.0% did not 

consistently differ in sensory attributes from non-supplemented eggs (control group) across 

two production batches in case of boiled (albumin color, yolk color, egg odor, unusual 

odor, albumin flavor, unusual taste, albumin flexibility, and yolk creaminess) and fried 

eggs (yolk color, egg odor, sweet aroma, strange odor, egg taste, sweet taste, strange taste, 

and texture). While some statistically significant differences were observed between 

feeding groups in certain sensory characteristics, these differences were not consistently 

replicated between the two batches. Therefore, ZP supplementation at the tested levels does 

not appear to alter the overall sensory profile of boiled or fried eggs. 

Characterization of eggs by e-tongue  

2) The ability of an electronic tongue (e-tongue) to effectively distinguish egg samples based 

on feeding regimes with different levels of Zincoppyeast (ZP) supplementation was 

proven. ZP 2.5%, and ZP 5% were correctly distinguished from the Control showing a 

64.81% accuracy in cross-validation for fresh eggs collected at day 30 of the laying period. 

The largest differences were observed between the groups Control and ZP 5.0% samples.  
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Characterization of eggs by e-nose  

3) The effectiveness of electronic nose (e-nose) to classify enriched eggs according to storage 

time was proven. Eggs from 0, 30, and 60 days of storage were correctly classified with 

100% accuracy in cross-validation. Moreover, the use of e-nose prove to be valuable 

distinguishing fresh eggs samples based on different feeding-(ZP) supplementation 

regimens. ZP 2.5%, and ZP 5% were correctly distinguished from the Control with 76.5% 

accuracy in cross-validation.  

4) The e-nose analysis revealed that specific volatile compounds played a critical role in 

distinguishing storage durations. Among these, methyl acetate and 2-methylpropanal 

(sensor 528.86), acetaldehyde (469.52 and 430.57), 2,4,5-trimethyl-3-oxazoline and 2-

butanone, 3-mercapto (818.98), as well as 2-hexanol and hexanal (803.41) were the 

primary contributors to the observed separations of eggs stored at 0, 30 and 60 days. 

Moreover, the major volatile compounds responsible for the separation of the feeding 

regimes in fresh eggs included, 2-butanol and n-butanol (602.94), homofuraneol and 

methyl 3-pyridinecarboxylate (1140.88), methyl acetate and 2-methylpropanal (528.86), 

as well as 2-propanone and propanal (494.47).  

❖ New scientific findings focusing on probiotics evaluation 

 

Commercial probiotics N, A, and P liquids with 3.0 g/125 mL, 2.5 g/125 mL and 2.0 g/125 

mL concentrations and 25 °C, 60 °C, and 90 °C water temperature after cooling down 

were scanned in the 950–1630 nm range in transflectance mode. PLSR models to predict 

probiotic viability (log CFU/g).     

 

Prediction of probiotics viability by NIRS (using Benchtop MetriNIR 

spectrophotometer) 

5) It was proven that viability of the probiotic samples, influenced by concentration and 

temperature stress factors, can be predicted through NIR spectrophotometry coupled with 

PLSR modeling. The models achieved a R²Pr of 0.82 and RMSEP of 0.64 Log CFU/g.  

 

❖ New scientific findings focusing on microgreens evaluation 

 

Pea microgreens grown under different environment stress conditions of temperature 

(15, 20, 25 ºC), and photoperiod (0, 6, 12, 18 hours of light) and harvested at 7, 11 and 14 

and 18 days were scanned in two modes: diffuse reflectance for microgreens fresh-cut 

samples and in transmission for aqueous microgreens extracts samples (1:5 plant - 

distilled water) and analyzed in the 1150–1850 nm range and applied spectral 

pretreatment SG (p=2, n=45, m=0) + SNV. Classification PCA-LDA models and partial 

least squares regression (PLSR) models were developed to test prediction capacity for 13 

agronomical and physicochemical variables.     
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Classification of pea microgreens by NIRS (using Benchtop NIR XDS 

spectrophotometer)  

6) The near-infrared spectroscopy (NIRS), combined with PCA-LDA analysis, enabled 

effective classification of pea microgreens according to harvesting day, temperature, 

photoperiod, and combined treatment in both fresh-cut and aqueous extract samples. In 

fresh-cut samples, cross-validation accuracy corresponded to 66.95% for harvesting day, 

75.74% for temperature, 71.05% for photoperiod, and 58.54% for treatment. In contrast, 

aqueous extract samples yielded higher classification rates of 95.59%, 88.87%, 66.89%, 

and 68.34% for the same parameters, respectively. These results indicate better class 

separability in aqueous extracts, likely due to the homogenized nature of the samples and 

enhanced spectral response under transmission mode, reflecting the compositional changes 

induced by these environmental stressors. 

Prediction of pea microgreens for physical characteristics, pigments and bioactive 

compounds by NIRS (using Benchtop NIR XDS spectrophotometer) 

7) The temperature and photoperiod combinations successfully reproduced known growth 

patterns in pea microgreens. Under these combined stress conditions, NIRS predicted 

height and weight in fresh-cut samples with R² values of 0.78 and 0.70, respectively. 

Aqueous extract samples yielded lower values of 0.64 and 0.65, despite the theoretically 

more favorable optical properties of homogeneous solutions in transmission mode, there 

might be some structural and morphological characteristics retained in fresh-cut samples 

measured in diffuse reflectance mode such as tissue density, stem thickness, and leaf 

arrangement that better correlate with physical traits like height and weight. NIRS shows 

potential as a non-destructive method for estimating biomass traits under environmental 

stress. 

8) It was proven that pea microgreens pigments are influenced by temperature and 

photoperiod.  20C_18L and 25C_18L treatments showed higher pigments accumulation, 

denoting that photoperiod is the most limiting factor in this regard when 0L treatments 

presented chlorophyll values close to 0.  The PLSR pigments prediction models had R²pr 

of 0.71 for chlorophyll A, 0.62 for chlorophyll B and 0.73 for total carotenes in 

microgreens fresh-cut samples, comparable to 0.68, 0.65, and 0.69, respectively for 

aqueous microgreens extracts samples. These results proves the moderate potential of 

NIRS to measure pigments (chlorophyl A, B, total carotenes) of pea microgreens, subjected 

to temperature-photoperiod stress factors, in both fresh-cut microgreens samples and 
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aqueous microgreens extracts samples. 

9)  °Brix evaluation showed that lower temperatures (15 °C) favor sucrose accumulation 

compared to higher temperatures (20 °C and 25 °C); furthermore, microgreens with 18 

hours of light had higher °Brix values compared to other treatments. The results indicate 

that the lower temperature and higher photoperiods in this study promotes °Brix 

accumulation in pea microgreens. The PLSR prediction of °Brix for microgreens fresh-cut 

samples showed R²pr of 0.70 and for aqueous microgreens extracts samples R²pr of 0.68, 

but pH and conductivity had low predictive accuracy (below 0.34) for both (aqueous 

microgreens extracts samples and microgreens fresh-cut samples). It is proven that NIRS 

provides modest accuracy for prediction of chemical properties of pea microgreens 

subjected to temperature-photoperiod stress factors, however it is capable of measuring 

°Brix in some extent, in both microgreens fresh-cut samples and aqueous microgreens 

extracts samples.  

10) In the bioactive compound analysis in pea microgreens, it was proven that lower 

temperatures (15 °C) and longer photoperiods enhance phenolic compounds accumulation 

and antioxidant capacity, with 15C_18L being the most effective (particularly on day 14). 

Moreover, the results show proof of the moderate potential of NIRS for measuring TAC 

and TPC of pea microgreens subjected to temperature-photoperiod stress factors, 

especially for aqueous microgreens extracts samples. the PLS regression for TAC and TPC 

for aqueous microgreens extracts samples achieved R²CV of 0.73 and 0.71 in aqueous 

microgreens extracts samples, compared to 0.35 and 0.56 in microgreens fresh-cut 

samples, respectively.   

11) The study proves the effectiveness of Near Infrared Spectroscopy (NIRS) for simultaneous 

prediction of correlated agronomic and physicochemical variables in pea microgreens. 

Height, weight, pigments (chlorophyll A, B, and total carotene), and °Brix PLSR models 

for pea microgreens showed similar spectral profiles. The notable wavelengths for weight 

and height, which had a broad spectral profile and can be compared with the other 

variables, included important wavelengths at 1196, 1286, 1392, 1417, 1446, 1480, 1508, 

1543, 1600, 1704, and 1838 nm in microgreens fresh-cut samples, while the prominent 

wavelengths for aqueous microgreens extracts samples were 1337, 1368, 1396, 1409, 

1433, 1460, 1484, 1530, 1590, 1640, 1685, 1706, and 1746 nm. These wavelengths, 

pinpointed through PLSR models, underline the capability of NIRS to detect shared 

spectral markers across diverse variables, advancing its application in quality assessment 

and predictive modeling of plant characteristics. 
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8. SUMMARY 

 

The quality characteristics of food can be affected by various factors, agronomical conditions, 

storage, processing, and consumption habits, which influence important parameters such as 

freshness, flavor, texture, and nutritional value of food products. In this context, the aim of this 

thesis was to assess the potential of rapid techniques based on correlative methods for detecting 

changes in food quality induced by stress factors, such as near infrared spectroscopy (NIRS), 

electronic tongue (e-tongue), and electronic nose (e-nose), which offer advantages over 

conventional quality evaluation methods. The first aim was to analyze the applicability of the e-

tongue and e-nose to detect potential alterations in the organoleptic properties of eggs produced 

by hens fed diets enriched with organic zinc by-product. Furthermore, the capacity of NIRS to 

characterize and predict the viability of probiotics drinks subjected to different concentrations and 

temperatures conditions will be assessed. Finally, the study analyses the ability of NIRS to 

characterize pea microgreens growth under various temperature and photoperiod conditions and 

to predict their agronomic and physicochemical properties. 

The sensory evaluation of enriched eggs using both human panels and electronic systems (e-

tongue and e-nose) revealed key insights into the effects of different feeding treatments and storage 

conditions. Human panel assessments, using ANOVA and Tukey’s test, showed minimal 

differences in most sensory attributes across the Control, ZP 2.5%, and ZP 5.0% feeding groups. 

The e-tongue analysis highlighted higher differentiation, particularly between the Control and ZP 

5.0% groups, in Euclidean distance analysis and LDA analysis, with classification accuracy 

reaching 95.92% in batch 1 and 100% in batch 2, while cross-validation accuracy was lower at 

64.81% and 56%, respectively. The e-nose analysis allowed for the identification of specific aroma 

compounds and their associated sensory descriptors, highlighting variations across different egg 

groups in terms of batch, storage duration, and feeding treatments. Models demonstrated high 

classification accuracy, with values of 98.00% at 50 °C and 82.65% at 80 °C, though cross-

validation accuracy was more limited at 68.49% and 62.22%, respectively. When analyzing 

samples stored for 0, 30, and 60 days, clear distinctions between fresh and stored samples were 

observed, although there was an overlap among treatment groups. Despite lower cross-validation 

accuracy due to misclassification, especially between consecutive groups. However, greater 

differentiation was observed between the Control and ZP 5.0% feeding groups. Although the 

supplementation of the hens' feed with the industrial by-product did not produce noticeable 

alterations in egg quality detectable by traditional sensory methods, advanced analytical 

techniques like e-tongue and e-nose were sensitive enough to detect these subtle variations. This 

suggests that while the by-product can be used in the hens' diet without significantly impacting 
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sensory attributes, its effects on the eggs can be effectively monitored using precise and advanced 

technology such as e-tongue and e-nose. 

The microbiological analysis revealed that microorganism viability is significantly impacted 

by high temperatures (60 °C and 90 °C) of water at the moment of the preparation of the probiotic 

drinks. The PCA-LDA analysis successfully classified probiotics N, A, and P at 25 °C with 100% 

classification and 99.18% cross-validation accuracy. Probiotics A and P were more closely related, 

while probiotic N showed distinct separation, likely due to differences in strain composition and 

matrix structure. Important wavelengths (1376, 1388–1396, and 1576–1590 nm) linked to water, 

proteins, lipids, and sugars absorption were identified, demonstrating NIR spectroscopy's efficacy 

in qualitative probiotic analysis. For concentration-based discrimination, the highest cross-

validation accuracy was found at higher temperature 90 °C, showing 95.06%, 93.52% and 90.12% 

correct classification for probiotic A, probiotic P and probiotic N, respectively. Temperature-based 

discrimination also showed high classification accuracy, with probiotic A achieving 100% 

classification and cross-validation accuracy, while probiotics P and N exceeded 90%, with minor 

misclassification between consecutive temperatures. The best predictive model for CFU counts 

resulted in an R²Pr of 0.82 and RMSEP of 0.64 log CFU/g. Key wavelengths, particularly between 

1300–1600 nm, were critical for predicting probiotic viability, with significant molecular 

interactions related to water and organic compounds, such as OH and NH stretching, especially at 

1458 nm, 1484 nm, and 1140 nm. 

The growth of pea microgreens is strongly influenced by temperature and photoperiod, as 

demonstrated across the analyzed parameters. Microgreens grown at 15 °C, 20 °C, and 25 °C, 

under varying light exposure (0, 6, 12, and 18 hours per day), exhibited distinct patterns in height, 

weight, pigment concentration, and bioactive compounds. Higher temperatures, particularly at 25 

°C, promoted more rapid growth and greater biomass accumulation, while extended photoperiods 

were predominantly relevant enhancing photosynthesis, chlorophyll synthesis, and overall plant 

health. Conversely, shorter photoperiods and lower temperatures slowed growth, but favored the 

accumulation of bioactive compounds, such as phenolics and antioxidants. In particular, the 

absence of light caused pale coloration, low pigmentation levels and extreme growth in 

microgreens, a result of the etiolation process, where plants tend to elongate excessively as they 

search for a light source. The results indicate a complex interplay between environmental 

conditions and microgreen development. The NIRS analysis of pea microgreens was performed 

using fresh-cut samples in reflectance mode and aqueous extracts samples in transmittance mode. 

The analysis incorporated SG2-45-0 and SNV pretreatments across a wavelength range of 1150 to 

1850 nm. A significant aspect identified in the spectra of both sample types was the first overtone 

of water, which reached a peak around 1450 nm, highlighting its importance in biological systems. 
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The PCA-LDA analysis yielded better results for aqueous microgreens extracts samples compared 

to microgreens fresh-cut samples. The cross-validation accuracies for classification according to 

harvesting day was 95.59%, temperature was 88.87%, photoperiod was 66.89%, and treatment 

was 68.34%. Additionally, microgreens classified by specific photoperiod-temperature treatments 

also showed higher cross-validation accuracies for aqueous microgreens extracts samples ranging 

from 56.47% to 87.72%. In the same manner, temperature-based classification models (CV 

between 77.78% and 85.58%) and photoperiod-based classification models (CV between 63.56% 

and 85.45%) demonstrated better accuracy for aqueous microgreens extracts samples than 

microgreens fresh-cut samples. 

On the other hand, the majority of PLSR models showed slightly better accuracy for microgreens 

fresh-cut samples measured in reflectance mode than for aqueous microgreens extracts samples 

measured in transmittance mode, with some exceptions. Across the pea microgreens variables 

(encompassing physical traits, optical properties, pigments, chemical characteristics, and bioactive 

compounds), microgreens fresh-cut samples related analysis was slightly better predicting 

physical, optical, and pigment variables, while aqueous microgreens extracts samples were 

superior in total antioxidant capacity (TAC) and total water-soluble phenolic compounds (TPC). 

Analysis in microgreens fresh-cut samples recorded R²pr values of 0.78 for height, 0.70 for weight, 

0.73 for L*, 0.70 for b*, 0.71 for chlorophyll A, 0.62 for chlorophyll B, 0.73 for total carotene, 

°Brix of 0.70. Meanwhile, analysis in aqueous microgreens extracts samples better predicted TAC 

and TPC with R²CV values of 0.73 and 0.71, respectively. pH, conductivity and a* color 

component had poor performance in both microgreens fresh-cut samples and aqueous microgreens 

extracts samples analysis. The spectral profiles of various PLSR models for pea microgreens were 

aligned particularly between weight, height, °Brix and pigments (chlorophyll A, B, and total 

carotene), showing how these variables are interconnected and contribute to the growth of 

microgreens.   
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A2: Supplementary tables 

A2_Table 1. Ingredients used in the formulation of experimental diets for laying hens 

 Ingredient (%) Control ZP 2.5% ZP 5.0% 

 Corn 37.00 36.80 35.60 

 Extracted soybean meal (46% CP) 13.00 10.60 8.30 

 Corn–DDGS 11.00 11.00 11.00 

 Wheat 10.00 10.00 10.00 

 Extracted sunflower meal 7.70 8.00 8.00 

 Limestone grit 5.00 5.00 5.00 

 Corn germ meal 5.00 5.00 5.00 

 Corn feed flour 5.04 4.84 5.85 

 Limestone 4.32 4.35 4.40 

 Zincoppyeast 1 - 2.50 5.00 

 MCP 0.55 0.50 0.44 

 Soybean oil 0.45 0.48 0.49 

 Salt 0.32 0.32 0.32 

 Premix 2 (%) 0.30 0.30 0.30 

 L-lysine-HCL 0.15 0.14 0.13 

 DL-methionine 0.07 0.07 0.07 

 Lupro-Cid 3 0.05 0.05 0.05 

 Vitafix Plus 4 0.05 0.05 0.05 

Control = 0% Zincoppyeast, ZP 2.5% = 2.5% Zincoppyeast, ZP 5.0% = 5.0% Zincoppyeast. CP = 

crude protein, DDGS = distiller’s dried grains with solubles, MCP = monocalcium phosphate. 1 

SC AGSIRA SRL (Romania). 2 Vitamin A 13,333,330 IU/kg; vitamin D 2500 IU/kg; vitamin E 

1000,000 mg/kg; vitamin K 11,333 mg/kg; vitamin B1 866.7 mg/kg; vitamin B2 1070 mg/kg; 

vitamin B6 1733 mg/kg; folic acid 440 mg/kg; vitamin B12 9.7 mg/kg; biotin 43.3 mg/kg; calcium 

iodate 1333 mg/kg; sodium selenite 100 mg/kg; zinc oxide 33,333 mg/kg; iron carbonate 6666 

mg/kg; manganese-oxide 33,333 mg/kg; copper sulphate 5333 mg/kg (producer: Agrifirm 

Magyarország Zrt., Környe, Hungary). 3 BASF Hungária Kft. (Budapest, Hungary). 4 Agrifirm 

Magyarország Zrt. (Környe, Hungary). 
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A2_Table 2. Nutrient composition and energy values of the experimental diets for laying hens 

 Chemical Composition (%) Control ZP 2.5% ZP 5.0% 

 Dry matter 89.00 89.00 89.00 

 Crude protein 17.00 17.00 17.00 

 Crude fat 4.20 4.20 4.00 

 Crude fiber 4.80 4.80 4.80 

 Crude ash 12.90 12.90 12.90 

 Starch 34.50 34.50 34.50 

 Sugar (total) 3.00 3.00 3.00 

 Total calcium 3.70 3.70 3.70 

 Total phosphorus 0.52 0.53 0.53 

 Sodium 0.17 0.17 0.17 

 SID Lys 0.67 0.67 0.67 

 SID M + C 0.57 0.57 0.57 

 SID Thr 0.50 0.50 0.50 

 SID Trp 0.14 0.14 0.14 

 SID Val 0.68 0.68 0.68 

 AMEn (MJ/kg) 11.07 11.07 11.07 

Control = 0% Zincoppyeast, ZP 2.5% = 2.5% Zincoppyeast, ZP 5.0% = 5.0% Zincoppyeast. SID 

Lys = standardized ileal digestible lysine, SID Met + Cys = Standardized ileal digestible 

methionine + cysteine, SID Thr = Standardized ileal digestible threonine, SID Trp = Standardized 

ileal digestible tryptophan, SID Val = Standardized ileal digestible valine, AMEn = apparent 

metabolizable energy corrected to zero nitrogen balance. 

 

 

 

 

 

 

 

A2_Table 3. Microbiological characteristics of eggs across the three dietary feeding groups 

  Control ZP 2.5% ZP 5.0% 

 Microbiological parameter Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 

 Mesophilic microorganism count, 

CFU g−1 
<100 10 <100 20 <100 10 

 Enterobacteriaceae, CFU g−1 <10 <10 <10 <10 <10 <10 

 Escherichia coli, CFU g−1 <1 <10 <1 <10 <1 <10 

 
Enterococcus spp., CFU g−1 <10 <10 <10 <10 <10 <10 

 
Salmonella spp., CFU/25 g Negative Negative Negative Negative Negative Negative 

 
Listeria monocytogenes, CFU/25 g Negative Negative Negative Negative Negative Negative 

 Coagulase-positive Staphylococcus 

spp., CFU g−1 
<10 <10 <10 <10 <10 <10 

Control = 0% Zincoppyeast, ZP 2.5% = 2.5% Zincoppyeast, ZP 5.0% = 5.0% Zincoppyeast. Batch 

1: day 30 (n = 30); batch 2: day 60 (n = 30). 
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A2_Table 4. Lipid and protein levels of eggs in the three different dietary feeding groups 

   Group Average S. dev Stat. diff.* 

 Lipid content (%) Control 9.48 0.04 A 

  ZP 2.5% 9.42 0.06 AB 

   ZP 5.0% 9.30 0.13 B 

 Protein content (%) Control 12.67 0.22 A 

  ZP 2.5% 13.49 0.34 B 

   ZP 5.0% 13.35 0.38 B 

* Significant difference between means at p < 0.05. Letters denote significant differences among 

the groups based on the one-way analysis of variance and Tukey HSD post hoc test analysis at p 

< 0.05. 

 

 

A2_Table 5. Confusion table of Random numbers test classification for e-tongue analysis. Groups 

according to feeding regime: Control, ZP 2.5%, ZP 5.0% 

  Random numbers test 

 Average 

Accuracies 
% Control ZP 2.5% ZP 5.0% 

 
Calibration 

80.07% 

Control 77.20 12.79 10.01 

 ZP 2.5% 10.59 79.28 6.25 

 ZP 5.0% 12.21 7.92 83.74 

  % Control ZP 2.5% ZP 5.0% 

 
Cross-validation 

29.95% 

Control 19.73 16.97 45.41 

 ZP 2.5% 26.84 47.63 32.09 

 ZP 5.0% 53.43 35.40 22.50 

 

 

A2_Table 6. Confusion table of Random numbers test classification for e-nose analysis. Groups 

according to feeding regime: Control, ZP 2.5%, ZP 5.0% 

  Random numbers test 

 Average 

Accuracies 
% Control ZP 2.5% ZP 5.0% 

 
Calibration 

98.77% 

Control 100 3.67 0 

 ZP 2.5% 0 96.33 0 

 ZP 5.0% 0 0 100 

  % Control ZP 2.5% ZP 5.0% 

 
Cross-validation 

39.64% 

Control 27.83 33.33 20 

 ZP 2.5% 33.33 44.5 33.4 

 ZP 5.0% 38.83 22.17 46.6 
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A2_Table 7. Labels specifications of probiotic powders 

Probiotic Product CFU  

(per dose)* 

Bacterial  

Strains* 

P 7.5 × 10^9 (3 

g) 

Bifidobacterium bifidus W23, Bifidobacterium lactis W51, 

Bifidobacterium lactis W52, Lactobacillus acidophilus W22, 

Lacticaseibacillus casei W56, Lacticaseibacillus paracasei W20, 

Lactiplantibacillus plantarum W62, Ligilactobacillus salivarius 

W24, Lactococcus lactis W19 

A 3 × 10^9 (3 g) Bifidobacterium lactis W51, Enterococcus faecium W54, 

Lactobacillus acidophilus W55, Lacticaseibacillus casei W56, 

Ligilactobacillus salivarius W57, Lactococcus lactis W58 

N 2.5 × 10^9 (2 

g) 

Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, 

Enterococcus faecium, Bifidobacterium bifidum, Bifidobacterium 

longum 

 

 

 

A2_Table 8. List of NIR spectral pretreatments_Probiotics experiment 

N0. Spectral pretreatment N0. Spectral pretreatment 

1 SG(2-13-0) 22 SG(2-17-0) + DeTr + MSC 

2 SG(2-17-0) 23 SG(2-21-0) + DeTr + MSC 

3 SG(2-21-0) 24 SG(2-21-0) + SG(2-21-1) 

4 SNV 25 SG(2-21-0) + SG(2-21-2) 

5 MSC 26 SG(2-21-0) + SG(2-13-1) 

6 DeTr 27 SG(2-21-0) + SG(2-13-2) 

7 DeTr + SNV 28 SG(2-21-0) + SG(2-17-1) 

8 DeTr + MSC 29 SG(2-21-0) + SG(2-17-2) 

9 SG(2-13-0) + SNV 30 SG(2-13-0) + SG(2-21-1) 

10 SG(2-17-0) + SNV 31 SG(2-13-0) + SG(2-21-2) 

11 SG(2-21-0) + SNV 32 SG(2-13-0) + SG(2-13-1) 

12 SG(2-13-0) + MSC 33 SG(2-13-0) + SG(2-13-2) 

13 SG(2-17-0) + MSC 34 SG(2-13-0) + SG(2-17-1) 

14 SG(2-21-0) + MSC 35 SG(2-13-0) + SG(2-17-2) 

15 SG(2-13-0) + DeTr 36 SG(2-17-0) + SG(2-21-1) 

16 SG(2-17-0) + DeTr 37 SG(2-17-0) + SG(2-21-2) 

17 SG(2-21-0) + DeTr 38 SG(2-17-0) + SG(2-17-1) 

18 SG(2-13-0) + DeTr + SNV 39 SG(2-17-0) + SG(2-17-2) 

19 SG(2-17-0) + DeTr + SNV 40 SG(2-17-0) + SG(2-13-1) 

20 SG(2-21-0) + DeTr + SNV 41 SG(2-17-0) + SG(2-13-2) 

21 SG(2-13-0) + DeTr + MSC    

Note: SG(x–y–z) refers to the Savitzky-Golay (SG) smoothing and derivative algorithm, where x indicates the 

order of the polynomial used (e.g., 2 = 2nd-order polynomial), y is the window size in points (e.g., 13, 17, or 21), 

and z corresponds to the derivative applied (0 = none, 1 = first derivative, 2 = second derivative). 
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A2_Figure 1. Program fragment for photoperiod control developed in TIA portal software V14 

 

 

 

 

 

 
A2_Figure 2. Determination of optimal latent variables in PCA-DA model for pea microgreens 

classification 
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A2_Table 9. Summary of the sensory contribution from the discriminant analysis of egg samples 

on the e-nose data belonging to the MXT-5 column 
MXT-5 C-S  Volatile compounds  Sensory description Discrimination tendency 

429.90 428 Acetaldehyde Ethereal, fresh, fruity, pungent Figure 5: (b) B/G–50 °C; (d) B–80 

°C; Figure 6: (b,d) D*–50 °C; Figure 

7: (b,d) D*–80 °C 
430.57 425 Methanol Pungent 

441.88 448 Ethanol Alcoholic, ethanol, pungent, sweet 
Figure 6: (b) D*–50 °C 

  448 Methanethiol Alcoholic, ethanol, pungent, sweet 

469.52   Not found    

493.72 498 2-propanone (or acetone) Fruity, glue, solvent Figure 5: (b) G–50 °C; (d) G–80 °C; 

Figure 6: (b) D*–50 °C; Figure 7: 

(b,d) D*–80 °C 
494.47 499 Propanal Etherwal, plastic, pungent, solvent 

528.17 527 Methyl acetate Blackcurrant, ethereal, fruity Figure 5: (b) G–50 °C; (d) B–80 °C; 

Figure 6: (b,d) D*–50 °C; Figure 7: 

(b,d) D*–80 °C 
528.86 522 2-methylpropanal 

Burnt, fruity, green, malty, pungent, 

spicy, toasted 

602.58 603 2-butanol Fusel-alcoholic, oily, winey Figure 5: (b) G–50 °C; (d) G–80 °C; 

Figure 6: (b,d) D*–50 °C; Figure 7: 

(b,d) D*–80 °C 
602.94 600 Hexane Alkane, ethereal, kerosene 

614.28 614 2-methyl-3-buten-2-ol Earthy, fruity, herbaceous, oily, sweet 
Figure 6: (b) D*–50 °C;  

Figure 7: (b) D*–80 °C 613.86 614 Ethyl acetate 
Acidic, butter, caramelized, ethereal, 

fruity, orange, pineapple 

632.11 636 1-butamine 
Alcoholic, bitter, chemical, glue, 

licorice, solvent, winey Figure 5: (b) B/G 

  627 Propyl formate Berry, ethereal, green, sweet 

660.89 662 2-methylbutanal 
Almond, cocoa, green, malty, strong 

burnt 
Figure 5: (b) B/G–50 °C; 

Figure 6: (b) D*–50 °C; 

Figure 7: (b,d) D*–80 °C 665.16 664 n-butanol Cheese, fermented, fruity 

680.81 681 1- penten-3-one 
Fishy, fruity, leather, plastic, pungent, 

rotten, sewer, spicy 
Figure 7: (b) D*–80° 

 
  684 Pent-1-en-3-ol Butter, green, milky, pungent 

803.41 801 2-hexanol Fatty, fruity, winey 
Figure 6: (b,d) D*–50 °C;  

Figure 7: (b,d) D*–80 °C  803.46 801 Hexanal 
Acorn, fatty, fishy, grassy, green, 

herbaceous, leafy, tallowy 

818.81 819 2,4,5-trimethyl-3-oxazoline Musty Figure 5: (b) B/G–50 °C;  

Figure 6: (b) D*–50 °C;  

Figure 7: (b) D*–80 °C 
818.98 817 2- butanone, 3-mercapto- Onion, sulfurous 

985.82 986 3-octanone Butter, herbaceous, resinous 
Figure 5: (b,) B–50 °C;  

Figure 6: (b,) D*–50 °C  986.50 986 6-methyl-5-hepten-2-one 
Blackcurrant, boiled fruit, citrus, earthy, 

mushroom, rubber 

1000.93 1000 2-octanol Fatty, mushroom, oily 
Figure 7: (b) D*–80 °C  

  1001 Propyl pentanoate Ethereal 

1140.68 1140 Homofuraneol Caramelized 

Figure 5: (b) G–50 °C  
1140.88 1140 

Methyl 3-

pyridinecarboxylate 
Herbaceous, sweet, tobacco 

1286.33 1286 Isoborneol, acetate Balsamic Figure 5: (b) G–50 °C;  

Figure 6: (b) D*–50 °C;  

Figure 7: (d) D*–80 °C  
1286.41 1287 Pentyl hexanoate Fruity 

1312.65 1313 1-ethylnapththalene Earthy, green, musty, naphthyl 
Figure 5: (b,) B/G–50 °C  

1312.50 1312 Cinamyl alcohol Oily 

1399.81 1400 Tetradecane Alkane, fusel, mild herbaceous, sweet Figure 5: (b) B/G–50 °C;  

Figure 6: (b) D*–50 °C  1400.26 1400 Diphenyl ether Green 

1414.33 1414 Linalyl butanoate Floral, Pear, sweet Figure 5: (d) B–80 °C;  

Figure 7: (b) D*–80 °C    1415 (e)-beta-damascone Apple 

1532.40 1532 Cadina-1,4-diene Fruity, mango, spicy, wood Figure 5: (b) B–50 °C;  

Figure 7: (b) D*–80 °C  

 
1533.21 1532 Methyldodecanoate 

Coconut, creamy, fatty, fruity, sweet, 

waxy, weak waxy 

1691.60 1695 Beta-Sinensal Sweet Figure 7: (b) *D–80 °C  

  1695 Tetradecanenitrile Fresh  

1807.03 1808 Nootkatone 
Banana, citrus, grape, sour fruit, spicy, 

woody 
Figure 5: (b) B–50 °C; (d) B–80 °C;  

Figure 6: (b) D*–50 °C;  

Figure 7: (b,d) D*–80 °C  1807.30 1804 2-hexadecanone Fruity 
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A2_Table 10. Discriminant analysis-confusion table of NIRS pea microgreens spectra 

(microgreens fresh-cut samples) harvested after 11 days under different temperature (15, 20 and 

25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Clustering by (a) temperature, (b) 

photoperiod and (c) treatment (temperature-photoperiod). Pretreatments SG 2-45-0 and SNV. 

Wavelength 1150 to 1850nm 

   (a)      (b)    

 Temperature  
 Photoperiod  

 Average recognition (100%)  
 Average recognition (86.66%)  

 % 15 °C 20 °C 25 °C     00L 06L 12L 18L  

 15 °C 100 0 0   00L 97.98 7.14 0 0  

 20 °C 0 100 0   06L 0 85.71 3.72 5.56  

 25 °C 0 0 100   12L 0 4.79 83.33 14.83  

 Average prediction (81.8%)  
 18L 2.02 2.36 12.94 79.61  

 % 15 °C 20 °C 25 °C   Average prediction (52.4%)  

 15 °C 15°C 20°C 25°C     00L 06L 12L 18L  

 20 °C 82.73 8.33 3   00L 78.33 14.29 3.67 0  

 25 °C 17.27 77.75 12.1   06L 13.05 57.14 22.22 11.11  

       12L 4.31 23.86 22.22 37  

       18L 4.31 4.71 51.89 51.89  

      (c)       
Treatment 

Average recognition (100%) 
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15 °C_00L 100 0 0 0 0 0 0 0 0 0 0 0 

15 °C_06L 0 100 0 0 0 0 0 0 0 0 0 0 

15 °C_12L 0 0 100 0 0 0 0 0 0 0 0 0 

15 °C_18L 0 0 0 100 0 0 0 0 0 0 0 0 

20 °C_00L 0 0 0 0 100 0 0 0 0 0 0 0 

20 °C_06L 0 0 0 0 0 100 0 0 0 0 0 0 

20 °C_12L 0 0 0 0 0 0 100 0 0 0 0 0 

20 °C_18L 0 0 0 0 0 0 0 100 0 0 0 0 

25 °C_00L 0 0 0 0 0 0 0 0 100 0 0 0 

25 °C_06L 0 0 0 0 0 0 0 0 0 100 0 0 

25 °C_12L 0 0 0 0 0 0 0 0 0 0 100 0 

25 °C_18L 0 0 0 0 0 0 0 0 0 0 0 100 

Average prediction (48.39%) 
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15°C _00L 25.09 0 0 0 0 0 0 0 0 0 0 0 

15 °C_06L 37.45 100 22.26 0 0 0 0 0 0 0 0 0 

15 °C_12L 0 0 22.26 33.33 0 0 0 0 0 0 0 0 

15 °C_18L 0 0 55.48 44.33 22.33 0 0 0 0 0 0 0 

20 °C_00L 0 0 0 22.33 44.33 0 0 0 0 11 0 0 

20 °C_06L 0 0 0 0 0 100 44.33 0 0 11 33.33 0 

20 °C_12L 0 0 0 0 0 0 22.33 33.33 0 0 33.33 0 

20 °C_18L 0 0 0 0 0 0 33.33 33.33 0 0 0 66.67 

25 °C_00L 37.45 0 0 0 0 0 0 0 100 0 0 0 

25 °C_06L 0 0 0 0 33.33 0 0 0 0 22.33 0 0 

25 °C_12L 0 0 0 0 0 0 0 0 0 55.67 33.33 0 

25 °C_18L 0 0 0 0 0 0 0 33.33 0 0 0 33.33 
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A2_Table 11. Discriminant analysis-confusion table of NIRS pea spectra (aqueous microgreens 

extracts samples) harvested after 11 days under different temperature (15, 20 and 25°C) and 

photoperiod (00L, 06L, 12L, 18L) conditions. Clustering by (a) temperature, (b) photoperiod and 

(c) treatment (temperature-photoperiod). Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 

1850nm 

   (a)      (b)    

 Temperature  
 Photoperiod  

 Average recognition (98.98%)  
 Average recognition (94.17%)  

 % 15 °C 20 °C 25 °C     00L 06L 12L 18L  

 15 °C 100 0 0   00L 100 0 0 0  

 20 °C 0 100 3.05   06L 0 100 2.06 0  

 25 °C 0 0 96.95   12L 0 0 89.62 12.94  

 Average prediction (85.6%)  
 18L 0 0 8.32 87.06  

 % 15 °C 20 °C 25 °C   Average prediction (75.83%)  

 15 °C 96.19 9.09 9.09     00L 06L 12L 18L  

 20 °C 3.81 84.82 15.18   00L 100 5.5 0 0  

 25 °C 0 6.09 75.73   06L 0 77.83 16.62 11.11  

       12L 0 16.67 62.5 25.89  

       18L 0 0 20.88 63  

      (c)       
Treatment 

Average recognition (100%) 
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15 °C_00L 100 0 0 0 0 0 0 0 0 0 0 0 

15 °C_06L 0 100 0 0 0 0 0 0 0 0 0 0 

15 °C_12L 0 0 100 0 0 0 0 0 0 0 0 0 

15 °C_18L 0 0 0 100 0 0 0 0 0 0 0 0 

20 °C_00L 0 0 0 0 100 0 0 0 0 0 0 0 

20 °C_06L 0 0 0 0 0 100 0 0 0 0 0 0 

20 °C_12L 0 0 0 0 0 0 100 0 0 0 0 0 

20 °C_18L 0 0 0 0 0 0 0 100 0 0 0 0 

25 °C_00L 0 0 0 0 0 0 0 0 100 0 0 0 

25 °C_06L 0 0 0 0 0 0 0 0 0 100 0 0 

25 °C_12L 0 0 0 0 0 0 0 0 0 0 100 0 

25 °C_18L 0 0 0 0 0 0 0 0 0 0 0 100 

Average prediction (75.01%) 
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15 °C_00L 100 0 0 0 0 0 0 0 0 0 0 0 

15 °C_06L 0 100 0 0 0 0 0 0 0 0 0 0 

15 °C_12L 0 0 100 0 0 0 0 0 0 0 0 0 

15 °C_18L 0 0 0 55.67 0 0 0 0 0 0 0 0 

20 °C_00L 0 0 0 0 44.33 0 0 0 0 0 0 0 

20 °C_06L 0 0 0 0 0 100 33.33 44.48 0 0 0 11 

20 °C_12L 0 0 0 44.33 0 0 66.67 0 0 0 0 0 

20 °C_18L 0 0 0 0 0 0 0 44.48 0 33.33 0 0 

25 °C_00L 0 0 0 0 55.67 0 0 0 100 0 0 0 

25 °C_06L 0 0 0 0 0 0 0 11.04 0 33.33 11 22.33 

25 °C_12L 0 0 0 0 0 0 0 0 0 33.33 89 0 

25 °C_18L 0 0 0 0 0 0 0 0 0 0 0 66.67 
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A2_Table 12. Summary PCA-DA analysis for simulated data in pea microgreens experiment 

     Simulated Data Modeling (Random numbers 0-1) 

 
Data Clustering by n g %C %CV LV max. LV=(n-g/3) 

  15C_00L Day 24 3 44.3 27.31 2 7 

  15C_06L Day - - - - - - 

  15C_12L Day - - - - - - 

  15C_18L Day 24 3 50.68 46.84 2 7 

  20C_00L Day 24 3 77.27 49.47 5 7 

  20C_06L Day 24 3 79.11 50 5 7 

  20C_12L Day 27 3 81.75 49.15 7 8 

  20C_18L Day 27 3 43.48 31.09 2 8 

  25C_00L Day 21 3 57.33 31.93 3 6 

  25C_06L Day - - - - - - 

  25C_12L Day 27 3 78.22 45.41 7 8 

  25C_18L Day 27 3 76.38 47.24 8 8 

  Day 7 Treatment 69 8 59.62 27.53 11 20 

  Day 11 Treatment 99 12 34.12 9.5 6 29 

  Day 14 Treatment 93 12 25.15 10.68 2 27 

  Day 18 Treatment 33 4 79.51 43.38 7 10 

  Day 11 Temperature 99 3 66.35 47.5 22 32 

  Day 14 Temperature 93 3 54.47 35.27 6 30 

  Day 7 Photoperiod 69 4 64.16 38.15 17 22 

  Day 11 Photoperiod 99 4 70.81 34.15 20 32 

  Day 14 Photoperiod 93 4 47.91 36.88 6 30 

 Day 18 Photoperiod 33 4 79.51 43.38 7 10 

  All Day 294 4 49.78 28.85 33 97 

  All Treatment 294 12 36.74 12.88 20 94 

  All Temperature 294 3 79.39 40.69 84 97 

  All Photoperiod 294 4 56.95 28.68 41 97 
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A2_Table 13. NIR absorption features related to height: Foliar bands reported in literature and 

detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples 

Microgreens fresh-cut samples Aqueous microgreens extracts samples 

Wavelength 

(nm) 
Feature Reference 

Wavelength 

(nm) 
Feature Reference 

1196 
O-H bend (1st 

overtone) 
Curran (1989) 1368 

O-H stretch (1st 

overtone) 

Slavchev et al. 

(2015) 

1392 

O-H (1st 

overtone), C-H 

stretching 

Slavchev et al. 

(2015) 
1396 

O-H bend (1st 

overtone) associated 

with water 

Curran (1989) 

1417 
C-H stretch and 

deformation 
Curran (1989) 1409 

O-H bend (1st 

overtone) associated 

with water 

Curran (1989) 

1446 

O-H stretch (1st 

overtone), C-H 

stretch 

Curran (1989) 1484 
O-H stretch (1st 

overtone) 
Curran (1989) 

1480 

O-H (1st 

overtone), N-H 

(1st overtone) 

Slavchev et al. 

(2015) 
1530 

O-H stretch (1st 

overtone) 
Curran (1989) 

1508 
N-H stretch (1st 

overtone) 
Curran (1989) 1685 

C-H stretch (1st 

overtone) 
Curran (1989) 

1543 
O-H stretch (1st 

overtone) 
Curran (1989) 

    

1704 
C-H stretch (1st 

overtone) 
Curran (1989) 

    

1838 

O-H stretch, C-H 

stretch (2nd 

overtone) 

Curran (1989) 

      

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra 

are included. Bands found in the present study but not previously described are not listed. 
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A2_Table 14. NIR absorption features related to chlorophyll A: foliar bands reported in literature 

and detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples 

Microgreens fresh-cut samples Aqueous microgreens extracts samples 

Wavelength 

(nm) 
Feature Reference 

Wavelength 

(nm) 
Feature Reference 

1366 
O-H (1st 

overtone) 

Slavchev et al. 

(2015) 
1206 

O-H bend (1st 

overtone) 
Curran (1989) 

1417 
C-H stretch and 

deformation 
Curran (1989) 1412 

C-H stretch and 

deformation 
Curran (1989) 

1446 

O-H stretch (1st 

overtone), C-H 

stretch 

Curran (1989) 1549 
O-H stretch (1st 

overtone) 
Curran (1989) 

1496 
O-H stretch (1st 

overtone) 
Curran (1989) 1694 

C-H stretch (1st 

overtone) 
Curran (1989) 

1538 
O-H stretch (1st 

overtone) 
Curran (1989) 

    

1838 

O-H stretch, C-H 

stretch (2nd 

overtone) 

Curran (1989) 

      

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra 

are included. Bands found in the present study but not previously described are not listed. 

 

 

 

A2_Table 15. NIR absorption features related to L* color component: foliar bands reported in 

literature and pea microgreens fresh-cut samples and aqueous microgreens extracts samples 

Microgreens fresh-cut samples Aqueous microgreens extracts samples 

Wavelength 

(nm) 
Feature Reference 

Wavelength 

(nm) 
Feature Reference 

1391 

O-H (1st 

overtone), C-H 

stretching 

Slavchev et al. 

(2015) 
1208 

O-H bend (1st 

overtone) 
Curran (1989) 

1419 
C-H stretch and 

deformation 
Curran (1989) 1410 

O-H bend (1st 

overtone) 
Curran (1989) 

1509 
N-H stretch (1st 

overtone) 
Curran (1989) 1488 

O-H stretch (1st 

overtone) 
Curran (1989) 

1544 
O-H stretch (1st 

overtone) 
Curran (1989) 1698 

C-H stretch (1st 

overtone) 
Curran (1989) 

1706 
C-H stretch (1st 

overtone) 
Curran (1989) 1818 

O-H stretch, C-O 

stretch (2nd overtone) 
Curran (1989) 

1840 

O-H stretch, C-H 

stretch (2nd 

overtone) 

Curran (1989) 

      

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra 

are included. Bands found in the present study but not previously described are not listed. 
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A2_Table 16. NIR absorption features related to °Brix: foliar bands reported in literature and pea 

microgreens fresh-cut samples and aqueous microgreens extracts samples 

Microgreens fresh-cut samples Aqueous microgreens extracts samples 

Wavelength 

(nm) 
Feature Reference 

Wavelength 

(nm) 
Feature Reference 

1208 
O-H bend (1st 

overtone) 
Curran (1989) 1394 

O-H bend (1st 

overtone) 
Curran (1989) 

1417 
C-H stretch and 

deformation 
Curran (1989) 1426 

C-H stretch, C-H 

deformation 
Curran (1989) 

1447 

O-H stretch (1st 

overtone), C-H 

stretch 

Curran (1989) 1687 
C-H stretch (1st 

overtone) 
Curran (1989) 

1495 
N-H stretch (1st 

overtone) 
Curran (1989) 

    

1541 
O-H stretch (1st 

overtone) 
Curran (1989) 

    

1707 
C-H stretch (1st 

overtone) 
Curran (1989) 

    

1840 

O-H stretch, C-H 

stretch (2nd 

overtone) 

Curran (1989) 

    

1390 

O-H (1st 

overtone), C-H 

stretching 

Slavchev et al. 

(2015) 
      

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra 

are included. Bands found in the present study but not previously described are not listed. 

 

 

 

 

A2_Table 17. NIR absorption features related to TPC: foliar bands reported in literature and 

detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples 

Microgreens fresh-cut samples Aqueous microgreens extracts samples 

Wavelength 

(nm) 
Feature Reference 

Wavelength 

(nm) 
Feature Reference 

1428 
C-H stretch, C-H 

deformation 
Curran (1989) 1406 

O-H bend (1st 

overtone) 
Curran (1989) 

1504 
N-H stretch (1st 

overtone) 
Curran (1989) 1418 

C-H stretch, C-H 

deformation 
Curran (1989) 

   
1451 

O-H stretch (1st 

overtone) 
Curran (1989) 

   
1510 

N-H stretch (1st 

overtone) 
Curran (1989) 

   
1528 

O-H stretch (1st 

overtone) 
Curran (1989) 

   
1685 

C-H stretch (1st 

overtone) 
Curran (1989) 

      
1824 

1st overtone IHB 

stretch 

Slavchev et al. 

(2015) 

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar 

spectra are included. Bands found in the present study but not previously described are not listed. 
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A2_Table 18. NIR absorption features related to TAC: foliar bands reported in literature and 

detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples 

Microgreens fresh-cut samples Aqueous microgreens extracts samples 

Wavelength 

(nm) 
Feature Reference 

Wavelength 

(nm) 
Feature Reference 

1397 
O-H bend (1st 

overtone) 
Curran (1989) 1394 

O-H bend (1st 

overtone) 
Curran (1989) 

1451 

O-H stretch (1st 

overtone), C-H 

stretch 

Curran (1989) 1407 
O-H bend (1st 

overtone) 
Curran (1989) 

1542 
O-H stretch (1st 

overtone) 
Curran (1989) 1445 

O-H stretch (1st 

overtone) 
Curran (1989) 

1786 

C-H stretch (1st 

overtone), O-H 

stretch 

Curran (1989) 1685 
C-H stretch (1st 

overtone) 
Curran (1989) 

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra 

are included. Bands found in the present study but not previously described are not listed. 

 

 

 

A2_Table 19. LVs number reduction in PLSR models of fresh-cut samples of pea microgreens 

Regression 

variable 
Sample 

Wavelenghts 

(nm) 
n LV RMSEC R2C RMSECV R2CV RMSEP R2pr 

Weight fresh-cut 1185-1770 291 4 0.08 0.79 0.10 0.72 0.10 0.74 

Height fresh-cut 1196-1508 291 5 2.10 0.73 2.27 0.68 1.93 0.72 

L* fresh-cut 1150-1850 294 6 6.05 0.76 7.60 0.62 7.22 0.62 

b* fresh-cut 1185-1665 285 6 5.81 0.74 6.73 0.66 7.16 0.62 

Chlorophyll 

A 
fresh-cut 

1185-1572; 

1695-1850 
291 7 19.48 0.74 21.19 0.69 19.90 0.74 

Chlorophyll 

B 
fresh-cut 

1185-1572; 

1695-1850 
291 7 8.31 0.71 9.28 0.64 8.67 0.70 

Total 

Carotene 
fresh-cut 

1185-1572; 

1695-1850 
294 7 4.74 0.75 5.41 0.67 4.79 0.74 

Brix fresh-cut 1185-1570 294 6 0.15 0.72 0.17 0.64 0.16 0.68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143  

11. ACKNOWLEDGEMENT 

 

I would like to express my heartfelt gratitude to all those who supported and guided me throughout 

this academic journey. 

 

A special acknowledgment to my supervisors Dr. Zoltán Kovacs and Dr. Zoltán Gillay for your 

support and guidance throughout the research process. Your expertise and insightful advice have 

been essential elements in shaping this work. 

 

I am very grateful to Dr. Gabriella Kiskó (MATE University), Dr. György Bázár (Adexgo Ltd.), 

Dr. Csilla Benedek (Semmelweis University), and Dr. Balázs László (MATE University) for their 

valuable support and collaboration, particularly in facilitating key measurements and analyses that 

significantly contributed to the completion of my PhD dissertation. 

 

My sincere appreciation goes to all the professors and colleagues at the Department of Food 

Measurements and Process Control, Hungarian University of Agriculture and Life Sciences 

(MATE), for the valuable contribution in this work. I am particularly grateful to my fellow PhD 

students and colleagues—Dr. Szanett Bodor, Dr. Lewis Zinia, Dr. Balkis Aouadi, Dr. Flóra Vitalis, 

Mariem Majadi, Lueji Regatieri Santos, Mátyás Lukács, and Péter Erdélyi, for their camaraderie, 

insightful discussions, and continuous support.  

 

To my family and dear friends, thank you for your unwavering support, encouragement, and 

positivity. I am deeply grateful for the community that stood by me through every challenge and 

triumph, always offering help when needed. 

 

On a personal note, I wish to express my heartfelt gratitude to my wife, Cristina, for her 

unwavering support, patience, and encouragement throughout this journey, especially during its 

most challenging moments.  

 

Lastly, the financial supports by the following projects are greatly acknowledged. 

Stipendium Hungaricum Scholarship Programme, which enabled me to pursue my studies. 

The support provided by the Romanian Executive Agency for Higher Education, Research, 

Development and Innovation Funding (UEFISCDI) under the EUREKA Danube Grant 

ZINCOPPYEAST-PN III P3-3.5-EUREKA-2017-0004 (contract no. 94/2017), as well as the 

Hungarian Ministry for Innovation and Technology (EUREKA_16-1-2017-0006, project ID 

11700), is greatly appreciated. Additionally, part of this research was co-financed by the European 

Social Fund through the European Union (grant agreement no. EFOP-3.6.3-VEKOP-16-2017-

00005).  

 

 


