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1. INTRODUCTION

Food quality defines the characteristics of food that are acceptable to the consumer, for
that quality assurance is a fundamental topic of study. Quality encompasses many intrinsic
and extrinsic features or attributes. These attributes are given in accordance with consumer
expectations, including color, shape, size, freedom from defects as well as texture,
sweetness, acidity, aroma, flavor, shelf life and nutritional value (Margeta et al., 2019;
Petrescu, Vermeir and Petrescu-Mag, 2020).

Quality assurance plays a critical role throughout various stages of the agriculture and
food chain, from producing crops of high value until their transformation into final food
products. Effective quality control at the raw material stage is essential, as it directly
influences subsequent transformation processes within the agroindustry sector
(Zugarramurdi et al., 2004; Pokharel, 2023). The perishable nature of many agricultural
products and their variable quality introduce uncertainty, necessitating careful planning of
transformation processes, as well as active involvement in primary production to ensure food
security (Tadesse, 2024). Once raw materials are transformed into food products, their
quality can undergo further changes. Such variations are commonly attributed to factors such
as storage conditions, transportation, shelf life, or food treatments prior to consumption
(Sousa Gallagher, Mahajan and Yan, 2011; Dunno et al., 2016). This highlights the need for
quality assessments at different stages, capturing the food journey from field to table.

Different methods are used to determine the quality of food. The most traditional methods
comprise sensory evaluation, chemical and microbiological analyses (Ramos, 2012; Mian
K. et al., 2017; Chauhan and Jindal, 2020). However, more advanced and less conventional
techniques, such as spectroscopic methods, electronic nose and tongue systems, among
others, have gained attention in recent years due to their speed, non-destructive nature, and
potential for automation (Aouadi et al., 2020).

This research focuses on the study of three important food matrices (eggs from hens,
probiotic food supplements and pea microgreens), in which factors such as the diet of laying
hens in the case of egg production can affect their organoleptic profile; temperature of water
and concentration of probiotic powder during drink preparation may influence the viability
of the probiotics; or environmental factors in the case of microgreens can affect their
development and biochemical properties.

In the field of egg analysis, sensory evaluation has traditionally been carried out by
human panels assessing gustatory and olfactory characteristics. While valuable, this

approach has limitations due to the inherent subjectivity and variability of human perception.
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Given the growing interest in egg enrichment through feed modification, in the first part of
this research, advanced sensory technologies including electronic tongue (e-tongue) and
electronic nose (e-nose) were used to evaluate the effects of an industrial by-product in the
diet of hens. The e-tongue, which detects soluble compounds in liquids, and the e-nose,
which identifies volatile compounds in gases and aromas, offer an objective and reproducible
alternative to traditional sensory analysis (Aouadi et al., 2020; Cho and Moazzem, 2022).
These technologies have the potential to reveal subtle sensory differences in eggs resulting
from specific feed fortification and storage conditions. By reducing the variability associated
with human judgement, these tools could provide a more reliable and comprehensive
understanding of egg quality.

Moreover, new methods, based on optical techniques, have been developed to overcome
the limitations of previous traditional methods. As a result, NIRS (near infrared
spectroscopy) with a non-destructive, economic, environmentally friendly, fast, real time,
and online monitoring approach has gained more popularity in recent years.

NIRS enables the determination of quality features by optical spectral measurements,
allowing for non-contact, real time monitoring of food samples. The prominence of this
method in quality and features determination lies in the nature of NIR spectrum that is closely
linked to overtones and combinations of chemical bonds between carbon, hydrogen, and
nitrogen (C-H, O-H, N-H). All of which have an impact on several food properties (Burns
and Ciurczak, 2008; Workman and Weyer, 2012; Ozaki, Genkawa and Futami, 2017).

In this context, the second part of this research will explore the applicability of NIRS for
characterizing and predicting the viability of commercial probiotic powders when exposed
to different concentration and temperature conditions of water for beverage preparation prior
to ingestion. These stressors, such as temperature and concentration, mimic real-life
conditions that probiotics may encounter during preparation and storage. The primary target
is to assess how these stressors affect the stability, viability and efficacy of the probiotics,
ensuring that NIRS can provide a rapid, reliable and non-destructive method for monitoring
product quality.

The third part of this research will explore the potential of NIRS to characterize pea
microgreens exposed to different temperature and photoperiod conditions and evaluate the
ability of NIRS to predict important agronomic and physicochemical properties. These
environmental stressors, such as extreme temperatures or altered light cycles, are known to
affect plant growth and the accumulation of key compounds such as pigments and
antioxidants, etc. The study aims to demonstrate the ability of NIRS to provide a real-time,

non-invasive approach to monitoring plant responses to stressors and to develop more
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efficient and accurate models for predicting the nutritional and physical quality of
microgreens under different growing conditions, thus supporting more sustainable and
optimized agricultural practices.

Although the multiple advantages of these technologies (e-nose, e-tongue and NIRS) are
well established, they require certain level of expertise to properly analyze their
measurements and to adjust mathematical and statistical developed models to new conditions
and products (Siesler et al., 2002; Baldwin et al., 2011). In this dissertation, these techniques,
combined with chemometric methods, are employed to create robust models for the
characterization of food matrices (eggs, probiotics and microgreens) and the prediction of
parameters. Exploratory methods like principal component analysis (PCA) are used to
identify patterns and relationships in the data, while supervised techniques, such as
discriminant analysis and partial least squares regression (PLSR), are applied to classify and
predict the properties of the samples. These advanced approaches ensure that the developed
models are both accurate and adaptable to different food products and conditions,
highlighting the potential of these technologies for comprehensive food quality analysis.



2. OBJECTIVES

The primary objective of this thesis is to determine the applicability and effectiveness of
rapid correlative methods: near infrared spectroscopy (NIRS), electronic tongue (e-tongue),
and electronic nose (e-nose), for assessing changes or alterations in food quality caused by
significant stress factors, offering potential advantages over conventional quality evaluation

techniques.

The first research aim was to evaluate the applicability of e-tongue and e-nose to detect
the possible alteration of the organoleptic properties of eggs produced by hens, with diets
containing different levels of an organic zinc-enriched by-product.

1. Develop models for e-tongue to discriminate, classify, and predict eggs based on the

level of zinc-enriched by-product in the diet.

2. Develop models for e-nose to discriminate, classify, and predict eggs based on the

level of zinc-enriched by-product in the diet and storage time.

The second aim of our study was to determine the applicability of NIRS to detect changes
in probiotic drinks prepared with varying concentrations of probiotic powder and different
water temperatures prior to consumption.

1. Develop models for characterization of three commercial probiotic food
supplement powders containing lactic acid bacteria (LAB) subjected to probiotic
concentration and water temperature conditioning factors.

2. Develop models for viability prediction of lactic acid bacteria (LAB) from three
commercial probiotic food supplement powders subjected to probiotic

concentration and water temperature conditioning factors.

The third research aim was to determine the applicability of NIRS for detecting changes
induced by different environmental conditions during the growth of pea microgreens.
1. Develop models to characterize pea microgreens and predict key agronomical and
physicochemical properties under varying temperature and photoperiod conditions.
2. Develop and assess models for two different sample types: microgreens fresh-cut

samples and agueous microgreens extracts samples.



3. LITERATURE REVIEW

In this section, a comprehensive exploration of quality assessment methods for food materials
(eggs, probiotics and pea microgreens) is conducted. The first section examines the quality
assessment of eggs from hens, addressing their nutritional composition, the influence of various
factors on their sensory and nutritional profiles, and sensory evaluation methods, including both
conventional and emerging techniques which emphasis in e-tongue and e-nose. The review then
shifts to quality evaluation of probiotics, highlighting their significance for human health, the
factors impacting probiotic viability, and microbiological assessment methods. The quality
assessment of pea microgreens follows, covering their importance and factors influencing plant
quality. The review also insights on near infrared spectroscopy as a novel innovative tool for food
quality analysis with emphasis in its application for microbiological assessment and for evaluating
plant parameters. Finally, the role of chemometrics in preprocessing, analyzing and interpreting
complex data from these advanced techniques is addressed, underscoring its importance in modern
food quality assessment.

3.1. Quality evaluation of eggs from hens

3.1.1. Importance of eggs in human nutrition

Hen eggs are recognized as important for their contribution to human nutrition. The
nutritional profile of eggs is notably rich in a diversity of elements, encompassing in first place
essential macronutrients such as proteins of high quality and bioavailability, a balanced fatty acid
composition, and a relatively low content of carbohydrates (IEH, 2009; Chasapis et al., 2020;
Hailemariam et al., 2022). The richness of eggs in high quality protein content makes them
particularly important as they contain essential amino acids vital for human health (Réhault-
Godbert, Guyot and Nys, 2019).

Eggs are appreciated for possessing a large number of essential micronutrients, including
vitamins (such as A, B2, B12 and D, E, etc) and minerals (such as phosphorus, selenium, iron,
choline, and zinc, etc) (IEH, 2009). In particular, the inclusion of zinc is relevant for the diets of
both animals and humans which influences a greater variety of essential life functions than any
other individual micronutrient (Lowe et al., 2024). Turan (2019) and Chasapis et al. (2020)
mentioned the essential role of zinc in various physiological processes. This element compromise
immune system function, wound healing, DNA synthesis, cells differentiation, normal growth and
development, and enzyme activation or inhibition, marking vital to include it in the diet for the

human body. When the diet is unbalanced, it can lead to a rapid zinc deficiency, given the body's



inability to store zinc reserves. While severe zinc deficiency is uncommon, mild deficiencies are
frequently reported globally. Zinc is primarily linked to antioxidant properties, and numerous
studies also have explored its association with the risk of cancer (Skrajnowska and Bobrowska-
Korczak, 2019; Mukherjee, Chakraborty and Chakraborty, 2020). According to the 2001 dietary
reference intake (DRI) guidelines, released by the National Academies of Sciences, the
recommended daily dietary intake of zinc is 8 mg for children aged 9-12 years and females
(excluding those aged 14-18 years, who require 9 mg/day); meanwhile, for males, a daily intake
of 11 mg is advised (Trumbo et al., 2001). Zinc from the diet is absorbed in the small intestine and
distributed throughout the body. The major zinc reservoirs are bones and skeletal muscles, storing
30% and 60%, respectively. Other organs like the brain, liver, kidney, pancreas, spleen, etc.,
collectively account for only 10% (Hara et al., 2017). Adding zinc, an essential trace element,
contributes to the rich nutritional profile of eggs (Miranda et al., 2015; Réhault-Godbert, Guyot
and Nys, 2019).

Most researchers suggest that moderate egg consumption improves health nutrition and
does not pose a significant risk of cardiovascular diseases attributed to dietary cholesterol.
However, the debate persists regarding whether high egg intake could elevate the risk, particularly
in individuals with preexisting risk factors such as type 2 diabetes (Blesso and Fernandez, 2018;
Réhault-Godbert, Guyot and Nys, 2019; Drouin-Chartier et al., 2020).

3.1.2. Factors affecting the quality of eggs

Various factors, genetic and non-genetic, determine the characteristics of eggs, which are
related not only to their physical attributes but also the nutritional and sensory characteristics of
eggs (Berkhoff et al., 2020; Hailemariam et al., 2022). The inherent traits of a hen, which are
largely determined by its genetics, play a role in influencing the composition of its eggs. The
genetic factors are the ones that set the productive potential of animals and have influence on the
levels of essential nutrients, such as proteins, vitamins, and minerals, as well as impact the overall
sensory perception of the end product (Goto et al., 2019; Hejdysz et al., 2024). On the other hand,
non-genetic factors encompass different elements, from the hen's diet and living conditions to
environmental stressors. The diet, for instance, is one of the most important factors that directly
affects the nutritional richness of the egg and also is related to variations in the sensory attributes
(Leeson, Caston and Maclaurin, 1998; Hammershgj and Johansen, 2016; Kaewsutas,
Nararatwanchai and Sittiprapaporn, 2016; Fatogoma et al., 2023).

The careful selection and breeding of hens with desirable genetic characteristics, coupled
with an effective nutrition, are fundamental and determine the nutritional composition of eggs.

Different dietary strategies for egg enrichment have proven effective in elevating the levels of



omega-3 fatty acids (Betancourt and Diaz, 2009), essential vitamins such as B12 and D
(Betancourt and Diaz, 2009; Kaewsutas, Nararatwanchai and Sittiprapaporn, 2016; Lima and
Souza, 2018) and essential microelements, including iron (fe), zinc (zn), copper (cu), between
others (Inal et al., 2001; Ramadan et al., 2010; Yu et al., 2020).

A proper selection and formulation of diets for laying hens is also relevant because it can
affect the sensory properties of the eggs they produce. Various ingredients incorporated into the
diet, such as herbs, specific grains, and particular sources of fatty acids, have the potential to
directly influence the organoleptic characteristics of the eggs (Leeson, Caston and Maclaurin,
1998; Hammershgj and Johansen, 2016; Brelaz et al., 2019). Moreover, the use of by-products
that incorporate different nutrients and that are used as feed for animals have become of interest,
as they typically exhibit characteristics that are beneficial in comparison to conventional synthetic
chemical products (Swiatkiewicz and Koreleski, 2008; Moon and Jung, 2010; Fontinele et al.,
2017). They are considered more sustainable, often possessing a reduced environmental footprint
that are in alignment with eco-friendly agricultural practices (Nunes et al., 2024). By-products
originating from industrial processes can retain essential nutrients such as protein, fats, between
other macro and microelements; as well as bioactive compounds such us: polyphenols,
carotenoids, vitamins, organic acids, nucleotides, and phytosterols. Consequently, these by-
products are frequently utilized for animal feed or as fertilizer, or they are discarded in landfills or
incinerated (de Castro et al., 2020). As mentioned through this section, despite the benefits that
different formulas can exhibit, it is relevant to recognize that, while modifying the diet can enhance

the nutritional properties of eggs, there exists a potential to alter their sensory characteristics.

3.1.3. Eggs sensory evaluation methods

Traditional sensory evaluation methods, encompassing visual inspection, taste testing, and
aroma assessment, have long been employed to gauge the organoleptic qualities of eggs. Several
studies have evaluated changes in the sensory characteristics of eggs induced by storage time
(Adamiec et al., 2002; Sati et al., 2020; Nwamo et al., 2021). Furthermore, these analyses also
evaluate the influence of different housing or production systems, such as conventional and
organic methods. Not to mention, assessing overall egg quality and characteristics, especially after
enriching them with various bioactive components. Enriching eggs with bioactive compounds that
positively affect consumer health can enhance the properties of egg products. However, it is crucial
for the eggs to maintain compositional stability and meet sensory expectations for consumer
satisfaction (Margeta et al., 2019).



The methods for sensory evaluation of eggs involve a systematic process carried out by a
trained or an untrained sensory panel. A trained panel typically comprises individuals with
expertise in food science and sensory analysis. The selection of sensory methods for evaluating
egg sensory attributes is contingent upon the test objective and test type, where the selection of
right assessors, proper area for testing, and appropriate preparation of samples must be achieved
(Margeta et al., 2019). The sensory panel, often consisting of 8 to 12 trained individuals,
participates in blind taste testing, where they evaluate characteristics such as flavor, texture, and
overall palatability. A carefully selected number of egg samples are presented to the panel
members, who systematically assess various sensory attributes. The presentation of samples
follows a randomized order to prevent bias, and panelists may cleanse their palates between
samples using water or unsalted crackers. Attributes such as egg color, yolk consistency, and
overall appearance are also scrutinized visually (Hayat et al., 2010; Kalus et al., 2020). A
controlled environment (illumination and air conditioning, noise level, available space) is
maintained to eliminate external influences that may affect the evaluators' perceptions. Each
panelist is provided with multiple samples of eggs, to ensure a comprehensive assessment
(Margeta et al., 2019).

Complementary, novel methods have emerged to enhance the precision and
comprehensiveness of sensory evaluations. Advanced techniques, developed in the late 20th
century, include electronic nose (e-nose) and electronic tongue (e-tongue), that utilize
sophisticated sensors to detect and analyze specific odor and taste profiles that may be suitable for

evaluating the quality of eggs.

3.2. Electronic tongue and electronic nose

The food industry has recently implemented high-performing systems across the production
chain, particularly with the arrival of electronic tongue and electronic nose technologies, also
known as e-senses (Modesti et al., 2022). These innovative methods have gathered significant
attention from researchers and industries as viable alternatives to human sensory testing (Aouadi
et al., 2020; Cho and Moazzem, 2022). When combined with advanced chemometric tools, e-
senses provide a high-throughput and cost-effective approach that reduces reliance on traditional,
labor-intensive methods (Aouadi et al., 2020). They address common challenges associated with
sensory evaluations conducted by human panels, such as subjectivity, sensory fatigue among
panelists, high costs, and time-consuming procedures (Cho and Moazzem, 2022).

The electronic nose (e-nose) try to mimic human and animal olfaction by using sensors that

interact with odor molecules to produce electronic signals analyzed by a computer employing



multivariate statistics to extract the corresponding pattern (Baldwin et al., 2011; Aouadi et al.,
2020). E-noses can utilize various sensors, including organic polymers, metal oxides, quartz
crystal microbalances, and can also incorporate gas chromatography (GC) with mass spectrometry
(MS) to enhance their non-selective detection capabilities (Baldwin et al., 2011).

For instance, an advanced type of e-nose, like The Heracles Il electronic nose (Alpha MOS),
features a rapid gas chromatograph designed for odor separation, an ion flame detector for
identifying volatile compounds, and robust data processing software that correlates with sensory
panel results. Once calibrated, the device can substitute sensory panels for routine quality control
(AlphaM.0.S., 2018; Cho and Moazzem, 2022).

This device employs a dual-column gas chromatograph with two detectors to achieve enhanced
compound separation and detection. The system uses Kovats retention index (RI) to standardize
the retention times of volatile compounds, enabling more accurate identification and comparison
across different chromatographic instruments and conditions (AlphaM.O.S., 2018).

The index is calculated by interpolating the retention times of a target compound between two n-
alkanes with known carbon chain lengths. Each n-alkane is assigned an index based on its carbon
number multiplied by 100, meaning that hexane (C6) has an index of 600, heptane (C7) is 700,
and so on. (Babushok, 2015; AlphaM.O.S., 2018)

This approach is particularly useful in aroma profiling because it allows the comparison of
chromatograms across different instruments and experimental setups. The Kovats index improves
compound identification accuracy when coupled with mass spectrometry or other databases
(Babushok, 2015). In the context of food analysis, Kovats index values are frequently employed
to identify relevant volatile compounds responsible for sensory attributes, such as flavor and aroma
(Umano et al., 1990; Bianchi et al., 2007).

The use of Kovats retention indices in electronic nose systems, such as the Heracles NEO, is
central to the identification of volatile compounds. The system relies on this index to map volatile
fingerprints against the AroChemBase library, allowing for rapid identification of unknown
substances in food products (AlphaM.O.S., 2018).

Electronic tongue (e-tongue) devices function by employing artificial sensors that try to mimic
the human tongues, with cross-sensitivity and partial selectivity to analyze substances in liquids.
Cross-sensitivity allows the sensors to respond to multiple compounds rather than being specific
to a single analyte, improving their ability to detect complex mixtures. Partial selectivity ensures
that while the sensors are not entirely specific, they exhibit a degree of preference for certain
compounds or classes of substances. This combination allows e-tongues to capture subtle
differences in chemical compositions, producing a unique chemical pattern, commonly known as

a "fingerprint” which characterizes each sample. This fingerprinting technology serves as the core
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principle for artificial taste sensing instruments (Kovacs et al., 2020). The non-selective sensors
of the e-tongue generate unique signal combinations or fingerprints. E-tongues use various sensors
responsive to salts and sugars, transmitting signals to a computer for analysis, this in certain sense
is compatible with human tongue, although the later has around 10,000 taste buds with 50 to 100
taste cells each that detect five primary flavors: sweet, sour, bitter, salty, and umami. The common
e-tongue sensor types include potentiometry, voltammetry, and impedance spectroscopy (Baldwin
et al., 2011). For instance, Alpha MOS manufacturer, specializes in producing potentiometric
electronic tongues with array of electrodes, a reference sensor and autosampler system (Cho and
Moazzem, 2022).

The e-tongue, e-nose, or a combination of both can serve as an efficient and robust tool for
evaluating sensory profiles and detecting quality, showing substantial correlations with human
sensory evaluations. These instruments are frequently acknowledged for their heightened
sensitivity in detecting subtle changes or differences that may go unnoticed by a human panel (Cho
and Moazzem, 2022). Regarding studies involving egg quality assessment, electronic sensory
evaluations have been most commonly applied to estimate the freshness status of eggs throughout
storage (Yimenu, Kim and Kim, 2017), and to evaluate differences of sensory qualities of eggs
from different laying breeder strains (Dong et al., 2021; Gao et al., 2022).

The combination of traditional and novel sensory evaluation methods allows for a
comprehensive understanding of the egg's sensory profile. This combined approach allows for the
evaluation of traditional sensory characteristics while also incorporating modern technologies to

detect subtle differences that might be missed in traditional assessments.

3.3. Quality evaluation of probiotics

3.3.1. Importance of probiotics for human health

The conventional description of probiotics involves live microorganisms that, when
supplied in sufficient amounts, offer health advantages to the host by promoting a positive balance
of microbiota and their functions in the gastrointestinal (GI) tract (FAO/WHO, 2002; Parker et al.,
2018). Probiotics have emerged as necessary elements in the domain of food supplements. These
microbial organisms, predominantly sourced from bacterial groups such as Lactobacillus,
Bifidobacterium, and Enterococcus, as well as yeast strains like Saccharomyces boulardii, play a
vital role in shaping the delicate balance of the human microbiota (Menezes et al., 2018; Sanders
et al., 2018). Their significance extends beyond the realms of traditional fermented foods, such
as yogurt and sauerkraut, into the front line of dietary supplements, where they're principally

employed in a freeze-dried powder format and generally encapsulated, formed into tablets, or
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presented as powder in stick packaging or sachet formats to preserve the unique microbial
properties for convenient and targeted consumption (Nagashima et al., 2013; Hill et al., 2014;
Fenster et al., 2019; Gomez-Gaete et al., 2024). Probiotics act as helpers of digestive health,
harmonizing multiple benefits that encompass optimal nutrient absorption, safeguarding of
harmful microbial overgrowth, and the conservation of a harmonious microbial community. A
disturbance in the balance of the microbiota has been linked to over 25 diseases affecting the
gastrointestinal system, autoimmune responses, and emotional well- being, among others (De Vos
and De Vos, 2012). Probiotics are commonly employed for the prevention and regulation of
conditions such as inflammatory bowel diseases, diarrhea, and liver disorders; and reducing the
risk of cardiovascular conditions, hypertension, obesity, arteriosclerosis, cancer, and slowing
down the aging process (Sanders et al., 2018; Eslami et al., 2019; Oniszczuk et al., 2021,
Choudhary et al., 2023).

When presented in the form of powder, granules, or capsules, probiotics offer a unique
versatility in their composition (Li et al., 2017; Baral et al., 2021; G. Wang et al., 2022). These
supplements may host a single strain of beneficial microorganisms, ideal for addressing specific
health concerns or leveraging the benefits associated with a particular strain. Alternatively, some
products are strategically formulated with multiple strains, creating a diverse cast of beneficial
microorganisms that can collaboratively provide a broader range of health benefits (Kwoji et al.,
2021). It is crucial to thoroughly review the label of each product to understand the specific strains
present and ensure they align with desired health goals. Additionally, some formulations may
integrate prebiotics, substances that nourish and promote the growth of probiotics in the digestive
system, adding an additional level of complexity and holistic benefits to these probiotic
supplements (Peng et al., 2020; Kwaoyji et al., 2021). This combination highlights the multifaceted
nature of probiotics, emphasizing their adaptability and broad spectrum of potential advantages
for overall health.

3.3.2. Factors affecting the viability of probiotics

The effectiveness of probiotics for human health can be influenced not only by the
composition of these probiotic supplements but also by external factors that may affect their
characteristics or properties. Biopolymers with specific biocompatible and biodegradable
properties such as chitosan, pectin, starch, alginate, maltodextrin, cellulose and other polymeric
compounds, play a pivotal role as carriers frequently used to encapsulate and ensure the viability
of live probiotic microorganisms (Asgari et al., 2020; G. Wang et al., 2022; Xie et al., 2023).
Maltodextrin, derived from starch through partial hydrolysis, serves as a soluble and easily

digestible carrier. Its high solubility makes it suitable for various probiotic formulations, including
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powders and capsules. Additionally, maltodextrin can act as a source of energy for
microorganisms. On the other hand, cellulose, a complex carbohydrate found in plant cell walls,
serves as an inert carrier due to its resistance to digestion by human enzymes. This property allows
cellulose to protect probiotics from environmental factors and stomach acids until they reach the
intestines.

Several critical factors during the manufacturing, packaging, and storage processes need
to be considered to ensure the viability and potency of probiotics (Baral et al., 2021; G. Wang et
al., 2022). Temperature control is vital, as probiotics are sensitive to high temperatures that can
compromise their viability. Moisture levels must be carefully managed, as excessive humidity can
activate probiotic microorganisms prematurely, reducing their shelf life. Acidity, particularly in
the stomach environment, poses a challenge to probiotic survival, necessitating the use of enteric
coatings or acid-resistant capsules. Oxygen exposure during manufacturing and packaging can
lead to oxidation, potentially impacting probiotic viability. The temperature and pH conditions
required for certain probiotics can exhibit variability. For instance, the optimal temperature for
many probiotics is typically between 35-39°C, which is near to the 37 °C of the human body
temperature. Regarding pH, most probiotics thrive within a pH range of 2.5 to 8.0, allowing them
to withstand stomach acidity and colonize the intestine (Asgari et al., 2020; Xie et al., 2023).

Temperature is one of the most important factors and a vast amount of research was carried
out employing various methods to assess the thermal resistance of probiotics, such as simulating
probiotic growth under diverse fermentation temperatures and evaluating the thermal stability of
probiotics during manufacturing, storage, and transportation. For example, in probiotic
manufacturing, examining spray-dried lactic acid bacteria (LAB) exposed to elevated growth
temperatures demonstrated that following heat treatment at 60°C, the survival of heat-adapted
Lactobacillus cremoris and Lactobacillus rhamnosus GG increased by 0.7-1.5 and 0.3 log,
respectively (Hao et al., 2021). In an assessment of the preservation of LAB probiotics through
three double-microencapsulation techniques, microencapsulated LAB exposed to the three
methods exhibited enhanced tolerance to elevated temperatures in comparison to free cells, they
were exposed for 60 min at 60 °C, for 30 min at 70 °C, and for 30 s at 80 and 100 °C (Pupa et al.,
2021). Concerning fermentation and storage conditions, an assessment of lactic acid beverages
containing probiotics (stored for 21 days at 7 °C) indicated a preference for fermentation
temperatures of 37°C over 45 °C, attributing this choice to improved storage stability (Fiorentini
etal., 2011).

While most probiotics are designed to withstand a range of temperatures, however, extreme
heat may negatively affect the live microorganisms. Exposing probiotics to elevated temperatures,

as encountered in processes like blanching, canning, or high-temperature cooking methods, is not
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feasible as it exceeds 80°C, leading to cell death (Liu et al., 2014). Hot water may lead to a
reduction in viability, as heat can compromise the structural integrity and metabolic activity of the
beneficial bacteria and yeast strains. Manufacturers play a vital role in ensuring probiotics'
viability by addressing factors like temperature, moisture, and packaging. However, consumers
also contribute by storing supplements properly and when preparing probiotic drinks following
dosage and water temperature instructions. Proper adherence to these guidelines maximizes the
potential health benefits of probiotics, promoting digestive health and overall well-being. Several
products available in the market incorporate probiotic bacteria; nevertheless, the quantity of
bacteria present in the product might not consistently align with the manufacturer's stated

declaration (Zawistowska-Rojek, Zargba and Tyski, 2022).

3.3.3. Microbiological assessment methods

Traditional microbiological techniques have long been employed to assess the quality and
viability of probiotics. These methods typically involve cultivating microorganisms under specific
conditions and observing their growth and characteristics. The most common technique for
assessment is plate counting. This classic method involves spreading a known volume of a
probiotic sample on a solid growth medium, allowing viable microorganisms to form visible
colonies. The plate count method, while straightforward, necessitates extended incubation periods
and the careful choice of suitable culture media. The assessment of probiotic microbe counts in
medicinal products, dietary supplements, or specialized medical foods is primarily contingent on
the product's composition (featuring one, two, or multiple microorganism types) and its format
(capsules, powder, drops, tablets) (Zawistowska-Rojek, Zargba and Tyski, 2022). Microscopic
examination is another technique where direct observation under a microscope allows for the
assessment of microbial morphology, motility, and cellular structure (Schmolze et al., 2011,
Pasulka et al., 2021). Most probable number (MPN) method is also currently employed. This
statistical method estimates the number of viable microorganisms based on the presence or absence
of growth in a series of liquid media tubes (Weenk, 2003). While these methods are well-
established, they often require time, skilled personnel, and may not capture the full complexity of
the probiotic community.

In recent years, new methods like flow cytometry, PCR (Polymerase chain reaction), and
near infrared spectroscopy (NIRS) have emerged to overcome some of the challenges posed by
traditional microbiological techniques in assessing probiotics. Of these, NIRS is particularly
notable for its speed and non-destructive nature, requiring minimal sample preparation while

handling large numbers of samples efficiently. By capturing detailed spectral data that reflect the
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chemical and physical traits of probiotic samples, NIRS enables a more thorough evaluation of

microbial viability and quality.

3.4. Quality evaluation of pea microgreens

3.4.1. Importance of microgreens in human nutrition

The cultivation of microgreens has attracted increasing attention in the fields of functional
foods and modern gastronomy (Paraschivu et al., 2022; Singh et al., 2024). Microgreens represent
an early stage of growth for edible plants. They are cultivated in different substrates and are
characterized by their small leaves and intense flavors. The harvesting of microgreens is done
when they have reached only a few inches in height and have developed their first true leaves
(Lone, Pandey and Gayacharan, 2024). This occurs typically within one to two weeks after
seedling. They are particularly suitable for vertical farming for short cultivation cycle, high
seeding density, compact height, and high market value (Balazs et al., 2023). The cultivation and
consumption of microgreens is attributed to the their freshness and the high concentration of
nutrients and bioactive compounds (Gunjal et al., 2024).

Plants that have been traditionally cultivated for their seeds, such as peas, beans, cereals,
and sunflowers, are now harvested as microgreens (Balazs et al., 2023). A wide range of species
can be consumed as microgreens, with Brassicaceae varieties, particularly broccoli, dominating
the global market at 15%, followed closely by arugula at 9%. Paraschivu et al. (2022) has also
mentioned a variety of plants that can be cultivated as microgreens, including amaranth, mustard,
parsley, celery, cilantro, kale, beets, and basil; various cereals, such as rice, oats, wheat, corn, and
barley; as well as legumes such as chickpeas, beans, and lentils.

Microgreens are rich in phytonutrients such as vitamins, minerals, carotenoids,
polyphenols, and organic acids. In fact, their concentration can be up to forty times higher than
those found in mature leaves. It has been mentioned that a regular consumption of fruits and
vegetables with high levels of these compounds can reduce the risk of chronic conditions such as
cardiovascular conditions, diabetes, cancer, and degenerative disorders (Xiao et al., 2016; Zhang
et al., 2021; Gunjal et al., 2024).

A number of phenolic compounds have antioxidant capacity such as phenolic acids,
flavonoids and tannins. They are common secondary metabolites that can repair the damage
caused by free radicals (Dai and Mumper, 2010). Antioxidants are a type of phytonutrient that
helps to mitigate the damage caused by oxidative stress. This category includes vitamin C,
carotenoids, phenolics, and minerals such as copper, zinc, and selenium, among others. Several
studies have reported higher levels of antioxidants in microgreens compared to their mature
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counterparts, meanwhile others, have indicated the opposite by showing higher levels of
antioxidants in mature plants (Pinto et al., 2015; Choe, Yu and Wang, 2018; Yadav et al., 2019;
Di Bella et al., 2020). Evaluating microgreens from five Brassica species researchers identified
164 polyphenols; showing that microgreens possess a richer polyphenol composition and higher
concentrations than mature Brassica plants, making them valuable sources of antioxidants (Cartea
etal., 2011; Sun et al., 2013).

In another comparative study, the ascorbic acid, total phenolics (expressed in gallic acid
equivalent - GAE), and total flavonoids (expressed in Catechin equivalents — CE) in microgreens
ranged from 6.00 to 46.50 mg/100 g, 25.00 to 152.10 mg GAE/100 g, and 9.58 to 142.39 mg
CE/100 g, respectively. In contrast, these same compounds in mature leafy greens presented ranges
of 10.00 to 199.99 mg/100 g, 69.01 to 313.92 mg GAE/100 g, and 43.00 to 292.53 mg CE/100 g.

Carotenoids and phenolics are present in significant amounts in microgreens. Carotenoids,
which include pigments such as B-carotene and lutein, possess antioxidant properties (Rodriguez-
Amaya, 2015). In a study analyzing microgreens of wheat and barley, it was observed that
carotenoid content increased significantly during the microgreen phase, surpassing that of the seed
phase (Niroula et al., 2019).

Several researchers have compared concentrations of microelements, which have shown
that antioxidant levels in microgreens vary among species. For instance, Lenzi et al. (2019) found
that small burnet presents higher concentrations of zinc and selenium compared to dandelion. Xiao
et al. (2016), showed that rapini microgreens had the highest zinc content among 30 varieties of
Brassicaceae. Kyriacou et al. (2019), evaluating 13 microgreen species, noted that pak choi and
tatsoi had higher total chlorophyll content, while mustard had the highest concentration of
anthocyanins. Marchioni et al. (2021), evaluating five microgreens of Brassicaceae family,
indicated that anthocyanins were more abundant in mustard, while broccoli had the highest total
polyphenol content compared to other microgreens. According to Xiao et al. (2012) red sorrel,
cilantro, and red cabbage stand out for their high p-carotene content, with cilantro and red sorrel
also showing elevated concentrations of lutein and zeaxanthin. Such compositional differences
among microgreens are often related to the specific genetic characteristics of each specie and
differences in their photosynthetic efficiency and metabolic regulation (Niroula et al., 2019).

A study evaluated ten species for seed germination, growth, and consumer acceptance.
Among these, lettuce, carrot, and green peas were the most favored. For antioxidant activity, green
pea microgreens showed a higher total phenolic content (1871 mg/100 g dry weight) compared to
their seeds and sprouts, indicating enhanced nutritional value at this stage (Senevirathne, Gama-

Arachchige and Karunaratne, 2019).
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3.4.2. Factors affecting the quality of microgreens

The cultivation of microgreens involves the management of biotic and abiotic conditions
to ensure their proper development and an optimal yield. Some of the most important factors
include the selection of suitable species, proper growing techniques, substrate selection, using seed
of quality, implementing proper irrigation and fertilization, maintaining phytosanitary standards,
and employing effective postharvest storage practices (Di Gioia, Renna and Santamaria, 2017,
Ebert, 2022). Environmental factors, such as temperature, humidity, and photoperiod, are also
determinant for proper microgreen growth.

Temperature is a factor that significantly impacts the growth and development of plants,
with various species having specific temperature requirements (Wheeler et al., 2000). The ideal
conditions for producing microgreens may vary depending on the plant species or variety.
However, it is considered as a mild temperature for growth between 18 to 25 °C. When the
temperatures is above this range, it can increase the microbial growth (Li, Lalk and Bi, 2021). In
case of extreme temperatures the germination can be delayed and the plant can suffer from heat
stress which negatively affects its development (Wheeler et al., 2000). Additionally, high ambient
temperatures can disrupt stomatal production which in consequence increase the risk of thermal
damage and dehydration (Driesen et al., 2020). Another important consideration regarding
temperature is its influence in the nutrient content and absorption of sprouts, as well as the
accumulation of phytochemicals. Studies involving sprouts show that when they are germinated
at lower temperatures, they tend to exhibit improved phytochemical properties and higher levels
of antioxidant activity (Calderon Flores et al., 2021; Kim et al., 2022). For instance, by
maintaining temperatures below 4 °C for approximately four days, it is enhanced antioxidant
content accumulation (Kim et al., 2022). Thus, it is necessary to maintain optimal temperature
ranges during cultivation to promote metabolic processes and facilitate the conversion of stored
nutrients into energy.

Regarding to relative humidity (RH), microgreens generally grow adequately in
environments with RH levels between 30% and 70%, although research on the precise humidity
requirements is still limited (Li, Lalk and Bi, 2021). An effective air circulation is very important
for promoting healthy growth and reducing the risk of diseases, as it helps regulate both
temperature and humidity within the growing area (Chakraborty et al., 2014; Sharma et al., 2016).
This can be achieved by using horizontal airflow fans or natural air vents to facilitate air exchange.
Adequate air movement is also important for preventing mold, particularly in species prone to
mildew. For optimal growth, microgreens should be grown at a pH of 6.56 to 7.54, with an

electrical conductivity of 0.41 mS cm™! of nutrient solution in fertigation (Kyriacou et al., 2020).
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However, the electrical conductivity in agricultural irrigation water commonly ranges from 0 to 3
mS cm™!, depending on the source and water quality standards (Moliner and Masaguer, 1996).
Light is fundamental for the cultivation of microgreens, as it directly influences their
growth and development. To achieve optimal growth, the use of light emitting diodes (LED) lights
is recommended, as they are efficient and capable of emitting specific spectrums, primarily red
and blue light, that plants absorb, which favor photosynthesis. The ideal light intensity ranges from
120 to 220 umol m~2 s™!, and a photoperiod of 12 to 16 hours is common. It is essential to allow
adequate periods of darkness for processes like respiration. Moreover, photoperiod influence the
antioxidant content of microgreens. In red beet microgreens a 16-hour light cycle increased
phenolic compounds, total betalains, and antioxidant capacity compared to the 12-hour light cycle
by 32%, 49%, and 25%, respectively, but decreased overall yield by 23%. In contrast, a 12-hour
photoperiod yielded more microgreens and improved resource efficiency. Thus, while the longer
photoperiod enhanced antioxidant properties, the shorter cycle was more beneficial for growth and
resource management (Hernandez-Adasme, Palma-Dias and Escalona, 2023). Historically,
growers enhanced natural lighting with gas-discharge lamps (GDL), but now LEDs are becoming
increasingly important in the horticultural sector as advancements in artificial lighting
technologies continue (Ajdanian, Babaei and Aroiee, 2019). The light quality significantly
influences various facets of plant growth and their phytochemical properties (Brazaityté et al.,
2018; Ajdanian, Babaei and Aroiee, 2019). Researches indicate that red and blue light can
positively impact certain crops; for instance, (Ajdanian, Babaei and Aroiee, 2019) observed that
cress plants exposed to red and blue light produced greater yields than those grown under natural
light. Additionally, it has been noted that red and blue light can promote elongation in crops like
cabbage, kale, arugula, and mustard without compromising their yield or quality (Kong and Zheng,
2019). Furthermore, other studies investigated how different light intensity levels affect the growth
of pea microgreens in hydroponic setups. After a 12-day growth period under both consistent and
inconsistent lighting conditions, measurements were taken for the plants' fresh weight and shoot
height. Although the overall yield was comparable for trays with the same average photosynthetic
photon flux density (PPFD), variations in local light intensity accounted for 31% of the differences
in fresh weight. These findings highlight the importance of light distribution in enhancing

microgreen cultivation within vertical farming systems (Balazs et al., 2023).

3.4.3. Microgreens status assessment methods

Understanding how environmental and agronomic factors influence microgreens requires

accurate methods to assess their growth, composition, and quality. By evaluating both individual
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traits and their combined effects, we can gain comprehension on how these plants respond to
varying conditions.

Key growth parameters, such as height and weight (both fresh and dry), are crucial indicators
of the agronomic performance of microgreens. Tools such as rulers or digital calipers, precision
scales and drying ovens are used to measure these parameters (Lenzi et al., 2019; Balazs et al.,
2023).

Chemical and optical measurements play a crucial role in understanding the quality and
composition of microgreens. For visual appearance, the Lab color system is often employed, where
lightness L*, redness a*, and yellowness b* are measured using tools like colorimeters or
spectrophotometers. On the chemical level, parameters such as pH, conductivity, and °Brix are
assessed with portable instruments, providing insight into acidity, mineral content, and sugar
content (Araméndiz, Cardona-Ayala and Alzate, 2017; Li et al., 2017).

The nutritional properties of microgreens are linked to their pigment and bioactive compound
content. Pigments such as chlorophyll A, chlorophyll B, and carotenoids, are evaluated for their
impact in photosynthesis and visual appearance. Total polyphenols and antioxidant capacity are
analyzed to gauge the health benefits these plants offer. These assessments are commonly
performed using spectrophotometric methods with advanced techniques such as high-
performance liquid chromatography (HPLC) (Kyriacou et al., 2019; Niroula et al., 2019; Di Bella
et al., 2020).

Given the influence of environmental factors on microgreen quality, near infrared spectroscopy
could offer a promising approach to assessing how these conditions affect microgreen
characteristics. NIRS has the potential for rapid, non-destructive analysis of the chemical and
physical properties of plant materials, which may provide insights into changes in nutritional

content, phytochemical composition, and overall quality under various environmental influences.

3.5. Near infrared spectroscopy

Near infrared spectroscopy (NIRS) is a non-destructive analytical technique that utilizes the
near infrared region of the electromagnetic spectrum (wavelengths between 800 and 2500 nm)
(Burns and Ciurczak, 2008; Workman and Weyer, 2012; Ozaki, Genkawa and Futami, 2017). It is
widely employed for qualitative and quantitative analysis in various fields, including chemistry,
agriculture, pharmaceuticals, and food science. Significant recognition is due to researchers in the
field of agricultural science, particularly K. H. Norris (Burns and Ciurczak, 2008).

NIRS detects molecular vibration responses within the near infrared region of the

electromagnetic spectrum. This analytical technique relies on the interaction of near infrared light
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with the overtones and combinations of fundamental vibrations of molecular bonds, such as C-H,
N-H, and O-H bonds. As near infrared light is absorbed by these molecular vibrations,
characteristic absorption bands are generated, providing valuable information about the chemical
composition of the sample (Siesler et al., 2002; Burns and Ciurczak, 2008; Ozaki, Genkawa and
Futami, 2017). NIRS excels in quantitative analysis, enabling the simultaneous measurement of
multiple components within a sample. The technique is non-destructive, allowing for real-time
analysis without the need for complex sample preparation (Siesler et al., 2002; Ozaki, Genkawa
and Futami, 2017). Calibration models, established with reference values, permit NIRS to predict
concentrations of specific constituents in unknown samples, while also facilitating the
characterization of complex matrices by identifying important spectral features and chemical
properties (Siesler et al., 2002).

In its basic configuration, NIRS equipment typically consists of a light source, a sample
interface, a spectrometer and a detector. After passing through the sample, light is broken down
into different wavelengths by a prism or a grating (although other mechanisms may also be used)
and is sensed by the detector. The collected data is used to construct the absorption spectrum of
the sample (Siesler et al., 2002; Aouadi et al., 2020). Numerous studies that aimed at improving
the reliability of NIR techniques have led to the creation of diverse instruments, such as
interference filter spectrometers, scanning grating spectrometers, LED-based spectrometers,
Acousto-Optic Tunable Filters (AOTF) devices, diode array grating polychromators, and portable
or miniaturized spectrometers to keep up with the expectations of the evolving industry (Aouadi
et al., 2020). There are three major arrangement types in NIR spectroscopy, depending on the
manner with which the light from the spectrometer interacts with the sample. In transmission, light
passes through the sample; in reflectance, the light reflected from the sample's surface is measured;
and in transflectance, both reflected and transmitted light are evaluated (Burns and Ciurczak,
2008).

3.5.1. NIRS for plants parameters assessment

Initially, NIRS served as a rapid, non-destructive method for real-time monitoring of crop
nutrients, aiding in the optimization of nutrient application timing. In research on plant leaves,
NIRS is capable of accurately predicting levels of macronutrients (N, P, K, S, Ca, Mg) and
micronutrients (Fe, Zn, Mn, Cu), with macronutrient predictions generally being more precise. It
directly detects significant macronutrients like N, P, and S due to their presence in organic
compounds that respond to NIR, while some inorganic micronutrients and macronutrients (e.g.,
Ca, Mg, K) are identified through their association with these organic compounds. Total nitrogen

content in leaf tissues is the most reliably predicted nutrient, with median R2 values of 0.98 for
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NIR and 0.90 for Vis-NIR. Other macronutrients, including P, K, Ca, and Mg, also exhibit
accuracy (median R% > 0.64 for Vis-NIR and > 0.62 for NIR). Among micronutrients, Fe shows
acceptable median R? values of 0.72 for NIR and 0.74 for Vis-NIR, while Zn meets acceptable
standards with NIRS. In contrast, predictive accuracy for other micronutrients is comparatively
low for both methods, likely due to their lower concentrations in plant tissues and the fact that they
are not directly involved in NIR-active organic bonds. Their weak or indirect spectral features may
be masked by stronger signals from water, carbohydrates, or structural proteins, making accurate
prediction more challenging (Prananto, Minasny and Weaver, 2020).

Moreover, in other studies NIRS have been used to evaluate the status of plants.

Chemometrics was applied to evaluate Brassica carinata under different abiotic growing
conditions. The analysis showed a moderate correlation between NIR spectra and aboveground
biomass, indicating that NIRS can be a useful tool for predicting biomass yield. This suggests
potential for using NIRS in monitoring the growth and health of B. carinata in both indoor and
outdoor environments (Huynh, 2023).
Researchers also have investigated non-destructive methods for detecting cold stress in soybean
plants using near infrared spectroscopy and aquaphotomics. Spectra from five genetically
engineered cultivars were collected at optimal (27 °C) and reduced (22 °C) temperatures. Analysis
revealed significant differences in spectral profiles, with soft independent modeling of class
analogy (SIMCA) achieving 100% accuracy in distinguishing between stressed and unstressed
plants. The results indicated changes in water molecular structure and metabolism, highlighting
cultivar variations in cold stress responses (Muncan et al., 2022).

Vis-NIR spectroscopy (380-1000 nm) was explored by Marin-Ortiz et al. (2020) to detect
biochemical changes in asymptomatic tomato plants infected with vascular wilt disease. The
standard normal variate (SNV) pretreatment method proved most effective for high accuracy
classification. Early infection signs included discoloration from green to yellow, while leaf
turgidity remained stable, complicating visual detection. Significant reflectance differences
between healthy and infected plants were observed mainly in the 380 to 750 nm range. Five key
spectral bands related to the disease were identified: two in the visible range (448-523 nm and
624-696 nm) and three in the near infrared range (740-960 nm, 973-976 nm, and 992-995 nm),
enabling successful classification of infected plants with 100% accuracy, 12 days prior to visible
symptoms. Moreover, Vis-NIR spectroscopy is effective in classifying disease severity in plants.
Liaghat et al. (2014) demonstrated this belief by using a k-nearest neighbors (kNN) model to
differentiate mildly infected oil palm plants from healthy ones, achieving 97% accuracy before
symptoms appeared. The visible and near infrared regions are equally crucial for assessing stress

responses. Key absorbance bands at 550 nm and 720 nm indicate chlorophyll content, while bands
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at 740 nm, 840 nm, 970 nm, 1200 nm, 1460 nm, and 1850 nm relate to water content. Each pigment
absorbs light at specific wavelengths, chlorophyll in the red and blue regions, carotenoids in the
violet and blue-green regions; enabling early detection of stress and infection through changes in
spectral reflectance (Zahir et al., 2022).

Furthermore, NIRS have been used to evaluate physiological and biochemical characteristics
of plants. A study compared short-wavelength (SW) and long-wavelength (LW) near infrared
spectroscopy with color compensation to predict soluble solids content in apples. The independent
component analysis-support vector machine models (ICA-SVM) showed the best performance.
SWNIR achieved an R?p of 0.9398 and an RMSEP of 0.3870%, while LWNIR reached an R?p of
0.9455 and an RMSEP of 0.3691%. The results showed that color compensation significantly
improved showing its potential for real-time apple quality monitoring (Guo et al., 2016).
Furthermore, Harmanescu et al. (2008), determined the total polyphenols content in seventeen
Romanian medicinal plants using NIR spectroscopy. Correlations were established between
polyphenols content (mM/g) measured by the Folin-Ciocalteu method and NIR reflectance values.
The PLS-Leverage method yielded a strong correlation coefficient (R? = 0.994752) and low
deviation values (6% to 8%), indicating high predictive quality for the regression model. By using
a Micro-NIRS device connected to a smartphone, Y. J. Wang et al. (2020), analyzed pigments in
tea plants. The variable combination population analysis (VCPA) and genetic algorithm (GA)
denoted as VCPA-GA-PLSR models demonstrated strong performance in predicting chlorophyll
a, chlorophyll b, and carotenoids, with correlation coefficients of 0.9226, 0.9006, and 0.8313,

respectively, and low prediction errors.

3.6. Chemometric analysis

Chemometrics, also denoted as multivariate data analysis, utilizes mathematical and statistical
techniques to analyze complex datasets produced by analytical instruments. This field
encompasses both experimental design and data evaluation to obtain meaningful insights. While a
comprehensive grasp of mathematics and statistics is recommended, having a solid understanding
of the specific application and exercising good judgment are crucial for accurately interpreting the
results (Gemperline, 2006; Roussel et al., 2014).

3.6.1. NIRS preprocessing techniques

Preprocessing NIR spectral data is essential in chemometrics modeling to eliminate
physical interferences in the spectra, thereby enhancing the performance of multivariate

regression, classification, or exploratory analysis. The most common preprocessing methods
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encompass techniques for scatter correction and spectral derivatives (Rinnan, Berg and Engelsen,
2009).

The Savitzky-Golay (SG) method is a numerical approach used for smoothing and
differentiating data (Savitzky and Golay, 1964), and is widely applied in spectral analysis. It works
by fitting a low-degree polynomial to a symmetric set of data points around a central point, mainly
to reduce noise while retaining important spectral characteristics. Besides smoothing, it can also
be adapted to calculate derivatives of different orders, which helps in improving spectral
resolution.

Derivatives are used to address peak overlap and remove constant and linear baseline shifts
among samples. In practice, first and second derivatives are more commonly utilized than higher-
order derivatives, as they effectively enhance spectral features and correct baseline variations
without excessively amplifying noise, which is a common drawback of higher-order derivatives
(H. P. Wang et al., 2022). Key factors in applying the SG method include selecting the appropriate
window size and polynomial degree, which affect the method's sensitivity and effectiveness in
capturing data characteristics (Rinnan, Berg and Engelsen, 2009).

Multiplicative scatter correction (MSC) first introduced by Martens et al. in 1983 and standard
normal variate (SNV) introduced by Barnes et al. 1989 are the most frequently employed
preprocessing methods for near infrared spectroscopy. Additionally, detrending applies linear or
polynomial regression to adjust for baseline shifts and curvilinearity in reflectance spectra (Barnes,
Dhanoa and Lister, 1989). These techniques help by dealing with challenges in diffuse reflectance
spectrometry arising from particle size, scattering, and multicollinearity. The interaction of these
factors significantly complicates the interpretation of near infrared diffuse reflectance spectra, with
most variance attributed to sample particle size and minimal variance linked to chemical
composition (Rinnan, Berg and Engelsen, 2009). To address these issues, these scatter correction
techniques effectively eliminate interferences from scattering and particle size. As a result, this
processing produces NIR diffuse reflectance spectra that are free from multicollinearity and the
intricacies associated with the use of derivatives in spectroscopy (Barnes, Dhanoa and Lister,
1989; Liu et al., 2019). MSC involves selecting a reference spectrum, typically the average from
a calibration dataset, and aligning individual sample spectra with this reference. This technique
aims to correct for variations in baseline and scaling among different spectra. On the other hand,
SNV standardizes each spectrum by calculating its mean and standard deviation, transforming the
data to have a mean of zero and a standard deviation of one. Both MSC and SNV enhance the
reliability of spectral data, making subsequent interpretation and analysis more effective (Ozaki,
Genkawa and Futami, 2017; Liu et al., 2019).
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3.6.2. Multivariate data analysis methods

Principal component analysis (PCA) is a widely used exploratory technique in spectroscopy
for building linear multivariate models from complex datasets. It utilizes principal components
(orthogonal basis vectors) to capture significant variations and reduce measurement errors, thereby
minimizing noise and simplifying analysis. PCA aims to identify relationships among samples by
creating new variables, with results visualized in scores plots that display spectra as scores in a
transformed space and loadings plots that illustrate the contributions of original variables, such as
wavelengths (Gemperline, 2006; Tsenkova et al., 2018).

As mentioned by Qu and Pei, (2024), linear discriminant analysis (LDA) was first proposed
by R.A. Fisher in 1936. LDA is a classification technique that utilizes orthogonal transformations
to streamline and improve the efficiency of data processing and analysis. It is often used for
multiclass classification of different samples. It is a supervised method so the class membership
has to be known for the analysis (Granato et al., 2018).

Moreover, discriminant analysis based on principal component analysis (PCA-LDA) is a
method that combines aspects from both PCA and LDA. In PCA-LDA, the principal components
obtained from PCA are then used as input features for the subsequent LDA. This integrated
approach combines the dimensionality reduction capability of PCA with the discriminatory power
of LDA. PCA-LDA is often used for spectroscopic data, where there are multiple correlated
dependent variables and where LDA alone is not effective, and the goal is to classify or
discriminate between different groups or classes based on the underlying structure of the data. This
integrating technique offers a powerful tool for pattern recognition, classification, and
discrimination tasks in various fields, including food quality assessment and chemometrics.

Partial least square (PLS) regression, introduced by H. Wold in the 1960s, is widely used in
industrial applications for multivariate calibration due to its speed and accuracy advantages over
other methods (Gemperline, 2006). In PLS, determining the number of basis vectors, also known
latent variables (LV), is crucial for building the model. This parameter serves to reduce the
dimensionality of the regression space and refine the regression vector (Gemperline, 2006). PLS
regression aims to enhance the relationship between the X and Y datasets by creating latent
variables that capture the variance in X and maintain a strong correlation with Y (Granato et al.,
2018). PLS consists of two key steps: reducing dimensionality via score projections and
integrating a weight vector (w) that optimizes the covariance between X and Y scores (Roussel et
al., 2014). The performance of the PLSR model is assessed through the coefficient of
determination (R?) and the root mean square error (RMSE) typically obtained from calibration and

cross-validation (Tsenkova et al., 2018).
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Figure 1, outlines the systematic approach to achieving reliable results through the integration

of sample preparation, NIRS data collection, chemometric analysis, quantitative analysis, and

informed decision making. The process begins with the careful selection of representative samples,

followed by their homogenization to ensure consistency. NIRS is employed for spectral data

acquisition, with rigorous preprocessing techniques applied to enhance data quality. Chemometric

methods, including multivariate data analysis (MVDA), PCA, LDA and PLS regression, are

utilized for data exploration and model building. Calibration models are validated and optimized

to ensure accuracy in qualitative and quantitative analysis. Finally, the interpretation of results

leads to effective reporting and decision making based on quality parameters and established

acceptance criteria. This comprehensive workflow emphasizes the importance of each step in

producing reliable findings from spectral data.
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Figure 1. Integrated workflow: NIRS-based chemometric analysis for quality food assessment
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4. MATERIALS AND METHODS

This section outlines the materials and methods adopted for the execution of various
experiments. Studies have been conducted to assess the sensory profile of hen eggs using human
sensory analysis, electronic tongue, and electronic nose; evaluation of probiotic characteristics and
viability using NIRS; and the evaluation of microgreens growing under stress conditions using
NIRS.

4.1. Materials and methods for egg sensory evaluation

4.1.1. Hens’ dietary intervention and initial quality evaluation

The feeding trial with laying hens adhered to the European Commission Council Directives
(86/609/EEC) (COUNCIL OF THE EUROPEAN COMMUNITIES, 1986) and the Hungarian Act
for the Protection of Animals in Research (The Parliament, 2021). A total of 900 Lohmann Brown
Classic hens, aged 56 weeks and weighing an average of 1.88 kg (x 0.12), were housed in
environmentally  controlled cages (EV  2240-EU, Big-Dutchman, HAT-AGRO
Baromfitechnologia Kft., Gyér, Hungary). The hens were divided into three groups (300 hens
each): Control (0% Zincoppyeast), ZP 2.5% (2.5% Zincoppyeast), and ZP 5.0% (5.0%
Zincoppyeast). Zincoppyeast, a yeast biomass in dried form, was produced by SC AGSIRA SRL,
Romania, using spent brewing yeast mixed with organic zinc-enriched yeast from S.C.
PHARMACORP INNOVATION SRL, Romania. The birds were fed isonitrogenous and
isoenergetic corn-extracted soybean meal— distiller’s dried grains with solubles (DDGS)-wheat-
based diets, formulated according to National Research Council (NRC) guidelines (National
Research Council, 1994) and the Lohmann Brown Classic Management Guide. Proximate analysis
was conducted to determine the chemical composition of the feeds, ensuring they met the same
category requirements (Aurand, Woods and Wells, 1987). The calculated diet values are presented
in Appendix-A2_Table 1, additionally, the quantified chemical composition and energy content is
shown in Appendix-A2_Table 2, confirming the diets’ uniform energy content for evaluating the
effects of varying Zincoppyeast levels. Feeds were assessed for moisture, crude protein, fat, fiber,
calcium, phosphorus, and sodium content according to AOAC standards (AOAC, 2006). Fresh
water was provided ad libitum daily. In the ZP 2.5% and ZP 5.0% groups, part of the extracted
soybean meal was replaced with Zincoppyeast. After a two-week adaptation period to the diets,
the three-month experimental period commenced. Eggs were collected daily (during which
average daily egg production exceeded 91% in all groups); however, only eggs collected on day-
30 and day-60 were considered for sensory analysis. The remaining time until day-90 was a safety
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period in case we needed to repeat the sampling due to any failures of any analysis done on day-
30 or day-60 samples.

Eggs from the three groups collected for evaluation on day 30 (batch 1) and day 60 (batch
2) of the experimental period, totaling 90 samples per batch for human sensory analysis, 18 for e-
tongue analysis, and 90 for e-nose analysis. The number of eggs used for human sensory analysis
was higher because multiple samples were needed per the number of testers within the panel. For
the e-nose, the large number of available slots on the tray permitted to analyze more samples,
improving the reliability of statistical tests, and repeatability and stability of the system. For the e-
tongue, only a limited number of samples could be analyzed due to the small capacity of the
autosampler and the long duration of each measurement, so additional samples were not required.

Evaluating both batches aims to finding a more comprehensive understanding of potential
temporal variations in the quality of eggs, which may influence both nutritional and sensory
qualities of eggs. Differences may arise, due to egg laying time, in different egg parameters
regarding egg weight, shell, albumin, and yolk characteristics (Sekeroglu et al., 2024). Samples of
batchl were disinfected with ozone and stored (in cold, 4-8 °C) until the analysis, the same
procedure was done for samples belonging to the 2" batch. Batch 1 and batch 2 samples were not
analyzed at the same time, but with 30 days difference. Laboratories performing the sensory
analysis were not informed that batch 2 was a repetition of batch 1. Those were considered to be
a separate test with three feeding groups on both occasions. Fresh samples were used for human
sensory and e-tongue analyses; while for e-nose analysis, samples were stored for 0 (corresponding
to fresh samples), 30, and 60 days in the fridge (10-14 °C). Chemical assays were performed on
12 eggs per batch, and microbiological assays on 30 eggs per batch.

The data presented in Appendix-A2_Tables 1 to 4 were obtained from experimental
measurements and analyses conducted in collaboration with accredited laboratory (MTKI

Mosomagyarovar, Hungary) as part of this study, following AOAC standards (AOAC, 2006).

4.1.2. Sample preparation and analysis of eggs

Human sensory evaluation

To assess sensory attributes, the human organoleptic evaluation of the egg samples followed
the guidelines outlined in MSZ I1SO 6658: 2018, serving as a reference test method (MSZT, 2003).
Five trained reviewers participated in the evaluation process, employing an experimental design
known as Williams Latin Squares, with each sample from the three feeding groups (Control, ZP
2.5%, and ZP 5.0%) evaluated in two replicates. The eggs underwent assessment in three different

presentations: raw, boiled, and fried.
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Sample Preparation Details:
e Boiled eggs were kept in boiling water for 10 min.
e For fried eggs, oil was poured into a pan and heated, then the previously beaten eggs
were poured in and agitated during the cooking time.
The evaluation was conducted using an intensity scale ranging from O to 9 points. A
comprehensive evaluation encompassed a total of 21 sensory characteristics (Table 1).

Table 1. Sensory characteristics evaluated in raw, boiled, and fried eggs

Egg Type Evaluated Attributes

Raw eggs Albumin color, Yolk color, Yolk shape, Albumin density

Albumin color, Yolk color, Egg odor, Unusual odor, Albumin

Boiled eggs flavor, Unusual taste, Albumin flexibility, Yolk creaminess

Yolk color, Egg odor, Sweet aroma, Unusual odor, Egg taste,

Fried eggs Sweet taste, Unusual taste, Texture

Electronic tongue analysis

The taste profile of the egg samples was assessed using an Alpha Astree electronic tongue
from AlphaMOS, located in Toulouse, France. Equipped with a 16-position auto-sampler, the
measurements were conducted at the Department of Measurements and Process Control within the
Institute of Food Science and Technology at the Hungarian University of Agriculture and Life
Sciences. This sophisticated device features seven food-grade sensors, according to the
manufacturers naming ZZ, JE, BB, CA, GA, HA, JB, designed to detect and identify complex
organic and inorganic compounds in liquid samples. Utilizing a methodology based on measuring
differences in potential changes against the Ag/AgCl 3M KCI reference electrode, the sensors
display cross-sensitivity and partial selectivity, allowing them to detect multiple compounds in
complex liquid mixtures while still showing a preferential response to certain substances.
Researchers can employ this technology as a state-of-the-art fingerprint-like analysis to discern

general patterns among the samples measured on the seven sensors (AlphaM.O.S., 2021).

Sample preparation details:

The eggs underwent initial processing by crushing, followed by transfer of the contents
into a porcelain dish, where they were beaten for a duration of 1 minute. Subsequently, 2 grams of
the homogenized egg mixture were carefully transferred into individual 100 mL volumetric flasks
and then filled up to the mark with distilled water. From each of the three experimental groups,

six parallel samples were prepared, totaling N = 18 eggs for both tested batches. These samples
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were then subjected to analysis using e-tongue. Due to constraints posed by the limited positions
of the auto-sampler, the samples were organized into three separate sequences. Each sequence
included one technical replicate from each of the three groups and underwent analysis four times,
resulting in a total of 24 measurement points per sample group. The acquisition time for each
sample was standardized at 120 seconds with a steering velocity of 3, while the sensors were

cleansed with distilled water for 20 seconds at a steering velocity of 6.

Electronic nose analysis

The assessment of aroma profiles in the samples was carried out utilizing the Alpha MOS
Heracles NEO electronic nose (Alpha MOS, Toulouse, France) within the facilities of ADEXGO
Ltd. Correltech® laboratory (Balatonfured, Hungary). This advanced e-nose, specialized in
volatile compound analysis, functions as a high-speed chromatograph analyzer featuring dual
columns. The analysis process initiates with the concentration of odors within a cold trap, followed
by trap flushing, heating, and subsequent injection of the concentrated odor into the columns.
Within these columns, volatile compounds undergo separation and detection via two flame
ionization detectors (FID). Evaluation of the acquired chromatograms was facilitated by AlphaSoft
v17 software (Alpha MOS, Toulouse, France), which systematically records retention time and
delineates peak positions. This software automatically calculates the Kovats-index for each
detected peak. These indexes can be matched against the AroChemBase database for identification
of volatile substances associated with the odor (AlphaM.O.S., 2018).

Sample preparation and Analysis Procedure:

In alignment with the methodologies employed for human sensory evaluation and e-tongue
analysis, e-nose assessments were conducted on freshly collected egg samples (0 days of storage).
However, to comprehensively assess potential variations, additional examinations were performed
on egg samples subjected to refrigeration for 30 and 60 days, respectively. This approach aimed
to elucidate any differential outcomes influenced by storage duration and feeding-mode group.

In the e-nose, the egg samples are injected in a trap or odor concentrator which is heated to allow
volatilization of liquids. The selected preheating, before the subsequent phases of the gas
chromatography analysis, consisted in employing temperatures of 50 °C and 80 °C. Two
preheating temperatures (50°C and 80°C) were selected to improve volatile compound recovery.
50°C is often optimal for capturing a broad range of volatile organic compounds. Raising the
temperature to 80°C enables the detection of those requiring more thermal energy to volatilize.
80°C can increase the extraction of certain compounds but with the risk of degradation.

Measurements were carried out across two columns of the e-nose equipment, namely column
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MXT-5 and MXT-1701. Each column separates volatile compounds, which are then detected by
two Flame lonization Detectors (FIDs) and recorded using AlphaSoft. The data reported in this
study correspond to the MXT-5 column.

Compounds identification:

The analysis facilitated the identification of characteristic compounds through reference to
the AroChemBase v8 database integrated into AlphaSoft (AlphaM.O.S., 2018). This database
encompasses domains such as "Food, Flavors, and Fragrances”. Furthermore, compound
determination was associated with the most relevant sensors from the egg discriminant analysis.
These sensors were linked to the closest Kovats indexes, with very close magnitudes, listed in the
AroChemBase v8 database. In the database, Kovacs index are associated with specific volatile
compounds and sensory characteristics. This meticulous approach significantly enhanced the
accuracy of volatile compound association, contributing to a more robust interpretation of the

results.

4.1.3. Statistical methods for eggs samples evaluation

Human sensory evaluation results underwent statistical evaluation using one-way analysis
of variance (ANOVA), with each parameter assessed individually. Upon detecting significant
differences (p < 0.05) among the three groups, Tukey's Honestly Significant Difference (HSD)
post hoc tests (p < 0.05) were executed for comprehensive inter-group comparisons (Madsen,
2011).

For e-tongue assessments, statistical analysis involved computing Euclidean distances within a
space of seven dimensions (that are corresponding to seven sensors) across the feeding groups on
a scale from 0 to 30. As the differences between groups become more pronounced, the Euclidean
distance increases. The Euclidean distances were calculated for the samples of the two batches
(separately).

Furthermore, principal component analysis was used as exploratory data analysis to uncover
nuanced multidimensional patterns. Linear discriminant analysis facilitated group classification,
with model robustness assessed through three-fold cross-validation to ensure reliable performance.
This process divided the data, ensuring that repeated measurements of the same sample were not
included at the same time in both training and validation sets. Two-thirds of the data were used for
model training, while the remaining one third served as the validation set. The data was iteratively
split into training and validation sets three times to ensure each sample's participation in both

calibration and validation sets.
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Data from the e-nose were subjected to PCA-LDA to discern significant sensors
contributing to group differentiation based on the Kovats index. Model evaluation embraced
thorough three-fold cross-validation to ascertain the optimal number of principal components (PC)
for discriminant analysis models, where the chosen number of PCs was the one that achieved the
highest correct classification accuracies while maintaining the smallest decrease from training to
validation, therefore mitigating the risk of overfitting while looking for robust performance.

To further assess the discriminant models for the e-tongue and e-nose using real data,
additional models were developed with simulated data (Defernez and Kemsley, 1997). Given the
large gap between calibration and cross-validation results, this approach helped determine whether
the real models retained some predictive power despite overfitting. If the simulated models
performed worse, it suggested that the real models still captured relevant patterns in the data
(A2_Table 5, A2 Table 6).

The "aquap2" package (Kovacs and Pollner, 2016) was employed for multivariate analysis
in the R-project environment.

The comprehensive evaluation integrated diverse factors, including batch variations and
feeding group compositions across varying storage times, enhancing the interpretability of the
findings. Figure 2, summarizes the methodological approach employed in the enriched eggs
experiment, detailing the pre-establishment of the trial and the subsequent sensory and

instrumental analyses.

Enriched eggs

experiment
|
I ]
Prestablishment of :
experiment Sensory analysis
I |
|| Hens feeding: Control,
ZP 2.5%, ZP 5% Human E-tongue E-nose

|
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=== poiled and fried eggs (21| === Evaluation of fresh eggs
sensory characteristics) |

Eggs collected on 30 and

| Evaluation of fresh eggs,
60 days of laying period

30, 60 storage eggs

Primary analysis of eggs:
- Chemical and — ANOVA —
microbiological status

Euclidean distances,
PCA, LDA

PCA-LDA

Figure 2. Methodological scheme for sensory and analytical assessment of enriched eggs
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4.2. Materials and methods for probiotics evaluation

4.2.1. Sample preparation and analysis of probiotics

This study utilized three commercial probiotic food supplements in powder form, which
their specific names are not included to maintain confidentiality and avoid potential commercial
bias. Instead, they are identified as probiotic N (Istanbul, Turkey) and probiotics P and A
(Budapest, Hungary). Probiotics P and A are from the same commercial brand, while probiotic N
is from a different brand. As shown in Appendix- A2_Table 7, the probiotic P, A and N show a
CFU content per dose in the same range and different composition of bacterial strains according
to the labels.

To prepare the drinks for each probiotic product, three concentration levels were
considered: C1 (3 g/125 mL), C2 (2.5 g/125 mL), and C3 (2 g/125 mL). These concentrations
reflect the daily doses stated on the product labels: 2 g for probiotic P and 3 g for probiotics A and
N. Additionally, three temperature levels were tested to simulate typical consumer practices: T1
(25 °C), T2 (60 °C), and T3 (90 °C). The preparation involved accurately weighing the probiotic
powder and mixing it with distilled water at the specified temperatures. Samples were allowed to
cool to near room temperature before analysis, with cooling times of 35 minutes for 60 °C and 44
minutes for 90 °C. Each preparation was repeated three times, yielding 81 samples (3 probiotics x
3 concentrations x 3 temperatures x 3 repetitions).

Microbiological analysis
The cultivation of Lactobacillus spp. was conducted using Man, Rogosa, and Sharp (MRS) agar
(Biolab, Hungary), a low-selectivity medium, employing the pour plating method. To facilitate
dilutions, maximum recovery diluent (MRD) consisting of 1 g bacteriological peptone and 8.5 g
NaCl per liter of distilled water was prepared and subsequently autoclaved at 121 °C for 15
minutes. Each sample, prepared according to the probiotic-concentration-temperature
combinations, was subjected to serial dilution in MRD, followed by plating on MRS agar. Plates
were then incubated at 37 °C for 72 hours to facilitate bacterial growth, after which colony-forming

units (CFU/g) were enumerated to quantify bacterial concentrations.

Near infrared spectroscopic analysis
The near-infrared spectral data were gathered using a benchtop MetriNIR
spectrophotometer (MetriNIR Research, Development and Service Co., Budapest, Hungary). It
was used a custom-designed circular cuvette, thermally regulated at 25 °C, that is made up of: a
metallic wall (inner diameter: 5 cm; outer diameter: 8.5 cm) and a crystal layer (thickness: 0.4
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mm). After the sample is placed in the cuvette, it is covered with a lid equipped with a white
reflector. The acquisition of transflectance spectra is across the 900-1700 nm wavelength range
with 0.5 nm resolution. A comprehensive analysis encompassed 81 prepared samples, three
replicates for each sample was scanned and three consecutive scans, thereby yielding 27 spectra
for every probiotic product and treatment. This protocol resulted in a dataset comprising 729 scans,
with an even distribution across the three probiotic products. Prior to NIR scanning, sample
sequences were randomized to mitigate any potential bias.

4.2.2. Statistical methods for probiotic samples evaluation

Statistical analysis of viable counts (Log CFU/g) was conducted using ANOVA and
Tukey’s test (p < 0.05) to evaluate group differences, considering the different combinations of
probiotics and temperatures (with concentrations treated as replicates).

The NIRS spectra were analyzed in the 950-1630 nm wavelength range. PCA was used for patter
recognition in the spectra. The classification of samples was performed according to probiotic
type, concentration and temperature by using PCA-LDA analysis and using three-fold cross-
validation to obtain the different models. Additionally, to obtain the most possible accurate PCA-
LDA models, a total of 41 spectral pretreatments (single and combined) were evaluated: The
individual spectrum pretreatments encompassed a Savitzky—Golay smoothing filter (SG) using a
2nd-order polynomial (13, 17, or 21 points), first and second derivatives, multiplicative scatter
correction (MSC), standard normal variate (SNV), and detrending (DeTr). Meanwhile the
combined pretreatment is comprised for 2 or more single pretreatments simultaneously (Appendix-
A2_Table 8). Prediction models for the viability of probiotic drinks according to log CFU/g were
built by using PLSR by correlating the NIR spectra with the counting colony forming units from
microbiological analysis results. The repetitions R2 and R3 were utilized for constructing the
PLSR models, which correspond the two-thirds of the data. Cross-validation was conducted by
excluding the spectra of one treatment (probiotic-concentration-temperature) in each step.
Subsequently, the remaining one-third of the data (R1) was employed for prediction to assess the
robustness of the final model.

The "aquap2" package (Kovacs and Pollner, 2016) was employed for multivariate analysis in the
R-project environment.

Figure 3, summarizes the experimental approach used to evaluate the viability of probiotic drinks
under varying conditions of concentration and temperature. The integration of microbiological

reference analyses and NIRS-based chemometric methods provided a comprehensive framework
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for assessing the impact of these factors, enabling the prediction of probiotic viability and the

characterization of relevant spectral data.

Probiotic drinks
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C2(2.5¢),and C3 (2 g) viable counts (Log quisitionin
in 125ml CFU/g)) || transflectance mode in
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wavelength range
Water temperature: T1

e (25 °C), T2 (60 °C), and
T3 (90 °C)

Chemometrics: PCA,
PCA-LDA, PLSR

Figure 3. Methodological scheme for probiotic drinks assessment

4.3. Materials and methods for microgreens evaluation

4.3.1. Development of climate chambers and cultivation of pea microgreens

A critical phase of the project involved the development of custom-designed climate chambers,
achieved through a stepwise approach. Initially, individual control components were developed

separately and subsequently integrated into a unified system.
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Humidity Control-
ventilati ontrol

Components Components Components

* Led strips * Cooling system * 3refrigerators
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Figure 4. Set up for pea microgreens growth under different temperature and photoperiod

Figure 4, shows an overlook of the developed set up for pea microgreens growth under different
temperatures and photoperiods. The first step implemented an ON-OFF temperature control
system (Figure 4a) using three STC controllers (equipped with temperature sensors) connected to
commercial refrigerators. These refrigerators facilitated temperature reduction, while heating
plates installed inside enabled temperature elevation (Figure 4c). For photoperiod control, smaller
individual chambers were constructed from plastic boxes featuring a white interior, black exterior,
and lids fitted with white LED strips that covered the full visible spectrum (Figure 4b).

A light distribution test was conducted in these chambers by measuring photosynthetic photon flux
density (PPFD) at five points at the base level using the Mavospec Base spectrometer (Gossen,
Germany). The measurements yielded a mean of 75.7 umol/m?#s and a low standard deviation of
4.96, confirming uniform illumination and ensuring homogeneous conditions for plant and
microgreen experiments. These photoperiod-controlled chambers were subsequently placed inside
the temperature-controlled refrigerators (Figure 4c and d).

Photoperiod control (Figure 4a) relied on Siemens S7 1200 AC/DC/RLY PLC controllers
(Siemens AG, Munich, Germany) programmed via TIA Portal software (Totally Integrated
Automation Portal, Siemens AG, Munich, Germany), implementing an ON-OFF system to
regulate light and dark hours per day for each treatment (Appendix-A2_Figure 1). A total of 12
chambers were created: 9 equipped with lighting systems and 3 without, the latter reserved for
control treatments (Figure 4d). Additionally, HDC1080 temperature and humidity sensors were

installed in each chamber for real-time humidity monitoring. A ventilation system was installed in
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each chamber to manage air flow (Figure 4b), programmed using an Arduino MEGA controller

(Figure 4a) with Arduino IDE software (Arduino S.r.l., Monza, Italy).

Cultivation of plants

In this study, pea microgreens were grown under different environment stress conditions,
which included both mild (normal) conditions and others that, while allowing growth, were less
than optimal, thus classifying them as stress conditions. These were maintained in self-developed

climate chambers, using soil as the growth medium (Figure 5).

Lo

6 hours 12 hours | 18 hours

b Gfiours |
Figure 5. Growth and cultivation process of pea microgreens under controlled conditions. 1)
Microgreens sowing, 2) Preparation of growth trays in individual climate chambers, 3)
Environmental control setup, 4) Growth and monitoring in controlled conditions, 5) Harvesting at
different photoperiods/temperature

First, pee seeds (Debrecen sotétzold, from Hermes brand and comercialized by hermes
kertészbolt) were soaked for 8 hours. Subsequently, seeds were planted in containers with wet soil.
The soil was an organic horticultural substrate from the Florimo brand, commercially available
from Hermes Kertészbolt. It contained a minimum of 40% organic matter, with nutrient contents
of 0.3% nitrogen (N), 0.1% phosphorus pentoxide (P20s), and 0.1% potassium oxide (K2O), and a
pH of 6.53 £ 0.5. Containers were placed in climate chambers with controlled environmental
conditions (Table 2): temperature (15, 20, 25 °C), photoperiod (0 hours of light, 6 hours of light,
12 hours of light, 18 hours of light), relative humidity around 70-80%. Three repeats were
considered for each treatment consisting of a temperature-photoperiod condition. The microgreens
were harvested on three different days (for each temperature). For temperatures of 20 and 25 °C,
higher temperatures promoted faster emergency and growth, plants were harvested at 7, 11 and 14

days after sowing. For the temperature of 15 °C, the emergency and growth were slower, therefore
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plants were harvested on 11", 14" and 18" day. Under this consideration the three temperatures

had 2 days of harvesting in common (11 and 14 days after sowing).

Table 2. Pea microgreen set up according to different treatments (temperature-photoperiod)

Temperature of 15 °C Temperature of 20 °C Temperature of 25 °C

0 hours of light

(00L) 15°C OOL (R1, R2,R3) | 20°C _OOL (R1, R2,R3) [ 25°C OOL (R1, R2, R3)
6 hours of light

(06L) 15°C 06L (R1, R2, R3) | 20°C 06L (R1, R2, R3) [ 25°C 06L (R1, R2, R3)
12 hours of light

(12L) 15°C_12L (R1, R2, R3) | 20°C_12L (R1, R2,R3) [ 25°C 12L (R1, R2, R3)
18 hours of light

(18L) 15°C 18L (R1, R2, R3) | 20°C 18L (R1, R2, R3) [ 25°C 18L (R1, R2, R3)

4.3.2. Sample preparation and analysis of pea microgreens

Measurement of variables

Several agronomical and physicochemical variables were measured during the experiment,
including height and weight (physical parameters); Lab color components (optical parameters),
pH, conductivity and °Brix (chemical properties) and pigments and bioactive compounds
(chlorophyll A, B, total carotene, total water-soluble phenolic compounds (TPC) and antioxidant
capacity (TAC).

Weight and height of plants

On each harvesting day, plants were cut from the base (without roots). For each treatment,
a number of plants was counted in 6 grams, which was dependent on the rate of growth of the
plants of each treatment. The weight results are presented in g/plant. Height of plants were
measured by taking ten plants per treatment.

Color measurement

For color measurement plants were cut in homogeneous pieces (around 2.5 cm) and placed
in a circular holder. The samples were photographed, and the images were then analyzed to extract
the color components in the CIELab space using Image Color Summarizer 0.82 software
(Krzywinski, 2025). L* is a definitive measure of lightness, ranging from black (0) to white (100).

a* describes the red—green colour range (a* > 0 indicates redness, a* < 0 indicates greenness),
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while b* describes the yellow-blue colour range (b* > 0 indicates yellowness, b* < 0 indicates
blueness). It is important to note that, due to technical limitations, it was not possible to establish
a fully controlled camera setup with strict calibration of imaging parameters and illumination
conditions. As such, the extracted color data is considered for informational purposes only,
acknowledging that the methodology does not meet the standards required for reproducible and
accurate color measurements. Following the image analysis, the sample was transferred to NIRS
benchtop device for scanning.

After scanning, the plants (already cut into homogeneous pieces) were divided into two
portions to prepare liquid extracts with different solvents. A portion of 5 g was used for the
preparation of pea microgreens-distilled water extracts, while a portion of 1 g was destined for the
preparation of pea microgreens-acetone extracts. The distilled water extracts were analyzed for
pH, conductivity, °Brix, total water-soluble phenolic compounds (TPC), and total antioxidant
capacity (TAC). Meanwhile, the acetone extracts were utilized for determining the levels of

chlorophyll A, chlorophyll B, and total carotenoids.

pH, conductivity, °Brix, TPC and TAC determination.

For aqueous microgreens extracts samples preparation, a proportion of 1:5 plant-distilled
water (59 plant- homogeneous cut pieces per 25 ml DW) was blended for 30 seconds and filtered.
The aliquots of the agueous microgreens extracts samples were used for measuring pH,
conductivity, °Brix, TPC, TAC (and additionally for NIRs scanning). °Brix was determined using
a MA871 digital sucrose refractometer (Milwaukee Instruments, Inc., Rocky Mount, NC, USA),
which was calibrated with a standard liquid solution provided by the manufacturer prior to sample
measurements. For TPC and TAC measurement, color development-absorbance measurement was
determined spectrophotometrically using a Helios Alpha spectrophotometer (Thermo Spectronic,
Cambridge, England). It should be noted that, since distilled water was used as the extraction
solvent, the results for both TPC and TAC reflect only the water-soluble antioxidant compounds,
rather than the total content typically obtained using hydroalcoholic mixtures.

The total water-soluble phenolic content (TPC) was assessed using the Folin-Ciocalteu reagent
(Singleton and Rossi, 1965), with gallic acid serving as the reference standard. TPC values were
reported as milligrams of gallic acid equivalents (GAE) per gram of plant material (mg GAE/g of
plant). To evaluate antioxidant capacity, the cupric ion reducing antioxidant capacity (CUPRAC)
method was applied (Apak et al., 2004), with trolox used as the reference standard. The results
were expressed in micromoles of trolox equivalents (TE) per gram of plant (umol TE/g). The
reagents used for TPC and TAC analysis came from different suppliers: Neocuproine (Sigma-
Aldrich, product no. N1501), gallic acid (Sigma-Aldrich, product no. G7384), and (+)-catechin
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hydrate (Sigma-Aldrich, product no. 22110) were purchased from Merck Life Science Kft.
(Budapest, Hungary). Ethanol, methanol, glacial acetic acid, Folin—Ciocalteu’s reagent, anhydrous
sodium carbonate, boric acid, and methyl red were purchased from VWR International Kft.
(Debrecen, Hungary). Copper (Il) chloride dihydrate, trolox (Acros Organics, product no.
218940050).

Chlorophyll A, B and total carotene determination

For pigments determination, a proportion 1:20 plant-acetone (1g plant-homogeneous cut
pieces per 20 ml of acetone) was blended for 30 seconds and filtered with cellulose filter paper
MN 612 (Macherey-Nagel, Germany; 4-12 um pore size, @125 mm). Absorbance was measured
in XDS RLA spectrometer device (Metrohm, Herisau, Switzerland) at 470 nm, 645 nm and 662
nm, for chlorophyll A, chlorophyll B and total carotene, respectively. Pigments content expressed
in pug/g of plant were calculated according the equations proposed by Lichtentaler and Wellburn
(1985), as cited by Dere et al. (1998) as shown in Equations (1)—(3):

CthTOphyllA = 11.75 X A662_ 2.350 x A645

1)
CthT'OphyllB = 18.61 X A645— 3.960 % A662
)
T.carotene = 1000 X As70- 2.270 X Chl.A- 81.4 X Chl.B/227
©)

Near infrared spectroscopic analysis of Microgreens fresh-cut samples and aqueous
microgreens extracts samples

Samples were scanned using a benchtop NIR XDS spectrometer (Metrohm, Herisau,
Switzerland), with two modules: Rapid Solid Analyzer (RCA) and Rapid Liquid Analyzer (RLA).
Microgreens fresh-cut samples were placed in a circular crystal cuvette (inner diameter of 43.20
mm), covered with the 0.50 MM lid (0.50 mm thickness) and scanned with an XDS-RCA operating
in reflectance mode. Microgreens aqueous microgreens extracts samples were placed in a cuvette
(1 mm pathlength) in XDS-RLA operating in transmission.

NIR XDS operates over the 400 to 2500 nm range, with a spectral data interval of 0.5 nm
and a wavelength accuracy of 0.05 nm. A total of 32 successive scans for each recorded spectrum
were collected then averaged for each sample. This was performed three times to obtain three

consecutive scans per sample.
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4.3.3. Statistical methods for pea microgreen samples evaluation

It is necessary to denote that although the same kind of spectral pretreatments, PCA, PCA-
LDA and PLSR regression modeling were applied to microgreen fresh-cut samples and aqueous
microgreens extracts samples, the analyses were conducted independently for each sample type.
However, once the models were established, further discussion can be considered for their
comparative insights.

NIRS analysis of pea microgreens was performed in the 1150 to 1850 nm spectral range.
The spectral range for NIRS analysis was limited to 1150-1850 nm due to two primary reasons.
Firstly, a sensor transition occurs around 1150 nm, which is visually identifiable as a discontinuity
in the spectra. This transition can introduce noise and distortions, potentially leading to errors and
inaccurate classification and prediction models if the entire range is used without careful
preprocessing. Secondly, different spectral intervals were tested during preliminary analyses,
including 1150-1850 nm, 1150-2200 nm, and 1300-1600 nm (the latter two are not included in the
thesis). It was determined that the 1150-1850 nm range provided the most accurate and reliable
results, with higher predictive performance in the evaluated models. Therefore, this range was
selected to ensure the robustness and reliability of the developed models.

SG (p=2, n=45, m=0) and SNV spectral pretreatments were applied after outlier detection
and elimination. Outlier detection was carried out through visual inspection of raw and
preprocessed spectral data, as well as through the evaluation of sample distribution in PCA score
plots. Spectra exhibiting atypical patterns or extreme positioning in the multivariate space were
excluded prior to further analysis. PCA data exploration according to harvesting day, temperature
and photoperiod coloring was performed on the full data for pattern recognition.

PCA-LDA analysis was performed according to harvesting day, temperature, photoperiod
and treatment (temperature-photoperiod) for the full data. Moreover, sub datasets comprising of a
specific harvesting day were clustered according to treatment, temperature and photoperiod.
Furthermore, sub-selecting a single treatment discrimination was realized according to harvesting
day. A supervised three-fold cross-validation according to repeat (in each iteration one repeat is
left out) was performed. The term supervised refers to the manual definition of the cross-validation
units (biological replicates or hereafter referred to as repetitions) rather than allowing the
algorithm to randomly select individual scans, which could result in overfitting since multiple
scans from the same replicate share spectral similarity.

To select the optimal number of latent variables (LVs) in the PCA-DA models, the highest
%CV value was considered. The maximum number of LVs, while avoiding overfitting, was

determined as described by Defernez and Kemsley (1997), as shown in Equation (4):
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LV=n—g/3 4)
where:
n = total number of samples,
g = number of groups or classes in the dataset, and
3 = serves as a regularization factor to prevent overfitting by limiting the number
of LVs.

Some PCA-DA models used a relatively high number of LVs compared to the number of
PCs. To assess their predictive performance, models were built using randomly generated
(simulated) data (Defernez and Kemsley, 1997). This approach helped determine whether the real
data models had better predictive power than the simulated ones, ensuring that the observed
classification patterns were not merely a result of overfitting (Appendix-A2_Table 12).

PLSR was performed for the variables: height, weight, Lab color components, pH,
conductivity, °Brix, chlorophyll A, B, total carotene. Repetitions R1 and R2, comprising two-
thirds of the dataset, were used to build the PLSR models. Cross-validation involved leaving out
the spectra from one sample at each iteration. The remaining one-third of the data (R3) was then
utilized for predictions to assess the model's robustness.

Additional PLSR models were conducted for total water-soluble polyphenolic compounds
(TPC) and antioxidant capacity (TAC). Due to constraints where repeats 1, 2, and 3 were mixed
before TPC and TAC determination, it was also necessary to average the spectra of the three
repeats for correct variable measurement and NIRS spectral matching. In this case, leave-one-out
cross-validation was applied for the PLSR models.

The PLSR models assessment was determined according to the highest R? and lowest
RMSE. Additionally, the optimal number of latent variables (LVs) in the PLSR model was
determined based on the following criteria:

e The difference between calibration (R2C) and cross-validation (R?CV) should be < 0.15

(in most cases) to ensure good predictive performance and reduce the risk of overfitting.

e The calibration (RMSEC), cross-validation (RMSECV), and adjusted cross-validation

(RMSECV _adj) errors were analyzed. The optimal LV number was chosen where

RMSECYV stopped decreasing or started increasing.

e RMSECV and RMSECV _adj reach their lowest values around a certain number of LVs.

Beyond this point, additional LVs do not significantly improve prediction and may lead to

overfitting (Appendix A2_Figure 2).
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The "aquap2" package (Kovacs and Pollner, 2016) was employed for multivariate analysis

in the R-project environment.
Figure 6, encompasses the experimental approach used to evaluate pea microgreens growth

under different controlled cultivation conditions, showing reference analyses of agronomic and

physicochemical parameters, and NIRS evaluation using advanced chemometric methods.
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|
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Figure 6. Methodological scheme for pea microgreens assessment
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5. RESULTS AND DISCUSSION

5.1. Results of eggs sensory evaluation

The figures and tables presented in this section are based on previously published results

(Aguinaga Bosquez et al., 2021).

As a food safety precondition, no significant differences were found in the microbiological
statuses of the groups, indicating their suitability for consumption (Appendix-A2_Table 3).
However, significant differences in fat and protein content were observed, where control group
showed lower protein content and higher fat content compared to ZP 2.5% and ZP 5% groups
(Appendix-A2_Table 4)

5.1.1. Eggs sensory evaluation by human panel

The results of the human sensory analysis, presented in Figure 7, Figure 8 and Figure 9,
were obtained through the application of ANOVA and Tukey tests, according to the feeding
groups: Control, ZP 2.5%, ZP 5.0%; batches: 1 and 2; egg presentation: raw, boiled, and fried.
Overall, the majority of sensory attributes did not show significant differences between the various
egg groups, especially in case of the boiled and fried eggs. The panellists characterized the twenty-

three analysed parameters as representative of fresh eggs.

a, Raw egg - Batch 1 b, Raw egg - Batch 2
e Control ZP 2.5% 7P 5.0% e CoNtrol ZP 2.5% 7P 5.0%
Albumin color * Albumin color
8 8
— 358 a8
— 4.6B 6 4R 6 —_—45
6.5A 4 — 4] A
—59A —252
5.8
Albumin density ** Yolk color *** Albumin density Yolk color **
= 50B = 53B
6.8 A 6.3A
— 698 —65A —53B
8.0A
— 7.6 A — 5.7 B
Yolk shape ** _éég Yolk shape **

Figure 7. ANOVA and Tukey HSD post-hoc test of human sensory analysis of eggs. Feeding
groups: Control, ZP 2.5%, ZP 5.0%. (a) boiled eggs from Batch 1 (b) boiled eggs from Batch 2.
Significant difference: p > 0.05 (ns), p <0.05 (*), p <0.01 (**), and p <0.001 (***). Reproduced
with permission from Aguinaga Bosquez et al. (2021)

A comparison of sensory characteristics between batches suggests a decrease in sensory
intensity for some attributes in batch 2. It is possible that, by the time eggs from batch 2 were

collected, the hens had already adapted more fully to the supplemented diet, reaching a more

42



balanced physiological state. The effect is more evident in raw eggs, particularly in terms of visual
and textural traits (Figure 7). However, for boiled and fried eggs, differences in gustatory and
olfactory parameters were not consistent between batches (Figure 8 and Figure 9). T. Xie et al.
(2019) found that dietary supplementation with Lonicera confusa and Astragali Radix extracts
caused changes in sensory characteristics and other quality parameters throughout the laying
period. Changes in egg traits across different laying stages were also noted by Sekeroglu et al
(2024), suggesting that the physiological condition in hens can influence how dietary components

affect the egg quality.

a, Boiled egg - Batch 1 b, Boiled egg - Batch 2
e CONtro| e 7P 2.5% emm—7P 5.0% @ Control 7P 2.5%
Albumin color e ;2 —4?82 Albgmin color — ;é
— 7.4 — /O —T74
Yolk cremosity Yolk color ** Yolk cremosity: Yolk color
— 4.4B — 55
p— \ — 5.1 A — 5.6
. — 55 —_— 51
—_— 48 = 45B — 5.8 :
Albumin flexibility Egg odor Albumin flexibility Egg odor
— 57 5.0 — G ()
— 5 O - 5'8 — — 55
64 Yolk flavoy Albumin flavor ** Yolk flavor* Wbumin flavo
— 56 —508B —57A —_—63
— 5.8 e 5.3 AB — 5 4 A — 5.0

Figure 8. ANOVA and Tukey HSD post-hoc test of human sensory analysis of eggs. Feeding
groups: Control, ZP 2.5%, ZP 5.0%. (a) boiled eggs from Batch 1 (b) boiled eggs from Batch 2.
Reproduced with permission from Aguinaga Bosquez et al. (2021)

a, Fried egg - Batch 1 b, Fried egg - Batch 2
= Control ZP2.5% emmmmZP 5.0% = Control ZP2.5% emmmmZP 5.0%

Y0L7k color 7 5 5AB Yglk colet 28

— 4.6B —6.1A — 50 —_—51

— 5.7 A 6 /% — 5.1
e 5.3 AB — 53
Texture * Egg odor ** Texture Egg odor
< e 5.1B 5.7
e 5.5 AB :
— 1A — 5.6
— 1.1B N — 1.3
— 1.9 A — 1.6
— 1.6 A — .4
Sweet taste *** Sweet aroma Sweet taste Sweet aroma
— 1.1 — 1.1
— 1.6 — 1.2
— 1.3 —_— 55 — (). O
— 5 O — 6.0
— 6.2 Egg taste 5.4 Egg taste

Figure 9. ANOVA and Tukey HSD post-hoc test of human sensory analysis of eggs. Feeding
groups: Control, ZP 2.5%, ZP 5.0%. (a) fried eggs from Batch 1 (b) fried eggs from Batch 2.
Reproduced with permission from Aguinaga Bosquez et al. (2021)

Figure 7a illustrates the significant inter-group differences observed in the first
experimental batch (batch 1). The control group exhibited lower values for all attributes of raw

egg compared to the ZP 2.5% and ZP 5.0% groups. This was evident in the higher intensity of
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white colouration, greater intensity of yolk colouration, greater convexity of yolks shape, and
higher protein density observed in both ZP groups. Similarly, Figure 9a, analysis of the fried eggs,
reveals statistically significant differences for yolk colour intensity, egg odour intensity and sweet
flavour intensity. These attributes were observed to be less intense in the control group, with values
on the scale being lower in comparison to the ZP 2.5% and ZP 5.0% groups. However, in Figure
8a, significant difference was observed in the colour and flavour of the boiled egg between the
three experimental groups. The ZP 2.5% group exhibited a slightly more intense yolk colour and
white flavour compared to the Control and ZP 5.0% groups.

The disparate outcomes observed for the two experimental batches (especially for boiled
and fried eggs) suggest a low degree of inter-sample variability (indiscernible to the trained panel)

or a lack of clear differentiation among samples based on the selected sensory characteristics.

5.1.2. Eggs sensory evaluation by electronic tongue

Computed Euclidean distances on the e-tongue data from egg samples belonging to the two
experimental batches are presented in Figure 10, the greatest distance between the groups was
found between the Control and ZP 5.0% groups for both series of experiments. The distances
between the control group and ZP 5.0% group for batch 1 and batch 2 respectively were 22 and
26. The Euclidean distance is greater when there are more significant differences between groups.
Consequently, there was a greater disparity between the control group and the ZP 5.0% treatment
group than between either of the Control-ZP 2.5% or ZP 2.5%- ZP 5.0% groups.

a, Batch 1 b, Batch 2
30 30
ZP5.0% ZP5.0%
27 27
24 24
21 21
ZP2.5% A 5 ZP2.5% 3
18 18
15 15 -
12 12 o
Control 4 0 o Control o
6 - 6
— 34 o 3
s 5 f : & 8
b= ~ ) 0 = ~ L od
o a. o o [a W [a W
() N N o N N

Figure 10. Euclidean distances for the e-tongue analysis of egg samples belonging to the feeding
groups: Control, ZP 2.5%, ZP 5.0%. Results presented according to batch 1 (a) and batch 2 (b).
Reproduced with permission from Aguinaga Bosquez et al. (2021)
The results of the PCA, as depicted in Figure 11, revealed that the three groups of egg
samples exhibited major overlapping. Nevertheless, the analysis of the first three principal
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components, in Figure 11a and ¢ between PC1-PC2 and in Figure 11b and d PC1-PC3, reveals a
slight differentiation between the data points of the control group and the data points of the other
two groups, which is particularly apparent in both batches. As seen in Figure 11b, this
differentiation is particularly evident in PC1 and PC3 for batch 1, where a significant proportion
of the control group data points do not overlap with those of the ZP 5.0% group. The PCA score
plots of batch 2, related to Figure 11c and d, also present a degree of separation of some of the
data points from the control group. This is particularly evident in relation to the ZP 5.0% group
and is primarily visualized on the PC1 axis. For batch one, the total explained variance between
the groups was found to be 66.09% in PC1, 13.22% in PC2 and 9.92% in PC3. In comparison, for
batch two, the total variance was found to be 41.65%, 29.35%, and 14.47%, respectively, for PC1,
PC2, and PC3.
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Figure 11. Principal component analysis of the e-tongue data for egg samples belonging to the
feeding groups: Control, ZP 2.5%, ZP 5.0%. PCA results are presented according to PC1-PC2 and
PC1-PC3, for batch 1 (a, b) and for batch 2 (c, d). 95% confidence intervals of the respective
groups are represented by Ellipses, and x-axis represents the group centroids. Reproduced with
permission from Aguinaga Bosquez et al. (2021)
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The slight group differentiation observed in the PCA score plots can be attributed to the
contribution of specific sensors. In batch 1, PC1 was mainly influenced by ZZ, BB and HA, while
PC2 and PC3 showed stronger loadings from ZZ, BB, and GA. In batch 2, PC1 was again driven
by ZZ and HA. PC2 was shaped by ZZ, GA and HA, and PC3 by ZZ, CA and HA. These sensors
are generally associated with sensitivity to metallic, bitter, umami, and acidic compounds,
suggesting that differences in formulation may have altered the taste profile. Notably, sensor ZZ
consistently contributed across all components, indicating its important role in the overall taste
discrimination (Figure 12).

Although the sensors in the ASTREE system show differential sensitivity to certain

compound classes, their responses are not specific.
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Figure 12. Loadings plots of principal component analysis of the e-tongue data for egg samples
belonging to the feeding groups: Control, ZP 2.5%, ZP 5.0%. For batch 1 (a) and for batch 2 (b)

Some degree of separation can be seen within each group of eggs in the discriminant
analysis score plots (Figure 13). As the method employed is supervised, the separation of the three
treatment groups (Control, ZP 2.5% and ZP 5.0%) is more pronounced in both batches. As
illustrated in Figure 13a-batch1, the centroids of each group, marked with a cross, indicate that the
Control and ZP 2.5% groups are more closely related, while the ZP 5.0% group is more distinctly
separated. The data points from the Control and ZP 5.0% groups exhibit a more pronounced
separation. In batch 2 (Figure 13b), the ZP 2.5% and ZP 5.0% groups are more overlapped, and
the control group is more separated.

Although in this study the feeding groups are not completely separated in the discriminant
analysis (Figure 13), this partial overlap may be attributed to the fact that dietary supplementation
with Zincoppyeast does not strongly affect the sensory characteristics of eggs when compared to
the control group. Nevertheless, linear discriminant analysis (LDA) was still able to distinguish

the groups to a certain extent, highlighting its usefulness in identifying subtle differences between
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treatments. In line with this, other studies have reported the effectiveness of LDA in differentiating
egg samples subjected to various conditions. For instance, Dong et al. (2021) used LDA to
successfully classify eggs from different native hen breeds based on taste profile analyzed with
electronic tongue, supporting the method's capacity to reveal underlying patterns even when group

separation is not visually striking as they revealed no successful grouping identification by PCA.
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Figure 13. Discriminant analysis of the e-tongue data for egg samples belonging to the feeding
groups: Control, ZP 2.5%, ZP 5.0%. Results presented according to batch 1 (a) and batch 2 (b).
95% confidence intervals of the respective groups are represented by Ellipses and x-axis represents
the group centroids. Filled dots for calibration, hollow dots for cross-validation. Reproduced with
permission from Aguinaga Bosquez et al. (2021)

Table 3 illustrates the confusion table of LDA models with the average percentages of each
technical replicate for calibration and cross-validation of egg samples classification (feeding group
related) across batch 1 and batch 2, respectively. The outcomes of the three-fold cross-validation
demonstrate that the distinction between the three egg groups was not accurate, exhibiting
misclassification between neighboring groups. Nevertheless, the differentiation of the Control and
ZP 5.0% groups was found to be higher for both experimental batches.

The average calibration accuracy for batch 1 was 95.92%, with a cross-validation accuracy
of 64.81%. Additionally, batch 2 exhibited an average calibration accuracy of 100% and a cross-
validation accuracy of 56.23%. This suggests that the models capture some useful information
from the real data, but there is evidence of overfitting (the large gap between calibration and cross-
validation). By analyzing a matrix consisting of random numbers (LDA results presented in
Appendix-A2_Table 5) the calibration accuracy was 80.07% and cross-validation accuracy was
29.95%. The difference between 64.81% (real data) and 29.95% (random data) demonstrates that

the real data contains relevant information for classification.
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Table 3. Confusion table of egg samples classification from e-tongue data. Groups according to
feeding regime: Control, ZP 2.5%, ZP 5.0%. Results presented for batch 1 and batch 2. Reproduced
with permission from Aguinaga Bésquez et al. (2021)

Batch 1 Batch 2
AA"erag.e %  Control ZP 2.5% ZP 5.00 . \Verage %  Control ZP 2.5% ZP 5.0%
ccuracies Accuracies
Calibration Control 97.64 0.00 0.00 Calibration Control 100.00 0.00 0.00
95.9206 ZP25% 0.00 97.25 7.14 100.0% ZP25% 0.00 100.00 0.00
ZP50% 2.36 2.75 92.86 ZP5.0% 0.00 0.00 100.00
% Control ZP 2.5% ZP 5.0% % Control ZP 2.5% ZP 5.0%
Cross- Control 46.02 15.89 472 Cross- Control 88.94 0.00 33.33
validation ZP 2.5% 39.74 7295 19.81 validation ZP25% 5.53 61.95  48.87
64.81% ZP5.0% 14.25 11.17 75.47 56.23% ZP5.0% 5.53 38.05 17.79

5.1.3. Eggs sensory evaluation by electronic nose
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Figure 14. Discriminant analysis on the e-nose data for fresh egg samples belonging to the batches:
batch 1, batch 2; and to the feeding groups: Control, ZP 2.5%, ZP 5.0%. PCA-LDA (a,c) and
sensor contribution (b,d). E-nose analysis preheating-temperature: (a) 50 °C, LV:23(30), n = 85
and (¢) 80 °C, LV:4(30), n = 87. Reproduced with permission from Aguinaga Bosquez et al. (2021)
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Upon initial examination of the results for eggs stored for 0, 30, and 60 days, it was
observed that the models corresponding to fresh eggs (0 days of storage) demonstrated slightly
improved discrimination between the different feeding treatment groups compared to models from
longer storage periods. This improved discrimination for fresh eggs (0 days of storage) is
illustrated in (Figure 14).

In Figure 14 a and c, it is shown the PCA-LDA score plot results corresponding to the e-
nose analysis setting the preheating temperatures for the samples at 50 and 80 degrees Celsius. A
clear differentiation in the samples between batches 1 and 2, in both preheating temperatures, is
evident. Based on root 1, the explained variance between the two batches accounted for 97.46%
for preheating at 50 °C and 87.80% for 80 °C. Moreover, the explained variance in root 2 was
1.14% and 11.68% for the two preheating temperatures, respectively, and indicating a distinct
separation tendency of the three feeding groups.

Figure 14 b and d illustrate the sensors that were most effective in differentiating the
samples stored at 50 °C and 80 °C for 0 days, respectively. Complementary, the main contributors
to the separation between batches, between feeding groups, and between both (batches and feeding
groups) are presented in Table 4, Table 5 and

Table 6, respectively.

Table 4. Main contributing sensors for separation between batches from the discriminant analysis
on the e-nose data for fresh egg samples

At 50 °C At 80 °C
Odor Odor
Sensor Compounds Descriptors Sensor Compounds Descriptors
Nootkatone. 2- Banana, citrus, Ethereal,
1807.03 ' grape, sour fruit, 429.9 Acetaldehyde  fresh, fruity,
Hexadecanone .
spicy, woody pungent
Fruity, mango,
Cadina-1,4-diene, spicy, wood, Methyl acetate, Blackcurrant,
1532.4 528.17 2- ethereal,
Methyldodecanoate  coconut, creamy, ;
f Methylpropanal fruity, solvent
atty, sweet, waxy
Linalyl
128633 |soporneolacetate, g\ e fruity | 14143 butanoate, (E)- | oral pear,
Pentyl hexanoate sweet, apple
-Damascone
Butter,
herbaceous,
resinous : Banana,
3-Octanone, 6- ’ citrus, grape,
986.5 Methyl-5-hepten-2- blapkcurra_nt, 1807.3 Nootkatone, 2- sour fruit,
boiled fruit, Hexadecanone .
one . spicy, woody,
citrus, earthy, frui
ruity
mushroom,
rubber
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Table 5. Main contributing sensors for separation between feeding groups from the discriminant
analysis on the e-nose data for fresh egg samples

At50 °C At 80 °C
Odor Odor
Sensor Compounds Descriptors Sensor  Compounds Descriptors
Fusel-alcoholic, Fusel-alcoholic,
oily, winey, oily, winey,
602.94 2-Butanol, n- cheese, 602.58 2-Butanol, n- cheese,
Butanol . Butanol
fermented, fruity, fermented,
medicinal fruity, medicinal
Homofuraneol, Caramelized, Fruitv. alue
1140.88 Methyl 3- herbaceous, 493.72  2-Propanone Y, gIUe,
- solvent
pyridinecarboxylate  sweet, tobacco
Blackcurrant,
ethereal, fruity,
Methyl acetate, 2- solvent, burnt,
528.86
Methylpropanal green, malty,
pungent, spicy,
toasted
i Fruity, glue,
494.47 2-Propanone, solvent, ethereal,

Propanal

plastic, pungent

Table 6. Main contributing sensors for batch-feeding group separation from the discriminant
analysis on the e-nose data for fresh egg samples

At 50 °C
Sensor Compounds Odor Descriptors
818.98 2,4,5-Trimethyl-3-oxazoline, 2- Musty
Butanone-3-mercapto
43057 Acetaldehyde Ethereal, fresh, fruity,
pungent
1-Methylnaphthalene, Cinamyl Earthy, green, musty,
1312.65 .
alcohol naphthyl, oily
1400.26 Tetradecane, Diphenyl ether Alkane, fusel, mild
herbaceous, sweet, green
665.16 n-Butanol Cheese, fermented, fruity

Some common sensors were found for the two preheating temperatures which are close to

the 1807, 602, 528, 494 Kovats index. Meanwhile, the sensors that are different were: 1532.40,
1286.33, 986.5, 1140.88, 469.52, 818.98, 430.57, 1312.65, 1400.26, 665.16 Kovats index (50 °C);

and 1414.33 Kovats index for 80 °C.
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The confusion table of the PCA-LDA models is presented in Table 7, which displays the
average values of each of the three technical replicates for both experimental batches at 50 °C and
80 °C preheating temperatures. The average calibration accuracy for fresh eggs belonging to the
feeding groups in batches 1 and 2 at 50 °C was 98.00%, while the cross-validation accuracy was
68.49%. At 80 °C, the calibration accuracy was 82.65%, while the cross-validation accuracy was
62.22%. Nevertheless, the outcomes of the three-fold cross-validation indicate that the
differentiation between the three groups of eggs was not entirely accurate, presenting
misclassification between adjacent groups. Nonetheless, the Control and ZP 5.0% groups
displayed an enhanced tendency towards separation.

Similar to the results from e-tongue, the PCA-LDA models developed from e-nose data
show a large gap between calibration and cross-validation. By analyzing a matrix consisting of
random numbers, LDA results presented in Appendix-A2_ Table 6, the calibration accuracy was
98.77% and cross-validation accuracy was 39.64%. The difference between the CV accuracy,
68.49% (real data in Table 7) and 39.64% (random data in Appendix-A2_ Table 6), demonstrates
that the real data contains relevant information for classification.

Table 7. Confusion table of fresh egg samples from data obtained from e-nose analysis. Groups
according to feeding regime: Control, ZP 2.5%, ZP 5.0%. Results presented for batch 1 and batch
2; and e-nose analysis preheating-temperature: 50 °C and 80 °C. Reproduced with permission from
Aguinaga Béosquez et al. (2021)

Batch 1, 50 °C Batch 2, 50 °C

% Control ZP 2.5% ZP 5.0% % Control ZP 2.5%ZP 5.0%
Calibration Control  100.00 0.00 0.00 Control 96.04 0.00 8.03
98.00% ZP 2.5% 0.00 100.00 0.00 ZP 2.5% 0.00 100.00 0.00

ZP5.0% 0.00 0.00 100.00 ZP5.0% 396 0.00 91.97

% Control ZP 2.5% ZP 5.0% % Control ZP 2.5%ZP 5.0%
Cross- Control  38.83 5.50 0.00 Control 58.73 0.00 23.50
validation ZP 2.5% 27.83 83.33 6.60 ZP25% 1182 77.83 17.67
68.49% ZP5.0% 33.33 11.17 93.40 ZP5.0% 29.45 22.17 58.83
Batch 1, 80 °C Batch 2, 80 °C

% Control ZP 2.5% ZP 5.0% % Control ZP 2.5%ZP 5.0%
Calibration Control  100.00 14.78 0.00 Control 100.00 0.00 14.78
82 65% ZP 2.5% 0.00 74.11 14.78 ZP25% 0.00 81.00 29.67

ZP5.0% 0.00 11.11 85.22 ZP5.0% 0.00 19.00 55.56

% Control ZP 2.5% ZP 5.0% % Control ZP 2.5%ZP 5.0%
Cross- Control  77.83 5.50 0.00 Control 100.00 13.40 33.33
validation ZP 2.5% 16.67 77.83 44.50 ZP25% 0.00 40.00 4450
62.22% ZP5.0% 5.50 16.67 55.50 ZP5.0% 0.00 46.60 22.17
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Figure 15 a and c illustrate the results of the PCA-LDA analysis of the e-nose tests

conducted at a preheating temperature of 50 °C, wherein the findings of the 0 days and 30, 60 days

stored egg samples were evaluated collectively. The data demonstrates a clear distinction between

the O days-fresh samples, the 30 days, and 60 days samples. However, there was a degree of

overlap between the Control, ZP 2.5%, ZP 5.0% treatment groups, in each case.
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Figure 15. Discriminant analysis on the e-nose data for egg samples belonging to the batches:
(a,b) batch 1 (LV: 20 (30), n = 132), (c,d) batch 2 (LV: 4 (30), n = 133). Grouping according to
feeding groups: Control, ZP 2.5%, ZP 5.0%; and storage time: 0, 30, 60 days. PCA—LDA (a,c) and
sensor contribution (b,d). E-nose analysis preheating-temperature: 50 °C. Reproduced with
permission from Aguinaga Bosquez et al. (2021)

Additionally, in Figure 15 b and d, the main contribution sensors are presented, they are linked

to characteristic compounds and related fragrance profile. Complementary, the main contributors

to the separation of eggs especially by storage time are presented in Table 8.
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Table 8. Main contributing sensors for group separation according to storage time from the
discriminant analysis on the e-nose data for fresh egg samples

Batch 1 at 50 °C Batch 2 at 50 °C

Sensor  Compounds D Od_or Sensor Compounds Odor Descriptors
escriptors

Methyl acetate,  Blackcurrant,

528.86 2- ethereal, fruity, | 430.57 Acetaldehyde

Methylpropanal solvent

Ethereal, fresh, fruity,
pungent

Fusel-alcoholic, oily,
Ethereal, fresh, winey (also reported

430.57  Acetaldehyde 602.94 2-Butanol

fruity, pungent with alkane, ethereal,
kerosene)
24,5 Fatty, fruity, winey,
Trimethyl-3-— v onion 2-Hexanol acorn, fishy, grass
818.98  oxazoline, 2- Y, ' | 803.41 ' » 15Ty, grassy,
sulfurous Hexanal green, herbaceous,
Butanone, 3- leafy, tallo
mercapto ' Wy
Other major contributors with lower Methyl Burnt. fruity. areen
loadings: 441.88, 494.47, 803.41, 469.52, | g o acetate,2- L eyr;tgs -
602.94, 665.16, 1400.26, 614.28, 986.50, % Methylpropa Y ﬁoasgte \ picy.
1807.03 and 1286.33. nal

The principal contributing sensors (with varying loading capacities) appear to be linked to the
differentiation between fresh and stored egg samples, with a storage period of either 30 or 60 days.
Nevertheless, a minor contribution to the differentiation between feeding groups is also evident.

A comparative analysis of batches 1 and 2 reveals that all the principal contributing sensors
identified in batch 2, namely 469.52, 430.57, 602.94, 803.41, 528.86 and 602.94, are shared with
batch 1. Conversely, the other significant sensors, namely 818.98, 441.88, 494.47, 665.16,
1400.26, 614.28, 986.50, 1807.03 and 1286.33, are present in batch 1 but absent in batch 2.

The difference in sensor responses between batches may be attributed to the laying day, aging
of the hens, feed intake evolution, or other physiological factors, as batch 1 and batch 2 correspond
to eggs collected on day 30 and day 60 of the experimental period, respectively. Changes in diet
have been shown to affect the gut microbiota, as well as the amino acid, fatty acid, and volatile
compound composition of eggs (Yang et al., 2024). These variations are, in turn, influenced by
the physiological status of the hens and the stage of the laying period, among other factors
(Sekeroglu et al., 2024). Moreover, volatile compounds in fresh eggs undergo progressive changes
and accumulation during storage (Adamiec et al., 2002). Consequently, differences between
batches collected at different time points may have influenced the initial volatile composition and
its evolution during storage, ultimately resulting in slightly different sensor responses and volatile

profiles.
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The significance of acetaldehyde, methyl acetate, and 2-methylpropanal as volatile compounds
in eggs is evident, in a manner comparable to that depicted in Figure 14. Volatile compounds,
including hexanal, 2,4,5-trimethyl-3-oxazoline and 2-butanone, 3-mercapto, were found with
greater likelihood to be associated with storage conditions. The concentration of volatile
compounds in fresh eggs undergoes a process of change and increase during the storage period
(Adamiec et al., 2002). The egg yolks volatile components are particularly prone to alteration,
with esters, alkenes, alcohols, and nitrogenous compounds being the most susceptible (Wang et
al., 2014). Yanagisawa et al. (2010), as cited in Yimenu et al., (2017) reported an increase of
hexanal in yolk during storage via the identification of volatile compounds. In addition, the
concentration of other compounds, such as dimethyl sulfide, dimethyl disulfide, dimethyl
trisulfide, methyl thioacetate, methanol, ethanol, 1-propanol, acetone, 2-butanone, and ethyl
acetate, also undergoes changes during storage.

A similar outcome is observed in the PCA-LDA analysis conducted on samples heated to
80 °C (Figure 16 a and c), where complete separation between days of storage is evident. However,

overlap between feeding groups is observed.
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Figure 16. Discriminant analysis on the e-nose data for egg samples belonging to the batches:
(a,b) batch 1 (LV: 18 (30), n = 134), (c,d) batch 2 (LV: 11 (30), n = 130). Grouping according to
feeding groups: Control, ZP 2.5%, ZP 5.0%; and storage time: 0, 30, 60 days. PCAL-DA (a,c) and
sensor contribution (b,d). E-nose analysis preheating-temperature: 80 °C. Reproduced with
permission from Aguinaga Bosquez et al. (2021)

Additionally, in Figure 16 b, the main contribution sensors are presented (which are linked
to fragrance profile-characteristic compounds). Complementary, the main contributors to the

separation of eggs, especially by storage time, are presented in Table 9.
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Table 9. Main contributing sensors for group separation according to storage time from the
discriminant analysis on the e-nose data for fresh egg samples

Batch 1 at 80 °C

Batch 2 at 80 °C

Sensor  Compounds

Odor Descriptors

Odor

Sensor Compounds Descriptors

Linalyl
1414.3 butanoate, (E)-
[-damascone

429.9  Acetaldehyde

602.58 2-Butanol

Methyl acetate,
528.17 2-
Methylpropanal

Floral, pear,
sweet, apple

Ethereal, fresh,
fruity, pungent

Fusel-alcoholic,
oily, winey

Blackcurrant,
ethereal, fruity,
solvent, burnt,

green, malty,
pungent, spicy,

toasted

Other major contributors with lower
loadings: 493.72, 803.46, 660.89, 468.39,
818.81, 1807.3, 680.81, 1533.21, 1000.93,

613.86, and 1691.6.

Fatty, fruity,
winey, solvent,
2-Hexanol, acorn, fishy,
Hexanal grassy, green,
herbaceous,

leafy, tallowy

Ethereal, fresh,
fruity, pungent

803.46

429.9 Acetaldehyde

Almond, cocoa,
2-Methylbutanal green, malty,
strong burnt

468.39 /
660.89

Fruity, mango,
spicy, wood,
coconut, creamy,
fatty, sweet,
waxy

Cadina-1,4-diene,

1533.21 Methyldodecanoate

Blackcurrant,
ethereal, fruity,
Methyl acetate, 2- solvent, burnt,
Methylpropanal green, malty,
pungent, spicy,
toasted
Other major contributors with lower loadings:
602.58, 493.72, 1286.41, 1807.3

528.17

Common sensors for both batch 1 and batch 2 include 429.9, 602.58, 803.46, 468.39, 660.89,
1807.3, 1533.21, and 493.72. In contrast, sensors 818.81, 680.81, 1000.93, 613.86, and 1691.6
were observed exclusively in the first batch, while sensors 528.17 and 1286.41 were only detected

in the second batch.

The sensors contribution is primarily associated with the differentiation between fresh and stored

egg samples. Nevertheless, a minor contribution to the differentiation between feeding groups was

also observed. This is analogous to the analysis of samples conducted at a preheating temperature

of 50 °C, as observed in Figure 15.

A summary list of the principal sensors that contribute to the detection of egg volatile

compounds, as evidenced by the e-nose data analysis is presented in Appendix-A2_Table 9. In



Table 10, important egg volatile compounds are presented, which have been identified in this study
and previously reported by several researchers (Umano et al., 1990; Matiella and Hsieh, 1991,
Cherian, Goeger and Ahn, 2002; Yimenu, Kim and Kim, 2017; Xiang et al., 2019):

Table 10. Relevant sensors related to volatile compounds identified in eggs analysis studies

Sensor Compounds Odor Descriptors
429.9 /1 430.57 Acetaldehyde Ethereal, fresh, fruity, pungent
528.17 /1 528.86 Methyl acetate, 2- Blackcurrant, ethereal, fruity, solvent
Methylpropanal
602.58 2-Butanol Fusel-alcoholic, oily, winey

2,4,5-Trimethyl-3-oxazoline,

818.98 2-Butanone, 3-mercapto Musty, onion, sulfurous
1807.03 Nootkatone, 2-Hexadecanone Banana, citrus, grape, sour fruit, spicy,
woody
803.41/803.46 2-Hexanol, Hexanal Fatty, fruity, winey
1414.33 Linalyl butanoate, (E)-p- Floral, pear, sweet
damascone
660.89 2-Methylbutanal Almond, cocoa, green, malty, strong

burnt

A number of studies have identified aldehydes as a significant volatile compound present in
eggs. The presence of these compounds has been documented in a number of foodstuffs, including
scrambled eggs (Matiella & Hsieh 1991) and cooked eggs (Umano et al., 1990). In addition,
volatile aldehydes are present in the greatest quantity in cooked egg yolks, with a significantly
lower concentration observed in the case of egg whites (Umano et al., 1990). In their investigation,
the authors identified the principal aldehyde present in egg yolk and whole egg volatiles as 2-
methylpropanal. The results of this research also demonstrated a significant prevalence of
acetaldehyde, methyl acetate, and 2-methylpropanal, which is consistent with the findings of other
researchers who have identified aldehydes as volatile flavor components of eggs (Macleod and
Cavea, 1975; Cherian, Goeger and Ahn, 2002). In addition, other compounds, such as ketones and
2-propanone (acetone), have been identified in whole eggs and egg whites. Furthermore, this
indicates a greater concentration of amino acids in egg white than in egg yolk. Certain amino acids
play a pivotal role in the biosynthesis of 2-methylbutanal. Conversely, the whole egg contains
alcohol in lower quantities. The majority of alcohols are found in the egg yolk and are associated
with lipid oxidation, as evidenced by several studies (Umano et al., 1990; Cherian, Goeger and
Ahn, 2002). In the course of our research, we observed that the alcohols present as volatile
compounds in eggs exhibited the greatest prevalence in the form of 2-butanol (fusel alcoholic,

oily, winey) and 2-hexanol (fatty, fruity, winey).
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5.2. Results of probiotics samples evaluation

The figures and tables presented in this section are based on previously published results
(Aguinaga Bosquez et al., 2022). The microbiological results, presented in Figure 17, demonstrate
the log colony forming unit (CFU) per gram values for each probiotic type according to the water
temperature level. This study aimed to investigate the effect of the water temperature applied by

consumers prior to consumption of probiotic beverages.
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Figure 17. ANOVA and the Tukey HSD post-hoc test of microbiological analysis of probiotics (N,
A and P) samples prepared under three different water temperatures (T1: 25°C, T2: 60°C and T3:
90°C). Differences among the groups represented by letters (a—e) at a significance level of o =

0.05. Reproduced with permission from Aguinaga Bosquez et al. (2022).

At 25°C (water at room temperature), the microbial prevalence is higher compared to the log
CFU/g values at 60 and 90°C. This trend was observed for all the probiotic types (N, A, and P).
Therefore, it is established that probiotic viability is dependent on temperature. Most Lactobacillus
strains, which are mesophilic, are able to survive at temperatures below 50 °C. In case of
thermophilic strains, can grow at temperatures above 50°C (Prasad, Mcjarrow and Gopal, 2003;
Desmond et al., 2004; Suokko et al., 2005; Corcoran et al., 2008; Bove et al., 2013).

Probiotic N showed the greatest discrepancy in the microbiological count, exhibiting
initially 9.1 log CFU/g at 25 °C. Concomitantly, the value was reduced to 6.0 log CFU/g and 4.5
log CFU/g at higher temperatures of 60 °C and 90 °C, respectively. Probiotics A and P counts
exhibited differential responses to temperature, though the observed differences were less
pronounced than those observed for probiotic N. The log CFU/g for probiotic A was 8.7 at 25 °C,
8.1at60 °C and 7.5 at 90 °C. Meanwhile, the values were 8.6 at 25 °C, 7.7 at 60 °C and 5.9 at 90
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°C, for probiotic P. In general, probiotic A exhibited the greatest thermal stability, followed by
probiotic P and lastly by probiotic N.

By applying heated water to the probiotics, at 60 and 90°C, and leaving to cool to a
temperature of approximately 25°C (room temperature); the results indicated a 3-log reduction in
probiotic N, and a 1-log reduction in probiotic A and probiotic P at 60°C. In a comparative study,
Franz and Holy (1996) evaluated the heat resistance of three meat spoilage lactic acid bacteria in
vitro. Their findings demonstrated that at 60°C, the D-values (time for 90% microbial reduction)
ranged from 15 to 40 seconds, indicating a 1-log CFU/g reduction. Conversely, as previously
observed by Teoh et al. (2011), a study on probiotics containing L. acidophilus and L. acidophilus
and B. pseudocatenulatum, subjected to a 60°C constant temperature for 30 minutes, demonstrated
a reduction in probiotic viability from 9 to 4 log CFU/g. The outcome suggests that the
methodology employed in this study results in a reduction in viability to a lesser degree than the
conventional method. However, this approach offers a more realistic representation from the

consumer perspective, particularly when higher temperatures than the recommended are applied.

5.2.1. Near infrared spectra of probiotic samples

Figure 18 illustrates the NIR spectra of probiotic samples, presented in different colours
corresponding to the temperature levels (in the 950-1630 nm). A discernible trend emerges within
the spectral profiles, distinguished according to temperature especially from 950 to 1400 nm and
1500 t01630 nm. However, overlapping is noted between consecutive temperatures, it was found
to be entirely distinction between T1 (25°C) and T3 (90°C). In addition, the NIR spectra were
coloured from one side according to the probiotic types N, A, P and from other side according to
the concentration of the probiotics for drinks preparation (not shown), demonstrating that there
were higher levels of spectra overlapping, which necessitated the application of further statistical

analysis and data treatment to reveal clear trends.
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Figure 18. Near infrared raw spectra of probiotic samples analyzed according to varying
temperatures (T1: 25 °C; T2: 60 °C; T3: 90 °C). Wavelength range 950-1630 nm. Reproduced with

permission from Aguinaga Bosquez et al. (2022).

5.2.2. Classification of probiotic samples

Figure 19 presents the results of the PCA-LDA analysis for the differentiation of the three
probiotics (N, A, and P) at 25°C. For this analysis, the entire sample set from the three

concentrations was considered as a unified group.
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Figure 19. Discriminant analysis on the 25°C prepared-probiotic samples, N scans= 237. Arrows
indicate the most important wavelengths for probiotic groups separation. Wavelength range 950-

1630 nm. Reproduced with permission from Aguinaga Bosquez et al.( 2022).

The probiotics exhibited discrimination on roots 1 (94.90%) and 2 (5.10%), resulting in a
clear separation of the sample groups. Probiotics A and P exhibited a closer proximity to each
other in comparison to probiotic N, the latter of which exhibited a clear separation from the other

groups. It was observed that the liquid matrix from the N samples exhibited distinct visual
60



characteristics when compared to the liquid matrices of the other probiotics. Moreover, probiotics
A and P contain a greater number of strains and complementary compounds in common with one
another than probiotic N. The optimal classification model was generated through the application
of the SG 2-17-0 pretreatment. This approach achieved a 100% and 99.18% correct classification
and cross-validation, respectively. Furthermore, at 1376, 1388-1396, and 1576-1590 nm were
found important wavelengths that were most influential in the clustering between groups which
can be associated with the first overtone region 1300 to 1600 nm of NIRS. This region is
characterized by C-H, O-H and N-H intermolecular hydrogen bounds linked to biological aqueous
systems and related to primary constituents of the probiotics: water, protein, lipid, sugar, and
supplementary organic composites (Ozaki, Genkawa and Futami, 2017; Tsenkova et al., 2018;
Muncan and Tsenkova, 2019).

Figure 20 shows the discriminant analysis conducted on a probiotic basis, with each
probiotic subjected to a separate concentration-dependent assessment and selecting the dataset
from the 90 °C (T3) -prepared probiotic beverages which exhibited higher accuracy for
discrimination according to concentration compared to 25 °C (T1) and 60 °C (T2).
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Figure 20. Discriminant analysis on the 90°C prepared-probiotic samples according to
varying concentration. Models for the three probiotic types: (a) probiotic N (n=78), (b) probiotic
A (n=72) and (c) probiotic P (n=75). Wavelength range 950-1630 nm. Reproduced with permission
from Aguinaga Bosquez et al. (2022).

A trend of separation, in all the probiotic-PCA-LDA models, was observed occurring in a
specific order according to the according to the following hierarchy: C1, C2, and C3 (from high
to low concentration). However, misclassification was exhibited between the different
concentrations, with minor overlapping, particularly between consecutive concentrations:C1-C2
and C2-C3.

Complementary, a confusion table of the PCA-LDA models is illustrated in Table 11. For
comparison purposes, the table includes the models belonging to the higher and lower water

temperature.
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Table 11. Discriminant analysis - confusion table of the 25°C and 90°C prepared-probiotic

samples. Groups according to the concentration level. Results presented for probiotic N, A and P.

Reproduced with permission from Aguinaga Bésquez et al. (2022).

T3 (90°C) Probiotic N Probiotic A Probiotic P
Average Calibration (100%) Average Calibration (100%) Average Calibration (100%)
% C1 C2 C3 C1 C2 C3 C1 C2 C3
C1 100 0 0 100 0 0 100 0 0
C2 0 100 0 0 100 0 0 100 0
C3 0 0 100 0 0 100 0 0 100
Average Cross-validation Average Cross-validation Average Cross-validation
(93.52%) (95.06%) (90.12%)
% C1 C2 C3 C1 C2 C3 C1 C2 C3
c1 91.67 11.11 0 96.30 7.41 0 100 11.11 11.11
c2 8.33 88.89 0 3.70 88.89 0 0 81.48 0
C3 0 0 100 0 3.70 100 0 7.41 88.89
T1 (25°C) Probiotic N Probiotic A Probiotic P
Average Calibration (100%) Average Calibration (95.68%) Average Calibration (94.45%)
% Cl Cc2 C3 Cl Cc2 C3 C1l C2 C3
C1 100 0 0 100 5.56 0 96.30 3.70 0
c2 0 100 0 0 88.89 1.85 3.70 92.59 5.56
Cc3 0 0 100 0 5.56 98.15 0 3.70 94.44
Average Cross-validation Average Cross-validation
Average Cross-validation (93.83%) (60.65%) (60.50%)
% C1 Cc2 C3 Cl Cc2 C3 C1 Cc2 C3
Cc1 88.89 7.41 0 70.83 37.04 0 62.96 14.81 22.22
Cc2 11.11 92.59 0 16.67 29.63 18.52 11.11 51.85 11.11
C3 0 0 100 12.50 33.33 81.48 25.93 33.33 66.67

The classification of the 90°C (T3)-probiotic samples according to concentration levels is

displayed in the upper section of the table. The models for each probiotic showed high correct

classification values, with all probiotics approaching 100% correct classification in calibration.

Meanwhile, for cross-validation the accuracy was higher than 90% in all cases, exhibiting in
decrement order: 95.06%, 93.52% and 90.12% for probiotic A, probiotic P and probiotic N,

respectively. C1-C2 and C2-C3 (consecutive concentrations) presented some degree of

misclassification. The most optimal models corresponded to the following spectral pre-treatments:
DeTr and MSC (for probiotic N), SG 2-21-0 and DeTr (for probiotic A), and SG 2-17-0 and SG

2-17-2 (for probiotic P).

Furthermore, the PCA-LDA results for the probiotic samples subjected to 25°C (T1) are

presented in Table 11. However, the models corresponding to probiotic A and probiotic P

demonstrated a higher misclassification rate of the concentration levels at this temperature,

especially for prediction capacity. Probiotic A exhibited a 96.68% and 60.65% calibration and
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cross-validation accuracy, respectively, while probiotic P exhibited a 94.45% and 60.50%

calibration and cross-validation accuracy, respectively.

Figure 21 illustrates the PCA-LDA models corresponding to the probiotic strain, with
discrimination according to the temperature level. Only samples from concentration 1 (C1) were

considered; however, similar results are obtained with other concentrations.
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Figure 21. Discriminant analysis on the concentration C1 prepared-probiotic samples according
to varying temperature. Models for the three probiotic types: (a) probiotic N (n=75), (b) probiotic
A (n=78) and (c) probiotic P (n=72). Wavelength range 1950-1630 nm. Reproduced with

permission from Aguinaga Bosquez et al. (2022).

The classification model that exhibited the highest accuracy of 100% in both calibration
and cross-validation was the one developed for Probiotic A, which employed the SG 2-17-0 and
MSC spectral pretreatment. Similarly, probiotics P and N demonstrated a high degree of accurate
differentiation between groups. Probiotic P exhibited 100% and 92.59% accuracy for classification

and cross-validation, respectively, upon the application of DeTr spectral pretreatment. Meanwhile,

64



probiotic N demonstrated 100% and 94.60% accuracy for calibration and cross-validation,
respectively, following the application of SG 2-13-0 and SG 2-21-1. Consequently, although
greater differentiation of samples based on the temperature of the prepared solutions was observed
for all probiotics, the one that stood out was probiotic A (Figure 21b).

Table 12 presents a confusion table, summarizing the PCA-LDA models for the
classification of probiotic solutions according to the temperature preparation level. It demonstrates
high correct classification for each probiotic, with only minor misclassification (between T1-T2
and T1-T3) observed in the case of probiotic N and (between T1-T2) for probiotic P.

Table 12. Discriminant analysis-confusion table on the concentration C1 prepared-probiotic
samples. Groups according to the temperature level. Results presented for probiotic N, A and P.

Reproduced with permission from Aguinaga Bosquez et al. (2022).

Probiotic N Probiotic A Probiotic P
Average Calibration Average Calibration Average Calibration
(100%) (100%) (100%)

% T1 T2 T3 T1 T2 T3 T1 T2 T3
T1 100 0 0 100 0 0 100 0 0
T2 0 100 0 0 100 0 0 100 0
T3 0 0 100 0 0 100 0 0 100

Average Cross-validation  Average Cross-validation ~ Average Cross-validation

(94.60%) (100%) (92.59%)

% T1 T2 T3 T1 T2 T3 Tl T2 T3
T1 96.30 12.50 0 100 0 0 77.78 0 0
T2 0 87.50 0 0 100 0 22.22 100 0
T3 3.70 0 100 0 0 100 0 0 100

5.2.3. PLSR prediction of probiotic samples viability

A model for predicting CFU counts for all the probiotics (tested in combination according
to the concentration and temperature) is presented in Figure 22a and b. Samples from repetitions
R2 and R3 were selected for model calibration and cross-validation, while repetition R1 was used
for prediction. Additionally, the best model was achieved by applying SG 2-21-0 and SG 2-13-2
pretreatments. The optimal number of components for the model was determined to be seven. The
R?C was 0.87 and RMSEC was 0.54. Meanwhile, the R?CV was 0.68 and RMSECV was 0.84
(Figure 22a). Furthermore, for the prediction of the samples, the R?Pr was 0.82 and RMSEP was
0.64 (Figure 22b). Furthermore, the primary wavelengths contributing to the PLSR model are
illustrated in Figure 6¢. In the 1300-1600 nm wavelength range, a considerable number of
contributing wavelengths and the most significant peaks contributing to the prediction of probiotic
viability are observed. The prepared probiotic solutions are primarily composed of water and a

smaller quantity of organic composites, exhibiting high absorbance in the first overtone region of
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water comprised between 1300 and 1600 nm (Siesler et al., 2002; Ozaki, Genkawa and Futami,
2017; Tsenkova et al., 2018; Muncan and Tsenkova, 2019). In this regard, molecular interactions
such as OH stretching (Maeda and Ozaki, 1995; Workman, 2000; lzutsu et al., 2006; Slavchev et
al., 2015), OH/NH stretching (Wei and Salahub, 1997; Fischer and Tran, 1999; Mizuse and Fujii,
2012; Slavchev et al., 2015) can be associated with specific wavelengths of importance, namely
1458 nm and 1484 nm, respectively. Moreover, In the region of 950-1300 nm, the more prominent
wavelength, related to the free water (S0) combination overtone, is assigned to 1140 nm. In a study
from Slavchev et al. (2015), this characteristic is described as pertaining to the nearest band at
1155 nm.
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Figure 22. Partial least square regression for viability prediction of probiotic samples. (a)
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R1. (c) Calibration coefficients showing important wavelengths for the PLSR model. Wavelength

range 1950-1630 nm. Reproduced with permission from Aguinaga Bosquez et al. (2022).
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5.3. Results of pea microgreens samples evaluation

To study the growth of pea microgreens under different environmental conditions using NIR
spectroscopy, data was first collected on 13 key agronomical and biochemical variables. This
approach allowed for a more comprehensive understanding of how these conditions affect the

plants, both in terms of individual traits and their overall characteristics.

5.3.1. Results of the agronomic-phytochemical evaluation of pea microgreens

Physical characteristics (weight and height)

In Figure 23, a correspondence between plant height and weight can be observed. As the
height of the microgreens increases, their weight also increases, as greater plant development
implies more accumulated biomass.
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Figure 23. Height and Weight of pea microgreens harvested after 7, 11, 14 and 18 days under
different temperatures (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions,
Standard deviation is represented by whiskers (+ SD)
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In general, greater plant growth and weight are evident at higher temperatures. Plants grow
faster and gain weight as temperature increases because the biochemical reactions that regulate
growth, such as photosynthesis and respiration, accelerate with higher temperatures. The enzymes
involved in these processes function more efficiently within an optimal temperature range,

promoting greater cell development, biomass accumulation, and elongation. The height and weight
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of microgreens are important for commercialization. Height influences visual appearance and
attractiveness, while weight is related to yield and biomass quantity. Commercially, a height
between 5 and 10 cm is preferred (Ajdanian, Babaei and Aroiee, 2019; Niroula et al., 2019;
Herndndez-Adasme, Palma-Dias and Escalona, 2023). Plants growth at temperatures of 25 °C,
20 °C, and 15 °C reach over 5 cm in height at days 7, 11, and 18, respectively.

The treatment (25C_00L) reached the highest values of height and weight, measuring
18.55 cm and 0.72 g at day 11, and 20.37 cm and 0.79 g at day 14. In contrast, the treatment
15C_06L recorded the lowest values of height and weight, measuring 2.25 cm and 0.07 g at day
11, and 3.21 cm and 0.09 g at day 14. Light and temperature are essential environmental factors
that shape how plants grow and develop. Interestingly, they often produce similar effects, both
shaded environments and high temperatures can lead to morphological changes such as elongation
of the hypocotyl, petioles, and stems (Perrella et al., 2020).

Notably, plants grown in complete darkness (0OOL) reached greater heights. This can be
explained by the phenomenon of etiolation, a process in which plants grow rapidly in the absence
of light, characterized by long and thin stems, small leaves, and a lack of chlorophyll, giving them
a pale yellow color (Mtodzinska, 2009; Seluzicki, Burko and Chory, 2017) . This exaggerated
growth is due to the action of hormones such as auxin, which promotes stem elongation as an
adaptive response to reach a light source as quickly as possible, allowing the plant to start
photosynthesis and survive (Burko et al., 2022). In the presence of light, different behaviors were
observed depending on the temperature. For 15 °C and 20 °C, plants with an 18-hour photoperiod
(18L) showed greater height compared to 06L and 12L, as the extended light hours allow for more
photosynthesis, resulting in faster growth and higher biomass production (Kay and Phinney, 1956;
Kong and Zheng, 2019). Conversely, at 25 °C, plants with a 6-hour photoperiod (6L) reached
greater heights compared to 12L and 18L. Under high-temperature conditions, a long photoperiod
of 18 hours may subject plants to more thermal stress, increase photorespiration, light damage,
and water loss, all of which can reduce photosynthetic and energetic efficiency. As a result, plants
under a long photoperiod may grow less than those under a short photoperiod of 6 hours, which

are less exposed to these stress factors.
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Chemical characteristics (°Brix, pH, and conductivity)

In Figure 24, °Brix, pH, and conductivity obtained in this study correspond to a
concentration of 0.2 g of plant material per 1 ml of distilled water. The reported results are based
on this ratio, allowing for a consistent comparison of the quality parameters of pea microgreens

juice under the applied growing conditions.
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Figure 24. °Brix, pH, and conductivity of pea microgreens harvested after 7, 11, 14 and 18 days
under different temperature (15, 20 and 25 °C) and photoperiod (00L, O6L, 12L, 18L). Standard
deviation is represented by whiskers (= SD)

°Brix: In the figure, microgreens at 15 °C, the °Brix degrees increase between days 11 and
14, indicating an accumulation of sugars (sucrose) during this growth stage, followed by a decrease
on day 18, probably due to the mobilization of these sugars to form new structures. Sucrose, in
particular, not only provides energy but also regulates processes related to cell expansion and
organ differentiation, this shows the importance of sucrose in the development of plants (Rolland,
Baena-Gonzalez and Sheen, 2006). In the treatments at 20 °C and 25 °C, the °Brix degrees
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decrease between days 7, 11, and 14, suggesting that at these higher temperatures, sugars are being
used more quickly for growth, possibly due to a faster metabolism and higher energy demand. The
variability in the °Brix degrees also suggests that temperatures affect the rate of photosynthesis
and carbohydrate distribution. Lower temperatures seem to favor sugar accumulation, while higher
temperatures promote a rapid use of these resource (Di Bella et al., 2020; Furuyama, Okamoto
and Jishi, 2023).

On the 7" day, at 20 and 25 °C, the highest value (2 °Brix) was observed in plants at 25 °C
with 18 hours of light (25C_18L); while the lowest value (1.27 °Brix) was at 20 °C with 0 hours
of light (20C_00L). At 11 days, at 15, 20, and 25 °C, the highest value (1.67 °Brix) occurred at 25
°C with 18 hours of light (25C_18L), and the lowest value (0.90 °Brix) at 25 °C with 0 hours of
light (25C_00L). At 14 days, at 15, 20, and 25 °C, the highest value (1.90 °Brix) was at 15 °C with
18 hours of light (15C_18L), while the lowest (0.73 °Brix) remained at 25 °C with 0 hours of light
(25C_00L). At 18 days, at 15 °C, the highest value (1.70 °Brix) was observed with 18 hours of
light (15C_18L), and the lowest value (1.33 °Brix) with 0 hours of light (15C_00L). This shows
how temperature and photoperiod influence sugar accumulation, with generally higher values in
plants with 18 hours of light per day and lower values with 0 hours of light. Exposure to 18 hours
of light promotes greater photosynthesis, resulting in increased sugar production. Microgreens that
receive light for more hours have more time to convert solar energy into carbohydrates. In contrast,
fewer hours of light decrease their photosynthetic rate, which lower sugar levels (Seluzicki, Burko
and Chory, 2017). Temperature also affects plant metabolism. At higher temperatures (such as 25
°C), metabolic activity is more intense, enhancing sugar utilization for growth and respiration, the
elevated energy demands often lead to reduced sugar accumulation compared to cooler conditions.
Thus, microgreens with more light and optimal temperatures have better conditions for
photosynthesis, storing sugars, and maintaining vigorous growth. Lack of light drastically reduces
sugar production, and temperature also modulates how these sugars are produced and used
(Thakulla, Dunn and Hu, 2021; Furuyama, Okamoto and Jishi, 2023).

pH: At 15 °C, treatments without light (15C_00OL) or with just 6 hours of light (15C_06L)
maintained a relatively stable pH between days 11 and 14, followed by an increase by day 18. In
contrast, the 12 and 18 hours light treatments (15C_12L and 15C_18L) showed a steady pH until
day 14. Overall, values ranged from 5.5 to 6.5, tending to be slightly higher when more light was
available.

At 20 °C, a different trend appeared. In the no-light and 6 hour light treatments (20C_00L
and 20C_06L), the pH gradually dropped from day 7 to 14, with values between 5 and 6.5. For the
12 hour light condition (20C_12L), pH increases from day 7 to 11, then stabilizes. The 18 hours
light treatment (20C_18L) maintained a steady pH near 5.8.
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At 25°C, all treatments (25C OOL to 25C 18L) followed a similar pattern: pH rose
between days 7 and 11, then dipped slightly by day 14. pH values here ranged from 4.5 to 6.

The behavior of pH in general is more stable and some trends that may appear related to
photoperiod and temperature are not as clear as those visualized in other studied variables. This
might be due to the homeostasis mechanisms in plants that enables the regulation of their internal
pH to ensure the optimal functioning of essential metabolic processes (Zhou, Hao and Yang, 2021;
Li and Yang, 2023).

Conductivity: At 15°C, the treatment without light (15C_0OL) increased in electrical
conductivity (EC) from day 11 to 14, followed by a drop on day 18. Values range between 1.5 and
2.75 mS/cm. For the 6 hours (15C 06L) and 12 hours (15C _12L) light treatments, EC remains
fairly stable through days 11 to 14 and increases by day 18. The 18 hours light treatment
(15C_18L) behaves similarly through days 11 to 14, but decreases by day 18, the values range
between 2.25 and 2.75 mS/cm.

At 20 °C, EC increases from day 7 to day 11 in all treatments, then drops slightly on day
14. The values fall in the 1 to 3 mS/cm range.

At 25 °C, treatments without light (25C 00L) and with 6 hours of light (25C_06L) also
show a rise in EC between days 7 and 11, followed by a decrease. EC values range from 1.5 to
2.75 mS/cm. The 12 hours light treatment (25C _12L) shows a slight decline in EC across the same
period, staying around 2.25 mS/cm. The 18 hours treatment (25C 18L) also shows a decrease, a
bit more pronounced, although values still range between 2.25 and 2.75 mS/cm.

The data overall shows that there is no clear pattern that can be directly linked to harvest
day, light exposure, or temperature. The results are quite variable, and it is hard to tell if any of
these factors are influencing the changes in conductivity. Moreover, to our knowledge, there are

currently no relevant studies addressing this specific aspect in microgreens.

Optical properties (Color Lab components)

In Figure 25, the Lab color coordinates reveal the color's position on the blue-yellow scale
through the b* value, while the L* component indicates luminosity. Negative b* values indicate a
tendency toward blue, while positive values indicate a lean towards yellow. In the L* component,
lighter colors reflect more light (having a higher L* value), while darker colors absorb more light
(having a lower L* value). The graph shows that both the b* and the L* values are lower when the
plant is subjected to a longer photoperiod. The plant grown in light exhibits a lower b* value,
indicating less yellow and more green. This is common in healthy plants, which have high levels

of chlorophyll. Chlorophyll primarily absorbs blue and red light, reflecting green, and thus tends
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to reduce the b* value toward less positive values (Ajdanian, Babaei and Aroiee, 2019; Kyriacou

et al., 2020; Hernandez-Adasme, Palma-Dias and Escalona, 2023).
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Figure 25. Lab color components of pea microgreens harvested after 7, 11, 14 and 18 days under
different temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions.
Standard deviation is represented by whiskers (£ SD)

Temperature affects the growth and development of microgreens, as well as the color
components L* (luminosity) and b* (blue-yellow). Optimal temperatures favor chlorophyll
production. However, at extreme temperatures, whether high or low, the plants can get stressed,
leading to less chlorophyll production and more carotenoids synthesis, which raises L* and b*
values, indicating a higher presence of yellow color. As microgreens grow, chlorophyll levels
often increase, especially when light is available (Kay and Phinney, 1956; Mtodzinska, 2009;
Ajdanian, Babaei and Aroiee, 2019), resulting in a decrease in L* and b* values.
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The results regarding the 14 days of growth show that the highest L* values were obtained
by plants growing at (25C_00L), with the highest values being 54.67 units; for the b* component,
the highest values were 15_00L with 44 units. Meanwhile, the lowest L* values were recorded for
20C _18L and 25C_18L with 23 units; the b* component was 25C_18L with 19.33 units.

The a* (green-red) component differs from the L* and b* components. Treatments without
light (OOL) showed much higher values than those with 6, 12, or 18 hours of light. In the absence
of light, less chlorophyll is produced, which reduces the green tone and allows other pigments,
such as reddish or yellowish ones, to become more visible (Kay and Phinney, 1956; Mtodzinska,

2009; Kong and Zheng, 2019), which is typical in etiolated plants.

Pigments (chlorophyll A, B and total carotene)

140

20 120 1
0
3 100 1 J
< g
Z 60 it
ot ]
© 40 [ i
- 20
(]
0 rall II &- B i Bia
ooL o6L 12L 18L ooL o6L  12L 18L ooL o6L 12L 18L
15°C 20°C 25°C
60
b
?o 50 I
=]
— 40 [
= |
=.30
=
o 20 k .
—_
o 1 ]
= 10 . ' i
@]
0 e I . =l i o
0oL 06L 12L 18L ooL 06L 12L 18L ooL 06L 12L 18L
15°C 20°C 25°C
3
a0
;30 30 I I
= 25
- 1
S 2
5 15 [ : ;
o |
o 10 I
(1]
= 5
o
CH il I il | b
ooL o6L  12L 18L  00L o6L  12L 18L 0oL o6L  12L 18L
15°C 20°C 25°C

m Day 07 Day1ll mDayl1l4 mDayl18

Figure 26. Chlorophyll A, B and total carotene content of pea microgreens harvested after 7, 11,
14 and 18 days under different temperature (15, 20 and 25 °C) and photoperiod (O0L, 06L, 12L,
18L) conditions. Standard deviation is represented by whiskers (= SD)

73



In the analysis of pigments in pea microgreens (Figure 26), the levels of chlorophyll A, B,
and total carotene consistently increase as the photoperiod lengthens. This is due to the relationship
between light and photosynthesis. As light exposure increases, plants have more time to perform
photosynthesis, encouraging the production of photosynthetic pigments (Mtodzinska, 2009;
Ajdanian, Babaei and Aroiee, 2019).

In the present study, the PPFD was 75.7 £ 5 umol/m2/s, and light treatments ranged from
0 to 18 h-d™'. At 25 °C, the highest values of chlorophyll A, chlorophyll B, and total carotenoids
were obtained under the 18 h-d™! photoperiod (18L), reaching approximately 110, 45, and 30 pg/g,
respectively. While 0 h-d™! photoperiod (00L) shows significantly lower levels close to zero.
Comparatively, Liu et al. (2022) evaluated the effect of photoperiod duration (12 to 20 h-d™!) on
Brassica microgreens and reported that a 16 h-d™! photoperiod, combined with PPFD levels of 90
umol-m-s™" for cabbage and 70 pmol-m:s™! for Chinese kale, was optimal for growth. Under
these conditions, cabbage microgreens reached chlorophyll A levels of 77 ug/g, chlorophyll B of
31 pg/g, and carotenoids of 17 pg/g, while Chinese kale microgreens showed chlorophyll A of
68 ng/g, chlorophyll B of 26 ng/g, and carotenoids of 26 pg/g.

Additionally, a progressive increase can be observed in the graph as the cultivation days
increase, especially for the lower temperature treatments, however at higher temperature, the
variability is higher. The rise in chlorophyll levels tends to correlate with the development of more
photosynthetically active tissue, such as leaves. As the leaves expand and increase in area, the
number of chloroplasts containing chlorophyll also increases. This increase allows microgreens to
capture more light and, therefore, enhances their photosynthetic capacity, which is essential for
their development and biomass production. Moreover, the vegetative growth of the plants is
closely linked to greater synthesis of photosynthetic pigments to optimize light absorption
efficiency (Brazaityté et al., 2018; Ajdanian, Babaei and Aroiee, 2019). This results in a noticeable
increase in pigment content from day 11 to 18 at 15 °C, and from day 7 to 11 at temperatures of
20 °C and 25 °C.

Temperature increase can accelerate the metabolism of microgreens, including the
synthesis of pigments such as chlorophyll A, B, and carotene. At higher temperatures within the
optimal range for the plant, the enzymatic activity responsible for producing these pigments
increases, promoting greater photosynthetic efficiency and adaptation to higher energy demand
conditions (Niroula et al., 2019). At 11 days of growth, the highest pigment values correspond to
25C_18L with 118.61, 49.26, and 31.13 ug/g of chlorophyll A, B, and total carotene, respectively.

However, it is important to note that if the temperature exceeds certain limits, it could have
negative effects, such as enzyme denaturation or damage to plant tissues, reducing pigment levels

(Niroula et al., 2019). For example, the results obtained after 14 days of growth show that the
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highest pigment values correspond to 25C_18L with 102.80, 42.14, and 28.01 ug/g of chlorophyll
A, B, and total carotene, respectively, although their levels are lower than on day 11.

Bioactive compounds

In this study, chlorophylls and carotene were analyzed separately under the classification
of pigments due to their specific roles in photosynthesis and their distinct analytical methods.

In the analysis of bioactive compounds (Figure 27), total water-soluble phenolic
compounds (TPC) consistently increase as the photoperiod lengthens, showing a clear difference
between 00L and the light treatments (06L, 12L, and 18L), although the difference among the
latter is less pronounced or variable. A longer photoperiod may stimulate the accumulation of these
phenolics compounds due to increased photosynthetic activity and the need to protect the plant

from oxidative stress caused by light (Faraloni, Di Lorenzo and Bonetti, 2021; Kim et al., 2022).

; i I i . : )
T L " 1
ooL o6L 121 18L ooL o6L 12L 18L ooL o6L 12L 18L

15°C 20°C 25°C

TPC (mg GAE/g )
© r B N N

o
o

7.0
—. 6.0
w' 5.0
3 4.0
g_ 3.0

ol B | |
S| R R R
0.0 I
0oL 06L 12L 18L 0oL 06L 12L 18L 0oL 06L 12L 18L
15°C 20°C 25°C

m Day 07 Day1l mDay14 mDay18

Figure 27. Total water-soluble phenolic compounds (TPC) and Total antioxidant capacity (TAC)
of pea microgreens harvested after 7, 11, 14 and 18 days under different temperatures (15, 20 and
25 °C) and photoperiod (00OL, O6L, 12L, 18L) conditions

Regarding temperature, a higher concentration of total water-soluble phenolic compounds
was observed at the lower temperature of 15 °C compared to 20 °C and 25 °C. The increased
accumulation of phenolic compounds at lower temperatures may be related to the stress imposed
on the plant. Low temperatures often induce moderate stress that activates defense mechanisms in

the plant, including the production of phenolic compounds. These compounds, which have
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antioxidant properties, help protect the plant from oxidative damage that can occur under thermal
stress conditions. At higher temperatures, the plant's metabolism may focus more on growth and
respiration, potentially decreasing the accumulation of phenolics (Kim et al., 2022).

There is a difference in phenolic accumulation linked to temperature and days of growth.
At 15 °C, an increase in total water-soluble phenolic compounds is observed between days 11 and
14, followed by a decrease on day 18. This behavior may relate to a shift in the balance between
synthesis and degradation of phenolics as the plant matures. At 20 °C, the treatment without light
(20C_00L) shows a slight increase in phenolics between days 7 and 14. In the light treatments
(20C_06L, 20C_12L, and 20C_18L), phenolics increase from day 7 to 11 but then decrease by
day 14. This suggests that light initially induces the production of phenolics, but the effect
moderates or even reverses in later stages. At 25 °C, a noticeable decrease in total water-soluble
phenolic compounds is observed between days 7 and 11, with a more pronounced decline by day
14. This pattern may be associated with the plant's growth, where, in the initial days, size and
weight (including total water-soluble phenolic compounds) increase, while by day 14, respiratory
metabolism becomes more pronounced, possibly coupled with sensitivity to high temperatures that
promote increased respiratory metabolism and degradation of phenolics (Di Bella et al., 2020;
Kim et al., 2022). Although the Folin—Ciocalteu method is commonly used to estimate phenolic
content, it should be noted that it can also react with other reducing compounds, which could
slightly influence the accuracy of the measured phenolic levels (Singleton, Orthofer and Lamuela-
Raventos, 1999).

The total antioxidant capacity (TAC) shows similarities to the behavior of total water-
soluble phenolic compounds (TPC). At a temperature of 15 °C, TAC increases as the photoperiod
extends, suggesting that light stimulates the synthesis of compounds with antioxidant activity
(Hernandez-Adasme, Palma-Dias and Escalona, 2023). Furthermore, TAC increases between days
11 and 14 and then decreases by day 18, similar to TPC. This pattern could be related to the plant's
metabolic activity, where the accumulation of antioxidants peaks during an active growth phase
but later decreases due to degradation or consumption of these compounds (Niroula et al., 2019;
Senevirathne, Gama-Arachchige and Karunaratne, 2019). At temperatures of 20 °C and 25 °C,
although TAC behavior is more erratic, some correspondence with TPC is noted, as both exhibit
a decrease between days 11 and 14. This suggests that higher temperatures, along with prolonged
exposure, may affect the stability or synthesis of these antioxidant compounds in later growth
stages (Niroulaetal., 2019). TAC accumulation appears to follow patterns similar to those of TPC,
indicating that both indicators are related and their behavior depends on temperature, photoperiod,

and growth stage.
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In Table 13, a correlation matrix is presented, considering all the variables in the study,
The interpretation of correlation strength was based on the classification of correlation coefficient
values proposed by (Evans, 1995). There is a very strong correlation between photoperiod and
color components L* and b*, pigments; and a strong correlation with °Brix, conductivity, and
TPC. This indicates that longer light exposure may enhance pigment synthesis and sugar
accumulation (Mtodzinska, 2009; Liu et al., 2022; Johnson, Kumar and Thakur, 2024).
Meanwhile, a strong correlation exists between temperature with height, weight, and pH,
highlighting its role in growth and metabolic processes (Kim et al., 2022; Johnson, Kumar and
Thakur, 2024).

In general, pigments show a negative correlation with the L* (lightness) and b* (yellow-
blue axis), which causes microgreens to appear darker and less yellowish as the concentration of
pigments such as chlorophyll A, B, and total carotene increases, resulting in a more intense green
color. This is linked to the fact that chlorophylls strongly absorb blue light (photosynthetic peak
at 440 nm) and red light (photosynthetic peak at 640-670 nm), while reflecting green wavelengths
(500-550 nm), which is why plants appear green to the human eye (Ajdanian, Babaei and Aroiee,
2019).

On the other hand, pigments correlate positively with °Brix, conductivity, and TAC, which
shows that microgreens rich in these pigments also tend to accumulate more sugars and antioxidant
compounds. Additionally, °Brix, pH, conductivity, TPC, and TAC tend to have a negative
correlation with height, weight, and Lab color components, while showing a positive correlation
with pigments.

There is a very strong correlation between height and weight (|R|=0.9), as well as a strong
correlation with °Brix and conductivity. On the other hand, there is a significant correlation
between the color components L*and b*, and the pigments (|R|= between 0.8 and 0.9). °Brix and
conductivity also show a strong correlation with these variables.

There is a strong correlation between conductivity, TPC, and TAC (|R| between 0.5 and
0.7). Additionally, there is a strong negative correlation of both conductivity and TAC with color
components L* and b*, and TAC with height and weight (|R|= 0.5).
°Brix has a very strong correlation (|R|= 0.7) with various variables: height, color L* and b*; and
a strong correlation with chlorophyll A, B, carotene, conductivity, TPC, and TAC. Meanwhile, pH
and color component a* show the lowest correlation with other variables, suggesting they are less

influenced by the studied conditions.
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Table 13. Correlation matrix for measured variables of pea microgreens harvested after 7, 11, 14
and 18 days under different temperatures (15, 20 and 25 °C) and photoperiod (OOL, 06L, 12L, 18L)
conditions

S & T8 .
& LT EFe s S &L & e S

< S
& & @ °

Day 04 00-03 00
Photoperiod 02 05 05 04
Temperature 00 01 00 02 02 0.1 -0.1 -0.2
Plant_height 04 02 04 -02 -0.1 -0.2 -0.3
Plant_weight = 0.4 01 01 01 0.1 -0.1

L* -0.1

a* -0.1 0.5 -0.2 -0.2 -0.3

b* -0.1

Chlorophyll_A 0.2
Chlorophyll_B 0.2

Total_carotene 0.2

Brix 0.0

pH 0.4 02

Conductivity 0.0 0.5

TPC_Avg  |-03 05

TAC_Avg 0.0 04 ! b

Correlation according to the ranges 0-0.1 (no correlation), 0.1-0.3 (low correlation), 0.3-0.5
(moderate correlation), 0.5-0.7 (strong correlation), 0.7-1 (very strong correlation).

-0.2 0.0 -0.2 01
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5.3.2.  Near infrared spectra and PCA analysis of pea microgreen samples

The spectral analysis was performed in harvested pea plants, samples prepared under two
different methods specified in the materials and methods section, named as microgreens fresh-cut
samples scanned in reflectance mode (Figure 28a) and in aqueous microgreens extracts samples
scanned in transmittance mode (Figure 28b). It shows the NIR spectra of pea microgreens
belonging to 7, 11, 14 and 18 days of growing. In both cases the spectra were pretreated with SG
2-45-0 and SNV in the wavelength rage 1150 to 1850 nm. The spectra are colored by treatment
(temperature-photoperiod conditions). At this point, there is no observable trend as most of the
spectra is overlapped for the 25 °C treatments. However, spectra from agqueous microgreens
extracts samples look much more compact compared to spectra from microgreens fresh-cut
samples. In both cases, it is a clear distinction of the first overtone of water with peak around 1450
nm, which is of great importance in biological systems (Tsenkova, 2009; Tsenkova, Kovacs and

Kubota, 2015), aqueous microgreens extracts samples registered higher absorbance values.
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Figure 28. NIRS spectra of pea microgreens (a) fresh-cut samples (n=294) (b) aqueous
microgreens extracts samples (n=288), harvested after 7, 11, 14 and 18 days under different
temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Pretreatments

SG 2-45-0 and SNV. Wavelength 1150 to 1850nm

PCA results for microgreens fresh-cut samples are presented in Figure 29a. In the PCA
plot colored by day, PC1 shows a trend where samples from day 7 and 11 are closer to the axis
compared to those from day 14 and 18. Meanwhile, in PC2 there is more distinction between day
11 which is closer to the axis, compared to days 14 and 18. Next, in the PCA plot colored by
temperature, there is no clear tendency between the three temperatures, showing major

overlapping between them. Moreover, coloring by photoperiod, the most separated group is 00L

79



which is closer to the PC2 axis, meanwhile, there is major overlapping between the other three
photoperiod groups, but some trends are observable where 06L, is closer to PC2 axis and 18L is
the farthest. PC1 and PC2 account for 97.17% and 1.11% of the explained variance.

Similarly, PCA results are observable for aqueous microgreens extracts samples in the
Figure 29b. The PCA plot colored by temperature shows major overlapping, however, some trends
for separation between groups are detected. Furthermore, PCA coloring by photoperiod, the major
distinction between groups for aqueous microgreens extracts samples is in PC2 were higher
photoperiod levels 18L, 12L, 06L are closer to PC1 axis. PC1 and PC2 account for 97.97% and
1.61% of the explained variance, respectively. Important loadings (Figure 30b) are registered in
PC1 at 1412 and 1495 nm.
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Figure 29. PCA analysis of pea microgreens (a) fresh-cut samples (n=294), (b) aqueous
microgreens extracts samples (n=288) harvested after 7, 11, 14 and 18 days under different
temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Coloring by
day, temperature and photoperiod. Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to
1850nm. 95% confidence intervals of the respective groups are represented by Ellipses and x-axis
represents the group centroids

The wavelengths observed in the NIRS analysis of microgreens reflect the chemical

composition of the samples and the impact of their state (fresh-cut samples or aqueous microgreens
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extracts samples) on the absorption of infrared radiation. Blining-Pfaue (2003) mentioned how
absorption bands and peaks are dependent on the food water content.

In the microgreens fresh-cut samples (Figure 30a), the important loadings in PC1, at
1264nm linked to the 1% overtone of O-H bend deformation vibration, at 1448 and 1380 nm, are
associated with O-H bond vibrations in water (Curran, 1989; Slavchev et al., 2015) and C-H bonds
in organic compounds (da Costa Filho, 2009; Workman and Weyer, 2012) like carbohydrates and
proteins, which are common in plant tissues. Moreover, the range between 1450 to 1850 nm which
is highly important in PC1 is also linked to O-H, N-H and C-H valence vibrations (Curran, 1989;
Workman and Weyer, 2012).

In the aqueous microgreens extracts samples (Figure 30b), the wavelengths 1412 nm can
be associated to O-H bend and C-H stretch which relates with water and carbohydrates (Curran,
1989), and 1495 nm are linked to O-H and N-H stretching bonds associate to carbohydrates, lipids
and proteins (Curran, 1989; Slavchev et al., 2015).
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Figure 30. PCA loadings of pea microgreens (a) fresh-cut samples (n=294) (b) aqueous
microgreens extracts samples (n=288) harvested after 7, 11, 14 and 18 days under different
temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Pretreatments
SG 2-45-0 and SNV. Wavelength 1150 to 1850nm

5.3.3. Classification of pea microgreen samples

The PCA-LDA analysis for the discrimination of microgreens fresh-cut samples from day
11 is shown in Figure 31. Day 11 was selected for this analysis because it is a common time point
across all samples grown under different light and temperature conditions. Additionally, it
provides a clearer and more reliable assessment of the microgreens' characteristics, allowing for

better comparison and interpretation of the data.
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Figure 31. Discriminant analysis (PCA-LDA) of NIRS pea microgreens spectra (fresh-cut
samples) harvested after 11 days under different temperature (15, 20 and 25 °C) and photoperiod
(OOL, 06L, 12L, 18L) conditions. Clustering by (a) temperature, (b) photoperiod and (c) treatment
(temperature-photoperiod). Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm. In
(a) and (b), 95% confidence intervals of the respective groups are represented by Ellipses, and x-
axis represents the group centroids. In (c) dots indicate calibration data, and x marks indicate cross-
validation data

When grouped by temperature, a slight overlap of samples corresponding to 15 °C, 20 °C,
and 25 °C is observed (Figure 31a). The average correct recognition rate is 100%, while the
prediction rate is 81.8% (Appendix-A2_Table 10a). Most misclassifications occurred among
samples from the consecutive groups 15 °C-20 °C and 20 °C-25 °C. In the case of grouping by
photoperiod (Figure 31b), a greater overlap is seen among samples belonging to the 06L, 12L, and
18L groups. The average correct recognition rate is 86.66%, while the prediction rate is 52.4%
(Appendix-A2_Table 10b). Most misclassifications occurred between samples from the

consecutive groups 00L-06L, 06L-12L, and 12L-18L. On the other hand, grouping by treatment
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(Figure 31c) shows varying degrees of overlap among the groups, with 25 °C_00L and 15 °C_00L
having the least overlap. Additionally, there is a trend where treatments with a lower photoperiod
tend to be closer to the root 2 axis, and treatments with lower temperatures are closer to the root 1
axis. The average correct recognition rate in this case is 100%, and the prediction rate is 48.39%
(Appendix-A2_Table 10c).

Figure 32 shows the PCA-LDA analysis results for the discrimination of pea aqueous
microgreens extracts samples from day 11.
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Figure 32. Discriminant analysis (PCA-LDA) of NIRS pea spectra (aqueous microgreens extracts
samples) harvested after 11 days under different temperature (15, 20 and 25 °C) and photoperiod
(O0OL, 06L, 12L, 18L) conditions. Clustering by (a) temperature, (b) photoperiod and (¢) treatment
(temperature-photoperiod). Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm. In
(a) and (b), 95% confidence intervals of the respective groups are represented by Ellipses, and x-
axis represents the group centroids. In (c) dots indicate calibration data, and x marks indicate cross-
validation data
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When grouped by temperature, a slight overlap is seen among samples from 15 °C, 20 °C,
and 25 °C (Figure 32a). The average correct recognition rate reaches 98.98%, and the prediction
rate is 85.6% (Appendix-A2_Table 11a), with misclassifications mainly concentrated in the
consecutive groups 15 °C-20 °C and 20 °C-25 °C. In the case of photoperiod (Figure 32b), there
is greater overlap among the 06L, 12L, and 18L groups, with a correct recognition rate of 94.17%
and a prediction rate of 75.83% (Appendix-A2_Table 11b). Misclassifications mainly occurred
between the consecutive groups 06L-12L and 12L-18L. For grouping by treatment (Figure 32c),
a variable level of overlap is observed among the different groups, with treatments corresponding
to lower photoperiod tending to be located near the root 2 axis, while treatments with higher
temperatures are closer to the root 1 axis. The correct recognition rate is 100%, and the prediction
rate is 75.01% (Appendix-A2_Table 11c).

The PCA-LDA analysis reveals that the discrimination of aqueous microgreens extracts
samples from day 11 generally yields higher recognition and prediction accuracies compared to
microgreens fresh-cut samples. Similar results were found when analysis was performed in other
days. Grouping by temperature demonstrates relatively good separation with some overlap, while
grouping by photoperiod shows more considerable overlap, particularly in consecutive groups.
The treatment groupings highlight a consistent pattern where the photoperiod and temperature
significantly influence the positioning of the samples along the root axes. Overall, aqueous
microgreens extracts samples exhibit better discrimination performance, suggesting they provide
more informative spectral features for distinguishing between groups.

Table 14. presents a summary of the discriminant analysis for pea microgreens, comparing

fresh-cut samples and aqueous extracts samples preparations.
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Table 14. Discriminant analysis-summary table for pea microgreens (fresh-cut and aqueous
microgreens extracts samples) harvested after 7, 11, 14, 18 days under different temperature (15,
20 and 25 °C) and photoperiod (O0L, 06L, 12L, 18L) conditions. Analysis according to various
datasets and clustering type selection. Clustering by day, temperature, photoperiod or treatment
(temperature-photoperiod). NIRS pretreatments SG 2-45-0 and SNV. Wavelength 1150-1850nm

Microgreens fresh-cut samples Aqueous microgreens extracts samples

Data C'“Sgsring nog %C %wCcv LV Y| n g wC wcv Lv MY
15C_00L Day 24 3 100 9586 4 7 27 3 8889 8889 2 8
15C_06L Day - - - - - |18 3 10 100 5 5
15C_12L Day - - - - - - |24 3 9817 888 3 7
15C_18L Day 24 3 100 75.03 7 7 24 3 100 100 3 7
20C_00L Day 24 3 97.25 80.07 3 7 27 3 9633 66.67 4 8
20C_06L Day 24 3 100 6529 7 7 21 3 7432 7039 2 6
20C_12L Day 27 3 9817 63 4 8 24 3 9746 8226 3 7
20C_18L Day 27 3 7961 5556 2 8 27 3 7822 6896 2 8
25C_00L Day 21 3 100 945 6 6 21 3 100 8889 4 6
25C_06L Day 27 3 100 7411 7 8 27 3 100 8145 5 8
25C_12L Day 27 3 8889 69.97 2 8 243 100 100 5 7
25C 18L Day 27 3 100 100 6 8 24 3 100 89.71 4 7

Day 7 Treatment 69 8 100 56.41 20 20 57 8 100 87.72 16 16
Day 11 Treatment 99 12 100 4839 22 29 93 12 100 7457 27 27
Day 14 Treatment 93 12 100 59.72 20 27 102 12 98.15 56.47 18 30

Day 18  Treatment 33 4 9581 5318 6 10 36 4 100 6356 9 11
Day 11 Temperature | 99 3 100 8179 22 32 93 3 9898 8558 20 30
Day 14  Temperature | 93 3 100 7576 28 30 [102 3 9676 7778 21 33
Day7  Photoperiod | 69 4 100 6549 18 22 57 4 100 8545 17 18
Day 11  Photoperiod | 99 4 86.66 524 13 32 93 4 9417 7583 16 30
Day 14  Photoperiod | 93 4 8748 6783 11 30 | 102 4 959 646 25 33
Day 18  Photoperiod | 33 4 9581 5318 6 10 36 4 100 6356 9 11
All Day 294 4 7585 6695 38 97 | 288 4 9658 9559 20 95
All Treatment | 294 12 9041 5854 27 94 | 288 12 902 6834 27 92
All Temperature | 294 3 9368 7574 43 97 | 288 3 93.08 8887 24 95
All Photoperiod | 294 4 895 7105 35 97 | 288 4 81.28 66.89 26 95

LV is the number of latent variables regarding each PCA-LDA model. Calculated LV max. =
(n-g/3) which surpassing may cause overfitting (Defernez and Kemsley, 1997).

Classification by day: In the first part of Table 14, samples from each treatment were
classified based on the day of harvesting. The results indicate that aqueous microgreens extracts
samples achieved higher classification accuracy, with cross-validation percentages ranging from
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66.67% to 100%. In contrast, microgreens fresh-cut samples showed lower accuracies, ranging
from 55.56% to 100%. Notably, the classification models for aqueous microgreens extracts
samples consistently outperformed those for microgreens fresh-cut samples for almost all
treatments, except for 15C_00L, 20C_00L, and 25C_0OOL.

Clustering by treatment, temperature, or photoperiod: In the second part of the Table 14,
samples collected on a specific day were grouped by treatment, temperature, or photoperiod. For
clustering by treatment, microgreens fresh-cut samples showed cross-validation (CV)
classification accuracies between 48.39% and 59.72%, while aqueous microgreens extracts ranged
from 56.47% to 87.72%. For temperature clustering at day 11 and day 14, microgreens fresh-cut
samples achieved CV classification accuracies of 81.79% and 75.76%, respectively. For aqueous
microgreens extracts samples, the accuracy was slightly higher, at 85.58% and 77.78%.
Photoperiod clustering yielded CV classification accuracies between 52.4% and 67.83% for
microgreens fresh-cut samples, and between 63.56% and 85.45% for aqueous microgreens extracts
samples.

Global sample selection: In the final section of Table 14, the complete dataset,
encompassing all pea microgreen samples, is presented. Under this "global” sample selection, for
microgreens fresh-cut samples, CV classification accuracies were 66.95%, 58.54%, 75.74%, and
71.05% for clustering based on day, treatment, temperature, and photoperiod, respectively. For
aqueous microgreens extracts samples, the corresponding accuracies were 95.59%, 68.34%,
88.87%, and 66.89%, respectively.

Overall, these findings highlight that agueous microgreens extracts samples generally
achieve significantly higher classification accuracy compared to microgreens fresh-cut samples,
especially when categorized by treatment or temperature. This suggests that the characteristics
captured in the liquid phase, such as differences in absorbance patterns related to soluble
compounds, water content, or overall matrix homogeneity, are more distinctive, making it easier
to differentiate among treatments, temperatures, and other variables. The consistency in better
performance of aqueous microgreens extracts samples, except in a few cases, demonstrates their
robustness and potential suitability for discriminant analysis in assessing the impact of different
growing conditions on pea microgreens. This superior performance might be due to better
homogenization or greater sensitivity to compositional changes that occur under different
treatments.

Although some models appear promising, in certain cases there is a noticeable gap between
calibration and cross-validation results, which may indicate overfitting. The various classification
models presented in Table 14 show CV values ranging from 48.39% to 100% for microgreens

fresh-cut samples, and from 56.47% to 100% for aqueous microgreens extracts samples.
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In comparison, when performing the analysis using simulated data composed of random
numbers (Appendix-A2_Table 12), the CV values range from 9.5% to 50%. This suggests that the
models are capturing meaningful patterns from the real data, which contain relevant information

for classification.

5.3.4. PLSR prediction of agronomic and phytochemical parameters

In Table 15, the PLSR summary table for microgreens fresh-cut samples and aqueous
microgreens extracts samples includes the results of 13 analyzed variables, which relate to
different characteristics: physical characteristics (height and weight), optical properties (Lab color
components), pigments (chlorophyll A, B, and total carotene), chemical characteristics (°Brix, pH,
and conductivity), and bioactive compounds (TAC and TPC).

Table 15. Partial least square regression -summary table of NIRS pea microgreens spectra (fresh-
cut and aqueous microgreens extracts samples) harvested after 7, 11, 14, 18 days under different
temperature (15, 20 and 25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Pretreatments
SG 2-45-0 and SNV. Wavelength 1150 to 1850nm.

Regression

variable Sample n LV RMSEC R?C RMSECV R?CV RMSEP R?%r
Weight fresh-cut 291 8 0.076 0.84 0.10 0.74 0.08 0.78
Weight extract 288 9 0.08 0.81 0.11 0.70 0.10 0.65
Height fresh-cut 291 9 1.63 0.84 1.84 0.79 2.01 0.70
Height extract 279 9 2.05 0.78 2.88 0.56 2.19 0.64
L* fresh-cut 294 10 5.26 0.81 7.13 0.64 6.48 0.73
L* extract 282 8 5.22 0.83 5.75 0.79 5.99 0.71
a* fresh-cut 294 1 2.30 0.13 2.35 0.091 3.01 0.02
a* extract 288 7 2.02 0.47 2.43 0.23 2.44 0.23
b* fresh-cut 285 10 491 0.80 6.11 0.69 6.89 0.70
b* extract 279 7 5.72 0.77 6.60 0.70 6.69 0.65
Chlorophyll A fresh-cut 291 8 18.53 0.76 21.36 0.69 20.77 0.71
Chlorophyll A extract 288 8 17.63 0.78 21.00 0.69 21.52 0.68
Chlorophyll B fresh-cut 291 8 7.55 0.76 8.56 0.69 9.66 0.62
Chlorophyll B extract 288 8 7.75 0.74 9.36 0.63 9.25 0.65
Total fresh-cut
Carotene 294 8 4.62 0.76 5.65 0.64 4.83 0.73
Total extract 288 8 421 080 561 065 512 0.69
Carotene
Brix fresh-cut 294 10 0.13 0.78 0.17 0.63 0.15 0.70
Brix extract 288 4 0.15 0.72 0.17 0.63 0.17 0.68
pH fresh-cut 294 2 0.49 0.12 0.51 0.03 0.55 —-0.01
pH extract 288 6 0.41 0.31 0.44 0.19 0.47 0.19
Conductivity fresh-cut 294 2 0.45 0.29 0.48 0.19 0.53 —-0.02
Conductivity extract 282 5 0.34 0.58 0.38 0.48 0.40 0.39
TAC fresh-cut 105 5 0.08 0.44 0.09 0.35 - -
TAC extract 99 10 0.04 0.85 0.05 0.73 - -
TPC fresh-cut 105 5 0.15 0.62 0.16 0.56 - -
TPC extract 108 10 0.10 0.82 0.13 0.71 - -

*For all parameters was performed Three-fold cross-validation (by repeat), except for TAC (Total antioxidant
capacity) and TPC (Total water-soluble phenolic compounds) by Leave-One-Out cross-validation.
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Physical characteristics models corresponding to microgreens fresh-cut samples achieved
a prediction coefficient of determination (R2?pr) of 0.78 and 0.70 for height and weight,
respectively. In comparison, aqueous microgreens extracts samples prediction values were a bit
lower with (R2pr) of 0.64 and 0.65 for height and weight, respectively.

Regarding color components, L* and b* models have higher prediction compared to a*
which shows poor performance in both microgreens fresh-cut samples and aqueous microgreens
extracts samples. Fresh-cut samples showing a R?pr of 0.73 for L* and 0.70 for b* had a little
better performance compared to aqueous microgreens extracts samples with 0.71 and 0.65,
respectively. Proportional findings have been reported, where optical properties like L* and b*
tend to be more predictable due to their stronger association with chlorophyll and carotenoid levels
(Lietal., 2017, 2019).

Pigments models were consistent with prediction values slightly higher for chlorophyl A
and total carotene, compared to chlorophyl B. The R2pr values for chlorophyl A, B and total
carotene were 0.71, 0.62, 0.73 for microgreens fresh-cut samples. Meanwhile, for aqueous
microgreens extracts samples R?pr values corresponded to 0.68, 0.65, and 0.69, respectively.

PLSR models for °Brix showed close predictive values for microgreens fresh-cut samples
and aqueous microgreens extracts samples with R2pr of 0.70 and 0.68, respectively. In the case of
pH and conductivity, the models have poor performance for both fresh-cut and aqueous
microgreens extracts samples.

For TAC and TPC, the models were much more accurate for aqueous microgreens extracts
samples than microgreens fresh-cut samples. For agueous microgreens extracts samples, the R2CV
for TAC was 0.73 and for TPC was 0.71, conversely, for microgreens fresh-cut samples it was
0.35 and 0.56 for TAC and TPC, respectively.

Garcia-Garcia et al. (2022) predicted different parameters in pea pods using NIRS
reflectance (400 to 2500 nm) achieving coefficients of determination between 0.50 to 0.88,
specifically reporting R2CV for °Brix (0.68), TPC (0.86), and color parameters (chroma = 0.81
and hue angle=0.71), more over pH having the lowest prediction capacity compared with other
parameters, these tendencies where also found in this study.

The poor predictive performance for pH and conductivity may be explained by the absence
of clear or consistent trends in these variables across the different light and temperature treatments.
Unlike other parameters such as pigments or bioactive compounds, which exhibited structured
variations in response to the experimental conditions and were more effectively captured by NIRS,
pH and conductivity showed erratic or minimal variation. This limitation may also be due to the
narrow range or lack of structured variation in pH and conductivity values. When the target

variable does not exhibit sufficient variability or a defined trend, the PLSR model lacks the
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necessary information to establish meaningful correlations with the spectral data, resulting in low
predictive performance (Wold, Sjostrom and Eriksson, 2001; Shi et al., 2008; de Aradjo Gomes
etal., 2023).

Techniques like VIS-NIR reflectance spectroscopy, paired with chemometric analysis, are
frequently employed for assessing the chemical composition of plant leaves (Li et al., 2017;
Prananto, Minasny and Weaver, 2020; Zahir et al., 2022). However, there has been less research
on utilizing NIR spectroscopy only. Moreover, information on the use of NIRS in microgreens is
limited, partly because their research is more recent compared to other traditional crops. Most
studies focus on mature plant leaves, leaving a gap in research on microgreens, which include both
leaves and stems. This diversity in composition and size can complicate analyses. As microgreens
gain popularity, it is likely that more research will emerge in the future.

In addition to Table 15, Figure 33 shows some representative regressions where certain
trends are noticeable. The figure displays the plots belonging to agqueous microgreens extracts
samples: weight, L* color component and total carotene. However, the tendency is relatable with
microgreens fresh-cut samples as well (not shown). The graphs on the left display calibration and

cross-validation, while the graphs on the right show independent prediction.
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Figure 33. PLSR for (a) weight, (b) L* color component, and (¢) total carotene content of NIRS
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validation. (right) Independent prediction

For weight, the trends are more clearly visualized when color-coded by temperature level

(Figure 33a). It can be observed that at lower temperatures, the samples are distributed closer to
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the axis (with values near zero), whereas at higher temperatures, they are farther from the axis,
with values reaching around 0.8 g/plant. Similar trends were found for height and pH.

For the L* color component, trends are better visualized when color-coded by photoperiod
level (Figure 33b). At higher photoperiods, the samples are distributed closer to the axis (with
values near 20), while at lower photoperiods, they are farther from the axis, with values around
60. Similar trends in distribution by photoperiod were found for a* and b* components.

For variables such as chlorophyll A, chlorophyll B, °Brix, conductivity, TAC, and TPC,
the trend visualized in Figure 33c is opposite than it was for color components (Figure 33b). At
lower photoperiods, the samples are closer to the axis, whereas at higher photoperiods, they are

farther from the axis.

5.3.5. Most important wavelengths for PLSR

The analyses of the height of pea plants for the microgreens fresh-cut samples revealed
important wavelengths around 1196, 1286, 1392, 1417, 1446, 1480, 1508, 1543, 1600, 1704, 1838
nm (Figure 34al). For aqueous microgreens extracts samples, the most prominent wavelengths are
1337, 1368, 1396, 1409, 1433, 1460, 1484, 1530, 1590, 1640, 1685, 1706, 1746, 1793 nm (Figure
34a2). Some relevant wavelengths have been previously reported in foliar analysis (Appendix-
A2 Table 13). The peaks found are associated with O-H, C-H and N-H bounds which are present
in common organic compounds like carbohydrates, lipids proteins, commonly found in plant
tissues (Curran, 1989; Slavchev et al., 2015).
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Figure 34. PLSR calibration coefficients highlighting the most important wavelengths for
predicting physical parameters. Microgreens fresh-cut samples: (al) height (b1) weight. Aqueous
microgreens extracts samples: (a2) height (b2) weight. Pretreatments SG 2-45-0 and SNV.
Wavelength 1150 to 1850nm.

The most prominent wavelengths for weight of the microgreens fresh-cut samples are
found around 1185, 1268, 1378, 1480, 1512, 1704 nm (Figure 34b1). For aqueous microgreens
extracts samples, the most prominent wavelengths are 1342, 1368, 1396, 1408, 1432, 1466, 1484,
1530, 1590, 1640, 1686, 1709, 1746, 1795 nm (Figure 34b2). The similar wavelength profile
between height and weight of pea microgreens can be explained by the fact that both height and
weight are closely related to the same physiological and biochemical characteristics of the plants.
These characteristics, such as water content, carbohydrate composition, and protein levels,
contribute to the growth and biomass accumulation of microgreens (Curran, 1989; Slavchev et al.,
2015; Liu et al., 2022).

Important wavelengths related to pigments: chlorophyll A, B and total carotene are shown
in Figure 35, where major similarities in their profile are found between the three pigments. For
simplification, only the peaks related to chlorophyll A are mentioned (Figure 35a). However, they
are easily reflected in chlorophyll B (Figure 35b) and total carotene (Figure 35c), although small

variations may be found.
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Figure 35. PLSR calibration coefficients highlighting the most important wavelengths for
predicting pigments. Microgreens fresh-cut samples(al) chlorophyll A, (b1) chlorophyll B, (c1)
total carotene. Aqueous microgreens extracts samples: (a2) chlorophyll A, (b2) chlorophyll B, (c2)
total carotene. Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm

For microgreens fresh-cut samples (Figure 35al), the most prominent wavelengths were
1214, 1312, 1366, 1416, 1448, 1496, 1538, 1728, 1840 nm. Regarding aqueous microgreens
extracts samples (Figure 35a2), the most important wavelengths for pigments were around 1206,
1412, 1438, 1460, 1549, 1668, 1694, 1722, 1758, 1801 nm. Some relevant wavelengths have been
previously reported in foliar analysis (Appendix-A2_Table 14) The prominent wavelengths
associated with chlorophyll A, B, and total carotene show a similar spectral profile due to the
shared molecular features of these pigments. C-H and O-H bonds play a significant role in their
absorption patterns, as these bonds are integral to the pigments' hydrocarbon chains and hydroxyl

groups (Curran, 1989; Slavchev et al., 2015). Interestingly, some wavelengths were also shared
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between these pigments and the parameters of height and weight, though in fewer instances. This

overlap could be attributed to the fact that pigments, like chlorophyll and carotene, are closely

linked to plant growth and biomass accumulation. As these compounds are involved in

photosynthesis and overall plant health, their molecular bonds may influence both the

pigmentation and growth-related traits of microgreens.

Important wavelengths related to color components are shown in Figure 36, where major

similitudes in their profile are found between L* and b*. However, major difference is attributed

to the a* component which showed a very low prediction capacity. For simplification, only the

peaks related to L* are mentioned (Figure 36a). However, they are easily exhibited in b* as well

(Figure 36c¢), although minor differences may be found.
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Figure 36. PLSR calibration coefficients highlighting the most important wavelengths for
predicting color components. Microgreens fresh-cut samples: (al) L*, (bl) a*, (c1) b*. Aqueous
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microgreens extracts samples: (a2) L*, (b2) a*, (c2) b*. Pretreatments SG 2-45-0 and SNV.
Wavelength 1150 to 1850nm

For microgreens fresh-cut samples (Figure 36al), the most prominent wavelengths related
to L* color component were 1213, 1304, 1391, 1419, 1509, 1544, 1706, 1743, 1790, 1840 nm. For
aqueous microgreens extracts samples (Figure 36a2), the most prominent wavelengths are 1208,
1410, 1432, 1488, 1668, 1698, 1729, 1756, 1818 nm. Some relevant wavelengths have been
previously reported in foliar analysis (Appendix-A2_Table 15)

The analyses of the PLSR most contributing wavelengths of chemical properties will be

made by separate for each parameter since they have low similitudes between them, which can be
seen in Figure 37.

Coefficient

Coefficient

Coefficient

0.6 -02 00 02 04 06

0.06

0.00 0.02 0.04

0.1¢

0.05

-0.10 -005 0.00

(al) (a2)
f’: g = 10 comps <+ g — 4iomps
. § g
- ~
[~ o~ o~ -y
4 5 g / 3 i E
= | - A N
J [ o £ © - e
g e g #L . i VEY 54/ \|/ &
m = - N £ o AR E § =
- A pfp ey et | I S [ =7 7
il W \-WV \/\U 3 [T - 4
e & B
] v Y =i 8 g 2 T g2 | g
5 - 3 r - \ /
b3 =
, g _ - ? ﬂ
b i |
g v 3 V
b 3 © _| &
T ] T T T T T ! \ T T \ T
1200 1300 1400 1500 1600 1700 1800 1200 1300 1400 1500 1600 1700 1800
wavelengths wavelengths
regr. on: Y_plant_brix N =198 RMSECV: 0.1676, R2CV: 0.6325, bw=25 regr. on: Y_plant_brix N =201  RMSECV: 0.1683, R2CV: 0.6312, bw=25
2 4
E — D cOMPS ® —f cOMpPS
— = a‘
g
81 i 3
<
A ol \ 8 g %
. H 0 % 3 £8
= - o -
g oJ A 5 y
° 5 B 2o ? 8 8 =
T A ® 05 g -8 £
- - = - ~
- 2
= ©
b 7 g 5
o @
g 5 i
T T T T T T T T T T T T T T
1200 1300 1400 1500 1600 1700 1800 1200 1300 1400 1500 1600 1700 1800
wavelengths wavelengths
regr.on:¥_pH N=198 RMSECV: 05138 R2CV: 0.0284, bw=25 regr.on:¥_pH N=201 RMSECV: 04414, R2CV. 0.1873, bw=25
(c1) (c2)
7 ? 2 | — 2 comps o
4 9 -
8
N i i9%
= & MA-p o .
] SRR -
o = =
8 L | H ° e 3
! B8
2 2 gg
- ! 58
3 w | &
2 ] =
T T T T T T T T T T T T
1200 1300 1400 1500 1600 1700 1800 1200 1300 1400 1500 1600 1700 1800
wavelengths wavelengths

regr. on: ¥_Conductivity N =108 RMSECY 04784, R2CV- 01933, bw=25

regr. on: Y_Conductivity N =198 RMSECV. 0.3778, R2CV. 0.481, bw=25

Figure 37. PLSR calibration coefficients highlighting the most important wavelengths for
predicting chemical properties. Microgreens fresh-cut samples: (al) °Brix, (bl) pH, (cl)
Conductivity. Aqueous microgreens extracts samples: (a2) °Brix, (b2) pH, (c2) Conductivity.

Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to 1850nm.
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°Brix of the microgreens fresh-cut samples revealed important wavelengths around 1208,
1292, 1368, 1390, 1417, 1447, 1495, 1541, 1707, 1744, 1840 nm (Figure 37al). For aqueous
microgreens extracts samples, the most prominent wavelengths are 1338, 1394, 1426, 1596, 1640,
1687, 1712, 1746, 1832 nm (Figure 37b1). Some relevant wavelengths have been previously
reported in foliar analysis (Appendix-A2_Table 16). The results of the °Brix analysis for
microgreens show a notable similarity with the models for height, weight, and chlorophyll. The
wavelengths associated with the vibrations of O-H, C-H, and N-H bonds, present in all the models,
suggest that the compounds involved in sugar content (°Brix), such as carbohydrates and water,
also influence plant growth and photosynthesis (Curran, 1989; Liu et al., 2022). This may explain
the shared spectral profile between °Brix, height, weight, and chlorophyll, as these factors are
interrelated in the development and metabolism of the plants.

pH and conductivity which showed low prediction capacity present very different
wavelength profile (Figure 37b Figure 37¢). This suggests that the models do not effectively
capture the variance in pH and conductivity, potentially due to insufficient data correlation.

The analyses of TPC of the microgreens fresh-cut samples revealed important wavelengths
around 1176, 1284, 1428, 1504, 1555, 1651, 1713 nm (Figure 38al). For aqueous microgreens
extracts samples, the most prominent wavelengths are 1328, 1406, 1418, 1436, 1451, 1510, 1528,
1640, 1685, 1709, 1754, 1778, 1824 nm (Figure 38a2). Some relevant wavelengths have been
previously reported in foliar analysis (Appendix-A2_Table 17)
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Figure 38. PLSR calibration coefficients highlighting the most important wavelengths for
predicting bioactive compounds. Microgreens fresh-cut samples: (al) TPC, (bl) TAC. Aqueous
microgreens extracts samples: (a2) TPC, (b2) TAC. Pretreatments SG 2-45-0 and SNV.
Wavelength 1150 to 1850nm

The most contributing wavelengths PLSR plot for TAC, although visually has certain
similitude with TPC, however, it has a different wavelengths profile in some extent. The
microgreens fresh-cut samples revealed important wavelengths around 1184, 1285, 1363, 1397,
1450, 1542, 1712, 1786, 1842 nm (Figure 38b1). For aqueous microgreens extracts samples, the
most prominent wavelengths are 1328, 1342, 1394, 1407, 1445, 1480, 1593, 1640, 1686, 1708,
1748, 1795, 1831 nm (Figure 38b2). For TAC, some relevant wavelengths have been previously
reported in foliar analysis (Appendix-A2_Table 18).
As can be seen in Table 16, for microgreens fresh-cut samples, some wavelengths were found in
common between parameters, meanwhile others were specific. Height shared several wavelengths
with weight including (1480, 1704 nm) °Brix (1417, 1446 nm), and TAC (1397), but differed due
to its unique presence at 1286, 1508, and 1600 nm, not found in other parameters. Weight showed
key bands at 1480 and 1704 which were also present in height, while 1378 and 1512 nm were
more exclusive to weight, differentiating it from pigment or bioactive predictions. Pigments
(chlorophyll A, B and total carotene) showed specific wavelengths like 1496, 1538, and 1728 nm,
especially distinct from height or weight. L* and b* color components shared prominent bands
(1840 nm) with pigments, but differed through 1391, 1509, 1544 and 1743 nm, not present in other
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parameters, making it spectrally distinguishable. °Brix featured showed similar wavelengths with
pigments (1447 ~1448 nm, 1495 ~1496 nm), and L* and b* (1840 nm), but stood out with 1292
and 1541 nm, which were not shared with others. TPC showed the least overlap with others; 1428,
1504, and especially 1555 and 1651 nm were unique, setting it apart. TAC showed unique
wavelengths at 1842, 1450 and 1786, which could highlight TAC specific features.

Table 16. Spectral relationships among microgreens fresh-cut samples parameters

Notable Shared / Unique Features

Parameter Key Wavelengths (nm) _ Wavelengths (nm)
Shared: Weight (1480, 1704), Brix
Height 1196, 1286, 1392, 1417, 1446, 1480, (1417, 1446), TAC (1397); Unique:

1508, 1543, 1600, 1704, 1838 1286, 1508, 1600

Shared: Height (1480, 1704);

Weight 1185, 1268, 1378, 1480, 1512, 1704 Unique: 1378, 1512

Chlorophyll A,
Chlorophyll B,
Total Carotene

1214, 1312, 1366, 1416, 1448, 1496,  Shared: L* (1840); Unique: 1496,
1538, 1728, 1840 1538, 1728

1213, 1304, 1391, 1419, 1509, 1544, Shared: Chlorophyll A (1840);

* *

L* b 1706, 1743, 1790, 1840 Unique: 1391, 1509, 1544, 1743

Brix 1208, 1292, 1368, 1390, 1417, 1447,  Shared: Chlorophyll A (~1447), L*

1495, 1541, 1707, 1744, 1840 (1840); Unique: 1292, 1541

Minimal spectral overlap with other

TPC 176, 1284, 1425, 1904, 1555, 105 variables; Unique: 1428, 1504, 1555,

1651
TAC 1184, 1285, 1363, 1397, 1450, 1542, Shared: Height (1397); Unique:
1712, 1786, 1842 1450, 1786, 1842

Table 17, present common and specific peaks (wavelengths) between parameters in
aqueous microgreens extracts samples. Height had several peaks in common with weight,
including 1368, 1396, 1484, 1530, and 1746 nm. Unique wavelengths include 1337 and 1433 nm.
Weight included exclusive peaks at 1342, 1466, and 1709 nm. Chlorophyll A, B and total carotene
presented common wavelengths with height and weight, at 1460 and 1706-1709 nm. The presence
of 1549, 1694, and 1758 were unique to pigment analysis. In the case of L* and b* color
components peaks in common were found at 1432 nm (for weight), and 1668 nm (for pigments),
meanwhile wavelengths like 1488, 1729, and 1818 nm were more specific to color than agronomic
traits. °Brix shared common wavelengths at 1640 and 1746 nm with height and weight, but
featured unique wavelengths like 1596 and 1832, absent in other traits. TPC and °Brix presented
common wavelength at 1640 nm, but unique phenolic-sensitive bands (for TPC) were found at
436, 1528, 1754, 1778, and 1824 nm. TAC shared peaks in common, at 1328 nm with TPC, 1342
and 1748 nm with weight, but presented unique peaks at 1445, 1593, and 1831 nm.
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Table 17. Spectral relationships among aqueous microgreens extracts samples parameters

Notable Shared / Unique

Parameter Key Wavelengths (nm) =
eatures
1337, 1368, 1396, 1409, 1433, 1460, Shared: Weight (1368, 1396,
Height 1484, 1530, 1590, 1640, 1685, 1706, 1484, 1530, 1746); Unique: 1337,
1746, 1793 1433
1342, 1368, 1396, 1408, 1432, 1466, e
Weight 1484, 1530, 1590, 1640, 1686, 1709, Shm@d'fogg'f;;§“6'1342
1746, 1795 ’
Chlorophyll A, Shared: Height, Weight (1460,

1206, 1412, 1438, 1460, 1549, 1668,

Chlorophyll B, 1694, 1722, 1758, 1801

Total Carotene

1706-1709); Unique: 1549, 1694,
1758

1208, 1410, 1432, 1488, 1668, 1698, Shared: Weight (1432),

L*, b* Chlorophyll A (1668); Unique:
1729, 1756, 1818 1488, 1729, 1818
Brix 1338, 1394, 1426, 1596, 1640, 1687, Shared: Height/Weight (1640,
1712, 1746, 1832 1746); Unique: 1596, 1832
1328, 1406, 1418, 1436, 1451, 1510 . .
' ' ' ' ' ' Shared: Brix (1640); Unique:
TPC 1528, 1640, 168;38,;;109, 1754, 1778, 1436, 1528, 1754, 1778, 1824
1328, 1342, 1394, 1407, 1445, 1480, Shared: TPC (1328), Weight
TAC 1593, 1640, 1686, 1708, 1748, 1795, (1342, 1748); Unique: 1445,
1831 1593, 1831

1.5.6. Wavelength selection for number of latent variables reduction in PLSR

Although some PLSR models exhibited some predictive capacity, as evidenced by R2 values above
0.6 in certain cases, a considerable number of latent variables (LVs) were required to achieve these
results when the spectral range from 1150 to 1850 nm was used. This trend, described in the
previous section, suggests a potential overfitting risk and reduced model interpretability due to
high model complexity. Therefore, for model improvement and reduction of the number of LVs,
a complementary analysis was conducted focusing on the variables with R2 for prediction (R2pr)
greater than 0.6.

By selecting the most influential wavelengths based on the regression coefficients obtained from
PLSR models of both liquid and solid samples, it was expected that the predictive ability would
be maintained or even enhanced while reducing model complexity. However, this approach did
not yield significant improvements in terms of increasing R?pr or reducing the number of LVs in
most cases. Nevertheless, when specific wavelength ranges were selected for the PLSR models
built with microgreens fresh-cut samples, a noticeable reduction in the number of LVs was
achieved for several variables, including weight, height, L*, b* (color components), chlorophyll
A, chlorophyll B, total carotene, and Brix, without substantially compromising the predictive

accuracy. The comparison between models using the full 1150-1850 nm range and those using
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selected wavelength intervals is summarized in Table 18. Meanwhile, a more detailed performance
overview, including RMSE and R? values for calibration, cross-validation, and prediction, is
provided in Appendix A2_Table 19.

Table 18. Comparison of R?pr after LVs number reduction in PLSR models of fresh-cut samples
of pea microgreens

Wavelength :1150-1850 nm | Selected wavelengths for LV reduction
Regression Sample n LV RMSEP Repr | Wavelengths .\, pyicep Repr
variable (nm)

Weight fresh-cut 291 8 0.08 0.78 1185-1770 4 0.1 0.74

Height fresh-cut 291 9 2.01 0.7 1196-1508 5 1.93 0.72

L* fresh-cut 294 10 6.48 0.73 1185-1665 6 7.22 0.62

b* fresh-cut 285 10 6.89 0.7 1185-1665 6 7.16 0.62
1185-1572;

Chlorophyll A fresh-cut 291 8 20.77 0.71 1695-1850 7 19.9 0.74
1185-1572;

Chlorophyll B fresh-cut 291 8 9.66 0.62 1695-1850 7 8.67 0.7
1185-1572;

Total Carotene fresh-cut 294 8 4.83 0.73 1695-1850 7 4.79 0.74

Brix fresh-cut 294 10 0.15 0.7 1185-1570 6 0.16 0.68
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6. CONCLUSIONS AND RECOMMENDATIONS

This research focused on the study of changes induced by stress factors in food materials using
near infrared spectroscopy (NIRS) and other correlative techniques (e-senses). Throughout this
work, three distinct approaches were explored to assess how various factors, such as the use of by-
products in feed, environmental conditions, and the management of probiotics, influence the
quality and characteristics of food. These approaches include evaluating the quality of enriched
eggs through sensory analysis and electronic techniques; NIRS evaluation of probiotic
supplements under different conditions; and assessing the applicability of NIRS in predicting
agronomic and physicochemical properties in microgreens grown under varying photoperiods and

temperatures.

6.1. Evaluation of enriched eggs by human sensory analysis, e-tongue and e-nose

In the sensory evaluation of enriched eggs by a human panel, using ANOVA and Tukey Test,
compared Control, ZP 2.5%, and ZP 5.0% feeding groups across two batches and three egg
presentations (raw, boiled, and fried), most sensory attributes showed no significant differences,
and the panel generally characterized the eggs as fresh. The sensory evaluation of eggs using an
electronic tongue revealed distinct differences between the feeding regimes. Euclidean distance
analysis showed the greatest disparity between the Control and ZP 5.0% groups for both
experimental batches indicating significant differences in organoleptic characteristics. Principal
component analysis demonstrated minimal separation between the three egg groups, though some
differentiation between the Control and ZP groups was observed, especially in PC1. The
discriminant analysis for separation of treatment groups had calibration accuracy of 95.92% for
batch 1 and 100% for batch 2. Cross-validation accuracy was 64.81% for batch 1 and 56% for
batch 2, indicating that while classification was imperfect, differentiation between the Control and
ZP 5.0% groups was more effective. In the e-nose sensory evaluation for eggs stored for 0, 30, and
60 days, the models corresponding to fresh eggs (0 days of storage) showed slightly greater ability
to discriminate between treatment groups compared to models for longer storage times. Upon
preheating the samples to 50 °C and 80 °C, there is clear differentiation between batches 1 and 2.
At 50 °C, accuracy in calibration of 98.00% and cross-validation of 68.49%. At 80 °C, the
accuracy in calibration is 82.65%, and cross-validation 62.22%, with cross-validation results
indicating a tendency towards some separation between feeding groups. The use of the electronic
nose successfully identified key volatile compounds associated with both egg storage and different
feeding treatments. However, the differentiation between feeding groups was less precise
compared to the separation between storage days, which reached complete discrimination between
fresh eggs, 30 days and 60 days storage eggs.
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6.2. Evaluation of probiotic drinks by NIRS

In the evaluation of probiotic supplements under different conditions, the microbiological
analysis of probiotic supplements revealed that the viability of microorganisms is significantly
affected by temperature which highlights the importance of controlling the temperature of water
to which probiotics are exposed to ensure their effectiveness in probiotic drinks. The PCA-LDA
analysis performed on the three probiotics (N, A, and P) at 25°C successfully differentiated the
groups, with a 100% correct classification for calibration and 99.18% cross-validation accuracy.
The optimal pretreatment was SG 2-17-0. Probiotics A and P were more closely related, while
probiotic N showed distinct separation. Discrimination based on concentration showed a clear
separation between concentration levels at 90°C, with slight misclassification between consecutive
concentrations. The models achieved 100% calibration accuracy and over 90% cross-validation
accuracy, with probiotic A (95.06%) having the highest cross-validation accuracy, followed by
probiotic P (93.52%) and probiotic N (90.12%). The optimal pretreatments were DeTr + MSC (for
probiotic N), SG 2-21-0 + DeTr (for probiotic A), and SG 2-17-0 + SG 2-17-2 (for probiotic P).
At lower temperatures, discrimination is more probiotic dependent. NIR spectroscopy combined
with PCA-LDA seems promising for classification of probiotic concentration in solutions.
Temperature-based discrimination of probiotic samples also provided high classification accuracy.
Probiotic A showed the most robust performance, achieving 100% classification and cross-
validation accuracy. Similarly, probiotics P and N demonstrated high classification over 90%, with
slight misclassifications between consecutive temperatures. The optimal pretreatments were de 2-
13-0 + SG 2-21-1 (for probiotic N), SG 2-17-0 + MSC (for probiotic A), and de Tr (for probiotic
P). NIR spectroscopy shows effective for temperature-based differentiation of probiotic solutions.
The best predictive model for CFU counts was achieved using SG 2-21-0 and SG 2-13-2
pretreatments, with a R2Pr of 0.82 and RMSEP of 0.64 Log CFU/qg.

6.3. Evaluation of pea microgreens by NIRS

Pea microgreens were grown under specific conditions of temperature (15, 20 and 25 °C) and
photoperiod (0, 6, 12, 18 hours). Microgreens at 15 °C were grown for 18 days, meanwhile, at 20
and 25 °C were cultivated for 14 days, establishing the time for harvesting at 7, 11, 14, and 18
days. An agronomic overview of the relationship between plant height and weight in pea
microgreens growth shows that in general when the microgreens increase their height also the
weight increases, due to greater biomass accumulation from enhanced photosynthesis and cellular
growth. Higher temperatures promote faster growth and weight gain, this is related to the fact that
under these conditions, biochemical processes like photosynthesis and respiration are accelerated.
Optimal temperature conditions (25 °C, 20 °C, 15 °C) result in significant growth, with the tallest
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and heaviest plants observed at 25 °C. Photoperiod also affects growth, were plants in complete
darkness exhibit etiolation, and directing to exaggerated height. In some cases, extended light
photoperiods at lower temperatures enhance growth; however, at 25 °C, shorter photoperiods may

reduce thermal stress, which as consequence can improve growth efficiency.

The °Brix analysis revealed that at lower temperature (15 °C), sugar content, in specific
sucrose, increased between days 11 and 14 but decreased by day 18, probably due to sucrose
utilization for structural growth. At 20 °C and 25 °C, °Brix values generally declined over the
cultivation period, which can be attributed to faster sucrose consumption due to higher metabolic
demands at elevated temperatures. Microgreens exposed to 18 hours of light consistently had
higher °Brix values, which reflects its importance for photosynthetic activity and sucrose
production, while microgreens grown in darkness exhibited lower values. Temperature and light
duration are important factors that determine sucrose levels in plants. Increased photoperiod and

optimal temperature promote higher sucrose accumulation and microgreens growth.

pH exhibited a more stable behavior, especially on days 11 and 14. The differences for most
of treatments are minimal, with consistent values between 5 and 6. This stability may be attributed
to the plant's homeostatic mechanisms, which tightly regulate internal pH to maintain the proper
functioning of vital metabolic processes. Although there is some variation in the case of some
specific conditions, there is no clear pattern with regard to influence of photoperiod and

temperature.

Electrical conductivity exhibited significant variability among treatments, that ranged between
1.5 and 2.75 mS/cm. The data in general does not reveal a consistent pattern that can be directly
attributed to harvest day, light exposure, or temperature. The results display considerable
variability, making it difficult to determine whether any of these factors are significantly affecting
conductivity changes. However, at temperatures of 20 °C and 25 °C, the treatments demonstrated
certain similar behavior in some cases, with conductivity increasing between days 7 and 11 and
then decreasing on day 14. Conversely, the treatments at 15 °C were the most variable, which may
be attributed to delayed emergency and growth. In the case of pH and electrical conductivity, the
potential trends associated with photoperiod and temperature were less evident compared to other

analyzed variables.

The study of pigments in pea microgreens demonstrates the significant influence of
photoperiod and temperature on the production of chlorophyll A, B, and total carotene. Treatments
with longer photoperiods, such as 18L, favor chlorophyll synthesis, resulting in a vibrant green
color characteristic of healthy plants that maximize their photosynthetic capacity. Furthermore,

increased temperatures within an optimal range stimulate pigment production, contributing to
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greater photosynthetic efficiency. Moreover, the concentration of pigments increases during the
growth phase. However, it is crucial to consider that extreme temperatures and photoperiods can
adversely affect this production, highlighting the need for a balance in cultivation conditions.

Microgreens respond notably to photoperiod in terms of color and development. Treatments
with longer photoperiods, such as 20C_18L and 25C_18L, favor a greater accumulation of
chlorophyll, resulting in darker green plants, indicators of better plant health. These microgreens
absorb blue and red light more effectively and predominantly reflect green, leading to lower values
in the color components L* (luminosity) and b* (blue-yellow). In contrast, treatments without
light, such as 15C_00OL and 25C_0OL, exhibit lighter and yellower colors due to reduced
photosynthetic activity. The lack of light limits chlorophyll production, allowing other pigments,
such as carotene (yellow) and anthocyanins (red), to dominate the color profile, increasing the a*
(green-red) values. In summary, microgreens exposed to more hours of light enhance their
photosynthetic capacity and reduce the presence of reddish and yellow tones, reinforcing their
green and healthy appearance.

The analysis of bioactive compounds in pea microgreens reveals that both photoperiod and
temperature significantly influence the accumulation of total water-soluble phenolic compounds
(TPC) and total antioxidant capacity (TAC), with the effect of temperature being more
pronounced. Lower temperatures, such as 15 °C, favor the accumulation of these compounds
through stress-activated defense mechanisms. Additionally, treatments with longer photoperiods
stimulate the production of phenolic compounds and increased antioxidant capacity, reflecting an
adaptive response to light and oxidative stress. The treatment 15C_18L stands out among the
others, especially on day 14, reaching 2.23 mg GAE/qg for total water-soluble phenolic compounds
and 5.73 umol TE/g for antioxidant capacity. Moreover, there is a complex relationship between
plant growth and the synthesis of these compounds, where environmental conditions impact the
balance between the production and degradation of phenolics throughout the development stages.

As can be noted, the analysis of microgreens' growth is dynamic and multifactorial, with
marked effects arising from the interaction of temperature, photoperiod, and growth stage. Finding
a balance between these factors is crucial to produce microgreens that meet production standards
and quality requirements for consumers. This balance is essential not only for maximizing yield

but also for ensuring that microgreens provide the desired nutritional and sensory qualities.

The spectral analysis of pea microgreens was conducted using fresh-cut samples in reflectance
mode and aqueous microgreens extracts samples in transmittance mode, covering growth periods
of 7,11, 14, and 18 days. The analysis utilized SG 2-45-0 pretreatment and SNV in the wavelength
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range of 1150 to 1850 nm. A prominent feature in both types of samples was the first overtone of
water, peaking around 1450 nm, which is critical in biological systems.

PCA analysis revealed a certain tendency for differentiation between groups according to
harvesting days, temperature and photoperiod. It was more evident according to photoperiod,
although major overlapping existed.

In general, PCA-DA classification models belonging to aqueous microgreens extracts samples
showed better performance than from microgreens fresh-cut samples.

In the classification by harvesting days, the PCA-LDA models for each individual treatment
(consisting of a specific temperature-photoperiod, in total 12 models for microgreens fresh-cut
samples and 12 models for agueous microgreens extracts samples) revealed that aqueous
microgreens extracts samples achieved higher accuracy, with cross-validation percentages
between 66.67% and 100%, while microgreens fresh-cut samples ranged from 55.56% to 100%.
More explicitly, aqueous microgreens extracts samples classification models outperformed
microgreens fresh-cut samples in nearly all treatments, reporting CV between 81.45% to 100% for
treatments from 15 °C and 25 °C, meanwhile for 20 °C, it was between 66.67% and 82.26%.

In the classification of microgreens on a specific day according to photoperiod-temperature
treatment, microgreens fresh-cut samples showed CV classification accuracies between 48.39%
and 59.72%, while aqueous microgreens extracts samples was between 56.47% to 87.72%. The
classification according to temperature showed the higher accuracy at day 11 with CV of 81.79%
and 85.58%, for microgreens fresh-cut samples and aqueous microgreens extracts samples
respectively. Moreover, the best classification according to photoperiod was CV of 67.83% at day
14 for microgreens fresh-cut samples, and CV of 85.45% at day 7 for aqueous microgreens extracts
samples.

In a global classification, comprising all pea microgreen samples, once again, models from
aqueous microgreens extracts samples showed better performance compared to those from
microgreens fresh-cut samples, showing CV classification for clustering according to harvesting
day, treatment, temperature and photoperiod of 95.59, 68.34, 88.87 and 66.89%.

The PLSR results for microgreens fresh-cut samples and aqueous microgreens extracts
samples include 13 analyzed variables related to physical characteristics, optical properties,
pigments, chemical characteristics, and bioactive compounds.

Optical and pigment variables in microgreens fresh-cut samples showed slightly better
results, followed by physical and bioactive characteristics, while pH and conductivity were the
least precise. Moreover, microgreens fresh-cut samples performed slightly better in physical,
optical, and pigment-related variables, while aqueous microgreens extracts samples had superior

performance in TAC and TPC parameters.
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Physical characteristics in microgreens fresh-cut samples had R2pr values of 0.78 for height
and 0.70 for weight, while aqueous microgreens extracts samples showed 0.64 and 0.65,
respectively.

Regarding color components, microgreens fresh-cut samples showed R2pr values of 0.73
for L* and 0.70 for b*, comparable to 0.71 and 0.65 in aqueous microgreens extracts samples.

Pigment models showed consistent values, with R?pr of 0.71, 0.62, and 0.73 for chlorophyl|
A, B, and carotene in microgreens fresh-cut samples, and 0.68, 0.65, and 0.69 in aqueous
microgreens extracts samples.

°Brix had similar values in microgreens fresh-cut samples with R2pr of 0.70 and aqueous
microgreens extracts samples R2pr of 0.68, but pH and conductivity showed low predictive values.

The models for TAC and TPC were more accurate in aqueous microgreens extracts
samples, with R2pr values of 0.73 and 0.71, compared to microgreens fresh-cut samples which
showed low predictive capacity.

Although PLSR models using the full spectral range (1150-1850 nm) showed acceptable
predictive performance (R? > 0.6), they required in some cases many latent variables, which may
cause risk of overfitting. Selecting significant wavelengths ranges reduced model complexity by
decreasing the number of latent variables, especially for fresh-cut microgreens, without notably
affecting predictive accuracy.

Several PLSR models-most important wavelengths presented similar profiles, especially
observed between height, weight, pigments (chlorophyll A, B, and total carotene) and °Brix in pea
microgreens. The close association can be derived by their close association with the same
physiological and biochemical characteristics, such as water content, carbohydrates, and proteins.
These factors contribute to plant growth and biomass accumulation, which are essential for both
height and weight. Pigments like chlorophyll and carotene, involved in photosynthesis, share
absorption patterns due to common C-H and O-H bonds. The overlap of wavelengths between
pigments and growth parameters suggests that the same molecular bonds influencing pigmentation
also affect growth. Additionally, the °Brix analysis showed similarities with height, weight, and
chlorophyll models, as the shared vibrations of O-H, C-H, and N-H bonds indicate that sucrose
content (°Brix), carbohydrates, and water are interconnected with plant growth and
photosynthesis, leading to a unified spectral profile. Weight and height of pea microgreens which
had the most compatible profile revealed important wavelengths around 1196, 1286, 1392, 1417,
1446, 1480, 1508, 1543, 1600, 1704, 1838 nm. Meanwhile, for aqueous microgreens extracts
samples, the most prominent wavelengths were found at 1337, 1368, 1396, 1409, 1433, 1460,
1484, 1530, 1590, 1640, 1685, 1706, 1746, 1793 nm.
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In this research, valuable results were found; however, some limitations were encountered.
In some cases, there was a large gap between calibration and cross-validation accuracies during
the classification of samples, which may indicate a risk of overfitting. Additionally, in the
microgreens experiment, a high number of latent variables (LV) was observed in some cases. To
determine whether, despite these limitations, the models had any classification capacity and were
not merely the result of overfitting, additional models were performed using simulated data. These
models performed poorly compared to those using real data, thus suggesting that the models based

on real data contained important information for classification.

Similarly, some models from the PLSR analysis showed a high number of LV. In these cases, the
number was reduced by selecting specific wavelength ranges, especially in the fresh-cut
microgreens models, thereby reducing the LV without significantly affecting accuracy. Although
different approaches were applied to find the best possible models for classification and prediction,
several models presented modest results. Therefore, for future investigations, it would be
interesting to consider the use of other chemometric approaches such as PLS-DA, ANN, k-NN,
SVM, among others, which might be able to achieve higher classification and parameter prediction

performance in eggs and pea microgreen samples.

Additionally, exploring the applicability of these correlative methods on a larger scale or refining
the models with a larger number of samples would be valuable, considering that in this research
the models were established by analyzing a limited number of samples. Moreover, it would be
interesting to test these correlative techniques by including, in the case of the egg-related
experiments, other types of microelements for egg enrichment that could affect their sensory
characteristics; for probiotics-related experiments to evaluate how temperature and concentration
conditioning factors can affect the viability of other probiotic strains besides LAB; and in the case
of microgreens, by including other species or considering additional environmental stressing

factors.
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7. NEW SCIENTIFIC RESULTS

For the purpose of these new scientific findings, the term benchtop MetriNIR
spectrophotometer refers to the MetriNIR (MetriNIR, Research Development and Service Co.,
Budapest, Hungary), whereas the term benchtop NIR XDS spectrophotometer refers to the NIR
XDS spectrometer (Metrohm, Herisau, Switzerland), with two separate attachable modules: Rapid
Solid Analyzer (RCA) and Rapid Liquid Analyzer (RLA). The term e-tongue refers to the Alpha
Astree potentiometric electronic tongue (Alpha MOS, Toulouse, France) equipped with seven
sensors specifically developed for food application (called by the manufacturer: BB, HA, ZZ, GA
CA, JE, JB), an Ag/AgCl in 3M KClI reference electrode and a 16-position autosampler. E-nose
refers to the Alpha MOS Heracles NEO electronic nose (e-nose), which functions as an ultrafast
gas chromatograph analyzer featuring dual columns (MXT-5 and MXT-1701) and performs

evaluation of odor intensity associated with volatile substances through the Kovats index.

+« New scientific findings focusing on eggs evaluation

Sensory attributes of enriched eggs produced by hens fed with feed with added brewer's
yeast and wet yeast biomass enriched with organic zinc, polyphenols, and vitamins (ZP)
at concentrations of ZP 0% (Control), ZP 2.5%, and ZP 5.0% as feeding regimes were
analyzed. Batch 1 and batch 2 correspond to the eggs collected for evaluation on day 30
and day 60 of the experimental period, respectively.

Human sensory analysis

1) This study shows that eggs enriched with Zincopyeast (ZP) at 2.5% and 5.0% did not
consistently differ in sensory attributes from non-supplemented eggs (control group) across
two production batches in case of boiled (albumin color, yolk color, egg odor, unusual
odor, albumin flavor, unusual taste, aloumin flexibility, and yolk creaminess) and fried
eggs (yolk color, egg odor, sweet aroma, strange odor, egg taste, sweet taste, strange taste,
and texture). While some statistically significant differences were observed between
feeding groups in certain sensory characteristics, these differences were not consistently
replicated between the two batches. Therefore, ZP supplementation at the tested levels does
not appear to alter the overall sensory profile of boiled or fried eggs.

Characterization of eggs by e-tongue

2) The ability of an electronic tongue (e-tongue) to effectively distinguish egg samples based
on feeding regimes with different levels of Zincoppyeast (ZP) supplementation was
proven. ZP 2.5%, and ZP 5% were correctly distinguished from the Control showing a
64.81% accuracy in cross-validation for fresh eggs collected at day 30 of the laying period.

The largest differences were observed between the groups Control and ZP 5.0% samples.
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Characterization of eggs by e-nose

3) The effectiveness of electronic nose (e-nose) to classify enriched eggs according to storage
time was proven. Eggs from 0, 30, and 60 days of storage were correctly classified with
100% accuracy in cross-validation. Moreover, the use of e-nose prove to be valuable
distinguishing fresh eggs samples based on different feeding-(ZP) supplementation
regimens. ZP 2.5%, and ZP 5% were correctly distinguished from the Control with 76.5%
accuracy in cross-validation.

4) The e-nose analysis revealed that specific volatile compounds played a critical role in
distinguishing storage durations. Among these, methyl acetate and 2-methylpropanal
(sensor 528.86), acetaldehyde (469.52 and 430.57), 2,4,5-trimethyl-3-oxazoline and 2-
butanone, 3-mercapto (818.98), as well as 2-hexanol and hexanal (803.41) were the
primary contributors to the observed separations of eggs stored at 0, 30 and 60 days.
Moreover, the major volatile compounds responsible for the separation of the feeding
regimes in fresh eggs included, 2-butanol and n-butanol (602.94), homofuraneol and
methyl 3-pyridinecarboxylate (1140.88), methyl acetate and 2-methylpropanal (528.86),

as well as 2-propanone and propanal (494.47).

« New scientific findings focusing on probiotics evaluation

Commercial probiotics N, A, and P liquids with 3.0 g/125 mL, 2.5 g/125 mL and 2.0 g/125
mL concentrations and 25 °C, 60 °C, and 90 °C water temperature after cooling down
were scanned in the 950-1630 nm range in transflectance mode. PLSR models to predict
probiotic viability (log CFU/g).

Prediction of probiotics viability by NIRS (using Benchtop MetriNIR
spectrophotometer)

5) It was proven that viability of the probiotic samples, influenced by concentration and
temperature stress factors, can be predicted through NIR spectrophotometry coupled with
PLSR modeling. The models achieved a R?Pr of 0.82 and RMSEP of 0.64 Log CFU/qg.

+ New scientific findings focusing on microgreens evaluation

Pea microgreens grown under different environment stress conditions of temperature
(15, 20, 25 °C), and photoperiod (0, 6, 12, 18 hours of light) and harvested at 7, 11 and 14
and 18 days were scanned in two modes: diffuse reflectance for microgreens fresh-cut
samples and in transmission for aqueous microgreens extracts samples (1:5 plant -
distilled water) and analyzed in the 1150-1850 nm range and applied spectral
pretreatment SG (p=2, n=45, m=0) + SNV. Classification PCA-LDA models and partial
least squares regression (PLSR) models were developed to test prediction capacity for 13
agronomical and physicochemical variables.
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Classification of pea microgreens by NIRS (using Benchtop NIR XDS

6)

spectrophotometer)

The near-infrared spectroscopy (NIRS), combined with PCA-LDA analysis, enabled
effective classification of pea microgreens according to harvesting day, temperature,
photoperiod, and combined treatment in both fresh-cut and aqueous extract samples. In
fresh-cut samples, cross-validation accuracy corresponded to 66.95% for harvesting day,
75.74% for temperature, 71.05% for photoperiod, and 58.54% for treatment. In contrast,
aqueous extract samples yielded higher classification rates of 95.59%, 88.87%, 66.89%,
and 68.34% for the same parameters, respectively. These results indicate better class
separability in aqueous extracts, likely due to the homogenized nature of the samples and
enhanced spectral response under transmission mode, reflecting the compositional changes

induced by these environmental stressors.

Prediction of pea microgreens for physical characteristics, pigments and bioactive

compounds by NIRS (using Benchtop NIR XDS spectrophotometer)

7)

8)

The temperature and photoperiod combinations successfully reproduced known growth
patterns in pea microgreens. Under these combined stress conditions, NIRS predicted
height and weight in fresh-cut samples with R2 values of 0.78 and 0.70, respectively.
Aqueous extract samples yielded lower values of 0.64 and 0.65, despite the theoretically
more favorable optical properties of homogeneous solutions in transmission mode, there
might be some structural and morphological characteristics retained in fresh-cut samples
measured in diffuse reflectance mode such as tissue density, stem thickness, and leaf
arrangement that better correlate with physical traits like height and weight. NIRS shows
potential as a non-destructive method for estimating biomass traits under environmental
stress.

It was proven that pea microgreens pigments are influenced by temperature and
photoperiod. 20C_18L and 25C_18L treatments showed higher pigments accumulation,
denoting that photoperiod is the most limiting factor in this regard when OL treatments
presented chlorophyll values close to 0. The PLSR pigments prediction models had R?pr
of 0.71 for chlorophyll A, 0.62 for chlorophyll B and 0.73 for total carotenes in
microgreens fresh-cut samples, comparable to 0.68, 0.65, and 0.69, respectively for
aqueous microgreens extracts samples. These results proves the moderate potential of
NIRS to measure pigments (chlorophyl A, B, total carotenes) of pea microgreens, subjected

to temperature-photoperiod stress factors, in both fresh-cut microgreens samples and
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9)

aqueous microgreens extracts samples.

°Brix evaluation showed that lower temperatures (15 °C) favor sucrose accumulation
compared to higher temperatures (20 °C and 25 °C); furthermore, microgreens with 18
hours of light had higher °Brix values compared to other treatments. The results indicate
that the lower temperature and higher photoperiods in this study promotes °Brix
accumulation in pea microgreens. The PLSR prediction of °Brix for microgreens fresh-cut
samples showed R?pr of 0.70 and for aqueous microgreens extracts samples R?pr of 0.68,
but pH and conductivity had low predictive accuracy (below 0.34) for both (aqueous
microgreens extracts samples and microgreens fresh-cut samples). It is proven that NIRS
provides modest accuracy for prediction of chemical properties of pea microgreens
subjected to temperature-photoperiod stress factors, however it is capable of measuring
°Brix in some extent, in both microgreens fresh-cut samples and aqueous microgreens

extracts samples.

10) In the bioactive compound analysis in pea microgreens, it was proven that lower

temperatures (15 °C) and longer photoperiods enhance phenolic compounds accumulation
and antioxidant capacity, with 15C_18L being the most effective (particularly on day 14).
Moreover, the results show proof of the moderate potential of NIRS for measuring TAC
and TPC of pea microgreens subjected to temperature-photoperiod stress factors,
especially for aqueous microgreens extracts samples. the PLS regression for TAC and TPC
for aqueous microgreens extracts samples achieved R2CV of 0.73 and 0.71 in agueous
microgreens extracts samples, compared to 0.35 and 0.56 in microgreens fresh-cut

samples, respectively.

11) The study proves the effectiveness of Near Infrared Spectroscopy (NIRS) for simultaneous

prediction of correlated agronomic and physicochemical variables in pea microgreens.
Height, weight, pigments (chlorophyll A, B, and total carotene), and °Brix PLSR models
for pea microgreens showed similar spectral profiles. The notable wavelengths for weight
and height, which had a broad spectral profile and can be compared with the other
variables, included important wavelengths at 1196, 1286, 1392, 1417, 1446, 1480, 1508,
1543, 1600, 1704, and 1838 nm in microgreens fresh-cut samples, while the prominent
wavelengths for aqueous microgreens extracts samples were 1337, 1368, 1396, 14009,
1433, 1460, 1484, 1530, 1590, 1640, 1685, 1706, and 1746 nm. These wavelengths,
pinpointed through PLSR models, underline the capability of NIRS to detect shared
spectral markers across diverse variables, advancing its application in quality assessment

and predictive modeling of plant characteristics.
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8. SUMMARY

The quality characteristics of food can be affected by various factors, agronomical conditions,
storage, processing, and consumption habits, which influence important parameters such as
freshness, flavor, texture, and nutritional value of food products. In this context, the aim of this
thesis was to assess the potential of rapid techniques based on correlative methods for detecting
changes in food quality induced by stress factors, such as near infrared spectroscopy (NIRS),
electronic tongue (e-tongue), and electronic nose (e-nose), which offer advantages over
conventional quality evaluation methods. The first aim was to analyze the applicability of the e-
tongue and e-nose to detect potential alterations in the organoleptic properties of eggs produced
by hens fed diets enriched with organic zinc by-product. Furthermore, the capacity of NIRS to
characterize and predict the viability of probiotics drinks subjected to different concentrations and
temperatures conditions will be assessed. Finally, the study analyses the ability of NIRS to
characterize pea microgreens growth under various temperature and photoperiod conditions and
to predict their agronomic and physicochemical properties.

The sensory evaluation of enriched eggs using both human panels and electronic systems (e-
tongue and e-nose) revealed key insights into the effects of different feeding treatments and storage
conditions. Human panel assessments, using ANOVA and Tukey’s test, showed minimal
differences in most sensory attributes across the Control, ZP 2.5%, and ZP 5.0% feeding groups.
The e-tongue analysis highlighted higher differentiation, particularly between the Control and ZP
5.0% groups, in Euclidean distance analysis and LDA analysis, with classification accuracy
reaching 95.92% in batch 1 and 100% in batch 2, while cross-validation accuracy was lower at
64.81% and 56%, respectively. The e-nose analysis allowed for the identification of specific aroma
compounds and their associated sensory descriptors, highlighting variations across different egg
groups in terms of batch, storage duration, and feeding treatments. Models demonstrated high
classification accuracy, with values of 98.00% at 50 °C and 82.65% at 80 °C, though cross-
validation accuracy was more limited at 68.49% and 62.22%, respectively. When analyzing
samples stored for 0, 30, and 60 days, clear distinctions between fresh and stored samples were
observed, although there was an overlap among treatment groups. Despite lower cross-validation
accuracy due to misclassification, especially between consecutive groups. However, greater
differentiation was observed between the Control and ZP 5.0% feeding groups. Although the
supplementation of the hens' feed with the industrial by-product did not produce noticeable
alterations in egg quality detectable by traditional sensory methods, advanced analytical
techniques like e-tongue and e-nose were sensitive enough to detect these subtle variations. This

suggests that while the by-product can be used in the hens' diet without significantly impacting
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sensory attributes, its effects on the eggs can be effectively monitored using precise and advanced
technology such as e-tongue and e-nose.

The microbiological analysis revealed that microorganism viability is significantly impacted
by high temperatures (60 °C and 90 °C) of water at the moment of the preparation of the probiotic
drinks. The PCA-LDA analysis successfully classified probiotics N, A, and P at 25 °C with 100%
classification and 99.18% cross-validation accuracy. Probiotics A and P were more closely related,
while probiotic N showed distinct separation, likely due to differences in strain composition and
matrix structure. Important wavelengths (1376, 1388-1396, and 1576-1590 nm) linked to water,
proteins, lipids, and sugars absorption were identified, demonstrating NIR spectroscopy's efficacy
in qualitative probiotic analysis. For concentration-based discrimination, the highest cross-
validation accuracy was found at higher temperature 90 °C, showing 95.06%, 93.52% and 90.12%
correct classification for probiotic A, probiotic P and probiotic N, respectively. Temperature-based
discrimination also showed high classification accuracy, with probiotic A achieving 100%
classification and cross-validation accuracy, while probiotics P and N exceeded 90%, with minor
misclassification between consecutive temperatures. The best predictive model for CFU counts
resulted in an R2Pr of 0.82 and RMSEP of 0.64 log CFU/g. Key wavelengths, particularly between
1300-1600 nm, were critical for predicting probiotic viability, with significant molecular
interactions related to water and organic compounds, such as OH and NH stretching, especially at
1458 nm, 1484 nm, and 1140 nm.

The growth of pea microgreens is strongly influenced by temperature and photoperiod, as
demonstrated across the analyzed parameters. Microgreens grown at 15 °C, 20 °C, and 25 °C,
under varying light exposure (0, 6, 12, and 18 hours per day), exhibited distinct patterns in height,
weight, pigment concentration, and bioactive compounds. Higher temperatures, particularly at 25
°C, promoted more rapid growth and greater biomass accumulation, while extended photoperiods
were predominantly relevant enhancing photosynthesis, chlorophyll synthesis, and overall plant
health. Conversely, shorter photoperiods and lower temperatures slowed growth, but favored the
accumulation of bioactive compounds, such as phenolics and antioxidants. In particular, the
absence of light caused pale coloration, low pigmentation levels and extreme growth in
microgreens, a result of the etiolation process, where plants tend to elongate excessively as they
search for a light source. The results indicate a complex interplay between environmental
conditions and microgreen development. The NIRS analysis of pea microgreens was performed
using fresh-cut samples in reflectance mode and aqueous extracts samples in transmittance mode.
The analysis incorporated SG2-45-0 and SNV pretreatments across a wavelength range of 1150 to
1850 nm. A significant aspect identified in the spectra of both sample types was the first overtone

of water, which reached a peak around 1450 nm, highlighting its importance in biological systems.
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The PCA-LDA analysis yielded better results for aqueous microgreens extracts samples compared
to microgreens fresh-cut samples. The cross-validation accuracies for classification according to
harvesting day was 95.59%, temperature was 88.87%, photoperiod was 66.89%, and treatment
was 68.34%. Additionally, microgreens classified by specific photoperiod-temperature treatments
also showed higher cross-validation accuracies for aqueous microgreens extracts samples ranging
from 56.47% to 87.72%. In the same manner, temperature-based classification models (CV
between 77.78% and 85.58%) and photoperiod-based classification models (CV between 63.56%
and 85.45%) demonstrated better accuracy for aqueous microgreens extracts samples than
microgreens fresh-cut samples.

On the other hand, the majority of PLSR models showed slightly better accuracy for microgreens
fresh-cut samples measured in reflectance mode than for aqueous microgreens extracts samples
measured in transmittance mode, with some exceptions. Across the pea microgreens variables
(encompassing physical traits, optical properties, pigments, chemical characteristics, and bioactive
compounds), microgreens fresh-cut samples related analysis was slightly better predicting
physical, optical, and pigment variables, while aqueous microgreens extracts samples were
superior in total antioxidant capacity (TAC) and total water-soluble phenolic compounds (TPC).
Analysis in microgreens fresh-cut samples recorded R2pr values of 0.78 for height, 0.70 for weight,
0.73 for L*, 0.70 for b*, 0.71 for chlorophyll A, 0.62 for chlorophyll B, 0.73 for total carotene,
°Brix of 0.70. Meanwhile, analysis in aqueous microgreens extracts samples better predicted TAC
and TPC with R2CV values of 0.73 and 0.71, respectively. pH, conductivity and a* color
component had poor performance in both microgreens fresh-cut samples and aqueous microgreens
extracts samples analysis. The spectral profiles of various PLSR models for pea microgreens were
aligned particularly between weight, height, °Brix and pigments (chlorophyll A, B, and total
carotene), showing how these variables are interconnected and contribute to the growth of

microgreens.
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A2: Supplementary tables

A2 Table 1. Ingredients used in the formulation of experimental diets for laying hens

Ingredient (%0) Control ZP 2.5% ZP 5.0%
Corn 37.00 36.80 35.60
Extracted soybean meal (46% CP) 13.00 10.60 8.30
Corn-DDGS 11.00 11.00 11.00
Wheat 10.00 10.00 10.00
Extracted sunflower meal 7.70 8.00 8.00
Limestone grit 5.00 5.00 5.00
Corn germ meal 5.00 5.00 5.00
Corn feed flour 5.04 4.84 5.85
Limestone 4.32 4.35 4.40
Zincoppyeast - 2.50 5.00
MCP 0.55 0.50 0.44
Soybean oil 0.45 0.48 0.49
Salt 0.32 0.32 0.32
Premix 2 (%) 0.30 0.30 0.30
L-lysine-HCL 0.15 0.14 0.13
DL-methionine 0.07 0.07 0.07
Lupro-Cid 3 0.05 0.05 0.05
Vitafix Plus 0.05 0.05 0.05

Control = 0% Zincoppyeast, ZP 2.5% = 2.5% Zincoppyeast, ZP 5.0% = 5.0% Zincoppyeast. CP =
crude protein, DDGS = distiller’s dried grains with solubles, MCP = monocalcium phosphate. !
SC AGSIRA SRL (Romania). 2 Vitamin A 13,333,330 1U/kg; vitamin D 2500 IU/kg; vitamin E
1000,000 mg/kg; vitamin K 11,333 mg/kg; vitamin B1 866.7 mg/kg; vitamin B2 1070 mg/Kkg;
vitamin B6 1733 mg/kg; folic acid 440 mg/kg; vitamin B12 9.7 mg/kg; biotin 43.3 mg/kg; calcium
iodate 1333 mg/kg; sodium selenite 100 mg/kg; zinc oxide 33,333 mg/kg; iron carbonate 6666
mg/kg; manganese-oxide 33,333 mg/kg; copper sulphate 5333 mg/kg (producer: Agrifirm
Magyarorszag Zrt., Kérnye, Hungary). ® BASF Hungéria Kft. (Budapest, Hungary). 4 Agrifirm
Magyarorszag Zrt. (Kérnye, Hungary).
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A2 Table 2. Nutrient composition and energy values of the experimental diets for laying hens

Chemical Composition (%) Control ZP 2.5% ZP 5.0%
Dry matter 89.00 89.00 89.00
Crude protein 17.00 17.00 17.00
Crude fat 4.20 4.20 4.00
Crude fiber 4.80 4.80 4.80
Crude ash 12.90 12.90 12.90
Starch 34.50 34.50 34.50
Sugar (total) 3.00 3.00 3.00
Total calcium 3.70 3.70 3.70
Total phosphorus 0.52 0.53 0.53
Sodium 0.17 0.17 0.17
SID Lys 0.67 0.67 0.67
SIDM+C 0.57 0.57 0.57
SID Thr 0.50 0.50 0.50
SID Trp 0.14 0.14 0.14
SID Val 0.68 0.68 0.68
AMEnN (MJ/kg) 11.07 11.07 11.07

Control = 0% Zincoppyeast, ZP 2.5% = 2.5% Zincoppyeast, ZP 5.0% = 5.0% Zincoppyeast. SID
Lys = standardized ileal digestible lysine, SID Met + Cys = Standardized ileal digestible
methionine + cysteine, SID Thr = Standardized ileal digestible threonine, SID Trp = Standardized
ileal digestible tryptophan, SID Val = Standardized ileal digestible valine, AMEn = apparent
metabolizable energy corrected to zero nitrogen balance.

A2_Table 3. Microbiological characteristics of eggs across the three dietary feeding groups

Control ZP 2.5% ZP 5.0%

Microbiological parameter Batchl Batch2 Batchl Batch2 Batchl Batch 2
Mesopnlllc microorganism count, <100 10 <100 20 <100 10
CFUg

Enterobacteriaceae, CFU ¢! <10 <10 <10 <10 <10 <10
Escherichia coli, CFU g! <1 <10 <1 <10 <1 <10
Enterococcus spp., CFU g™! <10 <10 <10 <10 <10 <10
Salmonella spp., CFU/25 g Negative Negative Negative Negative Negative Negative

Listeria monocytogenes, CFU/25 g Negative Negative Negative Negative Negative Negative
Coagulase-positive Staphylococcus
spp., CFUg™!
Control = 0% Zincoppyeast, ZP 2.5% = 2.5% Zincoppyeast, ZP 5.0% = 5.0% Zincoppyeast. Batch
1: day 30 (n = 30); batch 2: day 60 (n = 30).

<10 <10 <10 <10 <10 <10
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A2 Table 4. Lipid and protein levels of eggs in the three different dietary feeding groups

Group Average S. dev Stat. diff.*
Lipid content (%) Control 9.48 0.04 A

ZP 2.5% 9.42 0.06 AB

ZP 5.0% 9.30 0.13 B
Protein content (%) Control 12.67 0.22 A

ZP 2.5% 13.49 0.34 B

ZP 5.0% 13.35 0.38 B

* Significant difference between means at p < 0.05. Letters denote significant differences among
the groups based on the one-way analysis of variance and Tukey HSD post hoc test analysis at p
< 0.05.

A2 Table 5. Confusion table of Random numbers test classification for e-tongue analysis. Groups
according to feeding regime: Control, ZP 2.5%, ZP 5.0%

Random numbers test

Average % Control  ZP25%  ZP5.0%
Accuracies

Calibration Control 77.20 12.79 10.01
e, ZP 2.5% 10.59 79.28 6.25
ZP 5.0% 12.21 7.92 83.74

% Control ZP 2.5% ZP 5.0%
Crosevalidation Control 19.73 16.97 4541
peyiaiio ZP 2.5% 26.84 4763 32.09
7P 5.0% 53.43 35.40 22.50

A2 Table 6. Confusion table of Random numbers test classification for e-nose analysis. Groups
according to feeding regime: Control, ZP 2.5%, ZP 5.0%

Random numbers test

Average

. % Control ZP 2.5% ZP 5.0%
Accuracies
Calibration Control 100 3.67 0
98.77% ZP 2.5% 0 96.33 0
ZP 5.0% 0 0 100
% Control ZP 2.5% ZP 5.0%
Cross-validation Control 27.83 33.33 20
39.64% ZP 2.5% 33.33 44.5 33.4
ZP 5.0% 38.83 22.17 46.6
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A2 Table 7. Labels specifications of probiotic powders

Probiotic Product CFU Bacterial
(per dose)* Strains™
P 7.5%10M9 (3 Bifidobacterium bifidus W23, Bifidobacterium lactis W51,
g) Bifidobacterium lactis W52, Lactobacillus acidophilus \W22,

Lacticaseibacillus casei W56, Lacticaseibacillus paracasei W20,
Lactiplantibacillus plantarum W62, Ligilactobacillus salivarius
W24, Lactococcus lactis W19

A 3x10M9(39) Bifidobacterium lactis W51, Enterococcus faecium \W54,
Lactobacillus acidophilus W55, Lacticaseibacillus casei W56,
Ligilactobacillus salivarius W57, Lactococcus lactis \W58

N 2.5x10M9 (2 Lactobacillus acidophilus, Lacticaseibacillus rhamnosus,
g) Enterococcus faecium, Bifidobacterium bifidum, Bifidobacterium
longum

A2 Table 8. List of NIR spectral pretreatments Probiotics experiment

NO. Spectral pretreatment NO. Spectral pretreatment

1 SG(2-13-0) 22 SG(2-17-0) + DeTr + MSC

2 SG(2-17-0) 23 SG(2-21-0) + DeTr + MSC

3 SG(2-21-0) 24 SG(2-21-0) + SG(2-21-1)

4 SNV 25 SG(2-21-0) + SG(2-21-2)

5 MSC 26 SG(2-21-0) + SG(2-13-1)

6 DeTr 27 SG(2-21-0) + SG(2-13-2)

7 DeTr + SNV 28 SG(2-21-0) + SG(2-17-1)

8 DeTr + MSC 29 SG(2-21-0) + SG(2-17-2)

9 SG(2-13-0) + SNV 30 SG(2-13-0) + SG(2-21-1)

10 SG(2-17-0) + SNV 31 SG(2-13-0) + SG(2-21-2)

11 SG(2-21-0) + SNV 32 SG(2-13-0) + SG(2-13-1)

12 SG(2-13-0) + MSC 33 SG(2-13-0) + SG(2-13-2)

13 SG(2-17-0) + MSC 34 SG(2-13-0) + SG(2-17-1)

14 SG(2-21-0) + MSC 35 SG(2-13-0) + SG(2-17-2)

15 SG(2-13-0) + DeTr 36 SG(2-17-0) + SG(2-21-1)

16 SG(2-17-0) + DeTr 37 SG(2-17-0) + SG(2-21-2)

17 SG(2-21-0) + DeTr 38 SG(2-17-0) + SG(2-17-1)

18 SG(2-13-0) + DeTr + SNV 39 SG(2-17-0) + SG(2-17-2)

19 SG(2-17-0) + DeTr + SNV 40 SG(2-17-0) + SG(2-13-1)

20 SG(2-21-0) + DeTr + SNV 41 SG(2-17-0) + SG(2-13-2)

21 SG(2-13-0) + DeTr + MSC

Note: SG(x-y-z) refers to the Savitzky-Golay (SG) smoothing and derivative algorithm, where x indicates the

order of the polynomial used (e.g., 2 = 2nd-order polynomial), y is the window size in points (e.g., 13, 17, or 21),
and z corresponds to the derivative applied (0 = none, 1 = first derivative, 2 = second derivative).
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A2 Table 9. Summary of the sensory contribution from the discriminant analysis of egg samples
on the e-nose data belonging to the MXT-5 column

MXT-5 C-S Volatile compounds Sensory description Discrimination tendency
429.90 428 Acetaldehyde Ethereal, fresh, fruity, pungent Figure 5: (b) B/G-50 °C; (d) B-80
°C; Figure 6: (b,d) D*-50 °C; Figure
430.57 425 Methanol Pungent 7: (b,d) D*-80 °C
441.88 448 Ethanol Alcoholic, ethanol, pungent, sweet . . % £n o
448  Methanethiol Alcoholic, ethanol, pungent, sweet Figure 6: (b) D*-50 °C
469.52 Not found
493.72 498  2-propanone (or acetone)  Fruity, glue, solvent Figure 5: (b) G-50 °C; (d) G-80 °C;
. Figure 6: (b) D*-50 °C; Figure 7:
494.47 499  Propanal Etherwal, plastic, pungent, solvent (b,d) D*-80 °C
528.17 527 Methyl acetate Blackcurrant, ethereal, fruity Figure 5: (b) G-50 °C; (d) B-80 °C;
i Burnt, fruity, green, malty, pungent, Figure 6: (b,d) D*-50 °C; Figure 7:
528.86 522 2-methylpropanal spicy, toasted (b,d) D*-80 °C
602.58 603 2-butanol Fusel-alcoholic, oily, winey Figure 5: (b) G-50 °C; (d) G-80 °C;
Figure 6: (b,d) D*-50 °C; Figure 7:
602.94 600 Hexane Alkane, ethereal, kerosene (b.d) D*-80 °C
LA OLL 2 menV 2ol Sy, [ e O e Faae: 070 °C
613.86 614 Ethyl acetate L T ' " Figure 7: (b) D*-80 °C
fruity, orange, pineapple
. Alcoholic, bitter, chemical, glue,
632.11 636  1-butamine licorice, solvent, winey Figure 5: (b) B/G
627  Propyl formate Berry, ethereal, green, sweet
i Almond, cocoa, green, malty, strong  Figure 5: (b) B/G-50 °C;
660.89 662 2-methylbutanal burnt Figure 6- (b) D*-50 °C:
665.16 664 n-butanol Cheese, fermented, fruity Figure 7: (b,d) D*-80 °C
i 2 Fishy, fruity, leather, plastic, pungent, _. . % ono
680.81 681 1- penten-3-one rotten, sewer, spicy Figure 7: (b) D*-80
684  Pent-1-en-3-ol Butter, green, milky, pungent
0S4l BoL el Zf(t))rlhf;igy] \]:\i/éﬂey rassy, green Figure 6: (b,d) D*-50 °C;
803.46 801 Hexanal , Tatly, Tishy, grassy, green, Figure 7: (b,d) D*-80 °C
herbaceous, leafy, tallowy
818.81 819  2,4,5-trimethyl-3-oxazoline Musty Figure 5: (b) B/G-50 °C;
. Figure 6: (b) D*-50 °C;
818.98 817  2- butanone, 3-mercapto-  Onion, sulfurous Figure 7: (b) D*-80 °C
052 985 Sroctanone g:Jat::?(réuhr‘i;?l?cgg?lse’drf‘zjri‘to ucSitrus earthy F!gure 5 (b,)B-50°C;
986.50 986 6-methyl-5-hepten-2-one ' ’ ’ "Figure 6: (b,) D*-50 °C
mushroom, rubber
1000.93 1000 2-octanol Fatty, mushroom, oily . ] % on o
1001 Propyl pentanoate Ethereal Figure 7: (b) D*-80 °C
1140.68 1140 Homofuraneol Caramelized
1140.88 1140 Me'ghyl 3- Herbaceous, sweet, tobacco Figure 5: (b) G-50 °C
pyridinecarboxylate
1286.33 1286 Isoborneol, acetate Balsamic Figure 5: (b) G-50 °C;
. Figure 6: (b) D*-50 °C;
1286.41 1287 Pentyl hexanoate Fruity Figure 7: (d) D*-80 °C
1312.65 1313 1-ethylnapththalene Earthy, green, musty, naphthyl . . o
131250 1312 Cinamyl alcohol Oily Figure 5: (b,) B/G-50°C
1399.81 1400 Tetradecane Alkane, fusel, mild herbaceous, sweet Figure 5: (b) B/G-50 °C;
1400.26 1400 Diphenyl ether Green Figure 6: (b) D*-50 °C
1414.33 1414 Linalyl butanoate Floral, Pear, sweet Figure 5: (d) B-80 °C;
1415 (e)-beta-damascone Apple Figure 7: (b) D*-80 °C
1532.40 1532 Cadina-1,4-diene Fruity, mango, spicy, wood Figure 5: (b) B-50 °C;
H H . *_ o
153321 1532 Methyldodecanoate Coconut, creamy, fatty, fruity, sweet,  Figure 7: (b) D*-80 °C
waxy, weak waxy
1691.60 1695 Beta-Sinensal Sweet Figure 7: (b) *D-80 °C
1695 Tetradecanenitrile Fresh
Banana, citrus, grape, sour fruit, spicy, Figure 5: (b) B-50 °C; (d) B-80 °C;
1807.03 1808 Nootkatone woody Figure 6 (b) D*-50 °C;
1807.30 1804 2-hexadecanone Fruity Figure 7: (b,d) D*-80 °C
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A2 Table 10. Discriminant analysis-confusion table of NIRS pea microgreens spectra
(microgreens fresh-cut samples) harvested after 11 days under different temperature (15, 20 and
25 °C) and photoperiod (00L, 06L, 12L, 18L) conditions. Clustering by (a) temperature, (b)
photoperiod and (c) treatment (temperature-photoperiod). Pretreatments SG 2-45-0 and SNV.
Wavelength 1150 to 1850nm

(@) (b)
Temperature Photoperiod
Average recognition (100%o) Average recognition (86.66%6)

% 15°C 20°C 25°C ooL o6L  12L  18L
15°C 100 0 0 ooL 9798 7.14 0 0
20°C 0 100 0 06L 0 85.71 3.72 556
25°C 0 0 100 12L 0 479 8333 14383
Average prediction (81.8%) 8L 202 236 1294 79.61

% 15°C 20°C 25°C Average prediction (52.4%)
15°C 15°C 20°C 25°C ooL oeL  12L  18L
20°C 82.73 833 3 o0L 7833 1429 3.67 0
25°C 1727 7775 121 O6L 13.05 57.14 2222 1111

12L 431 2386 2222 37
18L 431 471 51.89 51.89

(©)
Treatment
Average recognition (100%)

& & & & S & B8 S R R o o

|(g |(g |(g |(g |(§ |(g |(% |(% |(% |(% |(§ |(§

S S N & S & B & S S N &

- - - - - - - - - - - -

15°C_00L 100 0 0 0 0 0 0 0 0 0 0 0

15°C_06L 0 100 0 0 0 0 0 0 0 0 0 0

15°C_12L 0 0 100 0 0 0 0 0 0 0 0 0

15°C_18L 0 0 0 100 0 0 0 0 0 0 0 0

20 °C_0oL 0 0 0 0 100 0 0 0 0 0 0 0

20 °C_06L 0 0 0 0 0 100 0 0 0 0 0 0

20°C_12L 0 0 0 0 0 0 100 0 0 0 0 0

20°C_18L 0 0 0 0 0 0 0 100 0 0 0 0

25°C_00L 0 0 0 0 0 0 0 0 100 0 0 0

25°C_06L 0 0 0 0 0 0 0 0 0 100 0 0

25°C_12L 0 0 0 0 0 0 0 0 0 0 100 0
25°C_18L 0 0 0 0 0 0 0 0 0 0 0 100

Average prediction (48.39%0)

@ B m B 3 8 3 8B ¥ ¥ » B

'2 |Oo |(g |(g |Oo |O° |Oo |Oo |Oo |Oo |Oo |Oo

= S o & S 8 K & S S o &

- - - [ - — [ [ (o [ [

15°C _00L 25.09 0 0 0 0 0 0 0 0 0 0 0

15°C_06L 37.45 100 22.26 0 0 0 0 0 0 0 0 0

15°C_12L 0 0 22.26 33.33 0 0 0 0 0 0 0 0

15°C_18L 0 0 5548 4433 2233 0 0 0 0 0 0 0

20 °C_0oL 0 0 0 2233 4433 0 0 0 0 11 0 0

20 °C_06L 0 0 0 0 0 100 44.33 0 0 11  33.33 0

20°C_12L 0 0 0 0 0 0 2233 3333 0 0 33.33 0
20°C_18L 0 0 0 0 0 0 3333 3333 0 0 0 66.67

25°C_00L 37.45 0 0 0 0 0 0 0 100 0 0 0

25°C_06L 0 0 0 0 3333 0 0 0 0 22.33 0 0

25°C_12L 0 0 0 0 0 0 0 0 0 55.67 33.33 0
25°C_18L 0 0 0 0 0 0 0 33.33 0 0 0 33.33
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A2 Table 11. Discriminant analysis-confusion table of NIRS pea spectra (aqueous microgreens
extracts samples) harvested after 11 days under different temperature (15, 20 and 25°C) and
photoperiod (00L, 06L, 121, 18L) conditions. Clustering by (a) temperature, (b) photoperiod and
(c) treatment (temperature-photoperiod). Pretreatments SG 2-45-0 and SNV. Wavelength 1150 to
1850nm

(@) (b)
Temperature Photoperiod

Average recognition (98.98%b) Average recognition (94.17%)

% 15°C 20°C 25°C ooL o6L  12L  18L
15°C 100 0 0 ooL 100 0 0 0
20°C 0 100 3.05 o6L 0 100 2.06 0
25°C 0 0 96.95 12L 0 0 89.62 12.94
Average prediction (85.6%) 18L 0 0 8.32 87.06

% 15°C 20°C 25°C Average prediction (75.83%)
15°C 96.19 9.09 9.09 ooL oeL  12L  18L
20°C 381 84.82 1518 ooL 100 55 0 0
25°C 0 6.09 75.73 o6L 0 7783 16.62 11.11

12L 0 16.67 625 25.89
18L 0 0 20.88 63

(©)
Treatment
Average recognition (100%)

o o o o S S S S > > > >

|(g |Oo |Oo |Oo |Oo |Oo |Oo |Oo |Oo |Oo |(-g |(-g

] S o & S S o & 1] S o &

[ [ [ [ I [ I I [ [ I I

15°C 00L 100 0 0 0 0 0 0 0 0 0 0 0

15°C _06L 0 100 0 0 0 0 0 0 0 0 0 0

15°C 12L 0 0 100 0 0 0 0 0 0 0 0 0

15°C 18L 0 0 0 100 0 0 0 0 0 0 0 0

20 °C_00L 0 0 0 0 100 0 0 0 0 0 0 0

20 °C_06L 0 0 0 0 0 100 0 0 0 0 0 0

20°C 12L 0 0 0 0 0 0 100 0 0 0 0 0

20°C_18L 0 0 0 0 0 0 0 100 0 0 0 0

25 °C_00L 0 0 0 0 0 0 0 0 100 0 0 0

25°C_06L 0 0 0 0 0 0 0 0 0 100 0 0

25°C 12L 0 0 0 0 0 0 0 0 0 0 100 0
25°C 18L 0 0 0 0 0 0 0 0 0 0 0 100

Average prediction (75.01%)

G = = = N N N N N N N N

3 % % % S S 2 < % % % %

's © |O |O |O |O |o |o |O |O |O |O

‘,2 o = = o o = = o o = =

(o)) N [e¢] o (o)) N [e0] o (o)) N [e¢]

[ [ [ — [ — — [ [ I I

15°C_00L 100 0 0 0 0 0 0 0 0 0 0 0

15°C _06L 0 100 0 0 0 0 0 0 0 0 0 0

15°C 12L 0 0 100 0 0 0 0 0 0 0 0 0

15°C 18L 0 0 0 55.67 0 0 0 0 0 0 0 0

20 °C_00L 0 0 0 0 4433 0 0 0 0 0 0 0

20 °C_06L 0 0 0 0 0 100 33.33 44.48 0 0 0 11

20°C 12L 0 0 0 44.33 0 0 66.67 0 0 0 0 0

20°C_18L 0 0 0 0 0 0 0 44.48 0 33.33 0 0

25°C_00L 0 0 0 0 55.67 0 0 0 100 0 0 0
25°C_06L 0 0 0 0 0 0 0 11.04 0 3333 11 2233

25°C 12L 0 0 0 0 0 0 0 0 0 33.33 89 0
25°C 18L 0 0 0 0 0 0 0 0 0 0 0 66.67
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A2 Table 12. Summary PCA-DA analysis for simulated data in pea microgreens experiment

Simulated Data Modeling (Random numbers 0-1)

Data Clustering by n g %C %CV LV max. LV=(n-g/3)
15C_00L Day 24 3 44.3 27.31 2 7
15C_06L Day - - - - - -
15C_12L Day - - - - - -
15C_18L Day 24 3 50.68 46.84 2 7
20C_ooL Day 24 3 77.27 49.47 5 7
20C_06L Day 24 3 79.11 50 5 7
20C_12L Day 27 3 81.75 49.15 7 8
20C_18L Day 27 3 43.48 31.09 2 8
25C_00oL Day 21 3 57.33 31.93 3 6
25C_06L Day - - - - - -
25C_12L Day 27 3 78.22 4541 7 8
25C_18L Day 27 3 76.38 47.24 8 8

Day 7 Treatment 69 8 59.62 27.53 11 20

Day 11 Treatment 99 12 34.12 9.5 29
Day 14 Treatment 93 12 25.15 10.68 27
Day 18 Treatment 33 4 79.51 43.38 10
Day 11 Temperature 99 3 66.35 47.5 22 32
Day 14 Temperature 93 3 54.47 35.27 6 30
Day 7 Photoperiod 69 4 64.16 38.15 17 22
Day 11 Photoperiod 99 4 70.81 34.15 20 32
Day 14 Photoperiod 93 4 47.91 36.88 30
Day 18 Photoperiod 33 4 79.51 43.38 10
All Day 294 4 49.78 28.85 33 97
All Treatment 294 12 36.74 12.88 20 94
All Temperature 294 3 79.39 40.69 84 97
All Photoperiod 294 4 56.95 28.68 41 97
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A2 Table 13. NIR absorption features related to height: Foliar bands reported in literature and

detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples

Microgreens fresh-cut samples

Aqgueous microgreens extracts samples

Wavelength

Wavelength

Feature Reference Feature Reference
(nm) (nm)
O-H bend (1st O-H stretch (1st Slavchev et al.
1196 overtone) Curran (1989) 1368 overtone) (2015)
O-H (1st O-H bend (1st
1392 overtone), C-H Slav(czhoel\/S)et al. 1396 overtone) associated Curran (1989)
stretching with water
O-H bend (1st
1417 Ca‘:fzt:gggoannd Curran (1989) 1409 overtone) associated Curran (1989)
with water
O-H stretch (1st
1446 overtone), C-H  Curran (1989) 1484 O-Hstretch (Ist 12 (1089)
stretch overtone)
O-H (1st
1480 overtone), N-H Slavchev etal. 1530 O-H stretch (1st Curran (1989)
(1st overtone) (2015) overtone)
1508 N-H stretch (Ist ¢ ran (1989) 1685 C-Hstretch (Ist & 11an (1989)
overtone) overtone)
1543 O-Hstretch (Ist o (1989)
overtone)
1704 C-H stretch (st ) 1an (1989)
overtone)
O-H stretch, C-H
1838 stretch (2nd Curran (1989)

overtone)

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra

are included. Bands found in the present study but not previously described are not listed.
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A2 Table 14. NIR absorption features related to chlorophyll A: foliar bands reported in literature

and detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples

Microgreens fresh-cut samples

Aqgueous microgreens extracts samples

Wavelength

Wavelength

Feature Reference Feature Reference
(nm) (nm)
O-H (1st Slavchev et al. O-H bend (1st
1366 overtone) (2015) 1206 overtone) Curran (1989)
1417 C-Hstretchand o (1989) 1412 C-Hstretchand oy (1989)
deformation deformation
O-H stretch (1st
1446 overtone), C-H  Curran (1989) 1549 O-H stretch (st o (1989)
overtone)
stretch
1496 O-Hstretch (Ist 1o (1989) 1694 C-Hstretch (st 12 (1989)
overtone) overtone)
1538 O-H stretch (Ist o (1989)
overtone)
O-H stretch, C-H
1838 stretch (2nd Curran (1989)

overtone)

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra

are included. Bands found in the present study but not previously described are not listed.

A2 Table 15. NIR absorption features related to L* color component: foliar bands reported in

literature and pea microgreens fresh-cut samples and aqueous microgreens extracts samples

Microgreens fresh-cut samples

Agueous microgreens extracts samples

Wavelength

Wavelength

Feature Reference Feature Reference
(nm) (nm)
O-H (1st
1391 overtone), C-H  Slavehev etal. 1208 O-H bend (Ist Curran (1989)
; (2015) overtone)
stretching
1419 C-Hstrechand o\ (1989) 1410 O-H bend (Ist Curran (1989)
deformation overtone)
1509 N-H stretch (st o 1an (1089) 1488 O-Hstretch (Ist 1o (1089)
overtone) overtone)
1544 O-H stretch (Ist 1o (1089) 1698 C-Hstretch (Ist 1 1an (1989)
overtone) overtone)
C-H stretch (1st O-H stretch, C-O
1706 overtone) Curran (1989) 1818 stretch (2nd overtone) Curran (1989)
O-H stretch, C-H
1840 stretch (2nd Curran (1989)

overtone)

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra

are included. Bands found in the present study but not previously described are not listed.
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A2 Table 16. NIR absorption features related to °Brix: foliar bands reported in literature and pea
microgreens fresh-cut samples and aqueous microgreens extracts samples

Microgreens fresh-cut samples

Aqgueous microgreens extracts samples

Wavelength

Wavelength

Feature Reference Feature Reference
(nm) (nm)
1208 O-Hbend (Ist 10 (1989) 1394 O-H bend (Ist Curran (1989)

overtone) overtone)
1417 C-Hstretchand o) (1989) 1426 C-Hstretch, CH - an (1989)

deformation deformation
O-H stretch (1st
1447 overtone), C-H Curran (1989) 1687 C-H stretch (st Curran (1989)
overtone)
stretch

1495 N-H stretch (Ist o on (1089)

overtone)
1541 O-H stretch (Ist o (1989)

overtone)
1707 C-Hstretch (Ist o an (1989)

overtone)

O-H stretch, C-H

1840 stretch (2nd Curran (1989)

overtone)

O-H (1st
1390 overtone), C-H Slavchev etal.

; (2015)
stretching

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra
are included. Bands found in the present study but not previously described are not listed.

A2 Table 17. NIR absorption features related to TPC: foliar bands reported in literature and
detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples

Microgreens fresh-cut samples

Agueous microgreens extracts samples

Wavelength Feature Reference Wavelength Feature Reference
(nm) (nm)

1428 C-Hstretch, C-H o (1989) 1406 O-H bend (Ist Curran (1989)
deformation overtone)

1504 N-H stretch (Ist o (1089) 1418 C-Hstretch, C-H | 1an (1989)

overtone) deformation

1451 O-H stretch (st 1 (1989)
overtone)

1510 N-H stretch (1st Curran (1989)
overtone)

1528 O-H stretch (1st Curran (1989)
overtone)

1685 C-Hstretch (Ist & 1an (1989)
overtone)

1824 1st overtone IHB Slavchev et al.

stretch (2015)

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar
spectra are included. Bands found in the present study but not previously described are not listed.
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A2 Table 18. NIR absorption features related to TAC: foliar bands reported in literature and
detected in pea microgreens fresh-cut samples and aqueous microgreens extracts samples

Microgreens fresh-cut samples Aqgueous microgreens extracts samples
Wavelength Feature Reference Wavelength Feature Reference
(nm) (nm)
1397 O-Hbend (Ist o\ (1989) 1394 O-H bend (Lt Curran (1989)
overtone) overtone)
O-H stretch (1st
1451 overtone), C-H Curran (1989) 1407 O-H bend (Lt Curran (1989)
overtone)
stretch
1542 O-H stretch (Ist o (1989) 1445 O-H stretch (st 1o (1089)
overtone) overtone)
C-H stretch (1st
1786 overtone), O-H  Curran (1989) 1685 C-Hstretch (Ist 12 (1989)
stretch overtone)

Only wavelengths reported in the literature (Curran, 1989; Slavchev et al., 2015) for foliar spectra
are included. Bands found in the present study but not previously described are not listed.

A2_Table 19. LVs number reduction in PLSR models of fresh-cut samples of pea microgreens

Regression
variable

Wavelenghts

(nm) n LV RMSEC R?C RMSECV R2CV RMSEP R?%r

Sample

Weight fresh-cut  1185-1770 291 4 0.08 0.79 0.10 0.72 0.10 0.74
Height fresh-cut  1196-1508 291 5 2.10 0.73 2.27 0.68 1.93 0.72
L* fresh-cut  1150-1850 294 6 6.05 0.76 7.60 0.62 7.22 0.62
b* fresh-cut  1185-1665 285 6 5.81 0.74 6.73 0.66 7.16 0.62
Chlorophyli 1185-1572;
A fresh-cut 1695-1850 291 7 1948 0.74 21.19 0.69 19.90 0.74
Chlorophyli 1185-1572;
B fresh-cut 1695-1850 291 7 8.31 0.71 9.28 0.64 8.67 0.70
Total 1185-1572;
Carotene fresh-cut 1695-1850 294 7 4.74 0.75 5.41 0.67 4.79 0.74
Brix fresh-cut  1185-1570 294 6 0.15 0.72 0.17 0.64 0.16 0.68
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