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CHAPTER 1: INTRODUCTION 

 

The leavened bakery products are known as stapled food products in families' food baskets 

over the past century. These products such as bread, cakes, and buns can be manufactured using 

various formulations and processes; however, the primary ingredients used in their recipes are 

flour, water, and yeast. Depending on the final product, other ingredients including sugar, 

shortening, and egg may or may not be added. (Rathnayake, Navaratne and Navaratne 2018).  

Pogácsa, a popular salty cake, is a traditional leavened product made of wheat flour, 

cheese, margarine, yeast, and salt. Hungarian pogácsa cake has a specific texture, tender on the 

inside and crispy on the outside, which endows a unique and desired sensorial perception. 

Although this product is widely produced at the domestic and industrial levels, the number of 

research attempts to improve its physical and sensorial quality parameters are scarce. Therefore, 

there is a very good scope for processors to further work on quality improvement of this traditional 

product (Amani et al. 2021).  

Quality parameters of pogácsa are highly related to the mechanical and sensory 

characteristics of the crumb, ingredients, and baking conditions that may influence consumer 

purchase. Various quality parameters of pogácsa products are correlated to the appearance criteria 

such as size, colour, shape, and crumb texture (Lassoued et al. 2007; Puerta et al. 2021). The 

availability of accurate, robust, and efficient analytical techniques is one of the big concerns in 

monitoring the quality of bakery products. The routine quality assessment methods have 

limitations of low capacity, using instrumentation, high expenses, and needs of skilled personnel 

(Ye, Guo, and Sun 2019).  

Image processing is the core of computer vision system, which allows analysing various 

appearance parameters (e.g., size, colour, shape, and texture) from a digitalized image (Amani et 
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al. 2020). This method has numerous advantages in speed, cost-effectiveness, and flexibility over 

conventional analytical methods. This superiority has made this method a useful non-invasive 

technique for grading, quality evaluation of morphological and textural features, as well as 

identification in bakery products (Abdollahi Moghaddam, Rafe, and Taghizadeh 2015; Ghasemi-

Varnamkhasti and Lozano 2016; Gunasekaran 1996). Although considerable studies have been 

focused on employing image-based texture analysis in leavened bakery products, to our 

knowledge, no study has focused on pores structure and porosity measurement of pogácsa using 

image processing. Currently, the only analytical prediction for porosity measurement is available 

for bread, but no reliable method is available for porosity measurement of other bakery products 

like pogácsa cake. This hypothesis indicates a potential application of digital image processing as 

a simple technique for pore characteristic evaluation of pogácsa.  

In view of the aforementioned points, this study has been designed with the following objectives: 

1. To develop robust methods to evaluate the internal structure of the pogácsa cake. 

2. To evaluate the effect of baking conditions (different time and temperature) and 

formulations (using cheeses with different moisture content (MC)) on the pores structure 

and sensory properties of pogácsa, with the help of image analysis. 

3. Relationship between selected image texture features and physicochemical parameters of 

volume, colour, moisture, porosity, and mechanical texture parameters in pogácsa. 
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CHAPTER 2: LITERATURE OVERVIEW 

2.1. Structure of bakery products 

Leavened bakery products, often referred to as staples, have consistently found their place 

within the family's food basket. These products can be manufactured using various formulations 

and processes; however, the primary ingredients used in their formulation are flour, water, 

leavening agent (biological or chemical leavening agent such as yeast and NaHCO3, respectively), 

and other ingredients (e.g., egg, fat, and sugar), which may or may not be used depending on the 

type of the end product (Rathnayake, Navaratne and Navaratne 2018). Flour and water are the 

most important ingredients, which have the significant effect on the crumb properties and texture 

(Mondal and Datta 2008).  

Dehydrated granules and moist pressed cakes are two types of yeast being used as the leavening 

agent in bakery products. Both of the aforementioned yeasts are consist of numerous living cells 

of Saccharomyces cerevisiae (Ali et al. 2012). The yeast starts to ferment after adding water to the 

flour, resulting CO2 production as a by-product. Baking powder (chemical leavening agents) may 

be used by adding a wheat flour with a low ability of gluten development such as cake flour. The 

gas evolution rate increases when a biological leavening agent is added, and the leavened gas will 

substantially escape from the batter. Therefore, the gas cells might expand excessively and 

eventually collapse, which lead to a coarse-grained structure with a reduced volume (Rathnayake, 

Navaratne and Navaratne 2018). Different methods have been using to produce a well-developed 

porous structure batter. However, the primary processing steps of kneading, fermentation, proofing, 

and baking are existing in almost all the different processes. 

The process of kneading contributes to homogenous mixing of the ingredients, formation of 

gluten protein, absorption of water by hydrophilic groups of starch and wheat protein molecules, 

building a viscoelastic structure, and incorporation of air in to the dough mixture (Romano et al. 
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2007; Scanlon and Zghal 2001; Ali et al. 2012). Several research studies have proved that the gas 

cell nuclei can diffuse during the mixing stage of dough development through the aqueous phase 

(Nwanekezi 2013; Scanlon and Zghal 2001).  

Proofing dough is classified as an anaerobic process. During the fermentation process, yeast 

cells consume the carbohydrates in the lack of oxygen to produce ethanol, energy, and CO2 as the 

final products during various stages, with the help of many enzymes. The fermentation process is 

also beneficial for flavour compound development. (Petersen 1930; Romano et al. 2007; Ali et al. 

2012; Stear 1990). 

The final bread crumb structure is a result of simultaneous heat and mass transfer processes, 

which can lead to a wide range of physical, chemical, and structural changes such as moisture loss, 

volume expansion, starch gelatinization, and protein denaturation. The temperature range of the 

starch gelatinization and protein denaturation is usually 60–85∘C, which is contributed to the 

conversion of the dough to the crumb (Mondal and Datta 2008; Scanlon and Zghal 2001). The 

saturation pressure of the water in the dough increases as a result of the thermal expansion of steam, 

by increasing the oven temperature. Hoseney and He explained that during the first 6 to 8 minutes 

of baking, the product's volume increased, causing a strong strain within the dough that might 

compress the product's heat-set cellular structure (Hoseney and He 1992a; Mondal and Datta 2008; 

Scanlon and Zghal 2001). The long axes of the outer cells can therefore be extended parallel to the 

crustal axes. Once the bubble walls begin to crack under pressure during proofing and baking, CO2 

releases from the dough, causing the porous structure to become more constant and open to the 

exterior of the final baked bread (Mondal and Datta 2008). 
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2.2. Pogácsa cake 

Pogácsa is a traditional leavened product generally made of wheat flour, yeast, margarine, and 

salt (It can be filled or stuffed with cheese, potato, or sprinkled herbs and grains like dried dill, 

sesame, and black nigella seed on top). Pogácsa has been consumed in Hungary, Macedonia, 

Bosnia and Herzegovina, Bulgaria, Austria, Croatia, Serbia, Kosovo, Montenegro, Romania, 

Slovenia, Greek, Albania, and Turkey with variations such as kumru and karaköy. There are 

different versions of pogácsa in different places. Therefore, the texture and flavour of each variety 

is different. They can also be in very small (2.5 cm around and 2.5 cm high) or big size (8.5 cm 

around and 5.5 cm high). Some pogácsa products have a crumbly texture and some others have 

crispy texture (Codex Alimentarius Hungaricus 2012). Although pogácsa is widely manufactured 

at both domestic and industrial levels, the number of studies on its quality assessment is meager. 

Since pogácsa has a unique internal structure, understanding its internal texture characteristics and 

the impact of process variables during its production are necessary for manufactures (Amani et al. 

2021). 

2.3. Quality evaluation of pogácsa cake 

With the increasing demand for high-quality bakery products, the need for accurate and 

rapid quality assessment is growing. Therefore, food quality and safety assurance has become a 

big concern for industries and authorities in the field of food production (King et al. 2017). Food 

quality corresponds to attributes of texture, appearance, smell, taste, and nutritional value, which 

must fulfil consumers’ acceptability of nutritional quality. Food quality assurance has also an 

important role in consumer protection of contamination, spoilage, and adulteration. The life of 

modern civilization is concerned about the existence of hazardous components in food products 

due to changing consumer preferences of food consumption, environmental challenges, and rising 

complexity of food supply chains. Moreover, food is subjected to a wide range of chemical 
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environmental materials, which are mostly dangerous for people (King et al. 2017; Malik et al. 

2010). 

Although it is impossible to completely eliminate food contaminants and implement the 

perfect analytical techniques for food quality evaluation, appropriate procedures for food quality 

evaluation are necessary. Thus far, substantial numbers of research studies have been carried out 

to introduce different approaches for assessing the quality of leavened products. However, each 

method has its own advantages and disadvantages. For instance, human sensory evaluation, as the 

most traditional method, solely provides information regarding quality parameters, grading, and 

defection in products (Ghasemi-Varnamkhasti and Lozano 2016; Jatinder Singh and Kaur 2012). 

Besides, this procedure is time-consuming and depends on trained personnel; hence, it may not be 

useful for in-line quality inspection during the processing. The conventional instrumental methods 

such as texture analysis also have their own drawbacks, which include being expensive, destructive, 

and needing expert trainers with regular maintenance (Grillo et al. 2014; Jatinder Singh and Kaur 

2012). Therefore, a rapid, reliable, and efficient method would be useful as an alternative approach 

to non-destructively examine the quality of pogácsa at different stages of its production. 

2.4. Quality parameters of pogácsa cake 

Quality assessment is always a severe concern in the bakery industry as the consumer's 

demand for high-quality bakery products is constantly increasing. Therefore, maintaining the 

quality of products is the manufacture's ultimate goal (Haralick and Shapiro 1992). The major 

quality parameters of pogácsa are typically considered as shape, colour, size, and texture. These 

features are highly affected by the ingredients as well as processing conditions, in particular the 

time and temperature of baking (Amani et al. 2021). These two parameters are significantly linked 

to the texture quality of baked pogácsa.  
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2.5. Crumb structure 

Among the aforementioned quality parameters, crumb texture is accounted as the most 

influential parameter in quality assessment of leavened bakery products, particularly in quality 

evaluation of pogácsa (Lassoued et al. 2007; Rathnayake, Navaratne and Navaratne 2018). Texture 

is generally defined in literature as "the structural and rheological properties, which can be detected 

using tactile, mechanical, visual and auditory recipients" (Pieniazek and Messina 2017). Texture 

has a key role in the overall liking of leavened bakery products. Hence, studying its pore structure 

in the crumb may enhance the acceptability and help the industry sector optimize the production 

of bakery products. 

By slicing a leavened baked product, the exposed cell structure of crumb can be 

recognizing. This structure is characterized as a two-phase soft cellular solid including a fluid 

phase formed by air and a solid phase apparent in the cell wall composition (Sapirstein, Roller, 

and Bushuk 1994). Open and closed-cell foam are the two primary types of solid cellular materials. 

Pores are attached together in an open-cell structured porous form. Open-cell form structures are 

softer than closed-cell ones, which have high compressive strength because of high density of their 

structure (Wang, Austin, and Bell 2011).  

The subsequent discussion provides an exposition on the existing porosity evaluation 

methodologies for bakery products, classifying them into two categories of destructive and non-

destructive with detailed explication to ensue. It is important to note that there is currently no 

accepted or established method specifically designed to assess the porosity of pogácsa. The 

methods used for assessing porosity in bread may not be appropriate for accurately characterizing 

the internal structure of pogácsa or similar baked goods. Each type of baked product has unique 

characteristics and internal structures, and a one-size-fits-all approach is not suitable for assessing 
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porosity in different baked goods. Therefore, it is essential to develop or adapt specialized method 

for porosity assessment of pogácsa. 

2.6. Available techniques for porosity evaluation using conventional laboratory methods 

Nowadays, several methods are available to evaluate the porosity of bakery products. Each 

of them has its own advantages and disadvantages. Organoleptic evaluation is one of the simplest 

approaches for determining porosity. Conventional laboratory quality assessment methods have 

the advantage of being efficient, but also have drawbacks in terms of the subjectivity of definitions, 

being destructive, and time-consuming. Following are some laboratory methods for evaluating the 

internal structure and porosity of bakery products: 

2.6.1. Pycnometry 

 The pycnometer uses helium gas to flood voids present within the sample and measures 

changes in pressure by displacement. A typical gas pycnometer consists of a sample chamber and 

a reference chamber of known. Very careful calibration of these volumes of the sample chamber 

and reference chamber must be performed to ensure accurate measurements. The ideal gas law is 

used in helium gas pycnometry to identify the real volume of the solid. However, the gas does not 

reach the closed pores (only the blind and flow-through pores do), thus the solid true volume 

contains the volume of the closed pores, as well. When a porous solid is added to the sample 

chamber during the process, the change of the chamber pressure starts to be measured. According 

to the ideal gas law, if p and V are the initial pressure and the sample chamber volume, 

respectively, by introducing Vts as the true solid volume, pressure raises to p1: 

 𝑝𝑉 = 𝑝1(𝑉 − 𝑉𝑡𝑠 − 𝑉𝑐𝑝) Eq. (1) 
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From which closed pores volume and true solid volume (Vcp + Vts), can be calculated as 

following (Datta et al. 2007; Sun 2016): 

 
𝑉𝑐𝑝 + 𝑉𝑡𝑠 = (1 −

𝑝

𝑝1
)  𝑉    

Eq. (2) 

 

The procedure has advantages of suitability for both large ground and intact samples and 

being non-destructive (i.e., the sample can be reused for other analysis), but it requires a gas 

pycnometer, which can be relatively expensive (Amoozegar, Heitman, and Kranz 2023). 

Moreover, removal of the solvent or off-gassing might occurred and indicate the gas permeability 

or porous network of the sample (Dawan et al. 2022).  

2.6.2. Zhuravlev method  

The Zhuravlev method is the Ukrainian standardized method for evaluating the porosity of 

bakery products. This technique involves the preparation of the sample, collecting a notch from 

the bread crumb, followed by weighing and carrying out the necessary calculations. It should be 

noted that such calculations use a standard notch volume equal to 27 cm3. Moreover, the actual 

volume of the metal cylinder, with the help of which the notch is obtained, may deviate from such 

a clearly established value. The advantage of this method is the high accuracy of the total porosity 

calculation, and the disadvantage is the complexity of manufacturing device. Moreover, due to the 

inability to obtain a notch from buns, this procedure is not applicable for small-baked bakery 

products. (Petrusha, Daschynska and Shulika 2018).  

2.6.3. Liquid extrusion porosimetry (LEP) 

The Liquid Extrusion Porosimetry is a variation of the gas-liquid displacement porosimetry 

technique based on the contact between the sample to be analysed and a membrane having pores 
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much smaller than the sample, known as a capillary barrier membrane. The sample and capillary 

barrier membranes are completely immersed in the wetting fluid, and the wetting fluid is extruded 

from the sample under gas pressure (Tanis-Kanbur et al. 2021). The amount of wetting fluid 

moving out of a membrane is estimated by introducing the gas pressure. Required gas pressure to 

move the wetting fluid from the porous is measured by dividing the work done by the gas to expand 

the surface energy, followed by:  

 
P =

4γcosθ

𝐷
 

Eq. (3) 

 

where P is the pressure difference across the length of the pore, D is the diameter of pore, 

γ is the wetting liquid surface tension, and θ is the contact angle of the liquid with the sample. The 

largest of the pores will have the most liquid driven out, while the smaller pores will become 

relatively empty as pressure increases. The membrane is selected assuming that it has the smallest 

pores among all pores in the sample. Therefore, the amount of gas pressures required to remove 

the pores of the sample is not able to empty liquid from the membrane pores, while the liquid 

driven out of the sample can pass the membrane. The distribution of pore volume as a function of 

diameter is determined from the related volume of liquid and measured pressure, which 

corresponds to diameter, as provided in Eq. (1) (Datta et al. 2007). 

2.6.4. Calculation from bulk density 

 The rapeseed displacement method can be used to measure the bulk volume (Vbs) of bakery 

products (AACC, 1995). Then the difference between the bulk solid volume (Vbs) and volume of 

the true solid (Vts) can be determined to calculate the total porosity of the sample using the 

following formula (Shittu, Raji and Sanni 2007) : 
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Total porosity =

Vbs − Vts

Vbs
 

Eq. (4) 

 

2.7. Available techniques for porosity evaluation using non-destructive methods 

2.7.1. Hyperspectral imaging (HIS) 

Hyperspectral imaging (HSI) is a technology integrating optical sensing technologies of 

imaging, spectroscopy, and chemometrics. There are three crucial components in every 

hyperspectral imaging device: a light source, a wavelength dispersive element, and an area-array 

detector. A broadband quartz-tungsten-halogen (QTH) arc lamp, light-emitting diodes (LEDs), or 

lasers can be used as the source of light (Lu et al. 2020). Hyperspectral imaging can give both 

spatial and spectral information at the same time by combining conventional imaging sensing 

technologies and spectroscopy. Technically, HIS is able to generate numerous images of the same 

object in various spectral bands. It has the potential to evaluate physical and morphological aspects 

as well as intrinsic molecular and chemical food characteristics in a non-invasive approach. 

However, it has the disadvantages of being expensive, complicated, and needs large data 

capabilities. In addition, it is not available for the industry (Lorente et al. 2012). 

2.7.2. Fourier transform infrared spectroscopy (FTIR)  

Fourier transform infrared spectroscopy is a vibrational spectroscopic method used to 

analyse the molecular structure and chemical components of food products in a non-destructive 

manner. The Michelson interferometer is the most significant part of FTIR spectroscopy and where 

it derives its distinction from typical infrared spectroscopy. FTIR spectroscopy uses an 

interferometer and post-processing of the transmitted light to simultaneously irradiate the sample 

with various IR light frequencies. A beam splitter divides beam source of various IR wavelength 
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light into two parts, with one reaching a fixed mirror and the other one reaching a mirror that 

moves at a steady velocity. To create an interference pattern that reflects the constructive and 

destructive interference of the recombination, two split beams are then reflected and recombined. 

The interferogram (interference pattern) is then sent to the sample, and the interferogram's 

transmitted portion is sent to a detector. After comparison with a reference sample beam spectrum 

in the detector, a Fourier transform is performed to obtain the full spectrum as a function of 

wavenumber. This technology has been successfully applied for food applications. It is applicable 

for both dry and wet samples. Moreover, FTIR can continuously collect the light wavenumbers 

and increase the ratio of signal-to-noise and beam intensity, with high-resolution wavelength. 

These superiorities make FTIR a fast and economic method. However, its resolution needs to 

improve, and also if the Fourier transform isn't performed to generate the spectrum first, there will 

be a problem with interpretation of the interferogram (Hussain, Sun, and Pu 2019). 

2.7.3. Near-infrared spectroscopy (NIRS)  

Spectroscopy is a strong tool for identifying and describing the physical characteristics by 

analysing sample absorption of different light wavelengths. Near-infrared spectroscopy is an 

evaluation technique that involves transmitting electromagnetic radiation into the sample and 

measures light absorption at wavelengths between 780 to 2500 nm. NIRS allows the inference of 

the scanned sample's interior chemical composition, and hence can be utilized to classify or 

identify objects. This technique can penetrate the surface of the object and retrieve the composition 

information from the inner part of the sample. This information appear in the form of spectrum, 

which is the fingerprint of each sample. Therefore, it can be utilized as a high accuracy sensing 

technique. There are some challenges for utilizing NIRS technologies like the complexity of the 

sample analysis process and also results variation by changing the users (Klakegg et al. 2017). In 

addition, there are various issues in implementing NIR spectrometers for portable and high-volume 
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usage. The NIRscan Nano is a spectrometer inspection module that uses DLP technology (use a 

digital micromirror device (DMD) instead of a linear array detector to select wavelengths), which 

results in a small, cheap, and high-performance spectrometer system. The sampling procedures 

and also possibility of programing the spectral filters in NIR spectrometers have been provided 

through the utilizing the DLP digital micromirror device in combination with a single point 

detector (Gelabert et al. 2016). 

Although considerable researchers report the potential application of the aforementioned 

methods, their weakness is not negligible. One of these limitations is the costs of those methods, 

which are mostly expensive. Illumination conditions during image acquisition are also another 

potential uniformity challenge, which must be duly addressed (Contreras-Naranjo, Wei and Ozcan 

2015). For instance, light scattering from an unknown source may create an unpleasant noise. In 

this respect, different studies have been highlighted the concern of uniformity issues as a challenge 

during their analyses (Masawat, Harfield and Namwong 2015).  

 Moreover, the porous size in baked goods is large enough to be detected using less pricey 

and lower magnifying techniques. Therefore, these expensive tools are not necessarily required 

for investigation the porosity properties of bakery products.  

2.8. Computer vision system (CVS) 

Various quality parameters of food products can be monitored/inspected using visual 

assessment and/or image processing. Computer vision system (CVS) is a powerful tool, which 

allows analysing various appearance parameters (e.g., size, colour, shape, and texture) from a 

digitalized image (Kandpal et al. 2019). This method has numerous advantages in terms of speed, 

cost-effectiveness, and flexibility over conventional destructive methods (Sonka, Hlavac and 

Boyle 2014; Sun et al. 2008). This superiority has made this method an effective non-invasive 
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method for numerous food analyses such as risk assessment of µ-hemolysin, paralytic shellfish 

poisoning toxins, saxitoxins, mycotoxins, and cholera toxin, classification, shelf-life studies, as 

well as adulterations assessments The CVS has thus far been introduced for quality assessment of 

a wide range of food categories, including fish and meat, fruits, and vegetables, bakery and 

confectionery, and dairy products (Amani, Badak-Kerti and Mousavi 2020). Image processing is 

the core of CVS, which is mainly composed of an image acquisition part (including a camera, light 

source, software, and hardware components), pre-processing, image segmentation, object 

measurement, and classification (Du and Sun 2004; Hosseininia, Kamani and Rani 2017; Sun 

2012). 

2.8.1. Digital image acquisition  

The first step in all the image processing systems is image acquisition. The capturing device 

can be in the form of a digital camera and webcam or scanner, which is externally connected to a 

computer, where image information is processed (Amani et al. 2015). A considerable number of 

studies have been recently carried out to develop techniques for image acquisition. In addition, 

different sensors configurations have been widely developed for the conversion of images into the 

digital form. Various sensors have been used to capture images of food products, including charge-

coupled devices (CCD), computed tomography (CT), magnetic resonance imaging (MRI), 

electrical tomography (ET), and light microscopy (Rathnayake, Navaratne and Navaratne 2018). 

In addition, conventional photography had been widely utilized for image acquisition of two-

dimensional (2D) images of pores crumb. It also has been considered as an economically feasible, 

convenient, fast, and powerful method of image acquisition (Lassoued et al. 2007). The most 

common image acquisitions systems are listed below:  
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2.8.1.1. Digital camera 

Digital cameras record images electronically with their built-in computer. First, light 

reflects an object passing through a mirror in the camera and pair of lenses. The light then bounces 

when it enters the pentaprism and passes through the eyepiece and into the eyes. It has several 

lenses to focus light onto a semiconductor device that electronically records light, to generate an 

image. The electronic data is subsequently converted to digital data using a computer. The key 

part of a digital image is a string of Os and Is that represents all the coloured pixels or dots, which 

form up an image.  

2.8.1.2. X-ray computerized microtomography (X-MCT) 

The X-ray computerized microtomography is a high spatial resolution tomography based 

on the computed tomography that has been applied in various researches of porous crumb structure 

investigation (Falcone et al. 2004; Wang, Austin and Bell 2011). The technique is able to obtain 

information of the internal structure of the sample in a three-dimensional format. Some examples 

of aforementioned information are including of fractal dimension, total pore volume, pores average 

size, and open pore volume (permeability). High price and insufficient intrinsic contrast of the 

pores crumb structure or low-density materials are the major drawbacks of X-MCT (Falcone et al. 

2004; Sozer, Dogan and Kokini 2011; Wang, Austin and Bell 2011). 

2.8.1.3. Magnetic resonance imaging (MRI) 

MRI is a non-invasive and non-ionizing technology in which atomic particles interact with 

an external magnetic field and emit energy at specific frequencies. Therefore, the emitted signal 

intensity is representative of the imaged tissue structure (Bushong and Clarke 2003.). It is capable 

of analysing both microstructure properties of high MC grains and in-line tracking in the variation 

of grain MC (Horigane, Suzuki, and Yoshida 2013). This method has the advantages of high 
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accuracy for MC measurement, non-invasiveness, and high spatial resolution. However, MRI is 

generally an expensive method and requires expert personnel to handle it (Bajd and Serša 2011; 

Wagner et al. 2008). 

2.8.1.4. Scanning electron microscopy (SEM) 

Scanning electron microscopy can evaluate crystalline structure, surface topography 

chemical component, and electrical behaviour in various objects. To evaluate the performance of 

this method in different conditions, several specific steps such as cold, hot, or allowance of real-

time mechanical characterization can be included. SEM has a high depth of field, which allows for 

constant focus on majority of the specimen surface regardless of surface roughness. Since optical 

microscopes with high magnification have a relatively narrow depth of field, the smoothness of 

the surface has a significant impact on image quality. Additionally, extremely large magnifications 

(up to 1,000,000x) are achievable, with a total resolution of 1 nm. A major disadvantage of this 

technique is its high cost (Borel et al. 2014; Vernon-Parry 2000; Pathan, Bond and Gaskin 2008).  

2.8.1.5. Smartphone imaging 

The smartphone camera can portably capture an image with high resolution, whereas its 

programmability enables users to accurately analyse the captured image via developing an app(s) 

(Jeanmonod, and Suzuki 2018). In this context, the food researchers have taken these advantages 

as a reference point and recently introduced the "Smartphone-based Image Processing" as a novel 

technique for imaging-based quality control of foods (Bueno, Munoz and Marty 2016; Capitán-

Vallvey et al. 2015; Roda et al. 2016; Ye, Guo and Sun 2019). This method enables users to 

implement a wide range of app software for different operating systems, including IOS, mobile, 

Windows, and Android, without requiring other analyser factors (Lane et al. 2010). They can also 

design and develop their personalized app(s) based on intended data processing (Kwon and Park 
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2017). Moreover, in smartphones with built-in cameras, there is an option to set the camera settings 

easily (Li et al. 2016; Zhu et al. 2013). Furthermore, this method may not require an external 

computer, which is beneficial in terms of cost-effectiveness. However, the optical components in 

the smartphone’s built-in camera are not designed to use images for analytical purposes 

(Mavandadi et al. 2012). An entirely reliable method requires the images to be taken in the same 

fixed photographic conditions in terms of position, light, distance, pixels, and magnification to 

prevent non-standardized conditions and unwanted errors (Maarouf et al. 2018; Cavalla et al. 2019; 

Zeinhom et al. 2018). 

2.8.2. Illumination 

Illumination is a critical component of image acquisition. High-quality images would result to 

decrease the complexity and time of further image processing steps. Each image processing step 

results in decreasing the quality of the image and losing the information of the images. Therefore, 

higher image quality reduces the pre-processing steps of the image processing and increase the 

accuracy of the process, consequently, minimize the expenses of the image processing system. In 

addition, the lighting setting has a significant effect on the quality of the obtained image, which 

may results to the effective image analysis. The illumination method used for image acquisition 

may depend on the desired purpose of the image processing (Wasnik 2015). The most common 

light sources that is used in the food research is C(6774K), A(2856K), D(7500K), and D65(6500K) 

(Yam and Papadakis 2004). 

2.8.3. Software 

Till now, many software programs have been introduced for image processing in order to 

analyse images in real-time and provide accurate and precise measurements of shape, size, texture, 

and colour of the objects (López-García et al. 2010). Software like MATLAB, Octave, Scilab, 
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LUCIA, Image-pro, and ImageJ, are commonly utilized by researchers. Images can be 

automatically transformed from original RGB images to implement those conversion using 

toolboxes of image processing in aforementioned software. The selected software and the setting 

of parameters are two crucial aspects in obtaining desired data (Pastorella and Paletto 2013). 

2.8.4. Image pre-processing 

Images acquired with any image acquisition device probably contain a variety of noises. 

These noises and artefacts can affect the image's quality, preventing it from providing accurate 

information for subsequent image processing. These noises should be eliminated by applying some 

operations to the image in order to improve the quality of the image. There are two types of pre-

processing operations for food quality assessment: (a) Local pre-processing and (b) Pixel pre-

processing, which are depended on the pixel size of the neighbourhood used for new pixel 

estimation. Pixel pre-processing is similar to “pixel by pixel” copying, with the exception that the 

contents are adjusted based on the determined transformation function. Local pre-processing 

approaches compute the average brightness value of numerous neighbouring points with similar 

characteristics to the processed point (Du and Sun 2004).  

2.8.5. Image segmentation 

Image segmentation is a crucial process that involves partitioning an image into constituent 

objects, referred to as image segments. This task can be particularly challenging due to the vast 

amount of visual information present in the image. Each partitioned region is expected to be 

homogeneous in terms of image properties, such as colour, intensity, and texture (Zheng and Sun 

2007; Bong and Rajeswari 2011). Theoretical approaches to image segmentation can be broadly 

categorized into four types: thresholding-based, region-based, classification-based, and gradient-

based segmentation. Of these, thresholding-based and region-based methods are the most 
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commonly used for segmentation (Du and Sun 2004). Region-based segmentation techniques are 

generally less sensitive to noise, and various methods exist for this approach, including histogram 

thresholding, region growing, random field, split and merge, clustering, and watershed. Among 

these, histogram thresholding is the most widely used method due to its simplicity, high accuracy, 

and reliability (Shaaban and Omar 2009). In this technique, the image is divided into two-pixel 

groups based on a selected threshold, with pixel groups having values greater than or equal to the 

threshold and those with values lower than the threshold. Different thresholding methods exist, 

such as dynamic, local, grey-level histogram, and local-based global methods. Thresholding can 

also be classified into non-parametric and parametric processes. The grey-level distribution of an 

image is assumed to follow a specific statistical model in the parametric approach, and the best 

parameters for the model are estimated using a specific histogram. With the non-parametric 

approach, the best threshold is typically discovered by maximizing a function like entropy (Li et 

al. 2011). 

2.8.6. Texture measurement of the object  

Textural assessment of food products using image processing is a recent technique, which has 

been successfully applied in various food products. This technique can be used for segmentation, 

classification, and prediction of the textural properties in a non-destructive manner and provides a 

measure of features such as coarseness, regularity, and smoothness. The image texture analysis 

method can be classified into four groups, including statistical texture, transform-based texture, 

model-based texture, and physical-based texture. All these assessment methods have shown a high 

potential to evaluate the cellular structural properties without cell segmentation or thresholding 2D 

images. Among of, statistical texture techniques are the most commonly used approaches (Sun 

2016). The main examples of these techniques are run-length matrix (RLM), gray-level co-

occurrence matrix (GLCM), first-order gray-level statistics (FGLS), and Haar transform technique 
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(Sun 2016; Sun 2012). The GLCM is an efficient method, which is based on the use of second-

order statistics of the grayscale image histograms (Gonzales-Barron and Butler 2008; Srinivasan 

and Shobha 2008). The GLCM, which is a well-known statistical method for texture 

characterization, provides information on the distribution of grey-level intensity differences in 

sample images (Sun 2012; Mohanaiah, Sathyanarayana, and GuruKumar 2013). Recently, 

different GLCM-based analysis methods have been introduced for the extraction of textural 

features from the digital images of food samples (Perez Alvarado, Hussein, and Becker 2016). 

Nouri et al. (2018) proposed a texture-based image analysis method to successfully evaluate the 

staling rate of baguette bread during five days of storage (Nouri et al. 2018). In another attempt, 

the effects of processing parameters (proofing time) on the quality parameters and texture features 

of bread were investigated with the help of an image-based textural technique. Their results 

indicated that the correlation between GLCM features and TPA-based hardness was splendid 

(Karimi et al. 2012). Rahimi et al. (2020) developed an imaging method, which could efficiently 

describe the microstructure of five groups of leavened bakery products based on their flour sources 

(Rahimi, Baur, and Singh 2020). In view of the above, it can be assumed that GLCM-based 

analysis method is a promising approach for assessing the texture quality of bakery products.  

2.8.7. Classification 

Image classification is a complex process that may be affected by many factors. A 

successful classification requires a sufficient number of training samples and a suitable 

classification system. Many potential variables may be used in image classification, including 

textural or contextual information, spectral signatures, transformed images, vegetation indices, 

multi-sensor images, multi-temporal images, and ancillary data. In general, image classification 

approaches can be grouped as supervised and unsupervised, or parametric and non-parametric, or 

hard and soft (fuzzy) classification, or per-pixel, subpixel, and per-field. Maximum likelihood, 
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artificial neural network, minimum distance, decision tree classifier are some examples of 

supervised classification approaches and ISODATA, K-means clustering algorithm are categories 

as unsupervised classification. Linear discriminant analysis and maximum likelihood are classified 

as parametric and decision tree classifier, artificial neural network, support vector machine, 

evidential reasoning, and expert system are non-parametric classifiers. Most of the classifiers, such 

as artificial neural network, maximum likelihood, decision tree, minimum distance, and support 

vector machine are pre-pixel classifiers. Fuzzy-set classifiers, subpixel classifier, spectral mixture 

analysis are some examples of subpixel classification approaches. GIS-based classification can be 

classified as the pre-field classification. Regarding the hard classification, most of the classifiers, 

such as minimum distance, maximum likelihood, decision tree, artificial neural network, and 

support vector machine can be classified in this category. Fuzzy-set classifiers, subpixel classifier, 

spectral mixture analysis are also some examples of the soft (fuzzy) classification (Lu and Weng 

2007).  

2.8.8. Image resolution (mm/px) 

Image resolution is a fundamental parameter that characterizes the level of detail illustrated 

in an image. The resolution is determined by the number of pixels used to describe a scene, as well 

as the quantity of grey levels utilized to represent the image's brightness. The checkerboard effect 

is produced by reducing the number of pixels and maintaining a consistent amount of grey levels. 

Conversely, when the number of pixels remains constant, but the amount of grey levels is 

decreased, false contouring can occur, resulting in an image with unnatural and exaggerated edges. 

According to the literatures, higher resolution images generally require less improvement with an 

increase in the number of grey levels, as the number of pixels in the image already provides 

sufficient detail. Therefore, the quantity of grey levels is not a major concern for detailed images 

(Petrou and Petrou 2010).  
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2.9. Application of computer vision systems in bakery products 

Computer vision systems have been introduced for quality assessment of food and 

agriculture. This system is considered as a robust, non-invasive, accurate, rapid, and reliable tool 

for various inspection proposes in the food industry (Wang and Sun 2001). Several studies have 

been carried out to investigate the characteristics and defects of bakery products of bread, muffins, 

and cakes using computer vision systems. Aforementioned studies were mostly focused on height 

and slope of the baked loaves as well as their crumb structure, and surface colour (Grillo et al. 

2014). In a recent study, images of 160 bread slice of four different types of bread were evaluated 

to develop the overall sequence of the digital image processing algorithm. The presented algorithm 

automatically found the whole crumb area in the bread slice image and made measurements of 

various crumb morphological and colour features. The results showed that the developed algorithm 

was efficient in consistently inspecting the crumb features of industrial bread (Peri and Romaniello 

2006). In another study, Scott proposed a system that analyse the slope and height of the baked 

loaves of bread to evaluate their defects (Scott 1994). 

          To assess the quality of crumb grain of bread and cake, the crumb structure was also 

evaluated using machine vision. Different features influencing the crumb grain were investigated 

(Sapirstein 1995). A more recent study applied images of chocolate chip cookies to determine 

physical characteristics such as shape, size, and colour of the baked product, and the percentage 

of the top surface area consisted of chocolate chips (Davidson, Ryks, and Chu 2001). Afterwards, 

according to the three evaluated criteria, four fuzzy models were developed to estimate consumer 

ratings. A vision system has also been developed by Abdullah, Aziz, and Dos-Mohamed to 

automate the colour inspection of 200 muffins. They used a classification algorithm to separate 

light from dark samples utilising ungraded and pre-graded muffins. Accurate classification of 79% 

of ungraded and 96% of pre-graded muffins was obtained when compared with visual inspection 

(Abdullah et al. 2000). 
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CHAPTER 3: MATERIALS & METHODS 

3.1. Materials 

Wheat flour type BL55 (GoodMills Magyarország Malomipari Kft., Budapest, Hungary), 

vegetable oil margarine (Upfield Co., Katowice, Poland), lumpy cottage cheese (Alföldi tej Co., 

Budapest, Hungary; Real Nature Co., Budapest, Hungary), salt, yeast (Lesaffre Yeast Co., 

Budapest, Hungary), and additive (a mixture of spices acquired by Pr1mer Ltd.) were purchased 

from a local market. Different ingredients are listed in Table 1. 

                  Table 1. Recipe used in pogácsa formulation 

Material Amount (g) 
Composition (%) 

Fat Protein moisture 

Flour (g) 700 1 11.7 14 

Margarine (g) 630 70 0.9 16 

Cottage cheese A/B(g) 700 7 16.2 58/65 

Fresh yeast  42 0.8 14 68 

Salt  42 - - - 

Additive (Schopback) 7 - - - 

 

3.2. Methods 

3.2.1. Dough preparation for the experiment 1 and 2 

In order to prepare the dough for the experiment 1, different ingredients at room 

temperature were mixed as following: First, cottage cheese was mixed with margarine, yeast, salt, 

and additive using a pilot-scale blender (C.P Co., Brescia, Italy). Afterward, wheat flour was added 

to the blender chamber and mixed for 3 min to obtain a homogenous dough (Amani et al. 2021).  
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Three different groups of dough were prepared for the experiment 2 of the study. In the 

first and second groups, the dough preparation was the same as the experiment 1, with modification 

in cottage cheese. Two cottage cheese with two different MC of 58% and 65 % were used in dough 

formulations. MC of aforementioned groups were measured using oven drying method (AACC 

1995). Third group of pogácsa dough was prepared without cottage cheese. For this purpose, first 

margarine, yeast, salt, and additive were mixed using the pilot-scale blender (C.P Co., Brescia, 

Italy), wheat flour was then added and mixed for 3 min using the blender.  

All the groups of the prepared dough were then rested in cold storage (4°C ± 2°C) overnight. 

After cold storage the dough was rolled out, folded, and again rolled out. This step was repeated 

triple times and carefully to avoid softening of margarine and maintain the appropriate layering 

texture in pogácsa. Rolled dough plated uniformly into a smooth flat shape with 6 mm thickness 

and cut into small pieces by a 4 cm diameter cutter (Fig. 1). The dough preparation was done at 

room temperature in the laboratory. A total of 354 pogácsa samples were selected for further 

analysis in experiment 1, consisting of 59 pieces from each of the six groups with distinct baking 

conditions. Similarly, in experiment 2, a total of 420 pogácsa samples were chosen for analysis, 

with 70 pieces from each of the six groups, each having different baking conditions. 

 

Fig. 1. Moulding step of pogácsa preparation 
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3.2.2. Proofing process 

The moulded dough was placed on baking trays and transferred to a proofing chamber (S-

200, SvebaDahlen AB, Fristad, Sweden). All samples were subjected to a similar proofing setting 

of 40°C and 20 min. 

3.2.3. Baking settings  

3.2.3.1. Experiment 1 

The main important aim of the current research study was investigating the correlation 

between the results of image analysis and internal structure. For this purpose, the effect of different 

processing conditions was evaluated, by means of changing baking time and temperature, on the 

quality of pogácsa, with the help of image analysis. Therefore, a preliminary trial was conducted 

to find the desired ranges for the temperature and time of baking. Based on the preliminary 

observations, different temperatures (200, 215, and 230°C) and times (5 and 7 min) were selected 

for further study of internal structures in pogácsa. As shown in Table 2, six different groups of 

pogácsa samples were prepared under different baking conditions. The baking setting of the group 

D was regarded as the industrial recipe. 

Table 2. Sample groups according to baking time and temperature 

Samples 

Baking 

Temperature 

(°C) 

Time 

(min) 

A 200 5 

B 200 7 

C 215 5 

D 215 7 

E 230 5 

F 230 7 
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3.2.3.2. Experiment 2 

In the next step, the effect of formulations (using cheeses with different levels of moisture 

content (MC)) and baking temperature (200 and 215°C) on the porous structure and sensory 

properties of pogácsa was also evaluated. The aforementioned baking temperatures were selected 

based on the results of the previous part of the internal structure inspiration. Based on the porous 

structures, the best two groups of the previous study were selected for further study of porosity. 

The baking temperature of 200 and 215°C demonstrated the highest effect on changing the porous 

structure of the pogácsa. While the impact of baking time on the internal structure was meager. 

Therefore, for this part of the study, all samples were baked for 7 min, which is the baking time of 

the standard industrial recipe. Six different pogácsa groups (A1- 3 and B1-3) were prepared as 

introduced in Table 3.   

Table 3. Pogácsa groups according to the formulation and baking temperature 

Sample 

Baking temperature 

(°C) 

Cheese  

(% of dough) 

Cheese 

MC* (%) 

  A1 200 33 58 

A2 200 33 65 

A3 200 - - 

B1 215 33 58 

B2 215 33 65 

B3 215 - - 

              * MC: moisture content 

3.2.4. Baking processes 

After proofing, the baking process was performed using an oven (S-200, SvebaDahlen AB, 

Fristad, Sweden). Fig. 2 shows the both proofing and baking chambers. The baked samples were 

cooled down to room temperature and packed in air-tight plastic containers and labelled with three-
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digit codes for further analyses. Fig. 3 illustrated the moulded, proofed, and baked sample. Each 

group of pogácsa was prepared separately in three separate batches, and pieces were randomly 

selected from each batch. Evaluation of the PVI, TPA, GLCM, MC, volume, porosity, colour, and 

sensory analysis were conducted with 10,12, 22, 10, 10, 10, 3,15 replication for each sample group, 

respectively. Table 4 shows an overview of measured parameters and corresponding samples 

number in each experiment. 

 

Table 4. Summary of measured variables and sample sizes across experiments 

 Experiments 

Experiment 1 Experiment 2 

Treatments 6 (A, B, C, D, E, F) 6 (A1, A2, A3, B1, B2, B3) 

PVI (%) 6*10 = 60 6*10 = 60 

TPA 6*12 = 72 6*12 = 72 

GLCM 6*22 = 132 - 

Sensory 6*15 = 90 6*15 = 90 

Porosity (%) 6*10 = 60 6*10 = 60 

Moisture content (%) 6*10 = 60 6*10 = 60 

Volume (mm3) 6*10 = 60 6*10 = 60 

Colour - 6*3 = 18 
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Fig. 2. Left to right: proofing and baking chambers 

 

 

 

Fig. 3. Left to right: moulded, proofed, and baked sample of the pogácsa 
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3.3. Image analysis 

3.3.1. Image acquisition 

For image capturing of samples, first, the pogácsa samples were vertically cut into two halves 

by a sharp knife. After that, images of the cross-sectioned samples were captured using a DFK 

33UX273 USB colour industrial camera (The Imaging Source Co., Germany) equipped with a 

CMOS sensor and F:1.8 lens (type VS-2518VM). The setting of the camera was as following: 

shutter speed: 1/800 s, gain: 25 dB, gamma correction: 1.0, and white balance: 6000 K. Samples 

were illuminated using two white D65-lamps on both sides of a white fabric background with an 

angle of 45° with the sample to give a uniform light intensity over the sample. Moreover, this 

geometry found to be the best for emphasizing the pores’ structure. The digital camera was 

vertically mounted on a stand at a distance of 350 mm from the sample in such a way that the angle 

between the lens axis and lamps was 45°. The images were taken using IC Capture software 

(version 2.4, The Imaging Source Co., Germany). Images were saved in 24 bit/pixel bitmap format 

for further analyses. The size of each image was 1280 × 960 pixel. A schematic of image processing 

setup is illustrated in Fig. 4.  
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Fig. 4. Schematic of the digital image processing setup  

 

3.3.2. Image processing 

Imaging technique is the most appropriate means of texture evaluation because it is the 

only analytical method that generates results in the form of the image rather than numbers. All the 

features of porosity, coarseness, shape, colour, pore distribution, and size are important for texture 

analysis. Almost all these features can be analysed by digital image processing. In the current 

research work, the evaluation of the internal structure, and pores characteristics was studied by 

image processing of the baked pogácsa using two different software: MATLAB software (version 

R2018a, MathWorks Inc. Natick, MA, USA), and Fiji Image J software (National Institutes of 

Health, USA). 
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3.3.2.1. GLCM features extraction for the experiment 1 

Gray level co-occurrence matrix (GLCM) is one of the most common and widely used 

statistical texture analysis methods, which specifies the texture of an image by counting the 

number of occurrences of pixel pairs of a particular gray level at a given displacement. In this 

study, MATLAB software was used to develop algorithms for extracting gray level parameters 

from a total of 132 image of the pogácsa samples, with 22 replicates for each specified group 

(version R2018a, MathWorks Inc. Natick, MA, USA). The overall sequence of digital image 

processing algorithm used for evaluating the crumb features of the pogácsa image is presented in 

Fig. 5.  

 

Fig. 5. The overall sequence of digital image processing algorithms used for GLCM 

parameters extraction of pogácsa 
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After acquisition the pogácsa images, the region of interest, i.e. the crumb region, was 

selected as the bounding box of the pogácsa samples. Selection of the region of interest in pogácsa 

images is shown in Fig. 6.  

 

 

Fig. 6. The region of interest obtained in pogácsa images 

  

There is a significant interaction (positive correlation) between the relative fineness of 

cellular structure and its overall reflectance that can adversely affect the accuracy of image 

segmentation (Sapirstein 1999). If the effects of this correlation, i.e. the brightness variations in 

the crumb image, are not controlled before image segmentation, then inaccurate crumb data are 

computed leading to wrong conclusions in the analysis of bread crumb features (Peri et al. 2003; 

Gonzalez and Woods 1993). Also, coloured ingredients poorly distributed in the pogácsa dough 

such as cheese, cause brightness variations in the pogácsa crumb image. To eliminate the pixel 
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errors in the region of interest a processing algorithm was developed, which includes performing 

median filter to remove salt and pepper noises. Histogram-based equalization (adaptive histogram 

equalization) was also performed to increase the contrast. This step could significantly improve 

the efficiency and accuracy of finding pores in pogácsa images as the lightening inside of the 

samples and pores was non-homogenous. Fig. 7 shown the modified image of the internal structure 

of the pogácsa based on the aforementioned algorithms.  

 

 

Fig. 7. Modified image of pogácsa sample, using developed image processing algorithms 

 

Otsu's thresholding algorithm was used to remove background pixels. In the next step, a 

morphological operator of opening and closing (3*3 pixel size) was applied to correct the 

segmentation errors and remove irrelevant light artefacts in pores. All small areas, which were not 
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connected to the image border, were also removed using the morphological operation algorithm. 

Colour image was then transformed to gray scale. 

Afterwards, extraction algorithm was applied to compute the hills (pores) in the images. 

So far, several extraction techniques have been developed. Maximal inscribed sphere, 

skeletonizing and thinning, and watershed segmentation methods are some examples of these 

extraction methods. Most algorithms segment pores in the thresholding method, which is sensitive 

to illumination. Therefore, to separate and identify individual pores in the images we developed 

algorithms based on the watershed method as illustrated in Fig. 8. This segmentation method has 

many advantages as compared to other methods. For instance, applicable for surface texture 

analysis, high applicability for most segmentation problems, the possibility of closed contours 

production, which can be helpful for follow-on processing operations, such as pattern recognition 

(Lou et al. 2020). This algorithm simulates flooding from the markers. By setting watershed ridge 

lines where the simulated flood areas from different markers meet, regional maxima of the 

Euclidean distance map can be identified.  

The gray-level co-occurrence matrix (GLCM) was calculated and analysed through the 

graycomatrix function in MATLAB by computing the second-order joint conditional probability 

functions of pixel intensity. Two pixels with gray-levels i and j co-occur in the image can be 

separated by a distance δ in a given direction θ. If the intensity of an image is flat (i.e., included 

no texture), the GLCM result would be entirely diagonal. With increasing the image texture (i.e., 

increasing the variations of local pixel intensity), the off-diagonal values in GLCM will also 

increase. Different values of δ and θ can be calculated using GLCM through counting the number 

of co-occurrences of pixels with gray values i and j at a given distance of 10 pixels and orientation 

angles of 0°, 45°, 90°, and 135° (Haralick, Shanmugam, and Dinstein 1973). 
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Fig. 8. Pore segmentation in pogácsa images, using developed algorithm 

 

Ellipses were fit on holes and the following descriptors were finally calculated and used 

for subsequent analyses (Fig. 9): object size (px), number of pores, mean size of pores (px), 

standard deviation of pore size (px), and estimated pore ratio, which shows the frequency of pores 

with different sizes in the sample. Extracted advanced pattern features of GLCM were also 

included of the entropy (a measure of randomness which can characterize an image texture), 

contrast (a local grey level variation in the GLCM), correlation (explain how a pixel is correlated 

to its neighbour of the image), energy (estimate the orderliness or texture uniformity of the image), 

and homogeneity (the uniformity of the non-zero entries in the grey level co-occurrence matrix). 
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Fig. 9. Generated results of the image processing algorithms 

 

3.3.2.2. Pores characteristics evaluation for the experiment 1 & 2 

 The analysis of the internal structure and pore characteristics of the pogácsa samples involved 

the examination of 60 samples in each experiment, with 10 replicates for each designated group, 

resulting in a total of 120 samples for both experiments. This analysis was performed using Fiji 

ImageJ software (National Institutes of Health, USA), as illustrated in Fig. 10. 
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Fig. 10. The overall sequence of Fiji ImageJ algorithms used for pore characteristics 

evaluation of pogácsa. 

 

 First, in order to scale a picture to the metric units, the calibration of pixels was performed 

using a known dimension slide as a reference material. Image calibration gives a pixel-to-real-

distance conversion factor (i.e., pixels/cm, calibration factor). This data can be utilized to convert 

pixel measurements of the image to their equivalent values in the real world. The calibration data 

can be modified or defined during the analysis. Calibration of pixels was carried out in ImageJ 

software, as shown in Fig. 11.  

 A line, which correspond to a known distance was selected using straight line selection tool. 

Then the scale was set though the “Set Scale” dialog in “Analyze” tool. The known distance and 

unit of measurement were entered in the “Set Scale” dialog. Based on the length of the selected 

line, ImageJ could automatically filled in the “Distance in Pixels” field. 
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Fig. 11. Calibration of pixels in ImageJ software, using a known dimension slide  

 

 Next, the region of interest (ROI) was selected and cropped from the background. There are 

three different types of area selections including rectangular, polygon, and Composite. In this study 

ROIs were selected using the rectangular tool in the toolbar. 

 Image contrast was enhanced to improve the cropped image quality. There are several options 

to enhance the contrast through the ImageJ software such as using the “Enhance Contrast” 

command from the “Process” toolbar. In this study, contrast of the image was improved using the 

“Adjust” comment from the “Image” menu. The adjusting process was done manually as shown 

in Fig. 12. 
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Fig. 12. Steps of image contrast enhancement process in ImageJ software 

 

 Afterwards, the images were split to three channels of red, green, and blue through the 

“Image”, “Colour”, and “Split Channels” menu entry (This was a prerequisite stage of the 

thresholding since the auto threshold plugin processes the full greyscale space). For further 

processes, blue channel of 8-bit images were selected as this channel emphasized more on pores 

structure. Due to the presence of numerous noises in the images captured by digital cameras, a 

median filter was applied in neighbourhood pixels of 1.5 to remove salt and pepper noises. This 

filter helps to decrease noises in the image through replacing the values of each pixel with the 

median of the neighbouring pixel. The steps of applying the median filter is illustrated in Fig. 13.  
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Fig. 13. The steps of applying the “median” filter 

 

 Next, threshold process of images was conducted to make the feature of interest evident. To 

select the best segment method, first “Try all” option was selected in one image through the 

following path way: Image > Adjust > Auto Threshold > Try all. This produces a montage with 

results from all the methods allows to explore how the different algorithms perform on a particular 

image or stack. All methods were including Default, Huang, Huang2, Intermodes, IsoData, Li, 

MaxEntropy, Mean, MeanError(I), Minimum, Moments, Otsu, Percentile, RenyiEntropy, 

Shanbhag, Triangle, and Yen (Fig. 14). Besides the montage of the all threshold algorithms, it’s 

also possible to evaluate the threshold values of the all predefined algorithms by selecting the 
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“show threshold values in log window” in the same dialog box. The processing steps of computing 

all thresholds are shown in Fig. 15.  

 

Fig. 14. Montage of all the threshold algorithms 
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Fig. 15. Pass way of thresholding process in ImageJ software 

 

 After evaluating the results of the all threshold methods, a predefined algorithm "Otsu" was 

selected due to the minimum intra-class variance between the foreground and background pixels 

of this algorithm. Otsu is a threshold clustering algorithm, which define as a weighted sum of 

variances of the two classes (Otsu 1979). Aforementioned algorithm was applied on de-noised 

images using following pass way:  Image> Adjust> Auto Threshold> Method> Otsu. The 

"Median" filter was again applied the same way as it explained before, to remove possible noises 

raised during the colour conversion step. Image processing steps to evaluate the pore structure in 

pogácsa are shown in Fig. 16. 
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Fig. 16. Set of the processed images for measuring pores characteristics: (A) Original; (B) 

Contrast enhanced; (C) Channel split; (D) Noise removed; (E) Thresholded; (F) Noise removed 

 

 Parameters of area of pores (mm2) and pore size (mm) were first selected through the “set 

measurement” in “Analyze” menu. Aforementioned parameters were then extracted using 

“Measure” comment from the “Analyze” menu.  

 The pore volumetric index (PVI) (%) was determined using a methodology that involved the 

application of equations. For spherical pores, the pore volume calculates using equation (5), which 

calculates the volume of a sphere based on its radius:  

 Estimated pore volume = 𝑎𝑟𝑒𝑎 
3

2   Eq. (5) 
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 However, as the pogácsa pores are non-spherical, the volume of the sample was estimated by 

calculating the volume based on the surface area of the sphere pores. For this purpose the height 

and diameter of the all the baked pogácsa samples were measured using a digital calliper (General 

Tools & Instruments, New York, N.Y., U.S.A.). Pogácsa volume were then calculated using 

equation (6): 

 
𝑆𝑎𝑚𝑝𝑙𝑒 volume (𝑚𝑚3) =

1

4
 𝜋ℎ𝑑2   

Eq. (6) 

 

In which h and d are the height and diameter of the sample, respectively.  

The PVI was then obtained by dividing the pore volume by the volume of the sample, as shown in 

equation (7): 

 
PVI (%) = (

𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
) 𝑋 100   

Eq. (7) 

 

3.4. Evaluation of physical and textural properties 

Pogácsa mass was recorded by a digital balance (0.001 g accuracy). The volume of 120 

samples (10 replicates for each designated group in each experiment) was determined following 

the method explained in the previous section.  

A chromameter (Minolta CR-310, Apeldoorn, Netherlands) was used to measure L* a* b* 

colorimetric parameters of the crust surface colour and crumb colour of 18 pogácsa samples (3 

replicates for each pogácsa group). For this purpose, the colorimeter was first calibrated by a white 

tile. The crumb and crust of the samples were seperated, and the CIE L*, a*, b* values of each 
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part were measured using the device (Bolin and Huxsoll 1991). Measurements were performed at 

room temperature.  

The MC of 120 pogácsa samples (10 replicates for each designated group in each 

experiment) was estimated in both experiment by a proportion of the weight loss after drying in 

oven (WEC310, Whirlpool, USA). The primary weights of pogácsa were measured with pre-

weighed aluminium pans, and samples were dried in an oven at 105°C until constant weight. The 

weight of dried samples was measured with the aluminium pans, and the percentage loss in MC 

was measured with the following equation (AACC 1995) (Eq. 9): 

 
𝑀𝐶 (%) =

𝑊2 − 𝑊3

𝑊2 − 𝑊1
 × 100    

Eq. (9) 

 

W1, W2, and W3 were referred to the weight of the dry aluminium pan, wet sample and the 

dry aluminium pan, and the weight of the dry sample and the dry aluminium pan, respectively. 

The porosity in 120 samples of pogácsa was examined, comprising 10 replicates for each 

sample group in both experiments. Porosity assessment utilized a well-established method 

originally designed for bread analysis, as detailed in the work of Lásztity and Törley, serving as 

the reference standard (Lásztity and Törley 1980). The primary objective was to develop a 

predictive model for determining the absolute density (AD) of pogácsa at varying MC levels. This 

goal was achieved through the construction of a regression model, utilizing a dataset associating 

MC and AD values specifically tailored to bread. Among the candidate equations, following 

empirical equation (Eq. 10) was selected due to its notably high determination coefficient (R2 = 

0.990) obtained from the regression model. Subsequently, the application of this chosen equation 

demonstrated its effectiveness in accurately estimating the AD of pogácsa samples under diverse 

MC conditions. 
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 𝐴𝐷 (
𝑔𝑟

𝑐𝑚3
) = (7.937 × 10−5 × 𝑥𝑀𝐶2) − 0.012 × 𝑀𝐶 + 1.637 

Eq. (10) 

 

Subsequently, the porosity of the samples was estimated by utilizing Equation 11, which 

incorporated the initial weight of the product (W0), the predicted AD, and the sample volume (V). 

 
𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) = (1 −

𝑊0

𝐴𝐷 × 𝑉
) × 100 

Eq. (11) 

 

3.5. Mechanical texture analysis 

Texture measurements are based on rheological properties or stress-strain relationships. 

Texture instruments have been categorized as measuring force, time, energy, and distance. They 

may also estimate ratios of these variables or measure in multiple units (Trinh and Glasgow 2012). 

In the current study, a texture analyser (model TA-XT2i, Stable Microsystems, Surrey, UK) was 

used to determine the mechanical properties of pogácsa samples. The texture analyser machine 

was equipped with a 25 mm diameter cylindrical probe. The crust of the pogácsa sample was 

removed and the remained part (4 cm diameter × 2 cm height) was axially placed on the platform. 

A two-cycle compression test was performed up to 40% compression at a speed of 0.5 mm/s. The 

instrument settings were defined as: test speed: 0.5 mm/s; pre-test speed: 10.0 mm/s; post-test 

speed: 0. 5 mm/s; trigger type: auto; trigger force: 2.0 g. Force-time curves were plotted, and the 

following parameters were calculated using the Exponent software (version 6.1.16.0, Stable 

Microsystems, London, UK): hardness (maximum force of the first compression), cohesiveness 

(divided force ratio of the second and the first compression), gumminess (multiplication of 

hardness by cohesiveness), resilience (divided the first compression upstroke area by its down 
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stroke area), springiness (the ratio between the distances of maximum force during the second and 

first compression), and chewiness (multiplication of gumminess by springiness). The mechanical 

texture test was conducted 12 times for each assigned group, resulting in 72 samples for each 

experiment and a total of 144 samples across both experiments. 

3.6. Sensory evaluation 

The sensory evaluation was performed on 90 pogácsa samples in each experiment (15 

replicates for each designated group and 180 samples in both experiments). 15 trained panellists 

(7 female, 8 male; aged between 22 and 45 years) in the Hungarian University of Agriculture and 

Life Sciences (Budapest, Hungary). Assessors were well-familiar with the sensorial attributes of 

the pogácsa product. The evaluation was done under similar illumination conditions at room 

temperature according to ISO 8589 (ISO 8589:2007). Pogácsa samples were freshly prepared for 

panellists, and they were asked to complete questionnaires by scoring on taste, colour, aroma/odour, 

oiliness, chewiness, hardness, elasticity, pores structure, and overall crumb structure of more or 

less crumbliness. Samples were evaluated using a 5-point scale, "Just About Right" (JAR), where 

categories 1, 2 belong to "not enough" levels, 3 = JAR, and 4, 5 expresses "too much" levels. 

Assessors were also asked to evaluate the product's overall liking (OL) on a 9-point hedonic scale, 

where one presents "extremely dislike" and nine expresses "extremely like" of the pogácsa. This 

sensorial evaluation allows to demonstrate all the possible ways to increase the OL of the product. 

Penalty analysis, which shows the main reasons of the products rejections, was used to statically 

analyse the JAR data. Mean drops (penalties) were calculated as the differences between means of 

the JAR and the mean of two categories of non-JAR, and consequently, to determine which sensory 

attributes differentiate the pogácsa (Bagdi et al. 2016; Iserliyska, Dzhivoderova, and Nikovska 

2017).  
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3.7. Statistical analyses 

All statistical analyses were performed using IBM SPSS statistics software (version 

29.01.0 Inc., Chicago, USA). The Analysis of variance (ANOVA) was applied to the obtained data 

and Duncan's multiple range test was performed to detect the differences among means at the 

significance level of α=0.05. A completely randomized design (CRD) was applied for data 

collocation. Factorial design was also used to assess the main effect for each independent variable 

of time and temperature of proofing and baking. Two-way ANOVA was applied to evaluate the 

impact of two distinct independent variables on the structural attributes of pogácsa samples and 

overall liking. Specifically, in experiment one, the independent variables of baking time and baking 

temperature and combination were analysed, while in experiment two, the independent variables 

of baking temperature and formulation and combination were evaluated. The statistical test was 

performed at a 5% significance level. The correlation coefficients (R) between images data and 

mechanical parameters were obtained with the help of Pearson correlation test. In order to 

investigate the relationship between imaging parameters and porosity of the product, the regression 

equations also build using SPSS and the best selected based on the R2 value. The penalty analysis 

of sensory data was carried out using XLSTAT software (version 2020.5, Addinsoft, New York, 

USA). 
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CHAPTER 4: RESULTS & DISCUSSION 

4.1. Results of the experiment 1 

4.1.1. Results of the PVI evaluation  

The PVI, which is an expression that characterizes the volume of pores in the measured area, 

can influence the texture, flavour, and overall quality of the baked goods. In this context, the 

variation in PVI is depicted in Fig. 17. Sample C had the highest PVI value (24.26%), followed 

by samples B (21.34%), D (21.28%), E (20.35%), and A (19.73%). The lowest PVI was found for 

sample F (baked at 230°C for 7 min) with a value of 12.81. As it can be interpreted from the Fig. 

17, temperature and duration of baking are crucial factors that affect the PVI of the pogácsa. The 

temperature of 215°C and shorter baking time (5 min) resulted in the highest PVI value (sample 

C), while the longer baking time (7 min) and higher temperature (230°C) resulted in lower PVI 

values (sample F). 

The difference in the PVI values could be also ascribed to the increased yeast activity, which 

causes a larger production of CO2 in the dough when exposed to the higher temperature. However, 

other factors might cause changes in the PVI of pogácsa samples such as fast water evaporation 

during the baking and low gas diffusion rate in the dough, which resulted in gas expansion during 

the baking (Chiotellis and Campbell 2003). Fig. 18 shows the pore structure of pogácsa samples 

under different baking conditions. It was observed that the crumb structure was noticeably varied 

by changing the time and temperature. In align with the result of the present study, Ćurić et al. 

(2008) reported that increase in the baking time (from 25 to 30 min) could significantly affect the 

porosity of the bread. In this context, they also commented that longer baking time might 

increasingly influence the crust hardness and specific volume (Ćurić et al. 2008). In another study 

Kumari et al. (2015) examined the impact of baking conditions on the crumb grain characteristics 

of an Indian baked good. They reported higher temperatures and shorter baking times tend to 
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produce a softer and more porous texture, while lower temperatures and longer baking times result 

in a denser texture with fewer pores (Kumari et al. 2015). This information can be useful for 

manufacturers in optimizing the baking conditions for pogácsa production to achieve the desired 

texture and quality. 

 

 

Fig. 17. Results of the calculated PVI of the pogácsa groups. A: 200°C, 5 min; B: 200°C, 7 min; 

C: 215°C, 5 min; D: 215°C, 7 min; E: 230°C, 5 min; F: 230°C, 7 min 
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Fig. 18. Pogácsa crumb samples showing different pore structure characteristics. A: 200°C, 5 

min; B: 200°C, 7 min; C: 215°C, 5 min; D: 215°C, 7 min; E: 230°C, 5 min; F: 230°C, 7 min 

 

4.1.2. Results of changes in physical and textural properties of pogácsa due to variation in 

baking time and temperature  

 

Textural parameters of baked pogácsa highly depend on processing variables, particularly 

temperature and time. The results of TPA analyses are detailed in Fig. 19. Changes in hardness, 

springiness, gumminess, cohesiveness, and chewiness in pogácsa were linked to time and 

temperature. With increasing these two baking variables, the hardness was drastically increased. 

While, in case of cohesiveness, gumminess, chewiness, and springiness, both increasing and 

decreasing trends were observed as the consequence of change in temperature and time treatments. 
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However, no noticeable change (except for sample F) was recorded in adhesiveness when different 

time and temperature settings were applied. This might imply that bakery products are not 

generally adhesive. Samples D (baking at 215°C for 7 min) and E (baking at 230°C for 5 min) showed 

the highest and lowest values of cohesiveness, respectively. By increasing temperature (at any 

baking time), gumminess was monotonically increased. Additionally, a monotonically increasing 

pattern in gumminess was observed as the baking time was extended from 5 to 7 minutes at any 

baking temperature. Therefore, sample F with the highest temperature and time demonstrated the 

maximum gumminess, whereas sample A, which was baked under the lowest temperature and 

time, had the minimum gumminess. Chewiness, which depends on springiness and gumminess, 

showed the same tendency as gumminess; monotonically increased by both increasing the 

temperature at any baking time and increasing the baking time at any baking temperature. Since 

pogácsa has a gas-filled cellular texture, it can be fractured by mechanical force. Therefore, the 

present result obtained for hardness might be useful to calculate the required force for breaking 

the structure. The results of the hardness test showed that maximum baking temperature had the 

maximum hardness value (sample F). On the other hand, with increasing the hardness of samples, 

springiness decreased. This implies that increasing baking parameters (time and temperature) may 

result in a firmer and harder texture. Similarly, Shittu (2007) reported that the crumb hardness of 

bread was noticeably affected by both baking time and temperature. In addition, they found the 

time of baking was a primary factor contributing to increase of hardness in bread crumb (Shittu, 

Raji, and Sanni 2007). Karimi et al. (2012) also found that baking conditions could considerably 

affect the hardness of the bread. These authors pointed out that increasing the proofing time (from 

25 to 45 min) may lead to CO2 production, which ultimately increases porosity and decrease the 

hardness (Karimi et al. 2012).   
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Fig. 19. Changes in textural parameters of hardness (g), springiness (%), gumminess, chewiness, 

adhesiveness (g.sec), and cohesiveness (%) in pogácsa groups. 

 

Table 5 presents a comprehensive overview of the experimental results focusing on crumb 

MC, volume, and porosity across six distinct groups of pogácsa samples. According to the results, 

Sample A exhibited the highest crumb MC at 41.64%, significantly different from the other 

samples. As baking time and temperature increased (from A to F), the crumb MC decreased 

progressively. The lowest crumb MC was observed in sample F (20.4%), which was baked under 

highest baking time and temperature. The findings suggested that higher baking temperatures and 

longer baking times result in lower crumb MC, which may lead to a drier texture in the pogácsa.  

The analysis of volume data displayed in Table 5. Considerable variability was observed 

among the volume value of different samples (p < 0.05). Sample D had the highest volume (29.02 

cm3), significantly greater than the other samples. Samples C, B, and E also had larger volumes 
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compared to samples A and F. Moreover, sample F had the smallest volume (19.64 cm3). These 

results indicated that baking at 215°C for 7 minutes (sample D) led to the highest expansion of the 

pogácsa, resulting in a larger volume. In addition, highest baking temperature along with the 

highest baking time resulted in decreasing the volume values. Decreasing trend in volume value 

was also observed when lowest time and temperature of baking was used.  

Results of the porosity evaluation (Table 5) revealed that samples B, C, and D had almost 

similar porosity values, with sample B having the highest value (60.77%) among them. Sample F 

had the lowest porosity value of 51.28% and sample E had the highest porosity value of 61.96%. 

The porosity results showed that baking conditions significantly affect the pore structure of the 

pogácsa, with higher values indicating a more porous structure and higher porosity. Overall, the 

results demonstrated that variations in baking temperature and time have a substantial impact on 

the crumb MC, volume, and porosity of pogácsa. Sample F, baked at 230°C for 7 minutes, had the 

lowest crumb moisture content, volume, and porosity, resulting in a denser and drier product. 

 

Table 5. The mean (± SD) of crumb moisture content (MC), volume, and porosity of the pogácsa 

in the experiment 1* 

Sample Crumb MC (%) Volume (cm3) Porosity (%) 

A 41.64±5.85d 21.15±1.32b 58.02±2.98b 

B 36.78±5.02c 23.41±0.83c 60.77±3.6bc 

C 36.96±1.33c 26.57±1.98d 60.5±3.16bc 

D 31.66±4.97b 29.02±1.32e  59.34±3.15bc 

E 28.07±4.63b 23.63±1.05c 61.96±2.62c 

F 20.4±2.34a 19.64±1.32a 51.28±2.48a 

*Means with different superscripts within the same column indicate significant differences  

(p < 0.05). Refer to Table 2 for pogácsa cake formulations. 
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4.1.3. Results of GLCM textural features  

Fig. 20 shows the changes in the GLCM textural features in six different groups of pogácsa. 

There were significant variations (p < 0.05) among the entropy values of different groups. Sample 

D showed the highest value (7.74) for entropy, whereas the lowest belonged to group C with a 

value of 7.48. The difference recorded between the entropy of samples C and D indicated the 

importance of the baking time, as the same temperature (215°C) was used for both samples. 

Interestingly, no significant difference (p > 0.05) was found amongst other groups (A, B, E, and F) 

when the time of baking increased from 5 to 7 min. In case of contrast parameter, sample D had 

the highest value, followed by samples A, and C, while the value for sample F was the least. As 

indicated in Fig. 20, values for correlation and homogeneity were reported up to three decimals as 

the third decimal was critical to distinguish the presence of difference(s) among the groups for 

these particular parameters. This has likewise been reported by (Nouri et al. 2018). Sample F, 

which was baked with the highest temperature and time (230°C for 7 min), exhibited the maximum 

levels of correlation and homogeneity. However, due to the existence of slight differences visible, 

only the third decimal of standard deviations was significantly varied (p < 0.05). Nouri et al. made 

a relatively similar observation for the range of correlation value when they used GLCM features 

for the textural evaluation of freshly prepared baguette bread. As previously mentioned, the 

homogeneity of sample F was the highest, implicating that the grey levels of each pixel pair are 

quite similar in this group.  Sample C exhibited the highest value for energy, which was noticeably 

reduced (from 0.2 to 0.16) when the baking time increased from 5 to 7 min. In contrast, the 

increasing baking time did not show any marked effect on the energy values of other pogácsa 

samples, which were prepared at 200 and 230°C.   
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Fig. 20. GLCM features extracted from pogácsa images. A: 200°C, 5 min; B: 200°C, 7 min; C: 

215°C, 5 min; D: 215°C, 7 min; E: 230°C, 5 min; F: 230°C, 7 min 

 

4.1.4. Results of correlation coefficient among the different parameters 

The results of the correlation test between GLCM textural features and instrumental 

textural parameters are presented in Table 6. The hardness showed strong positive correlation with 

contrast (p < 0.01) and strong negative correlations with both homogeneity and correlation  

(p < 0.01). This may imply that the softer texture of pogácsa, the lower contrast and vice versa. 

Hence, it can be interpreted that the increase in hardness might lead to changes in the visual 

appearance of pogácsa as well as its image textural features (Karimi et al. 2012). Springiness had 

positive and negative correlations with homogeneity and contrast, respectively. Among all 



68 

 

parameters, gumminess exhibited the best correlation coefficients, in particular for contrast, 

correlation, and homogeneity, having suitable relationship with instrumentally measured texture 

parameters. While the entropy and energy could be ignored due to non-significant correlation with 

any parameters. Generally, there were significant correlation coefficients between the GLCM 

parameters and the TPA data. As can be seen in Table 6, the harder pogácsa crumb is associated 

with higher contrast and lower correlation and homogeneity. In addition, pogácsa with higher 

springy crumb had higher homogeneity but lesser contrast. Among the image textural features, 

contrast and homogeneity showed the best correlation coefficients with the sensory features. In 

agreement with our results, Nouri et al. (2018) reported high correlation coefficients between 

imaging and instrumental textural parameters in stored baguette bread. Their findings revealed that 

the stale baguette bread with firmer crumb had higher contrast and lower correlation and 

homogeneity compared to the fresh bread samples (Nouri et al. 2018). In another study, Pieniazek 

et al. (2017) found noticeable high correlations between textural features of the image and TPA 

parameters in freeze-dried potatoes. According to their results, cooked freeze-dried rehydrated 

potato had lower image linearity and higher smoothness values as compared to cooked potato 

(Pieniazek and Messina 2017). 

 

Table 6. Pearson correlation coefficients between the GLCM texture features and instrumental 

texture parameters of pogácsa 

Sensory features 
GLCM features 

Energy Contrast Correlation Homogeneity Entropy 

Hardness 0.214ns 0.495** -0.431** -0.494** 0.117ns 

Springiness -0.024ns -0.307* 0.166ns 0.309* 0.055ns 

Gumminess 0.253ns 0.523** -0.516** -0.528** -0.156ns 

** p <0.01, * p <0.05. ns: not significant. 
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4.1.5. Results of the effect of the temperature and time of baking on PVI and overall liking 

of pogácsa cake 

 

A two-way ANOVA was performed to analyse the effect of the baking times and baking 

temperatures on two different variables of the PVI and overall liking (OL). Results are illustrated 

in Table 7 as the mean values ± SD. Regarding the PVI, the ANOVA showed that the individual 

effect of the baking time is statistically significant (p < 0.05), while in case of OL, the effect of the 

baking time is not statistically significant (p > 0.05). In particular, Table 7 showed differences in 

PVI values according to the different baking time (the highest value observed in groups baked for 

5 minutes). A decreasing trend in PVI was highlighted in the case of higher baking time (Table 7). 

Furthermore, in case of baking temperature, the individual effect of the baking temperature was 

statistically significant for only OL (p < 0.05). However, in case of PVI, the effect of the baking 

temperature was not significant as the p value was higher than 0.05. Increasing the baking 

temperature to 230°C resulted in decreasing the values of both PVI and OL. Moreover, the 

interaction effect of the baking time and baking temperature was not significant for both of PVI 

and OL (p > 0.05).  

 

Table 7. Comparison of the experimental condition on pore volumetric index (PVI) and overall 

liking (OL) 

Par

am

eter 

Baking Time (min) Baking Temp. (°C) ANOVA p value 

5 7 200 215 230 Time Temp. 
Time x 

Temp. 

PVI 

(%) 21.44±0.68 18.48±0.86 20.54±1.06 22.77±1.06 16.58±1.06 0.01 0.24 0.14 

OL 
8.38±0.24 8.00±0.24 8.30±0.30 8.88±0.30 7.38±0.30  0.27 0.003 0.73 
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4.1.6. Results of the sensory evaluation  

Fig. 21 (A, B, C, D, E, and F) illustrated the results from the sensory evaluation conducted 

in the first phase of the experiment. Significant differences observed in nine parameters of taste, 

colour, aroma/odour, oiliness, pore’s structure, hardness, chewiness, elasticity, and overall crumb 

structure among different pogácsa groups. Samples C had noticeably higher pore structure whereas 

the lowest value for pore structure observed in sample A. The oiliness in all the samples, except 

F, was high. Among all pogácsa groups, A and C exhibited the highest value of hardness whereas 

the lowest belongs to sample B and F.  

 

Fig. 21. Average sensory profiles of pogácsa cake samples: A: 200°C, 5 min; B: 200°C, 7 min;  

C: 215°C, 5 min; D: 215°C, 7 min; E: 230°C, 5 min; F: 230°C, 7 min 
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Penalty analysis is a graphical method to find the feasible penalty arisen by the product, 

which decreases OL by not being "Just About Right (JAR)" in an attribute ((Bagdi et al. 2016; 

Iserliyska, Dzhivoderova, and Nikovska 2017). This analysis has been performed in both academia 

and industry sectors, providing technologists a classified list of critical characteristics of the 

product, which are most penalizing (Xiong and Meullenet 2006). In the present study, penalty 

analysis was conducted to describe the non-optimal sensory parameters in different groups of 

pogácsa cakes.  

Results of the penalty analysis of pogácsa samples are illustrated in Fig. 22, A-F (A: 200°C, 5 

min; B: 200°C, 7 min; C: 215°C, 5 min; D: 215°C, 7 min; E: 230°C, 5 min; F: 230°C, 7 min). The 

plot demonstrates the percentage of consumers against the mean drops. Mean drops indicate the 

difference between the mean OL for the JAR levels and "too much" or "not enough" rates. Only 

attributes with the percentage of consumers more than 20% were deemed significant. The main 

important part of the plot is the upper right subspace, which possesses more than 20% of the 

panellist’s ratings. In sample D, more than 60% of consumers felt that baked product was "too 

much" oily, and less than half of panellists expressed elasticity as "not enough". Also, the low 

percentage of panellists (~ 20-30%) found the hardness as "too much" in sample D. The oiliness 

was considered as "too much" by the most respondents in all six groups of the product. Around 

40% of consumers rated colour and pore structure as "too much" in samples A, B, C, E, and F. The 

values of "percentage of consumers" in sample D were markedly lower than the other five samples 

(sample D: 80%; A, B, C, E, and F: 100%). This indicated that respondents considered sample D 

closer to non-optimal compared to the other five groups. Hence, modification in the baking process 

of the industrial recipe may lead to an increase in the acceptability of the product. In addition, 

panellists presented that the oiliness of pogácsa was "too much" in all six sample groups (sample 

D was less oily than other groups). Therefore, less oily products would probably have higher 

acceptability.  
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Fig. 22. Mean drop plot of pogácsa (capital letters on subplots indicate the sample group). Red 

colour corresponds to "too much", while the blue colour corresponds to "not enough" endpoints of 

JAR scale. The dashed line corresponds to 20% of the consumers. A: 200°C, 5 min; B: 200°C, 7 

min; C: 215°C, 5 min; D: 215°C, 7 min; E: 230°C, 5 min; F: 230°C, 7 min 
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4.2. Results of the experiment 2 

4.2.1. Results of the PVI evaluation  

To study the effect of cottage cheese addition with different MC, and baking temperature 

on the internal structure of the pogácsa, pore characteristics of the PVI was analysed. As depicted 

in Fig. 23, sample A2 exhibited the highest PVI value (26.64%), followed by samples B2, A1, and 

B1 with PVI values of 18.52%, 18.43%, 17.33%. Samples A3 (1.57%), and B3 (1.12%) had the 

lowest PVI. Significant differences were found among the sample groups prepared with cheese 

(A1, A2, B1, and B2) and cheese-free samples (A3 and B3). Specifically, it was observed that as 

the MC increased, the PVI also exhibited a concurrent increase in pogácsa. Consequently, it can 

be inferred that the presence of cheese in the samples significantly impacted the PVI, suggesting 

the importance of the MC in affecting the textural properties of the final product. As evidenced by 

the highest value of this parameter found in pogácsa samples with high moist cheese (65% MC). 

Higher value of the PVI positively affects the acceptability of pogácsa cake. The above 

observations showed that the lowest values for pore characteristics were achieved with cheese-free 

samples (A3 and B3), which was accounted in the sensory test as undesirable. Fig. 24 shows the 

pore structure of pogácsa samples formulated with different cottage cheese and baked under 

different baking temperature.  
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Fig. 23. Results of the calculated PVI of the pogácsa groups. (A1) baked at 200°C, cheese with 

less MC (58%) in formulations; (A2) baked at 200°C, cheese with high MC (65%) in formulations; 

(A3) baked at 200°C, no cheese in formulation; (B1) baked at 215°C, cheese with less MC (58%) 

in formulations; (B2) baked at 215°C, cheese with high MC (65%) in formulations; (B3) baked at 

215°C, no cheese in formulation. 
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Fig. 24. Internal structure of pogácsa samples showing different pore structure characteristics. 

(A1) baked at 200°C, cheese with less MC (58%) in formulations; (A2) baked at 200°C, cheese 

with high MC (65%) in formulations; (A3) baked at 200°C, no cheese in formulation; (B1) baked 

at 215°C, cheese with less MC (58%) in formulations; (B2) baked at 215°C, cheese with high MC 

(65%) in formulations; (B3) baked at 215°C, no cheese in formulation. 
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4.2.2. Results of changes in physical and textural properties of pogácsa due to variation in 

baking temperature and addition of cheese 

 

Fig. 25 shows the results of textural properties of baked pogácsa samples, which were 

formulated with different cottage cheeses and baked under two different baking temperatures. 

Significant variations (p < 0.05) in the hardness, chewiness, cohesiveness, gumminess, and 

springiness were observed among different groups. Hardness and chewiness values showed that 

higher baking temperature (215°C) along with less moist cottage cheese (58% MC) in the 

formulation led to harder crumb and higher chewiness compared to the samples baked at lower 

temperature (200°C). In case of pogácsa groups prepared with no cottage cheese (samples A3 and 

B3), sample B3, which was baked under higher baking temperature, had higher values for hardness 

and chewiness compared to sample A3 with lower baking temperature. This implies that the baking 

temperature could influence hardness and chewiness. Significant differences (p < 0.05) were also 

found among the cohesiveness values. Sample A1 exhibited the highest value for cohesiveness 

(0.61), whereas the lowest belonged to sample B3 with the value of 0.32. In case of gumminess, 

sample B1 showed a value of 694.81, which was noticeably higher than other groups, while the 

lowest was belonged to sample A3 (191.51). Changes in the springiness values could be related to 

the variation in hardness, in such a way that increasing the hardness could cause a reduction in 

springiness and vice versa. This signifies that the increasing in baking temperature (from 200 to 

215°C) may result in a harder crumb texture.  
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Fig. 25. Mean of mechanical texture properties of pogácsa samples. (A1) baked at 200°C, cheese 

with less MC (58%) in formulations; (A2) baked at 200°C, cheese with high MC (65%) in 

formulations; (A3) baked at 200°C, no cheese in formulation; (B1) baked at 215°C, cheese with 

less MC (58%) in formulations; (B2) baked at 215°C, cheese with high MC (65%) in formulations; 

(B3) baked at 215°C, no cheese in formulation. 

 

Table 8 demonstrated the results of the crumb MC, volume, and porosity in the six groups 

of pogácsa sample. According to the results, crumb MC was remarkably affected after using 

different recipes. High moisture cheese maximizes the crumb moisture in pogácsa samples, 

whereas its absence led to minimize crumb moisture. It must also be mentioned that baking 

temperature affects MC of the crumb. This phenomenon has been also validated by research 

conducted by other researchers (Eggleston, Omoaka, and Arowshegbe 1993).  

The values of volume in the samples exhibited significant variation, with a statistical 

significance level of p < 0.05. The main reason for this alteration could be related to the type of 

formulation, and variation in the baking temperature. The presence or absence of cheese in the 
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formulation played a significant role in determining the volume of the samples. It was observed 

that samples without cheese (A3 and B3) exhibited the lowest volume values. Conversely, when 

cheese was incorporated into the formulation, samples B1 and A1, which contained a lower MC 

(58%) in their formulation, displayed higher volume values compared to samples B2 and A2, 

which contained a higher MC (65%). Obviously, the low MC recorded for the aforementioned 

samples is due to the absence of cottage cheese in their recipe. Furthermore, a noteworthy impact 

on sample volume was observed when the baking temperature was altered. Pogácsa groups that 

were baked at a higher temperature of 215°C demonstrated higher volume values compared to 

those baked at a lower temperature of 200°C. Therefore, it can be interpreted that baking 

temperature has a significant effect on the final volume of the samples, with higher temperatures 

leading to increased volume. 

The highest porosity value was found for sample B1 (72.75%), followed by samples A1 

(69.63%), B2 (62.20%), A2 (53.36%), and B3 (38.83%). Whereas the lowest value (32.66%) for 

this parameter was observed in sample A3, which was cheese-free and baked at 200°C. Therefore, 

it can be interpreted that higher baking temperature had significant effect to increase the porosity 

in pogácsa cake. To our knowledge, only a few numbers of studies focused to assess the impact 

of moisture level on porosity value. Esteller et al. (2006) studied the effect of kefir addition on the 

porous quality of bread with the help of an image processing technique. They found out that by 

decreasing the MC of the product, the porosity would increase (Esteller et al. 2006). Given the 

above explanations, it can be assumed that higher porosity can be associated with the MC of the 

baked pogácsa. 
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Table 8. Crumb moisture content (MC), volume, and porosity of the pogácsa* 

Sample Crumb MC (%) Volume (cm3) Porosity (%) 

A1 36.09±3.40b 24.13±1.40d 69.63±1.58e 

A2 47.18±4.96c 19.54±1.57b 53.36±5.15c 

A3 15.37±0.61a 17.77±0.89a 32.66±3.34a 

B1 35.41±0.97b 27.95±1.78e 72.75±1.48f 

B2 43.66±5.28c 21.51±0.98c 62.20±1.49d 

B3 14.81±0.37a 18.05±0.41a 38.83±6.32b 

* Different small letters in each row indicate significant differences (p < 0.05). Porosity was measured using the 

reference method. Refer to Table 3 for pogácsa cake formulations. 

 

Colour also plays an important role in the overall consumers’ acceptability of bakery 

products like pogácsa (Gebreil, Ali, and Mousa 2020). This parameter can be affected by 

formulation and processing conditions. Factors such as dough characteristics (e.g., pH and water 

content) and baking conditions (e.g., temperature and time) might alter the products colour. The 

LAB colour space, a 3-dimensional spherical system, is typically used to describe the surface 

colour of food materials. In this colour space system, L* represents lightness, which ranges from 

0 to 100, whereas a* and b* are redness-greenness and yellowness-blueness, respectively, which 

can range from negative to positive (Kamani et al. 2015). The results of the colour measurements 

of pogácsa samples are presented in Fig. 26. According to these data, L* values of crumb and crust 

decreased with increasing MC of the product. This indicated the impact of MC on the colour 

surface. Cottage cheese contains protein which might contribute to a lower L* values in both crust 

and crumb. In addition, increasing the baking temperature could reduce crust L* values. This is 

expected because with increasing the baking temperature, the formation rate of brown pigment 

will also increase. The highest yellowness (b*) value was observed in sample A1 with values of 

52.03 for crust and 29.38 for crumb, while the minimum value of b* was found for crust (40.90) 

and crumb (20.71) of the sample A3. Significant difference observed in a* values in crumb and 
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crust of pogácsa. This implies that water migration from crumb to crust might increase a* values 

and thus change the visual appearance of the pogácsa. Hence, a* values of both crumb and crust 

were higher in groups B1, B2, and B3 compared to groups A1, A2, and A3. In agreement with our 

results, Shittu et al. (2007) reported that colour parameters such as L* of the bread crust 

significantly increased from 31 to 72, by increasing both baking time and temperature from 20 to 

40 min and 190 to 240°C, respectively (Shittu, Raji, and Sanni 2007). Overall, the above L*a*b* 

results suggested that changes in baking temperature and formulation could cause variation in 

lightness, redness, and yellowness of pogácsa. 

 

Fig. 26. Mean of colorimetric parameters of the pogácsa samples. (A1) baked at 200°C, cheese 

with less MC (58%) in formulations; (A2) baked at 200°C, cheese with high MC (65%) in 

formulations; (A3) baked at 200°C, no cheese in formulation; (B1) baked at 215°C, cheese with 

less MC (58%) in formulations; (B2) baked at 215°C, cheese with high MC (65%) in formulations; 

(B3) baked at 215°C, no cheese in formulation. 
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4.2.3. Results of correlation coefficient among the different parameters  

As shown in Table 9, significant correlation coefficients were observed among the average 

values of PVI (image-based parameter), MC, and instrumental textural features. The PVI and MC 

showed a strong negative correlation (p < 0.01) with hardness, gumminess, and chewiness, strong 

positive correlation (p < 0.01) with resilience, cohesiveness, and springiness. In addition, strong 

positive correlation (p < 0.01) was observed between PVI and porosity results. It can be interpreted 

that changes in the image-based features, particularly PVI, is linked to the hardness variation of 

the pogácsa sample. In other word, the less firm pogácsa texture, the higher PVI, and vice versa. 

In addition, the harder pogácsa crumb is associated with lower MC. In line with the results of 

present study, Morreale et al. (2018) found high correlations coefficient between MC and 

instrumental texture parameters in gluten-free bread. Their findings showed a strong link between 

water content and crumb hardness (Morreale, Garzón, and Rosell 2018.). In another study, Esteller 

et al. (2006) examined the effect of the kefir concentration and proofing time on the quality of 

white bread porous. They reported high correlations between physical properties and 

microstructure observed by image processing. A strong correlation was observed between the 

microstructure of pores, brightness, and hardness of the white bread samples (Esteller et al. 2006).  

 

Table 9. Pearson correlation coefficients among the pore volumetric index (PVI), moisture content 

(MC), instrumental texture (TPA) parameters, and porosity of the pogácsa 

 Hardness 

(g) 

Resilience 

(%) 

Cohesiveness Springiness 

(%) 

Gumminess Chewiness Porosity 

PVI -0.833** 0.778** 0.760** 0.823** -0.855** -0.856** 0.719** 

MC  -0.897** 0.832** 0.824** 0.900** -0.924** -0.929** _ 

**. Correlation is significant at the 0.01 level. Porosity was measured using the reference method 

designed for bread. 
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4.2.4. Results of the effect of the baking temperature and formulation on the PVI and overall 

liking of pogácsa cake 

 

The results of a two-way ANOVA performed on the parameters of PVI and overall liking 

(OL) for pogácsa samples are shown in Table 10. The two factors investigated were baking 

temperature and variation of cheese MC in the formulation. For PVI, the mean values for samples 

baked at 200°C and 215°C were 15.55% and 12.32%, respectively, while for high moisture cheese, 

the mean value was 22.58%. Samples without cheese had a mean PVI value of 1.34%. The results 

showed a significant effect of both baking temperature and changing the MC of cheese of the 

formulated pogácsa and the interaction between these two factors on PVI, with p values of 0.017, 

0.002, and 0.019, respectively. For OL, the mean value for samples baked at 200°C and 215°C were 

5.93 and 6.6, respectively. For changing the cheese moisture of high and low, the mean scores were 

8.20 and 8.0, respectively. Samples without cheese in the formulation had a mean acceptability 

score of 2.6. The results showed a significant effect of baking temperature on OL, with a p value 

of 0.006. Moreover, there was a notable impact of fluctuation in cheese MC, as well as a significant 

interaction between the two factors of baking temperature and the utilization of cheeses with 

varying MC. This was evidenced by the corresponding p values of 0.00 and 0.001, respectively. 

 

Table 10. Comparison of the experimental condition on pore volumetric index (PVI) and overall 

liking (OL) 

Parameters 

Baking Temp. (°C) Cheese MC % ANOVA p value 

200 215 Low High No cheese Temp. 
Cheese 

MC% 

Temp. 

x 

MC% 

PVI (%) 15.55±0.83 12.32±0.83 17.88±1.02 22.58±1.02 1.34±1.02 0.017 0.002 0.019 

OL 5.93±0.23 6.6±0.32 8±0.10 8.2±0.95 2.6±0.10 0.006 0.000 0.001 
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4.2.5. Results of the sensory evaluation 

Results obtained from the sensory evaluation of pogácsa samples are illustrated in Fig. 27 

(A1, A2, A3, B1, B2, and B3). Significant differences observed in nine parameters (taste, colour, 

aroma/odour, oiliness, chewiness, hardness, elasticity, pore’s structure, and overall crumb structure) 

among different pogácsa groups. Samples prepared without cheese (A3 and B3) had noticeably 

higher hardness. The oiliness in samples A2 and B2, which were formulated with higher moist 

cheese, was higher than other groups. Among all pogácsa groups, B1 and B2 exhibited the highest 

value of pore structure. This might be due to the effect of increasing baking temperature (from 200 

to 215°C) on its crumb structure. Using high temperature for baking might lead to increased yeast 

activity, thereby generating higher amount of CO2 in the processed dough.  

 

 

Fig. 27. Average sensory profiles of pogácsa cake samples: (A1) baked at 200°C, cheese with less MC 

(58%) in formulations; (A2) baked at 200°C, cheese with high MC (65%) in formulations; (A3) baked at 

200°C, no cheese in formulation; (B1) baked at 215°C, cheese with less MC (58%) in formulations; (B2) 

baked at 215°C, cheese with high MC (65%) in formulations; (B3) baked at 215°C, no cheese in 

formulation. 
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Penalty analysis results of pogácsa groups of different formulations and baked under different 

baking temperatures are shown in Fig. 28. In sample A1, 40-50% of panellists expressed elasticity 

and oiliness attributes as "not enough" and chewiness and overall crumb structure as "too much". 

A high percentage of consumers (~ 80-100%) felt that the oiliness was "too much" in sample A2, 

which was prepared with higher moist cheese. In addition, 40% of respondents rated colour, 

chewiness, and hardness as "too much" and elasticity as "not enough". The hardness and taste were 

found to be "too much" by more than half of consumers in sample A3. The oiliness, taste, and 

colour were considered as "too much" by 40-60% of panellists in sample B1and the low percentage 

of those panellists (~ 20-30%) felt that the hardness was "not enough". In sample B2, more than 

half of the panellists found that the pogácsa sample was "not enough" hard and elastic. The values 

of "mean drops" in sample B3 were found to be negative (below zero). This indicated that sample 

B3 was considered by panellists as non-optimal compared to other pogácsa samples. Therefore, 

increasing the baking temperature from 200 to 215°C along with removing the cottage cheese from 

formulation might lead to a marked decrease in the overall acceptability of the baked product like 

pogácsa. In addition, the higher baking temperature would probably result in an undesirable colour 

score. 
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Fig. 28. Mean drop charts of pogácsa samples (capital letters indicate the sample group). Red colour 

corresponds to “too much”, while blue corresponds to “not enough” endpoints of the JAR scale. The dashed 

line corresponds to 20% of the consumers: (A1) baked at 200°C, cheese with less MC (58%) in formulations; 

(A2) baked at 200°C, cheese with high MC (65%) in formulations; (A3) baked at 200°C, no cheese in 

formulation; (B1) baked at 215°C, cheese with less MC (58%) in formulations; (B2) baked at 215°C, cheese 

with high MC (65%) in formulations; (B3) baked at 215°C, no cheese in formulation. 
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4.3. Influence of baking conditions and cheese variations on pogácsa’s overall liking  

 

The influence of different baking conditions and cheese variations on the OL of the 

pogácsa cakes were studied. Table 11 presents the mean (± SD) of OL values for the pogácsa 

samples in two sets of experiments 1 and 2. In the experiment 1, sample E, baked at 230°C for 5 

minutes, received the highest OL score of 9.15. This suggests that this specific baking condition 

was favoured by the panellists, possibly resulting in a desirable texture and flavour profile. 

Conversely, Sample F, baked at 230°C for 7 minutes, received the lowest OL score of 6.69. The 

prolonged baking time at high temperature may have negatively affected the sensory attributes of 

the pogácsa, leading to reduced liking. Samples A, B, C, and D, representing various combinations 

of temperature and time, exhibited intermediate OL scores, demonstrating the sensitivity of liking 

to baking conditions. In Experiment 2, the focus shifted to cheese content in the formulations, with 

variations in MC and the absence of cheese. Samples A1 and A2, baked at 200°C with cheese 

having different moisture content (58% and 65%, respectively), both received relatively high OL 

scores, with A2 (8.80) slightly outperforming A1 (8.70). This suggests that cheese with higher 

moisture content may contribute to enhanced liking. Sample A3, baked at 200°C without cheese 

in the formulation, received a significantly lower OL score of 3.30. This indicates that the absence 

of cheese negatively affected the overall sensory appeal of the pogácsa. Among the samples in 

Experiment 2, Sample B2 (7.60), baked at 215°C with cheese having high moisture content, 

garnered the highest OL score. This suggests that cheese with high moisture content can 

compensate for the higher baking temperature in terms of sensory preference. Sample B3 (3.60), 

baked at 215°C without cheese, received the lowest OL score, indicating that the absence of cheese 

in this condition led to reduced liking. Therefore, baking temperature and duration play a pivotal 

role in texture and liking. Moderate conditions seem to be more favourable, while extended baking 

times at high temperatures can lead to reduced liking. Cheese, especially when it has higher 

moisture content, contributes positively to OL, enhancing the sensory experience. While, the 
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absence of cheese has a detrimental effect on OL, underscoring the importance of cheese in 

pogácsa formulation. These insights are valuable for optimizing the baking process and ingredient 

composition to achieve pogácsa cakes that align with consumer preferences. 

 

Table 11. The mean (± SD) of overall liking (OL) values of the pogácsa cakes in the experiments 

1 (A-F) & 2 (A1-B3)* 

Sample Overall liking Sample 

A 8.00±1.22ab 8.70± 0.67c A1 

B 7.84 ±2.26ab 8.80± 0.63c A2 

C 7.92 ±1.25ab 3.30±1.16a A3 

D 8.61 ± 1.12b 7.30± 0.94b B1 

E 9.15 ±0.98b 7.60± 0.84b B2 

F 6.69 ±2.05a 3.60± 1.35a B3 

*Means with different superscripts within each column are significantly different (p < 0.05). Refer to 

Table 2 & 3 for pogácsa cake formulations. 
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4.4. Development of prediction models for porosity measurement of the pogácsa cake using 

image features and regression analysis 

 

After examining the correlation coefficients between the variables presented in Tables 6 

and 9, three parameters (GLCM, PVI, and porosity) were selected to avoid multicollinearity among 

the variables. Three parameters from each category of GLCM (contrast, correlation, and 

homogeneity) were selected. GLCM and PVI were considered as independent variables or 

predictors and porosity (using reference method, designed for breed) was the designated 

categorical dependent variable. 

The selection of variables for model development was conducted using a novel and non-

destructive approach, wherein exclusively image-based parameters were chosen as predictors. 

Lab-based data were intentionally excluded from consideration in order to focus solely on the 

objective of this study. Table 12 shows the list of developed models built by linear, quadratic and 

multivariate regression approaches. The models were built for all experimental batch as different 

baking condition was applied while baking. It is noteworthy to mention that only those models 

which (i) were statistically significant (p < 0.05); and (ii) had R2 higher than 50 were included in 

this table. As can be seen, the best fit type of model for correlation, Homogeneity, and contrast 

parameters were linear type with appropriate R2 (Table 12). Multivariate regression helps to assess 

the relationship between imaging parameters and porosity values measured by the standard 

laboratory method (method designed for bread). In this modelling approach, the most influential 

factor(s) in the equation could be found based on the output determination coefficient (R2). 

According to R2 value, by entering or extracting each variable in the model, the best selection of 

variables can be made (Hosseininia, Kamani, and Rani 2017). As can be seen in Table 12, the 

models built by three parameters (contrast + homogeneity + correlation) exhibited the highest R2 

which was 84.4 (p < 0.05). Using "homogeneity + correlation" as inputs showed a model with the 

same R2 as the previous model (84.4), while a slightly lower determination coefficient (R2 = 81.1) 
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achieved when "correlation" used as input. Therefore, using the combination of the GLCM 

parameters of contrast, homogeneity, and correlation as the input variables for predicting porosity, 

generated a model with highest R2.  

The same modelling technique also applied to those pogácsa samples which formulated 

with different cheese materials (having different MC ranging from 58 to 65% and samples without 

cottage cheese in the formulation). Following model with PVI variable was found to be statistically 

significant, indicating the robustness and accuracy of the PVI as a predictive tool for assessing the 

porosity parameter of pogácsa samples, even under conditions where the production recipe 

exhibits variations (R2 = 75.5 and RMSE = 2.13): 

Porosity = 3.48PVI – 0.086PVI2 +32.30 

Predictive models are widely utilized as a popular method due to advantages such as non-

destructive, rapid, non-hazardous and inexpensive in food sectors (Pahlavan et al. 2020). When 

image processing is combined with predictive multivariate analysis, it becomes a more powerful 

tool for quality assessment of food materials. Thus far, several studies have been demonstrated the 

potential of combined image processing and modelling technique (with suitable R2) for prediction 

of quality parameters in a wide range of food products. The prime examples of these promising 

research efforts are predicting of lipid oxidation parameters (FFA, PV and TBARS) in fish 

(Kamani et al. 2017), estimation of spoilage parameter (TVB-N) in vacuum and non-vacuumed 

beef (Amani et al. 2015), predicting concentration of synthetic colorant (sunset yellow) in soft 

drink (Hosseininia, Kamani, and Rani 2017), prediction of non-volatile and volatile amines (TVN, 

TMA and histamine) in fillet (Kamani et al. 2015) and predicting various quality parameters 

(specific volume, hardness, elasticity) in breads (Pahlavan et al. 2020). In this context, Różyło and 

Laskowski (2011) stated that the multivariable regression is an effective method for predicting the 

baking qualities of different wheat cultivars. Their results also indicated that alveographic 
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properties of flour and dough were considerably suitable variables in building prediction models. 

The application of canonical correlation also showed that alveographic qualities of the flour and 

dough could be used to predict specific volume and loaf volume of the bread (Różyło and 

Laskowski 2011). Konopka et al. (2004) developed a regression method to predict water 

absorption level and bread volume changes as a function of flour quality parameters and dough 

rheological properties (Konopka et al. 2004). The findings of present study are in line with these 

mentioned reports, indicating suitability of image processing and modelling techniques for 

prediction of porosity values in pogácsa cake. Despite an appropriate levels of determination 

coefficient obtained for all models; a considerable variation was also recorded in the R2 of different 

groups. This indicates the impact of different baking conditions and formulation which used during 

pogácsa preparation, causing differences in GLCM, PVI and porosity values, and subsequently 

affects the R2 of models developed by these parameters. 

 

Table 12. Developed predictive models for estimating porosity in pogácsa * 

Variables Prediction Models 
R2 

(%) 
RMSE RPD 

Contrast + Homogeneity + 

Correlation 

Y= – 65.9 Homo – 88.09 Corr – 0.58 Cont + 

207.63 
84.4 1.56 2.33 

Homogeneity + Correlation Y = - 65.84 Homo – 88.04 Corr + 207.46 84.4 1.56 2.33 

Correlation Y= 659.16 Corr2 – 1443.89 Corr + 839.25 81.1 1.72 2.08 

PVI Y = 2.47 PVI2 – 0.07 PVI + 41.44 80 2.1 1.94 

Contrast Y= – 6107 Cont2 + 1312.84 Cont – 9.72 71.3 2.12 1.58 

Homogeneity Y = 180.99 Homo2 – 504.89 Homo + 375.96 69 2.21 1.50 

* The criteria for choosing the equations: 1. p value (< 0.05); 2. R2 value (above 50); 3. In case of similar 

R2, the linear was preferred than the quadratic model. All regression modelling analyses were carried out 

with 4 decimals.     
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CHAPTER 5: SUMMARY & CONCLUSION 

 

Over the past centuries, leavened bakery products are essential to families’ food baskets. 

This category encompasses products such as buns, cakes, and bread. According to the Bakery and 

Confectionery Global Market Report, the worldwide market of bakery products was around 887.82 

billion dollars in 2020. Pogácsa is one leavened traditional Hungarian cake, typically made of 

wheat flour, margarine, yeast, salt, and other ingredients. Pogácsa is inelastic, slightly dense, with 

a particular texture, crispy surface, and tender core, giving characteristic and desired sensorial 

perception. Although this cake is regarded as a high-demand bakery product owing to its distinctive 

textural property, the studies focusing on the quality improvement and assessment of its physical 

and sensorial attributes are very limited. 

As consumer awareness and expectation of high-quality bakery products increase, the 

importance of using accurate, non-destructive, and rapid quality assessment methods has become 

a big challenge for bakery manufactures. The ingredients and baking conditions, particularly time 

and temperature, are the principal processing parameters, which significantly influence the quality 

attributes of the end product. The most crucial quality attributes are colour, shape, size, and crumb 

texture. Among these, crumb texture is the critical parameter for their quality assessment. Thus 

far, the quality assessment parameters such as crumb porosity and pore size distribution have been 

examined to understand the internal structure of the bakery products using various analytical and 

sophisticated instrumental methods (e.g., human sensory evaluation, instrumental analysis). Each 

method, regardless of principle, has its own merits and demerits. For instance, the instrumental 

and sensorial approaches are usually time-consuming, expensive, and/or destructive, which may 

not suit in-line inspection. 

With the need for more rapid and economical objective measurements of a quality, in recent 

times, image analysis is garnering prominence as a relevant tool for the qualitative and quantitative 
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assessment of quality parameters in food processing. This recent approach has the advantage of 

being non-destructive, rapid, and cheaper compared to the analytical methods. This method has 

successfully been applied in various bakery products to evaluate the morphological and textural 

qualities, grading, and identification in bakery products.  

In view of the aforementioned points, current research study was conducted with the 

following objectives: 

1. To develop robust methods to evaluate the internal structure of the pogácsa cake. 

2. To investigate the effect of formulations (using cheeses with different moisture content) 

and baking conditions (different time and temperature) on the porous structure and sensory 

properties of pogácsa, with the help of image analysis. 

3. Relationship between selected image texture features and physicochemical parameters of 

pogácsa. 

The experimental methodology for achieving the objectives envisaged for the study is summarized 

below: 

 Pogácsa dough was prepared according to an industrial recipe. The prepared dough was 

rested in cold storage (4°C ± 2°C) for overnight. After cold storage, the dough was rolled 

out and cut into small pieces (4cm width, 6 mm tall) using a round mould. The moulded 

dough was placed on baking trays and transferred to a proofing chamber. All samples were 

subjected to a similar proofing setting (20 min and 40°C). After proofing, the baking 

process was conducted in the oven. 

 The first part of the study was performed to evaluate the effect of time and temperature of 

baking as two fundamental factors on texture and sensory properties of pogácsa. Therefore, 

samples were baked under different temperatures (200, 215, and 230°C) and times (5 and 

7 min). The second part was focused on the effect of formulations (using cheeses with 
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different MC) and baking temperature on the porous structure and sensory properties of 

pogácsa. Hence, for the second part of the study, the baking temperature was adjusted to 

200 and 215°C and two kinds of cottage cheese with two different MC of 58% and 65% 

were used in dough formulations. One group of pogácsa was also prepared without cottage 

cheese. 

 The images were analysed to determine its morphological characteristics namely, area of 

pores (mm2), pore volume (mm3), and PVI (%); advanced pattern features of GLCM 

including entropy, contrast, correlation, energy, and homogeneity.  

 Physical, textural, and sensorial characteristics such as volume, moisture, L*, a*, and b* 

colorimetric parameters, porosity, TPA textural parameters, overall liking, and penalties 

were also evaluated for their performance in inspection of the pogácsa internal structure. 

 Data were evaluated through analysis of variance (ANOVA) and Duncan's Multiple to 

detect significance difference at p < 0.05. Correlation coefficients between variables were 

estimated using the Pearson correlation test to assist in the selection of parameters for 

developing a prediction model for porosity measurement of pogácsa using image analysis. 

Tow-way ANOVA was also conducted to investigate the effect of the baking time and 

temperature, in combination, on PVI and OL, as well. Multiple regression analysis 

technique was used to develop the prediction model.  

The general results obtained in this study are presented below: 

 The TPA results revealed that the change in baking settings (time and temperature) could 

substantially influence the product texture and change hardness, cohesiveness, springiness, 

gumminess, and chewiness.  

 Pogácsa samples prepared with high moist cheese (65% MC) showed the highest PVI. In 

addition, increase in baking temperature from 200 to 215◦C caused an increase in the PVI 
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value. However, increasing the baking time from 5 to 7 minutes along with increasing the 

baking temperature to 230◦C led to a decrease in the PVI value. Using cheese in pogácsa 

formulation could generate bigger particle sizes occupied in the crumb of baked samples. 

While lowest values for pore characteristics were achieved with cheese-free samples. 

 The GLCM textural features extracted from pogácsa images were found to be varied when 

different times and temperatures were applied. In addition, GLCM imaging analysis found 

to be suitable for porosity measurement and prediction the textural properties of pogácsa. 

 The results of colour measurements revealed that L* values of crumb and crust decreased 

with increasing MC of the product. Pogácsa groups with high moist cheese in the 

formulation exhibited the lowest values of L* and vice versa. In groups, which were baked 

under higher temperature (215◦C), water migration from crumb to crust increased a* values 

and thus changed the visual appearance of the pogácsa.  

 Penalty analysis revealed that oiliness, pore structure, and colour of products were linked 

with baking time and temperature. High percentage of consumers felt that the oiliness was 

more than enough in the samples, which were prepared with higher moist cheese. Also, 

increasing the baking temperature resulted in an undesirable colour score. 

 The results of OL revealed that baking temperature and time significantly impact OL, with 

moderate conditions receiving higher scores. Positive influence of cheese was observed on 

OL, particularly when it had a higher moisture content. Conversely, the absence of cheese 

had an adverse effect on liking. Therefore, delicate balance required in pogácsa preparation, 

where optimal baking parameters and the inclusion of cheese contribute to a more 

enjoyable sensory experience.  

It is known that important parameters of temperature and time of the baking in addition 

to the heat flow inside the oven can affect the results of the internal structure of the baked 
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product. In the scope of this thesis the first two parameters have been studied in detail. As 

an extension to this thesis for the future works it is recommended to perform the detail 

analysis on the effect of heat flow inside the oven. This effect has been previously studied 

for bread and some other bakery products but to the best of authors knowledge, this study 

has not been done for evaluating the internal structure of the pogácsa (Standing 1974; 

Litovchenko 2013). Furthermore, it is advisable to explore various metrics such as the ratio 

of pore area to segmented area, in order to gain additional insights in this context. It has 

the potential to reveal novel correlations and offer valuable supplementary information.  
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CHAPTER 6: NEW SCIENTIFIC RESULTS 

 

1. The structural properties of bakery products can be affected by changes in baking 

conditions, and a reliable method for quantifying these changes is essential. The PVI (pore 

volumetric index) has been proposed as a promising approach for evaluating the structure 

of pogácsa samples, based on cross-sectional images. This method involves segmenting 

the pores using Otsu's thresholding technique and projecting the total pore area to volume, 

with the PVI expressed as the percentage of pores in the segmented sample. The PVI was 

observed to respond sensitively to changes in baking time (p < 0.01), baking temperature 

(p < 0.01), and recipe variation (p < 0.002) due to the use of cheese with different MC, 

demonstrating its potential as a useful tool for monitoring and characterizing the effects of 

baking conditions on the structural properties of pogácsa cake.  

[Amani, H., Baranyai, L., Badak-Kerti, K. Mousavi. K, A. (2022). Influence of baking 

temperature and formulation on physical, sensorial, and morphological properties of 

pogácsa cake: an image analysis study. Foods, 11, 321. https://doi.org/10.3390/ 

foods11030321]. 

2. New model has been created to predict porosity of pogácsa of given recipe using digital 

image processing, utilizing pattern descriptors of homogeneity, correlation and contrast. 

The model fit well on experimental data with R2 = 0.844, RMSE = 1.56, and RPD = 2.33: 

 

Porosity = – 65.9 Homogeneity – 88.09 Correlation – 0.58 Contrast + 207.63 

 

3. A singular visual parameter, PVI, and a statistical parameter representing the pattern of 

correlation were selected as potential predictors of porosity for an experimental 

investigation where varying time and temperature of baking was applied. When each of 
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these selected parameters was used separately, they resulted in good estimations of 

porosity, as evidenced by the appropriate R2 value: 

Porosity = 659.16 Correlation2 – 1443.89 Correlation + 839.25  R2: 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

Porosity = 2.47 PVI2 – 0.07 PVI + 41.44  R2: 0.80 

 

4. The most influential parameter impacting the sensory attributes of a given pogácsa, 

particularly the critical factor affecting consumer overall liking, was the amount of cheese 

in the recipe (F=252.33, p < 0.001). Following this, baking temperature had a noticeably 

smaller effect (F=8.333, p < 0.006), and there was also a significant interaction effect 

(F=7.583, p < 0.001) between baking temperature and cheese content. It's worth noting that 

the interaction effect accounted for only 3% of the influence of cheese quantity on overall 

liking. This hierarchy of parameters underscores the scale of their respective impacts on 

the sensory attributes of the pogácsa. 

[Amani, H., Baranyai, L., Badak-Kerti, K. Mousavi. K, A. (2022). Influence of baking 

temperature and formulation on physical, sensorial, and morphological properties of 

pogácsa cake: an image analysis study. Foods, 11, 321. https://doi.org/10.3390/ 

foods11030321]. 

5. The porosity prediction model for pogácsa remained unaffected by variations in MC. 

Remarkably, a single model exhibited a strong fit when applied to the entire dataset, in 

which comprised a range of formulated samples with distinct cheese moisture content 

levels (65% and 58%), as well as samples prepared without cheese in their formulation. 

This comprehensive model had a R2 of 0.75 and a RMSE of 2.13, demonstrating its efficacy 

in accommodating diverse sample compositions and moisture conditions: 

Porosity = 3.48 PVI – 0.086 PVI2 +32.30 
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8.2. Appendix of the supplementary tables 

 

Appendix Table 1. The mean (± SD) of textural properties of pogácsa samples in the experiment 

1* 

Sa

mpl

e 

Adhesivene

ss (g.sec) 

Cohesivenes

s (%) 
Gumminess Chewiness Hardness (g) 

Springiness 

(%) 

A 0.30±0.02b 0.59±0.01b 486.35±49.38a 385.86±32.85a 843.04±79.13a 77.71±1.91c 

B 0.30±0.02b 0.60±0.01b 540.86±33.10a 415.21±28.27a 900.65±56.25a 
76.76±2.23ab

c 

C 0.29±0.03b 0.59±0.04b 537.64±65.47a 411.78±38.15a 913.26±104.69a 77.13±2.92bc 

D 0.29±0.02b 0.62±0.02c 887.28±105.36c 656.11±92.7c 1217.8±162.8b 
76.68±3.60ab

c 

E 0.29±0.01b 0.56±0.01a 783.61±63.44b 586.41±47.91b 1377.6±118.13c 75.37±2.37ab 

F 0.27±0.04a 0.60±0.01b 906.09±123.98c 683.19±80.4c 1494.5±190.84d 74.90±2.83a 

*Means with different superscripts within each column are significantly different (p <0.05). Refer to Table 

2 for pogácsa cake formulations.
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Appendix Table 2. Changes in GLCM texture features of pogácsa samples in the experiment 1* 

Sample Entropy Contrast Correlation Energy Homogeneity 

A 7.625±0.08bc 0.107±0.01c 0.976±0.003b 0.191±0.02b 0.946±0.005a 

B 7.579±0.01b 0.096±0.01ab 0.976±0.003b 0.190±0.02b 0.952±0.004bc 

C 7.483±0.07a 0.106±0.00c 0.973±0.002a 0.207±0.02c 0.946±0.004a 

D 7.740±0.05d 0.114±0.01d 0.976±0.004b 0.166±0.01a 0.943±0.005a 

E 7.620±0.10bc 0.098±0.01b 0.973±0.002a 0.174±0.01a 0.951±0.005b 

F 7.673±0.01c 0.091±0.002a 0.982±0.002c 0.160±0.01a 0.960±0.005c 

 *Means with different superscripts within each column are significantly different (p < 0.05). Refer to Table 

2 for pogácsa cake formulations. 
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Appendix Table 3. The mean (± SD) of textural properties of the pogácsa in the experiment 2* 

Sample Hardness (g) 

Cohesiveness 

(%) 

Gumminess Chewiness 

Springiness 

(%) 

A1 571.99±71.19a 0.61±0.02e 371.43±31.86c 309.71± 33.79a 86.30± 3.05cd 

A2 471.67±43.24a 0.54±0.01d 259.29±23.70b 232.98±26.78a 89.94± 7.83d 

A3 5042±338.91c 0.40±0.03b 191.51±11.11a 1256.08± 36.69c 62.74± 3.58b 

B1 1441.1±131.65b 0.49±0.03c 694.81±68.20d 568.98± 91.78b 83.61± 8.75c 

B2 674.46±57.84a 0.53 ±0.01d 359.69±30.10c 311.83±35.57a 85.97± 3.13cd 

B3 7778.8±851.60d 0.32±0.02a 256.7±20.07b 1526.62± 220.53d 55.72± 1.83a 

   * Different small letters in each row indicate significant differences (p < 0.05). Refer to Table 3 for pogácsa 

cake formulations. 
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Appendix Table 4. The mean (± SD) of colorimetric parameters of the pogácsa in the experiment 

2* 

Sample 
L* a* b* 

Crumb Crust Crumb Crust Crumb Crust 

A1 85.36±1.94b 89.80±3.29c -0.95±0.49b 9.09±1.10a 29.38±1.23d 52.03±0.54c 

A2 84.23±0.60ab 85.98±1.42b -0.16±0.01c 11.92±0.42bc 26.78±2.01c 51.83±2.16c 

A3 83.54±0.49ab 71.93±0.15a -0.15±0.04c 9.94±0.27ab 20.71±0.97a 40.90±1.15a 

B1 92.10±1.63c 72.92±0.66a -1.39±0.08a 27.45±2.47e 31.90±1.92d 49.99±1.94c 

B2 85.16±1.34b 70.47±2.54a -1.12±0.06ab 23.61±0.64d 30.83±1.09d 44.87±1.66b 

B3 82.22±1.66a 69.71±2.75a 0.53±0.12d 13.20±0.57c 24.05±0.56b 42.37±1.15ab 

*Columns with different letters are significantly different (p < 0.05). Refer to Table 3 for pogácsa cake 

formulations. 
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Appendix Table 5. PVI (%) values of the pogácsa cakes in the experiments 1 (A-F) & 2 (A1-B3)* 

Sample PVI (%) Sample 

A 19.73±0.03b 18.43±0.03b A1 

B 21.35±0.07b 26.64±0.06c A2 

C 24.26±0.05b 1.57±0.00a A3 

D 21.28±0.04b 17.33±0.07b B1 

E 20.35±0.03b 18.52±0.03b B2 

F 12.81±0.01a 1.12±0.00a B3 

*Means with different superscripts within each column are significantly different (p < 0.05). Refer to 

Table 2 & 3 for pogácsa cake formulations. 
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